]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/time/hrtimer.c
hrtimer: Make hrtimer_force_reprogramm() unconditionally available
[mirror_ubuntu-eoan-kernel.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
174cd4b1 46#include <linux/sched/signal.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
370c9135 50#include <linux/sched/nohz.h>
b17b0153 51#include <linux/sched/debug.h>
eea08f32 52#include <linux/timer.h>
b0f8c44f 53#include <linux/freezer.h>
edbeda46 54#include <linux/compat.h>
c0a31329 55
7c0f6ba6 56#include <linux/uaccess.h>
c0a31329 57
c6a2a177
XG
58#include <trace/events/timer.h>
59
c1797baf 60#include "tick-internal.h"
8b094cd0 61
c0a31329
TG
62/*
63 * The timer bases:
7978672c 64 *
571af55a 65 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
66 * into the timer bases by the hrtimer_base_type enum. When trying
67 * to reach a base using a clockid, hrtimer_clockid_to_base()
68 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 69 */
54cdfdb4 70DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 71{
84cc8fd2 72 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 73 .clock_base =
c0a31329 74 {
3c8aa39d 75 {
ab8177bc
TG
76 .index = HRTIMER_BASE_MONOTONIC,
77 .clockid = CLOCK_MONOTONIC,
3c8aa39d 78 .get_time = &ktime_get,
3c8aa39d 79 },
68fa61c0
TG
80 {
81 .index = HRTIMER_BASE_REALTIME,
82 .clockid = CLOCK_REALTIME,
83 .get_time = &ktime_get_real,
68fa61c0 84 },
70a08cca 85 {
ab8177bc
TG
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
70a08cca 88 .get_time = &ktime_get_boottime,
70a08cca 89 },
90adda98
JS
90 {
91 .index = HRTIMER_BASE_TAI,
92 .clockid = CLOCK_TAI,
93 .get_time = &ktime_get_clocktai,
90adda98 94 },
3c8aa39d 95 }
c0a31329
TG
96};
97
942c3c5c 98static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
99 /* Make sure we catch unsupported clockids */
100 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
101
ce31332d
TG
102 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
103 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
104 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 105 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 106};
e06383db 107
c0a31329
TG
108/*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112#ifdef CONFIG_SMP
113
887d9dc9
PZ
114/*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119static struct hrtimer_cpu_base migration_cpu_base = {
887d9dc9
PZ
120 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
121};
122
123#define migration_base migration_cpu_base.clock_base[0]
124
c0a31329
TG
125/*
126 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
127 * means that all timers which are tied to this base via timer->base are
128 * locked, and the base itself is locked too.
129 *
130 * So __run_timers/migrate_timers can safely modify all timers which could
131 * be found on the lists/queues.
132 *
133 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
134 * possible to set timer->base = &migration_base and drop the lock: the timer
135 * remains locked.
c0a31329 136 */
3c8aa39d
TG
137static
138struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
139 unsigned long *flags)
c0a31329 140{
3c8aa39d 141 struct hrtimer_clock_base *base;
c0a31329
TG
142
143 for (;;) {
144 base = timer->base;
887d9dc9 145 if (likely(base != &migration_base)) {
ecb49d1a 146 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
147 if (likely(base == timer->base))
148 return base;
149 /* The timer has migrated to another CPU: */
ecb49d1a 150 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
151 }
152 cpu_relax();
153 }
154}
155
6ff7041d 156/*
07a9a7ea
AMG
157 * We do not migrate the timer when it is expiring before the next
158 * event on the target cpu. When high resolution is enabled, we cannot
159 * reprogram the target cpu hardware and we would cause it to fire
160 * late. To keep it simple, we handle the high resolution enabled and
161 * disabled case similar.
6ff7041d
TG
162 *
163 * Called with cpu_base->lock of target cpu held.
164 */
165static int
166hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
167{
6ff7041d
TG
168 ktime_t expires;
169
6ff7041d 170 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2456e855 171 return expires <= new_base->cpu_base->expires_next;
6ff7041d
TG
172}
173
bc7a34b8
TG
174static inline
175struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
176 int pinned)
177{
ae67bada
TG
178#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
179 if (static_branch_likely(&timers_migration_enabled) && !pinned)
180 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
181#endif
662b3e19 182 return base;
bc7a34b8 183}
bc7a34b8 184
c0a31329 185/*
b48362d8
FW
186 * We switch the timer base to a power-optimized selected CPU target,
187 * if:
188 * - NO_HZ_COMMON is enabled
189 * - timer migration is enabled
190 * - the timer callback is not running
191 * - the timer is not the first expiring timer on the new target
192 *
193 * If one of the above requirements is not fulfilled we move the timer
194 * to the current CPU or leave it on the previously assigned CPU if
195 * the timer callback is currently running.
c0a31329 196 */
3c8aa39d 197static inline struct hrtimer_clock_base *
597d0275
AB
198switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
199 int pinned)
c0a31329 200{
b48362d8 201 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 202 struct hrtimer_clock_base *new_base;
ab8177bc 203 int basenum = base->index;
c0a31329 204
b48362d8
FW
205 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
206 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 207again:
e06383db 208 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
209
210 if (base != new_base) {
211 /*
6ff7041d 212 * We are trying to move timer to new_base.
c0a31329
TG
213 * However we can't change timer's base while it is running,
214 * so we keep it on the same CPU. No hassle vs. reprogramming
215 * the event source in the high resolution case. The softirq
216 * code will take care of this when the timer function has
217 * completed. There is no conflict as we hold the lock until
218 * the timer is enqueued.
219 */
54cdfdb4 220 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
221 return base;
222
887d9dc9
PZ
223 /* See the comment in lock_hrtimer_base() */
224 timer->base = &migration_base;
ecb49d1a
TG
225 raw_spin_unlock(&base->cpu_base->lock);
226 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 227
b48362d8 228 if (new_cpu_base != this_cpu_base &&
bc7a34b8 229 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
230 raw_spin_unlock(&new_base->cpu_base->lock);
231 raw_spin_lock(&base->cpu_base->lock);
b48362d8 232 new_cpu_base = this_cpu_base;
6ff7041d
TG
233 timer->base = base;
234 goto again;
eea08f32 235 }
c0a31329 236 timer->base = new_base;
012a45e3 237 } else {
b48362d8 238 if (new_cpu_base != this_cpu_base &&
bc7a34b8 239 hrtimer_check_target(timer, new_base)) {
b48362d8 240 new_cpu_base = this_cpu_base;
012a45e3
LM
241 goto again;
242 }
c0a31329
TG
243 }
244 return new_base;
245}
246
247#else /* CONFIG_SMP */
248
3c8aa39d 249static inline struct hrtimer_clock_base *
c0a31329
TG
250lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
251{
3c8aa39d 252 struct hrtimer_clock_base *base = timer->base;
c0a31329 253
ecb49d1a 254 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
255
256 return base;
257}
258
eea08f32 259# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
260
261#endif /* !CONFIG_SMP */
262
263/*
264 * Functions for the union type storage format of ktime_t which are
265 * too large for inlining:
266 */
267#if BITS_PER_LONG < 64
c0a31329
TG
268/*
269 * Divide a ktime value by a nanosecond value
270 */
f7bcb70e 271s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 272{
c0a31329 273 int sft = 0;
f7bcb70e
JS
274 s64 dclc;
275 u64 tmp;
c0a31329 276
900cfa46 277 dclc = ktime_to_ns(kt);
f7bcb70e
JS
278 tmp = dclc < 0 ? -dclc : dclc;
279
c0a31329
TG
280 /* Make sure the divisor is less than 2^32: */
281 while (div >> 32) {
282 sft++;
283 div >>= 1;
284 }
f7bcb70e
JS
285 tmp >>= sft;
286 do_div(tmp, (unsigned long) div);
287 return dclc < 0 ? -tmp : tmp;
c0a31329 288}
8b618628 289EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
290#endif /* BITS_PER_LONG >= 64 */
291
5a7780e7
TG
292/*
293 * Add two ktime values and do a safety check for overflow:
294 */
295ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
296{
979515c5 297 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
298
299 /*
300 * We use KTIME_SEC_MAX here, the maximum timeout which we can
301 * return to user space in a timespec:
302 */
2456e855 303 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
304 res = ktime_set(KTIME_SEC_MAX, 0);
305
306 return res;
307}
308
8daa21e6
AB
309EXPORT_SYMBOL_GPL(ktime_add_safe);
310
237fc6e7
TG
311#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
312
313static struct debug_obj_descr hrtimer_debug_descr;
314
99777288
SG
315static void *hrtimer_debug_hint(void *addr)
316{
317 return ((struct hrtimer *) addr)->function;
318}
319
237fc6e7
TG
320/*
321 * fixup_init is called when:
322 * - an active object is initialized
323 */
e3252464 324static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
325{
326 struct hrtimer *timer = addr;
327
328 switch (state) {
329 case ODEBUG_STATE_ACTIVE:
330 hrtimer_cancel(timer);
331 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 332 return true;
237fc6e7 333 default:
e3252464 334 return false;
237fc6e7
TG
335 }
336}
337
338/*
339 * fixup_activate is called when:
340 * - an active object is activated
b9fdac7f 341 * - an unknown non-static object is activated
237fc6e7 342 */
e3252464 343static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
344{
345 switch (state) {
237fc6e7
TG
346 case ODEBUG_STATE_ACTIVE:
347 WARN_ON(1);
348
349 default:
e3252464 350 return false;
237fc6e7
TG
351 }
352}
353
354/*
355 * fixup_free is called when:
356 * - an active object is freed
357 */
e3252464 358static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
359{
360 struct hrtimer *timer = addr;
361
362 switch (state) {
363 case ODEBUG_STATE_ACTIVE:
364 hrtimer_cancel(timer);
365 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 366 return true;
237fc6e7 367 default:
e3252464 368 return false;
237fc6e7
TG
369 }
370}
371
372static struct debug_obj_descr hrtimer_debug_descr = {
373 .name = "hrtimer",
99777288 374 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
375 .fixup_init = hrtimer_fixup_init,
376 .fixup_activate = hrtimer_fixup_activate,
377 .fixup_free = hrtimer_fixup_free,
378};
379
380static inline void debug_hrtimer_init(struct hrtimer *timer)
381{
382 debug_object_init(timer, &hrtimer_debug_descr);
383}
384
385static inline void debug_hrtimer_activate(struct hrtimer *timer)
386{
387 debug_object_activate(timer, &hrtimer_debug_descr);
388}
389
390static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
391{
392 debug_object_deactivate(timer, &hrtimer_debug_descr);
393}
394
395static inline void debug_hrtimer_free(struct hrtimer *timer)
396{
397 debug_object_free(timer, &hrtimer_debug_descr);
398}
399
400static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
401 enum hrtimer_mode mode);
402
403void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
404 enum hrtimer_mode mode)
405{
406 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
407 __hrtimer_init(timer, clock_id, mode);
408}
2bc481cf 409EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
410
411void destroy_hrtimer_on_stack(struct hrtimer *timer)
412{
413 debug_object_free(timer, &hrtimer_debug_descr);
414}
c08376ac 415EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
416
417#else
418static inline void debug_hrtimer_init(struct hrtimer *timer) { }
419static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
420static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
421#endif
422
c6a2a177
XG
423static inline void
424debug_init(struct hrtimer *timer, clockid_t clockid,
425 enum hrtimer_mode mode)
426{
427 debug_hrtimer_init(timer);
428 trace_hrtimer_init(timer, clockid, mode);
429}
430
63e2ed36
AMG
431static inline void debug_activate(struct hrtimer *timer,
432 enum hrtimer_mode mode)
c6a2a177
XG
433{
434 debug_hrtimer_activate(timer);
63e2ed36 435 trace_hrtimer_start(timer, mode);
c6a2a177
XG
436}
437
438static inline void debug_deactivate(struct hrtimer *timer)
439{
440 debug_hrtimer_deactivate(timer);
441 trace_hrtimer_cancel(timer);
442}
443
c272ca58
AMG
444static struct hrtimer_clock_base *
445__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
446{
447 unsigned int idx;
448
449 if (!*active)
450 return NULL;
451
452 idx = __ffs(*active);
453 *active &= ~(1U << idx);
454
455 return &cpu_base->clock_base[idx];
456}
457
458#define for_each_active_base(base, cpu_base, active) \
459 while ((base = __next_base((cpu_base), &(active))))
460
4ebbda52 461static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919 462{
c272ca58 463 struct hrtimer_clock_base *base;
34aee88a 464 unsigned int active = cpu_base->active_bases;
2456e855 465 ktime_t expires, expires_next = KTIME_MAX;
9bc74919 466
eb27926b 467 cpu_base->next_timer = NULL;
c272ca58 468 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
469 struct timerqueue_node *next;
470 struct hrtimer *timer;
471
34aee88a 472 next = timerqueue_getnext(&base->active);
9bc74919
TG
473 timer = container_of(next, struct hrtimer, node);
474 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 475 if (expires < expires_next) {
9bc74919 476 expires_next = expires;
eb27926b 477 cpu_base->next_timer = timer;
895bdfa7 478 }
9bc74919
TG
479 }
480 /*
481 * clock_was_set() might have changed base->offset of any of
482 * the clock bases so the result might be negative. Fix it up
483 * to prevent a false positive in clockevents_program_event().
484 */
2456e855
TG
485 if (expires_next < 0)
486 expires_next = 0;
9bc74919
TG
487 return expires_next;
488}
9bc74919 489
21d6d52a
TG
490static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
491{
492 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
493 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
494 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
495
868a3e91
TG
496 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
497 offs_real, offs_boot, offs_tai);
21d6d52a
TG
498}
499
28bfd18b
AMG
500/*
501 * Is the high resolution mode active ?
502 */
503static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
504{
505 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
506 cpu_base->hres_active : 0;
507}
508
509static inline int hrtimer_hres_active(void)
510{
511 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
512}
513
54cdfdb4
TG
514/*
515 * Reprogram the event source with checking both queues for the
516 * next event
517 * Called with interrupts disabled and base->lock held
518 */
7403f41f
AC
519static void
520hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 521{
21d6d52a
TG
522 ktime_t expires_next;
523
851cff8c 524 if (!__hrtimer_hres_active(cpu_base))
21d6d52a
TG
525 return;
526
527 expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 528
2456e855 529 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
530 return;
531
2456e855 532 cpu_base->expires_next = expires_next;
7403f41f 533
6c6c0d5a
SH
534 /*
535 * If a hang was detected in the last timer interrupt then we
536 * leave the hang delay active in the hardware. We want the
537 * system to make progress. That also prevents the following
538 * scenario:
539 * T1 expires 50ms from now
540 * T2 expires 5s from now
541 *
542 * T1 is removed, so this code is called and would reprogram
543 * the hardware to 5s from now. Any hrtimer_start after that
544 * will not reprogram the hardware due to hang_detected being
545 * set. So we'd effectivly block all timers until the T2 event
546 * fires.
547 */
548 if (cpu_base->hang_detected)
549 return;
550
d2540875 551 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
552}
553
ebba2c72
AMG
554/* High resolution timer related functions */
555#ifdef CONFIG_HIGH_RES_TIMERS
556
557/*
558 * High resolution timer enabled ?
559 */
560static bool hrtimer_hres_enabled __read_mostly = true;
561unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
562EXPORT_SYMBOL_GPL(hrtimer_resolution);
563
564/*
565 * Enable / Disable high resolution mode
566 */
567static int __init setup_hrtimer_hres(char *str)
568{
569 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
570}
571
572__setup("highres=", setup_hrtimer_hres);
573
574/*
575 * hrtimer_high_res_enabled - query, if the highres mode is enabled
576 */
577static inline int hrtimer_is_hres_enabled(void)
578{
579 return hrtimer_hres_enabled;
580}
581
9ec26907
TG
582/*
583 * Retrigger next event is called after clock was set
584 *
585 * Called with interrupts disabled via on_each_cpu()
586 */
587static void retrigger_next_event(void *arg)
588{
dc5df73b 589 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 590
851cff8c 591 if (!__hrtimer_hres_active(base))
9ec26907
TG
592 return;
593
9ec26907 594 raw_spin_lock(&base->lock);
5baefd6d 595 hrtimer_update_base(base);
9ec26907
TG
596 hrtimer_force_reprogram(base, 0);
597 raw_spin_unlock(&base->lock);
598}
b12a03ce 599
54cdfdb4
TG
600/*
601 * Switch to high resolution mode
602 */
75e3b37d 603static void hrtimer_switch_to_hres(void)
54cdfdb4 604{
c6eb3f70 605 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
606
607 if (tick_init_highres()) {
820de5c3 608 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 609 "mode on CPU %d\n", base->cpu);
85e1cd6e 610 return;
54cdfdb4
TG
611 }
612 base->hres_active = 1;
398ca17f 613 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
614
615 tick_setup_sched_timer();
54cdfdb4
TG
616 /* "Retrigger" the interrupt to get things going */
617 retrigger_next_event(NULL);
54cdfdb4
TG
618}
619
5ec2481b
TG
620static void clock_was_set_work(struct work_struct *work)
621{
622 clock_was_set();
623}
624
625static DECLARE_WORK(hrtimer_work, clock_was_set_work);
626
f55a6faa 627/*
b4d90e9f 628 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 629 * interrupt device on all cpus.
f55a6faa
JS
630 */
631void clock_was_set_delayed(void)
632{
5ec2481b 633 schedule_work(&hrtimer_work);
f55a6faa
JS
634}
635
54cdfdb4
TG
636#else
637
54cdfdb4 638static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 639static inline void hrtimer_switch_to_hres(void) { }
9ec26907 640static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
641
642#endif /* CONFIG_HIGH_RES_TIMERS */
643
11a9fe06
AMG
644/*
645 * When a timer is enqueued and expires earlier than the already enqueued
646 * timers, we have to check, whether it expires earlier than the timer for
647 * which the clock event device was armed.
648 *
649 * Called with interrupts disabled and base->cpu_base.lock held
650 */
651static void hrtimer_reprogram(struct hrtimer *timer,
652 struct hrtimer_clock_base *base)
653{
654 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
655 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
656
657 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
658
659 /*
660 * If the timer is not on the current cpu, we cannot reprogram
661 * the other cpus clock event device.
662 */
663 if (base->cpu_base != cpu_base)
664 return;
665
666 /*
667 * If the hrtimer interrupt is running, then it will
668 * reevaluate the clock bases and reprogram the clock event
669 * device. The callbacks are always executed in hard interrupt
670 * context so we don't need an extra check for a running
671 * callback.
672 */
673 if (cpu_base->in_hrtirq)
674 return;
675
676 /*
677 * CLOCK_REALTIME timer might be requested with an absolute
678 * expiry time which is less than base->offset. Set it to 0.
679 */
680 if (expires < 0)
681 expires = 0;
682
683 if (expires >= cpu_base->expires_next)
684 return;
685
686 /* Update the pointer to the next expiring timer */
687 cpu_base->next_timer = timer;
688
689 /*
690 * If a hang was detected in the last timer interrupt then we
691 * do not schedule a timer which is earlier than the expiry
692 * which we enforced in the hang detection. We want the system
693 * to make progress.
694 */
695 if (cpu_base->hang_detected)
696 return;
697
698 /*
699 * Program the timer hardware. We enforce the expiry for
700 * events which are already in the past.
701 */
702 cpu_base->expires_next = expires;
703 tick_program_event(expires, 1);
704}
705
b12a03ce
TG
706/*
707 * Clock realtime was set
708 *
709 * Change the offset of the realtime clock vs. the monotonic
710 * clock.
711 *
712 * We might have to reprogram the high resolution timer interrupt. On
713 * SMP we call the architecture specific code to retrigger _all_ high
714 * resolution timer interrupts. On UP we just disable interrupts and
715 * call the high resolution interrupt code.
716 */
717void clock_was_set(void)
718{
90ff1f30 719#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
720 /* Retrigger the CPU local events everywhere */
721 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
722#endif
723 timerfd_clock_was_set();
b12a03ce
TG
724}
725
726/*
727 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
728 * interrupt on all online CPUs. However, all other CPUs will be
729 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 730 * must be deferred.
b12a03ce
TG
731 */
732void hrtimers_resume(void)
733{
53bef3fd 734 lockdep_assert_irqs_disabled();
5ec2481b 735 /* Retrigger on the local CPU */
b12a03ce 736 retrigger_next_event(NULL);
5ec2481b
TG
737 /* And schedule a retrigger for all others */
738 clock_was_set_delayed();
b12a03ce
TG
739}
740
c0a31329 741/*
6506f2aa 742 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
743 */
744static inline
745void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
746{
ecb49d1a 747 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
748}
749
750/**
751 * hrtimer_forward - forward the timer expiry
c0a31329 752 * @timer: hrtimer to forward
44f21475 753 * @now: forward past this time
c0a31329
TG
754 * @interval: the interval to forward
755 *
756 * Forward the timer expiry so it will expire in the future.
8dca6f33 757 * Returns the number of overruns.
91e5a217
TG
758 *
759 * Can be safely called from the callback function of @timer. If
760 * called from other contexts @timer must neither be enqueued nor
761 * running the callback and the caller needs to take care of
762 * serialization.
763 *
764 * Note: This only updates the timer expiry value and does not requeue
765 * the timer.
c0a31329 766 */
4d672e7a 767u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 768{
4d672e7a 769 u64 orun = 1;
44f21475 770 ktime_t delta;
c0a31329 771
cc584b21 772 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 773
2456e855 774 if (delta < 0)
c0a31329
TG
775 return 0;
776
5de2755c
PZ
777 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
778 return 0;
779
2456e855
TG
780 if (interval < hrtimer_resolution)
781 interval = hrtimer_resolution;
c9db4fa1 782
2456e855 783 if (unlikely(delta >= interval)) {
df869b63 784 s64 incr = ktime_to_ns(interval);
c0a31329
TG
785
786 orun = ktime_divns(delta, incr);
cc584b21 787 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 788 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
789 return orun;
790 /*
791 * This (and the ktime_add() below) is the
792 * correction for exact:
793 */
794 orun++;
795 }
cc584b21 796 hrtimer_add_expires(timer, interval);
c0a31329
TG
797
798 return orun;
799}
6bdb6b62 800EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
801
802/*
803 * enqueue_hrtimer - internal function to (re)start a timer
804 *
805 * The timer is inserted in expiry order. Insertion into the
806 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
807 *
808 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 809 */
a6037b61 810static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
811 struct hrtimer_clock_base *base,
812 enum hrtimer_mode mode)
c0a31329 813{
63e2ed36 814 debug_activate(timer, mode);
237fc6e7 815
ab8177bc 816 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 817
887d9dc9 818 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 819
b97f44c9 820 return timerqueue_add(&base->active, &timer->node);
288867ec 821}
c0a31329
TG
822
823/*
824 * __remove_hrtimer - internal function to remove a timer
825 *
826 * Caller must hold the base lock.
54cdfdb4
TG
827 *
828 * High resolution timer mode reprograms the clock event device when the
829 * timer is the one which expires next. The caller can disable this by setting
830 * reprogram to zero. This is useful, when the context does a reprogramming
831 * anyway (e.g. timer interrupt)
c0a31329 832 */
3c8aa39d 833static void __remove_hrtimer(struct hrtimer *timer,
303e967f 834 struct hrtimer_clock_base *base,
203cbf77 835 u8 newstate, int reprogram)
c0a31329 836{
e19ffe8b 837 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 838 u8 state = timer->state;
e19ffe8b 839
895bdfa7
TG
840 timer->state = newstate;
841 if (!(state & HRTIMER_STATE_ENQUEUED))
842 return;
7403f41f 843
b97f44c9 844 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 845 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 846
7403f41f 847#ifdef CONFIG_HIGH_RES_TIMERS
895bdfa7
TG
848 /*
849 * Note: If reprogram is false we do not update
850 * cpu_base->next_timer. This happens when we remove the first
851 * timer on a remote cpu. No harm as we never dereference
852 * cpu_base->next_timer. So the worst thing what can happen is
853 * an superflous call to hrtimer_force_reprogram() on the
854 * remote cpu later on if the same timer gets enqueued again.
855 */
856 if (reprogram && timer == cpu_base->next_timer)
857 hrtimer_force_reprogram(cpu_base, 1);
7403f41f 858#endif
c0a31329
TG
859}
860
861/*
862 * remove hrtimer, called with base lock held
863 */
864static inline int
8edfb036 865remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 866{
303e967f 867 if (hrtimer_is_queued(timer)) {
203cbf77 868 u8 state = timer->state;
54cdfdb4
TG
869 int reprogram;
870
871 /*
872 * Remove the timer and force reprogramming when high
873 * resolution mode is active and the timer is on the current
874 * CPU. If we remove a timer on another CPU, reprogramming is
875 * skipped. The interrupt event on this CPU is fired and
876 * reprogramming happens in the interrupt handler. This is a
877 * rare case and less expensive than a smp call.
878 */
c6a2a177 879 debug_deactivate(timer);
dc5df73b 880 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 881
887d9dc9
PZ
882 if (!restart)
883 state = HRTIMER_STATE_INACTIVE;
884
f13d4f97 885 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
886 return 1;
887 }
888 return 0;
889}
890
203cbf77
TG
891static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
892 const enum hrtimer_mode mode)
893{
894#ifdef CONFIG_TIME_LOW_RES
895 /*
896 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
897 * granular time values. For relative timers we add hrtimer_resolution
898 * (i.e. one jiffie) to prevent short timeouts.
899 */
900 timer->is_rel = mode & HRTIMER_MODE_REL;
901 if (timer->is_rel)
8b0e1953 902 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
903#endif
904 return tim;
905}
906
58f1f803 907/**
6de6250c 908 * hrtimer_start_range_ns - (re)start an hrtimer
58f1f803
TG
909 * @timer: the timer to be added
910 * @tim: expiry time
911 * @delta_ns: "slack" range for the timer
6de6250c
AMG
912 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
913 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
58f1f803 914 */
61699e13 915void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
da8b44d5 916 u64 delta_ns, const enum hrtimer_mode mode)
c0a31329 917{
3c8aa39d 918 struct hrtimer_clock_base *base, *new_base;
c0a31329 919 unsigned long flags;
61699e13 920 int leftmost;
c0a31329
TG
921
922 base = lock_hrtimer_base(timer, &flags);
923
924 /* Remove an active timer from the queue: */
8edfb036 925 remove_hrtimer(timer, base, true);
c0a31329 926
203cbf77 927 if (mode & HRTIMER_MODE_REL)
84ea7fe3 928 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
929
930 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 931
da8f2e17 932 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 933
84ea7fe3
VK
934 /* Switch the timer base, if necessary: */
935 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
936
63e2ed36 937 leftmost = enqueue_hrtimer(timer, new_base, mode);
61699e13
TG
938 if (!leftmost)
939 goto unlock;
49a2a075
VK
940
941 if (!hrtimer_is_hres_active(timer)) {
942 /*
943 * Kick to reschedule the next tick to handle the new timer
944 * on dynticks target.
945 */
ae67bada 946 if (is_timers_nohz_active())
683be13a 947 wake_up_nohz_cpu(new_base->cpu_base->cpu);
c6eb3f70
TG
948 } else {
949 hrtimer_reprogram(timer, new_base);
b22affe0 950 }
61699e13 951unlock:
c0a31329 952 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 953}
da8f2e17
AV
954EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
955
c0a31329
TG
956/**
957 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
958 * @timer: hrtimer to stop
959 *
960 * Returns:
961 * 0 when the timer was not active
962 * 1 when the timer was active
0ba42a59 963 * -1 when the timer is currently executing the callback function and
fa9799e3 964 * cannot be stopped
c0a31329
TG
965 */
966int hrtimer_try_to_cancel(struct hrtimer *timer)
967{
3c8aa39d 968 struct hrtimer_clock_base *base;
c0a31329
TG
969 unsigned long flags;
970 int ret = -1;
971
19d9f422
TG
972 /*
973 * Check lockless first. If the timer is not active (neither
974 * enqueued nor running the callback, nothing to do here. The
975 * base lock does not serialize against a concurrent enqueue,
976 * so we can avoid taking it.
977 */
978 if (!hrtimer_active(timer))
979 return 0;
980
c0a31329
TG
981 base = lock_hrtimer_base(timer, &flags);
982
303e967f 983 if (!hrtimer_callback_running(timer))
8edfb036 984 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
985
986 unlock_hrtimer_base(timer, &flags);
987
988 return ret;
989
990}
8d16b764 991EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
992
993/**
994 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
995 * @timer: the timer to be cancelled
996 *
997 * Returns:
998 * 0 when the timer was not active
999 * 1 when the timer was active
1000 */
1001int hrtimer_cancel(struct hrtimer *timer)
1002{
1003 for (;;) {
1004 int ret = hrtimer_try_to_cancel(timer);
1005
1006 if (ret >= 0)
1007 return ret;
5ef37b19 1008 cpu_relax();
c0a31329
TG
1009 }
1010}
8d16b764 1011EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1012
1013/**
1014 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1015 * @timer: the timer to read
203cbf77 1016 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1017 */
203cbf77 1018ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1019{
c0a31329
TG
1020 unsigned long flags;
1021 ktime_t rem;
1022
b3bd3de6 1023 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1024 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1025 rem = hrtimer_expires_remaining_adjusted(timer);
1026 else
1027 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1028 unlock_hrtimer_base(timer, &flags);
1029
1030 return rem;
1031}
203cbf77 1032EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1033
3451d024 1034#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1035/**
1036 * hrtimer_get_next_event - get the time until next expiry event
1037 *
c1ad348b 1038 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1039 */
c1ad348b 1040u64 hrtimer_get_next_event(void)
69239749 1041{
dc5df73b 1042 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1043 u64 expires = KTIME_MAX;
69239749 1044 unsigned long flags;
69239749 1045
ecb49d1a 1046 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1047
e19ffe8b 1048 if (!__hrtimer_hres_active(cpu_base))
2456e855 1049 expires = __hrtimer_get_next_event(cpu_base);
3c8aa39d 1050
ecb49d1a 1051 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1052
c1ad348b 1053 return expires;
69239749
TL
1054}
1055#endif
1056
336a9cde
MZ
1057static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1058{
1059 if (likely(clock_id < MAX_CLOCKS)) {
1060 int base = hrtimer_clock_to_base_table[clock_id];
1061
1062 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1063 return base;
1064 }
1065 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1066 return HRTIMER_BASE_MONOTONIC;
1067}
1068
237fc6e7
TG
1069static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1070 enum hrtimer_mode mode)
c0a31329 1071{
3c8aa39d 1072 struct hrtimer_cpu_base *cpu_base;
e06383db 1073 int base;
c0a31329 1074
7978672c
GA
1075 memset(timer, 0, sizeof(struct hrtimer));
1076
22127e93 1077 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1078
48d0c9be
AMG
1079 /*
1080 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1081 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1082 * ensure POSIX compliance.
1083 */
1084 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1085 clock_id = CLOCK_MONOTONIC;
1086
e06383db
JS
1087 base = hrtimer_clockid_to_base(clock_id);
1088 timer->base = &cpu_base->clock_base[base];
998adc3d 1089 timerqueue_init(&timer->node);
c0a31329 1090}
237fc6e7
TG
1091
1092/**
1093 * hrtimer_init - initialize a timer to the given clock
1094 * @timer: the timer to be initialized
1095 * @clock_id: the clock to be used
6de6250c
AMG
1096 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1097 * relative (HRTIMER_MODE_REL); pinned is not considered here!
237fc6e7
TG
1098 */
1099void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1100 enum hrtimer_mode mode)
1101{
c6a2a177 1102 debug_init(timer, clock_id, mode);
237fc6e7
TG
1103 __hrtimer_init(timer, clock_id, mode);
1104}
8d16b764 1105EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1106
887d9dc9
PZ
1107/*
1108 * A timer is active, when it is enqueued into the rbtree or the
1109 * callback function is running or it's in the state of being migrated
1110 * to another cpu.
c0a31329 1111 *
887d9dc9 1112 * It is important for this function to not return a false negative.
c0a31329 1113 */
887d9dc9 1114bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1115{
3f0b9e8e 1116 struct hrtimer_clock_base *base;
887d9dc9 1117 unsigned int seq;
c0a31329 1118
887d9dc9 1119 do {
3f0b9e8e
AMG
1120 base = READ_ONCE(timer->base);
1121 seq = raw_read_seqcount_begin(&base->seq);
c0a31329 1122
887d9dc9 1123 if (timer->state != HRTIMER_STATE_INACTIVE ||
3f0b9e8e 1124 base->running == timer)
887d9dc9
PZ
1125 return true;
1126
3f0b9e8e
AMG
1127 } while (read_seqcount_retry(&base->seq, seq) ||
1128 base != READ_ONCE(timer->base));
887d9dc9
PZ
1129
1130 return false;
c0a31329 1131}
887d9dc9 1132EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1133
887d9dc9
PZ
1134/*
1135 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1136 * distinct sections:
1137 *
1138 * - queued: the timer is queued
1139 * - callback: the timer is being ran
1140 * - post: the timer is inactive or (re)queued
1141 *
1142 * On the read side we ensure we observe timer->state and cpu_base->running
1143 * from the same section, if anything changed while we looked at it, we retry.
1144 * This includes timer->base changing because sequence numbers alone are
1145 * insufficient for that.
1146 *
1147 * The sequence numbers are required because otherwise we could still observe
1148 * a false negative if the read side got smeared over multiple consequtive
1149 * __run_hrtimer() invocations.
1150 */
1151
21d6d52a
TG
1152static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1153 struct hrtimer_clock_base *base,
1154 struct hrtimer *timer, ktime_t *now)
d3d74453 1155{
d3d74453
PZ
1156 enum hrtimer_restart (*fn)(struct hrtimer *);
1157 int restart;
1158
887d9dc9 1159 lockdep_assert_held(&cpu_base->lock);
ca109491 1160
c6a2a177 1161 debug_deactivate(timer);
3f0b9e8e 1162 base->running = timer;
887d9dc9
PZ
1163
1164 /*
1165 * Separate the ->running assignment from the ->state assignment.
1166 *
1167 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1168 * hrtimer_active() cannot observe base->running == NULL &&
887d9dc9
PZ
1169 * timer->state == INACTIVE.
1170 */
3f0b9e8e 1171 raw_write_seqcount_barrier(&base->seq);
887d9dc9
PZ
1172
1173 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1174 fn = timer->function;
ca109491 1175
203cbf77
TG
1176 /*
1177 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1178 * timer is restarted with a period then it becomes an absolute
1179 * timer. If its not restarted it does not matter.
1180 */
1181 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1182 timer->is_rel = false;
1183
ca109491 1184 /*
d05ca13b
TG
1185 * The timer is marked as running in the CPU base, so it is
1186 * protected against migration to a different CPU even if the lock
1187 * is dropped.
ca109491 1188 */
ecb49d1a 1189 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1190 trace_hrtimer_expire_entry(timer, now);
ca109491 1191 restart = fn(timer);
c6a2a177 1192 trace_hrtimer_expire_exit(timer);
ecb49d1a 1193 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1194
1195 /*
887d9dc9 1196 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1197 * we do not reprogram the event hardware. Happens either in
e3f1d883 1198 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1199 *
1200 * Note: Because we dropped the cpu_base->lock above,
1201 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1202 * for us already.
d3d74453 1203 */
5de2755c
PZ
1204 if (restart != HRTIMER_NORESTART &&
1205 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1206 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1207
887d9dc9
PZ
1208 /*
1209 * Separate the ->running assignment from the ->state assignment.
1210 *
1211 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1212 * hrtimer_active() cannot observe base->running.timer == NULL &&
887d9dc9
PZ
1213 * timer->state == INACTIVE.
1214 */
3f0b9e8e 1215 raw_write_seqcount_barrier(&base->seq);
f13d4f97 1216
3f0b9e8e
AMG
1217 WARN_ON_ONCE(base->running != timer);
1218 base->running = NULL;
d3d74453
PZ
1219}
1220
21d6d52a 1221static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
54cdfdb4 1222{
c272ca58 1223 struct hrtimer_clock_base *base;
34aee88a 1224 unsigned int active = cpu_base->active_bases;
6ff7041d 1225
c272ca58 1226 for_each_active_base(base, cpu_base, active) {
998adc3d 1227 struct timerqueue_node *node;
ab8177bc
TG
1228 ktime_t basenow;
1229
54cdfdb4
TG
1230 basenow = ktime_add(now, base->offset);
1231
998adc3d 1232 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1233 struct hrtimer *timer;
1234
998adc3d 1235 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1236
654c8e0b
AV
1237 /*
1238 * The immediate goal for using the softexpires is
1239 * minimizing wakeups, not running timers at the
1240 * earliest interrupt after their soft expiration.
1241 * This allows us to avoid using a Priority Search
1242 * Tree, which can answer a stabbing querry for
1243 * overlapping intervals and instead use the simple
1244 * BST we already have.
1245 * We don't add extra wakeups by delaying timers that
1246 * are right-of a not yet expired timer, because that
1247 * timer will have to trigger a wakeup anyway.
1248 */
2456e855 1249 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1250 break;
54cdfdb4 1251
21d6d52a 1252 __run_hrtimer(cpu_base, base, timer, &basenow);
54cdfdb4 1253 }
54cdfdb4 1254 }
21d6d52a
TG
1255}
1256
1257#ifdef CONFIG_HIGH_RES_TIMERS
1258
1259/*
1260 * High resolution timer interrupt
1261 * Called with interrupts disabled
1262 */
1263void hrtimer_interrupt(struct clock_event_device *dev)
1264{
1265 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1266 ktime_t expires_next, now, entry_time, delta;
1267 int retries = 0;
1268
1269 BUG_ON(!cpu_base->hres_active);
1270 cpu_base->nr_events++;
2456e855 1271 dev->next_event = KTIME_MAX;
21d6d52a
TG
1272
1273 raw_spin_lock(&cpu_base->lock);
1274 entry_time = now = hrtimer_update_base(cpu_base);
1275retry:
1276 cpu_base->in_hrtirq = 1;
1277 /*
1278 * We set expires_next to KTIME_MAX here with cpu_base->lock
1279 * held to prevent that a timer is enqueued in our queue via
1280 * the migration code. This does not affect enqueueing of
1281 * timers which run their callback and need to be requeued on
1282 * this CPU.
1283 */
2456e855 1284 cpu_base->expires_next = KTIME_MAX;
21d6d52a
TG
1285
1286 __hrtimer_run_queues(cpu_base, now);
1287
9bc74919
TG
1288 /* Reevaluate the clock bases for the next expiry */
1289 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1290 /*
1291 * Store the new expiry value so the migration code can verify
1292 * against it.
1293 */
54cdfdb4 1294 cpu_base->expires_next = expires_next;
9bc74919 1295 cpu_base->in_hrtirq = 0;
ecb49d1a 1296 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1297
1298 /* Reprogramming necessary ? */
d2540875 1299 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1300 cpu_base->hang_detected = 0;
1301 return;
54cdfdb4 1302 }
41d2e494
TG
1303
1304 /*
1305 * The next timer was already expired due to:
1306 * - tracing
1307 * - long lasting callbacks
1308 * - being scheduled away when running in a VM
1309 *
1310 * We need to prevent that we loop forever in the hrtimer
1311 * interrupt routine. We give it 3 attempts to avoid
1312 * overreacting on some spurious event.
5baefd6d
JS
1313 *
1314 * Acquire base lock for updating the offsets and retrieving
1315 * the current time.
41d2e494 1316 */
196951e9 1317 raw_spin_lock(&cpu_base->lock);
5baefd6d 1318 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1319 cpu_base->nr_retries++;
1320 if (++retries < 3)
1321 goto retry;
1322 /*
1323 * Give the system a chance to do something else than looping
1324 * here. We stored the entry time, so we know exactly how long
1325 * we spent here. We schedule the next event this amount of
1326 * time away.
1327 */
1328 cpu_base->nr_hangs++;
1329 cpu_base->hang_detected = 1;
196951e9 1330 raw_spin_unlock(&cpu_base->lock);
41d2e494 1331 delta = ktime_sub(now, entry_time);
2456e855
TG
1332 if ((unsigned int)delta > cpu_base->max_hang_time)
1333 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1334 /*
1335 * Limit it to a sensible value as we enforce a longer
1336 * delay. Give the CPU at least 100ms to catch up.
1337 */
2456e855 1338 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1339 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1340 else
1341 expires_next = ktime_add(now, delta);
1342 tick_program_event(expires_next, 1);
1343 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1344 ktime_to_ns(delta));
54cdfdb4
TG
1345}
1346
016da201 1347/* called with interrupts disabled */
c6eb3f70 1348static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1349{
1350 struct tick_device *td;
1351
1352 if (!hrtimer_hres_active())
1353 return;
1354
22127e93 1355 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1356 if (td && td->evtdev)
1357 hrtimer_interrupt(td->evtdev);
1358}
1359
82c5b7b5
IM
1360#else /* CONFIG_HIGH_RES_TIMERS */
1361
1362static inline void __hrtimer_peek_ahead_timers(void) { }
1363
1364#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1365
d3d74453 1366/*
c6eb3f70 1367 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1368 */
833883d9 1369void hrtimer_run_queues(void)
d3d74453 1370{
dc5df73b 1371 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
21d6d52a 1372 ktime_t now;
c0a31329 1373
e19ffe8b 1374 if (__hrtimer_hres_active(cpu_base))
d3d74453 1375 return;
54cdfdb4 1376
d3d74453 1377 /*
c6eb3f70
TG
1378 * This _is_ ugly: We have to check periodically, whether we
1379 * can switch to highres and / or nohz mode. The clocksource
1380 * switch happens with xtime_lock held. Notification from
1381 * there only sets the check bit in the tick_oneshot code,
1382 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1383 */
c6eb3f70 1384 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1385 hrtimer_switch_to_hres();
3055adda 1386 return;
833883d9 1387 }
c6eb3f70 1388
21d6d52a
TG
1389 raw_spin_lock(&cpu_base->lock);
1390 now = hrtimer_update_base(cpu_base);
1391 __hrtimer_run_queues(cpu_base, now);
1392 raw_spin_unlock(&cpu_base->lock);
c0a31329
TG
1393}
1394
10c94ec1
TG
1395/*
1396 * Sleep related functions:
1397 */
c9cb2e3d 1398static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1399{
1400 struct hrtimer_sleeper *t =
1401 container_of(timer, struct hrtimer_sleeper, timer);
1402 struct task_struct *task = t->task;
1403
1404 t->task = NULL;
1405 if (task)
1406 wake_up_process(task);
1407
1408 return HRTIMER_NORESTART;
1409}
1410
36c8b586 1411void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1412{
1413 sl->timer.function = hrtimer_wakeup;
1414 sl->task = task;
1415}
2bc481cf 1416EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1417
c0edd7c9 1418int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1419{
1420 switch(restart->nanosleep.type) {
1421#ifdef CONFIG_COMPAT
1422 case TT_COMPAT:
c0edd7c9 1423 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1424 return -EFAULT;
1425 break;
1426#endif
1427 case TT_NATIVE:
c0edd7c9 1428 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1429 return -EFAULT;
1430 break;
1431 default:
1432 BUG();
1433 }
1434 return -ERESTART_RESTARTBLOCK;
1435}
1436
669d7868 1437static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1438{
edbeda46
AV
1439 struct restart_block *restart;
1440
669d7868 1441 hrtimer_init_sleeper(t, current);
10c94ec1 1442
432569bb
RZ
1443 do {
1444 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1445 hrtimer_start_expires(&t->timer, mode);
432569bb 1446
54cdfdb4 1447 if (likely(t->task))
b0f8c44f 1448 freezable_schedule();
432569bb 1449
669d7868 1450 hrtimer_cancel(&t->timer);
c9cb2e3d 1451 mode = HRTIMER_MODE_ABS;
669d7868
TG
1452
1453 } while (t->task && !signal_pending(current));
432569bb 1454
3588a085
PZ
1455 __set_current_state(TASK_RUNNING);
1456
a7602681 1457 if (!t->task)
080344b9 1458 return 0;
080344b9 1459
edbeda46
AV
1460 restart = &current->restart_block;
1461 if (restart->nanosleep.type != TT_NONE) {
a7602681 1462 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1463 struct timespec64 rmt;
edbeda46 1464
a7602681
AV
1465 if (rem <= 0)
1466 return 0;
c0edd7c9 1467 rmt = ktime_to_timespec64(rem);
a7602681 1468
ce41aaf4 1469 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1470 }
1471 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1472}
1473
fb923c4a 1474static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1475{
669d7868 1476 struct hrtimer_sleeper t;
a7602681 1477 int ret;
10c94ec1 1478
ab8177bc 1479 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1480 HRTIMER_MODE_ABS);
cc584b21 1481 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1482
a7602681 1483 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1484 destroy_hrtimer_on_stack(&t.timer);
1485 return ret;
10c94ec1
TG
1486}
1487
938e7cf2 1488long hrtimer_nanosleep(const struct timespec64 *rqtp,
10c94ec1
TG
1489 const enum hrtimer_mode mode, const clockid_t clockid)
1490{
a7602681 1491 struct restart_block *restart;
669d7868 1492 struct hrtimer_sleeper t;
237fc6e7 1493 int ret = 0;
da8b44d5 1494 u64 slack;
3bd01206
AV
1495
1496 slack = current->timer_slack_ns;
aab03e05 1497 if (dl_task(current) || rt_task(current))
3bd01206 1498 slack = 0;
10c94ec1 1499
237fc6e7 1500 hrtimer_init_on_stack(&t.timer, clockid, mode);
ad196384 1501 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
a7602681
AV
1502 ret = do_nanosleep(&t, mode);
1503 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1504 goto out;
10c94ec1 1505
7978672c 1506 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1507 if (mode == HRTIMER_MODE_ABS) {
1508 ret = -ERESTARTNOHAND;
1509 goto out;
1510 }
10c94ec1 1511
a7602681 1512 restart = &current->restart_block;
1711ef38 1513 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1514 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1515 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1516out:
1517 destroy_hrtimer_on_stack(&t.timer);
1518 return ret;
10c94ec1
TG
1519}
1520
58fd3aa2
HC
1521SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1522 struct timespec __user *, rmtp)
6ba1b912 1523{
c0edd7c9 1524 struct timespec64 tu;
6ba1b912 1525
c0edd7c9 1526 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1527 return -EFAULT;
1528
c0edd7c9 1529 if (!timespec64_valid(&tu))
6ba1b912
TG
1530 return -EINVAL;
1531
edbeda46 1532 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1533 current->restart_block.nanosleep.rmtp = rmtp;
c0edd7c9 1534 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1535}
1536
edbeda46
AV
1537#ifdef CONFIG_COMPAT
1538
1539COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1540 struct compat_timespec __user *, rmtp)
1541{
c0edd7c9 1542 struct timespec64 tu;
edbeda46 1543
c0edd7c9 1544 if (compat_get_timespec64(&tu, rqtp))
edbeda46
AV
1545 return -EFAULT;
1546
c0edd7c9 1547 if (!timespec64_valid(&tu))
edbeda46
AV
1548 return -EINVAL;
1549
1550 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1551 current->restart_block.nanosleep.compat_rmtp = rmtp;
c0edd7c9 1552 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
edbeda46
AV
1553}
1554#endif
1555
c0a31329
TG
1556/*
1557 * Functions related to boot-time initialization:
1558 */
27590dc1 1559int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1560{
3c8aa39d 1561 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1562 int i;
1563
998adc3d 1564 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1565 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1566 timerqueue_init_head(&cpu_base->clock_base[i].active);
1567 }
3c8aa39d 1568
cddd0248 1569 cpu_base->cpu = cpu;
28bfd18b 1570 cpu_base->hres_active = 0;
07a9a7ea 1571 cpu_base->expires_next = KTIME_MAX;
27590dc1 1572 return 0;
c0a31329
TG
1573}
1574
1575#ifdef CONFIG_HOTPLUG_CPU
1576
ca109491 1577static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1578 struct hrtimer_clock_base *new_base)
c0a31329
TG
1579{
1580 struct hrtimer *timer;
998adc3d 1581 struct timerqueue_node *node;
c0a31329 1582
998adc3d
JS
1583 while ((node = timerqueue_getnext(&old_base->active))) {
1584 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1585 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1586 debug_deactivate(timer);
b00c1a99
TG
1587
1588 /*
c04dca02 1589 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1590 * timer could be seen as !active and just vanish away
1591 * under us on another CPU
1592 */
c04dca02 1593 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1594 timer->base = new_base;
54cdfdb4 1595 /*
e3f1d883
TG
1596 * Enqueue the timers on the new cpu. This does not
1597 * reprogram the event device in case the timer
1598 * expires before the earliest on this CPU, but we run
1599 * hrtimer_interrupt after we migrated everything to
1600 * sort out already expired timers and reprogram the
1601 * event device.
54cdfdb4 1602 */
63e2ed36 1603 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
1604 }
1605}
1606
27590dc1 1607int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 1608{
3c8aa39d 1609 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1610 int i;
c0a31329 1611
37810659 1612 BUG_ON(cpu_online(scpu));
37810659 1613 tick_cancel_sched_timer(scpu);
731a55ba
TG
1614
1615 local_irq_disable();
1616 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1617 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1618 /*
1619 * The caller is globally serialized and nobody else
1620 * takes two locks at once, deadlock is not possible.
1621 */
ecb49d1a
TG
1622 raw_spin_lock(&new_base->lock);
1623 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1624
3c8aa39d 1625 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1626 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1627 &new_base->clock_base[i]);
c0a31329
TG
1628 }
1629
ecb49d1a
TG
1630 raw_spin_unlock(&old_base->lock);
1631 raw_spin_unlock(&new_base->lock);
37810659 1632
731a55ba
TG
1633 /* Check, if we got expired work to do */
1634 __hrtimer_peek_ahead_timers();
1635 local_irq_enable();
27590dc1 1636 return 0;
c0a31329 1637}
37810659 1638
c0a31329
TG
1639#endif /* CONFIG_HOTPLUG_CPU */
1640
c0a31329
TG
1641void __init hrtimers_init(void)
1642{
27590dc1 1643 hrtimers_prepare_cpu(smp_processor_id());
c0a31329
TG
1644}
1645
7bb67439 1646/**
351b3f7a 1647 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1648 * @expires: timeout value (ktime_t)
654c8e0b 1649 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
1650 * @mode: timer mode
1651 * @clock_id: timer clock to be used
7bb67439 1652 */
351b3f7a 1653int __sched
da8b44d5 1654schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 1655 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
1656{
1657 struct hrtimer_sleeper t;
1658
1659 /*
1660 * Optimize when a zero timeout value is given. It does not
1661 * matter whether this is an absolute or a relative time.
1662 */
2456e855 1663 if (expires && *expires == 0) {
7bb67439
AV
1664 __set_current_state(TASK_RUNNING);
1665 return 0;
1666 }
1667
1668 /*
43b21013 1669 * A NULL parameter means "infinite"
7bb67439
AV
1670 */
1671 if (!expires) {
1672 schedule();
7bb67439
AV
1673 return -EINTR;
1674 }
1675
90777713 1676 hrtimer_init_on_stack(&t.timer, clock_id, mode);
654c8e0b 1677 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1678
1679 hrtimer_init_sleeper(&t, current);
1680
cc584b21 1681 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1682
1683 if (likely(t.task))
1684 schedule();
1685
1686 hrtimer_cancel(&t.timer);
1687 destroy_hrtimer_on_stack(&t.timer);
1688
1689 __set_current_state(TASK_RUNNING);
1690
1691 return !t.task ? 0 : -EINTR;
1692}
351b3f7a
CE
1693
1694/**
1695 * schedule_hrtimeout_range - sleep until timeout
1696 * @expires: timeout value (ktime_t)
1697 * @delta: slack in expires timeout (ktime_t)
90777713 1698 * @mode: timer mode
351b3f7a
CE
1699 *
1700 * Make the current task sleep until the given expiry time has
1701 * elapsed. The routine will return immediately unless
1702 * the current task state has been set (see set_current_state()).
1703 *
1704 * The @delta argument gives the kernel the freedom to schedule the
1705 * actual wakeup to a time that is both power and performance friendly.
1706 * The kernel give the normal best effort behavior for "@expires+@delta",
1707 * but may decide to fire the timer earlier, but no earlier than @expires.
1708 *
1709 * You can set the task state as follows -
1710 *
1711 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1712 * pass before the routine returns unless the current task is explicitly
1713 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
1714 *
1715 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1716 * delivered to the current task or the current task is explicitly woken
1717 * up.
351b3f7a
CE
1718 *
1719 * The current task state is guaranteed to be TASK_RUNNING when this
1720 * routine returns.
1721 *
4b7e9cf9
DA
1722 * Returns 0 when the timer has expired. If the task was woken before the
1723 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1724 * by an explicit wakeup, it returns -EINTR.
351b3f7a 1725 */
da8b44d5 1726int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
1727 const enum hrtimer_mode mode)
1728{
1729 return schedule_hrtimeout_range_clock(expires, delta, mode,
1730 CLOCK_MONOTONIC);
1731}
654c8e0b
AV
1732EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1733
1734/**
1735 * schedule_hrtimeout - sleep until timeout
1736 * @expires: timeout value (ktime_t)
90777713 1737 * @mode: timer mode
654c8e0b
AV
1738 *
1739 * Make the current task sleep until the given expiry time has
1740 * elapsed. The routine will return immediately unless
1741 * the current task state has been set (see set_current_state()).
1742 *
1743 * You can set the task state as follows -
1744 *
1745 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1746 * pass before the routine returns unless the current task is explicitly
1747 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
1748 *
1749 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1750 * delivered to the current task or the current task is explicitly woken
1751 * up.
654c8e0b
AV
1752 *
1753 * The current task state is guaranteed to be TASK_RUNNING when this
1754 * routine returns.
1755 *
4b7e9cf9
DA
1756 * Returns 0 when the timer has expired. If the task was woken before the
1757 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1758 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
1759 */
1760int __sched schedule_hrtimeout(ktime_t *expires,
1761 const enum hrtimer_mode mode)
1762{
1763 return schedule_hrtimeout_range(expires, 0, mode);
1764}
7bb67439 1765EXPORT_SYMBOL_GPL(schedule_hrtimeout);