]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/ntp.c
ntp, rtc: Move rtc_set_ntp_time() to ntp code
[mirror_ubuntu-jammy-kernel.git] / kernel / time / ntp.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
4c7ee8de 2/*
4c7ee8de
JS
3 * NTP state machine interfaces and logic.
4 *
5 * This code was mainly moved from kernel/timer.c and kernel/time.c
6 * Please see those files for relevant copyright info and historical
7 * changelogs.
8 */
aa0ac365 9#include <linux/capability.h>
7dffa3c6 10#include <linux/clocksource.h>
eb3f938f 11#include <linux/workqueue.h>
53bbfa9e
IM
12#include <linux/hrtimer.h>
13#include <linux/jiffies.h>
14#include <linux/math64.h>
15#include <linux/timex.h>
16#include <linux/time.h>
17#include <linux/mm.h>
025b40ab 18#include <linux/module.h>
023f333a 19#include <linux/rtc.h>
7e8eda73 20#include <linux/audit.h>
4c7ee8de 21
aa6f9c59 22#include "ntp_internal.h"
0af86465
D
23#include "timekeeping_internal.h"
24
e2830b5c 25
b0ee7556 26/*
53bbfa9e 27 * NTP timekeeping variables:
a076b214
JS
28 *
29 * Note: All of the NTP state is protected by the timekeeping locks.
b0ee7556 30 */
b0ee7556 31
bd331268 32
53bbfa9e 33/* USER_HZ period (usecs): */
efefc977 34unsigned long tick_usec = USER_TICK_USEC;
53bbfa9e 35
02ab20ae 36/* SHIFTED_HZ period (nsecs): */
53bbfa9e 37unsigned long tick_nsec;
7dffa3c6 38
ea7cf49a 39static u64 tick_length;
53bbfa9e
IM
40static u64 tick_length_base;
41
90bf361c 42#define SECS_PER_DAY 86400
bbd12676 43#define MAX_TICKADJ 500LL /* usecs */
53bbfa9e 44#define MAX_TICKADJ_SCALED \
bbd12676 45 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
d897a4ab 46#define MAX_TAI_OFFSET 100000
4c7ee8de
JS
47
48/*
49 * phase-lock loop variables
50 */
53bbfa9e
IM
51
52/*
53 * clock synchronization status
54 *
55 * (TIME_ERROR prevents overwriting the CMOS clock)
56 */
57static int time_state = TIME_OK;
58
59/* clock status bits: */
8357929e 60static int time_status = STA_UNSYNC;
53bbfa9e 61
53bbfa9e
IM
62/* time adjustment (nsecs): */
63static s64 time_offset;
64
65/* pll time constant: */
66static long time_constant = 2;
67
68/* maximum error (usecs): */
1f5b8f8a 69static long time_maxerror = NTP_PHASE_LIMIT;
53bbfa9e
IM
70
71/* estimated error (usecs): */
1f5b8f8a 72static long time_esterror = NTP_PHASE_LIMIT;
53bbfa9e
IM
73
74/* frequency offset (scaled nsecs/secs): */
75static s64 time_freq;
76
77/* time at last adjustment (secs): */
0af86465 78static time64_t time_reftime;
53bbfa9e 79
e1292ba1 80static long time_adjust;
53bbfa9e 81
069569e0
IM
82/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
83static s64 ntp_tick_adj;
53bbfa9e 84
833f32d7
JS
85/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
86static time64_t ntp_next_leap_sec = TIME64_MAX;
87
025b40ab
AG
88#ifdef CONFIG_NTP_PPS
89
90/*
91 * The following variables are used when a pulse-per-second (PPS) signal
92 * is available. They establish the engineering parameters of the clock
93 * discipline loop when controlled by the PPS signal.
94 */
95#define PPS_VALID 10 /* PPS signal watchdog max (s) */
96#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
97#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
98#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
99#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
100 increase pps_shift or consecutive bad
101 intervals to decrease it */
102#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
103
104static int pps_valid; /* signal watchdog counter */
105static long pps_tf[3]; /* phase median filter */
106static long pps_jitter; /* current jitter (ns) */
7ec88e4b 107static struct timespec64 pps_fbase; /* beginning of the last freq interval */
025b40ab
AG
108static int pps_shift; /* current interval duration (s) (shift) */
109static int pps_intcnt; /* interval counter */
110static s64 pps_freq; /* frequency offset (scaled ns/s) */
111static long pps_stabil; /* current stability (scaled ns/s) */
112
113/*
114 * PPS signal quality monitors
115 */
116static long pps_calcnt; /* calibration intervals */
117static long pps_jitcnt; /* jitter limit exceeded */
118static long pps_stbcnt; /* stability limit exceeded */
119static long pps_errcnt; /* calibration errors */
120
121
122/* PPS kernel consumer compensates the whole phase error immediately.
123 * Otherwise, reduce the offset by a fixed factor times the time constant.
124 */
125static inline s64 ntp_offset_chunk(s64 offset)
126{
127 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
128 return offset;
129 else
130 return shift_right(offset, SHIFT_PLL + time_constant);
131}
132
133static inline void pps_reset_freq_interval(void)
134{
135 /* the PPS calibration interval may end
136 surprisingly early */
137 pps_shift = PPS_INTMIN;
138 pps_intcnt = 0;
139}
140
141/**
142 * pps_clear - Clears the PPS state variables
025b40ab
AG
143 */
144static inline void pps_clear(void)
145{
146 pps_reset_freq_interval();
147 pps_tf[0] = 0;
148 pps_tf[1] = 0;
149 pps_tf[2] = 0;
150 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
151 pps_freq = 0;
152}
153
154/* Decrease pps_valid to indicate that another second has passed since
155 * the last PPS signal. When it reaches 0, indicate that PPS signal is
156 * missing.
025b40ab
AG
157 */
158static inline void pps_dec_valid(void)
159{
160 if (pps_valid > 0)
161 pps_valid--;
162 else {
163 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
164 STA_PPSWANDER | STA_PPSERROR);
165 pps_clear();
166 }
167}
168
169static inline void pps_set_freq(s64 freq)
170{
171 pps_freq = freq;
172}
173
174static inline int is_error_status(int status)
175{
ea54bca3 176 return (status & (STA_UNSYNC|STA_CLOCKERR))
025b40ab
AG
177 /* PPS signal lost when either PPS time or
178 * PPS frequency synchronization requested
179 */
ea54bca3
GS
180 || ((status & (STA_PPSFREQ|STA_PPSTIME))
181 && !(status & STA_PPSSIGNAL))
025b40ab
AG
182 /* PPS jitter exceeded when
183 * PPS time synchronization requested */
ea54bca3 184 || ((status & (STA_PPSTIME|STA_PPSJITTER))
025b40ab
AG
185 == (STA_PPSTIME|STA_PPSJITTER))
186 /* PPS wander exceeded or calibration error when
187 * PPS frequency synchronization requested
188 */
ea54bca3
GS
189 || ((status & STA_PPSFREQ)
190 && (status & (STA_PPSWANDER|STA_PPSERROR)));
025b40ab
AG
191}
192
ead25417 193static inline void pps_fill_timex(struct __kernel_timex *txc)
025b40ab
AG
194{
195 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
196 PPM_SCALE_INV, NTP_SCALE_SHIFT);
197 txc->jitter = pps_jitter;
198 if (!(time_status & STA_NANO))
ead25417 199 txc->jitter = pps_jitter / NSEC_PER_USEC;
025b40ab
AG
200 txc->shift = pps_shift;
201 txc->stabil = pps_stabil;
202 txc->jitcnt = pps_jitcnt;
203 txc->calcnt = pps_calcnt;
204 txc->errcnt = pps_errcnt;
205 txc->stbcnt = pps_stbcnt;
206}
207
208#else /* !CONFIG_NTP_PPS */
209
210static inline s64 ntp_offset_chunk(s64 offset)
211{
212 return shift_right(offset, SHIFT_PLL + time_constant);
213}
214
215static inline void pps_reset_freq_interval(void) {}
216static inline void pps_clear(void) {}
217static inline void pps_dec_valid(void) {}
218static inline void pps_set_freq(s64 freq) {}
219
220static inline int is_error_status(int status)
221{
222 return status & (STA_UNSYNC|STA_CLOCKERR);
223}
224
ead25417 225static inline void pps_fill_timex(struct __kernel_timex *txc)
025b40ab
AG
226{
227 /* PPS is not implemented, so these are zero */
228 txc->ppsfreq = 0;
229 txc->jitter = 0;
230 txc->shift = 0;
231 txc->stabil = 0;
232 txc->jitcnt = 0;
233 txc->calcnt = 0;
234 txc->errcnt = 0;
235 txc->stbcnt = 0;
236}
237
238#endif /* CONFIG_NTP_PPS */
239
8357929e
JS
240
241/**
242 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
243 *
244 */
245static inline int ntp_synced(void)
246{
247 return !(time_status & STA_UNSYNC);
248}
249
250
53bbfa9e
IM
251/*
252 * NTP methods:
253 */
4c7ee8de 254
9ce616aa
IM
255/*
256 * Update (tick_length, tick_length_base, tick_nsec), based
257 * on (tick_usec, ntp_tick_adj, time_freq):
258 */
70bc42f9
AB
259static void ntp_update_frequency(void)
260{
9ce616aa 261 u64 second_length;
bc26c31d 262 u64 new_base;
9ce616aa
IM
263
264 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
265 << NTP_SCALE_SHIFT;
266
069569e0 267 second_length += ntp_tick_adj;
9ce616aa 268 second_length += time_freq;
70bc42f9 269
9ce616aa 270 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
bc26c31d 271 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
fdcedf7b
JS
272
273 /*
274 * Don't wait for the next second_overflow, apply
bc26c31d 275 * the change to the tick length immediately:
fdcedf7b 276 */
bc26c31d
IM
277 tick_length += new_base - tick_length_base;
278 tick_length_base = new_base;
70bc42f9
AB
279}
280
478b7aab 281static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
f939890b
IM
282{
283 time_status &= ~STA_MODE;
284
285 if (secs < MINSEC)
478b7aab 286 return 0;
f939890b
IM
287
288 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
478b7aab 289 return 0;
f939890b 290
f939890b
IM
291 time_status |= STA_MODE;
292
a078c6d0 293 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
f939890b
IM
294}
295
ee9851b2
RZ
296static void ntp_update_offset(long offset)
297{
ee9851b2 298 s64 freq_adj;
f939890b
IM
299 s64 offset64;
300 long secs;
ee9851b2
RZ
301
302 if (!(time_status & STA_PLL))
303 return;
304
52d189f1
SL
305 if (!(time_status & STA_NANO)) {
306 /* Make sure the multiplication below won't overflow */
307 offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
9f14f669 308 offset *= NSEC_PER_USEC;
52d189f1 309 }
ee9851b2
RZ
310
311 /*
312 * Scale the phase adjustment and
313 * clamp to the operating range.
314 */
52d189f1 315 offset = clamp(offset, -MAXPHASE, MAXPHASE);
ee9851b2
RZ
316
317 /*
318 * Select how the frequency is to be controlled
319 * and in which mode (PLL or FLL).
320 */
0af86465 321 secs = (long)(__ktime_get_real_seconds() - time_reftime);
10dd31a7 322 if (unlikely(time_status & STA_FREQHOLD))
c7986acb
IM
323 secs = 0;
324
0af86465 325 time_reftime = __ktime_get_real_seconds();
ee9851b2 326
f939890b 327 offset64 = offset;
8af3c153 328 freq_adj = ntp_update_offset_fll(offset64, secs);
f939890b 329
8af3c153
ML
330 /*
331 * Clamp update interval to reduce PLL gain with low
332 * sampling rate (e.g. intermittent network connection)
333 * to avoid instability.
334 */
335 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
336 secs = 1 << (SHIFT_PLL + 1 + time_constant);
337
338 freq_adj += (offset64 * secs) <<
339 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
f939890b
IM
340
341 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
342
343 time_freq = max(freq_adj, -MAXFREQ_SCALED);
344
345 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
ee9851b2
RZ
346}
347
b0ee7556
RZ
348/**
349 * ntp_clear - Clears the NTP state variables
b0ee7556
RZ
350 */
351void ntp_clear(void)
352{
53bbfa9e
IM
353 time_adjust = 0; /* stop active adjtime() */
354 time_status |= STA_UNSYNC;
355 time_maxerror = NTP_PHASE_LIMIT;
356 time_esterror = NTP_PHASE_LIMIT;
b0ee7556
RZ
357
358 ntp_update_frequency();
359
53bbfa9e
IM
360 tick_length = tick_length_base;
361 time_offset = 0;
025b40ab 362
833f32d7 363 ntp_next_leap_sec = TIME64_MAX;
025b40ab
AG
364 /* Clear PPS state variables */
365 pps_clear();
b0ee7556
RZ
366}
367
ea7cf49a
JS
368
369u64 ntp_tick_length(void)
370{
a076b214 371 return tick_length;
ea7cf49a
JS
372}
373
833f32d7
JS
374/**
375 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
376 *
377 * Provides the time of the next leapsecond against CLOCK_REALTIME in
378 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
379 */
380ktime_t ntp_get_next_leap(void)
381{
382 ktime_t ret;
383
384 if ((time_state == TIME_INS) && (time_status & STA_INS))
385 return ktime_set(ntp_next_leap_sec, 0);
2456e855 386 ret = KTIME_MAX;
833f32d7
JS
387 return ret;
388}
ea7cf49a 389
4c7ee8de 390/*
6b43ae8a
JS
391 * this routine handles the overflow of the microsecond field
392 *
393 * The tricky bits of code to handle the accurate clock support
394 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
395 * They were originally developed for SUN and DEC kernels.
396 * All the kudos should go to Dave for this stuff.
397 *
398 * Also handles leap second processing, and returns leap offset
4c7ee8de 399 */
c7963487 400int second_overflow(time64_t secs)
4c7ee8de 401{
6b43ae8a 402 s64 delta;
bd331268 403 int leap = 0;
c7963487 404 s32 rem;
6b43ae8a
JS
405
406 /*
407 * Leap second processing. If in leap-insert state at the end of the
408 * day, the system clock is set back one second; if in leap-delete
409 * state, the system clock is set ahead one second.
410 */
4c7ee8de
JS
411 switch (time_state) {
412 case TIME_OK:
833f32d7 413 if (time_status & STA_INS) {
6b43ae8a 414 time_state = TIME_INS;
c7963487
D
415 div_s64_rem(secs, SECS_PER_DAY, &rem);
416 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
833f32d7 417 } else if (time_status & STA_DEL) {
6b43ae8a 418 time_state = TIME_DEL;
c7963487
D
419 div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
420 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
833f32d7 421 }
4c7ee8de
JS
422 break;
423 case TIME_INS:
833f32d7
JS
424 if (!(time_status & STA_INS)) {
425 ntp_next_leap_sec = TIME64_MAX;
6b1859db 426 time_state = TIME_OK;
c7963487 427 } else if (secs == ntp_next_leap_sec) {
6b43ae8a
JS
428 leap = -1;
429 time_state = TIME_OOP;
430 printk(KERN_NOTICE
431 "Clock: inserting leap second 23:59:60 UTC\n");
432 }
4c7ee8de
JS
433 break;
434 case TIME_DEL:
833f32d7
JS
435 if (!(time_status & STA_DEL)) {
436 ntp_next_leap_sec = TIME64_MAX;
6b1859db 437 time_state = TIME_OK;
c7963487 438 } else if (secs == ntp_next_leap_sec) {
6b43ae8a 439 leap = 1;
833f32d7 440 ntp_next_leap_sec = TIME64_MAX;
6b43ae8a
JS
441 time_state = TIME_WAIT;
442 printk(KERN_NOTICE
443 "Clock: deleting leap second 23:59:59 UTC\n");
444 }
4c7ee8de
JS
445 break;
446 case TIME_OOP:
833f32d7 447 ntp_next_leap_sec = TIME64_MAX;
4c7ee8de 448 time_state = TIME_WAIT;
6b43ae8a 449 break;
4c7ee8de
JS
450 case TIME_WAIT:
451 if (!(time_status & (STA_INS | STA_DEL)))
ee9851b2 452 time_state = TIME_OK;
7dffa3c6
RZ
453 break;
454 }
bd331268 455
7dffa3c6
RZ
456
457 /* Bump the maxerror field */
458 time_maxerror += MAXFREQ / NSEC_PER_USEC;
459 if (time_maxerror > NTP_PHASE_LIMIT) {
460 time_maxerror = NTP_PHASE_LIMIT;
461 time_status |= STA_UNSYNC;
4c7ee8de
JS
462 }
463
025b40ab 464 /* Compute the phase adjustment for the next second */
39854fe8
IM
465 tick_length = tick_length_base;
466
025b40ab 467 delta = ntp_offset_chunk(time_offset);
39854fe8
IM
468 time_offset -= delta;
469 tick_length += delta;
4c7ee8de 470
025b40ab
AG
471 /* Check PPS signal */
472 pps_dec_valid();
473
3c972c24 474 if (!time_adjust)
bd331268 475 goto out;
3c972c24
IM
476
477 if (time_adjust > MAX_TICKADJ) {
478 time_adjust -= MAX_TICKADJ;
479 tick_length += MAX_TICKADJ_SCALED;
bd331268 480 goto out;
4c7ee8de 481 }
3c972c24
IM
482
483 if (time_adjust < -MAX_TICKADJ) {
484 time_adjust += MAX_TICKADJ;
485 tick_length -= MAX_TICKADJ_SCALED;
bd331268 486 goto out;
3c972c24
IM
487 }
488
489 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
490 << NTP_SCALE_SHIFT;
491 time_adjust = 0;
6b43ae8a 492
bd331268 493out:
6b43ae8a 494 return leap;
4c7ee8de
JS
495}
496
c9e6189f 497#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
0f295b06 498static void sync_hw_clock(struct work_struct *work);
c9e6189f
TG
499static DECLARE_WORK(sync_work, sync_hw_clock);
500static struct hrtimer sync_hrtimer;
501#define SYNC_PERIOD_NS (11UL * 60 * NSEC_PER_SEC)
0f295b06 502
c9e6189f 503static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
0f295b06 504{
c9e6189f 505 queue_work(system_power_efficient_wq, &sync_work);
0f295b06 506
c9e6189f
TG
507 return HRTIMER_NORESTART;
508}
0f295b06 509
c9e6189f
TG
510static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
511{
512 ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
513
514 if (retry)
515 exp = ktime_add_ns(exp, 2 * NSEC_PER_SEC - offset_nsec);
516 else
517 exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
0f295b06 518
c9e6189f 519 hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
0f295b06
JG
520}
521
33e62e83
TG
522/*
523 * Determine if we can call to driver to set the time. Drivers can only be
524 * called to set a second aligned time value, and the field set_offset_nsec
525 * specifies how far away from the second aligned time to call the driver.
526 *
527 * This also computes 'to_set' which is the time we are trying to set, and has
528 * a zero in tv_nsecs, such that:
529 * to_set - set_delay_nsec == now +/- FUZZ
530 *
531 */
532static inline bool rtc_tv_nsec_ok(long set_offset_nsec,
533 struct timespec64 *to_set,
534 const struct timespec64 *now)
535{
536 /* Allowed error in tv_nsec, arbitarily set to 5 jiffies in ns. */
537 const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
538 struct timespec64 delay = {.tv_sec = 0,
539 .tv_nsec = set_offset_nsec};
540
541 *to_set = timespec64_add(*now, delay);
542
543 if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
544 to_set->tv_nsec = 0;
545 return true;
546 }
547
548 if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
549 to_set->tv_sec++;
550 to_set->tv_nsec = 0;
551 return true;
552 }
553 return false;
554}
555
556#ifdef CONFIG_RTC_SYSTOHC
557/*
558 * rtc_set_ntp_time - Save NTP synchronized time to the RTC
559 */
560static int rtc_set_ntp_time(struct timespec64 now, unsigned long *target_nsec)
561{
562 struct rtc_device *rtc;
563 struct rtc_time tm;
564 struct timespec64 to_set;
565 int err = -ENODEV;
566 bool ok;
567
568 rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
569 if (!rtc)
570 goto out_err;
571
572 if (!rtc->ops || !rtc->ops->set_time)
573 goto out_close;
574
575 /*
576 * Compute the value of tv_nsec we require the caller to supply in
577 * now.tv_nsec. This is the value such that (now +
578 * set_offset_nsec).tv_nsec == 0.
579 */
580 set_normalized_timespec64(&to_set, 0, -rtc->set_offset_nsec);
581 *target_nsec = to_set.tv_nsec;
582
583 /*
584 * The ntp code must call this with the correct value in tv_nsec, if
585 * it does not we update target_nsec and return EPROTO to make the ntp
586 * code try again later.
587 */
588 ok = rtc_tv_nsec_ok(rtc->set_offset_nsec, &to_set, &now);
589 if (!ok) {
590 err = -EPROTO;
591 goto out_close;
592 }
593
594 rtc_time64_to_tm(to_set.tv_sec, &tm);
595
596 err = rtc_set_time(rtc, &tm);
597
598out_close:
599 rtc_class_close(rtc);
600out_err:
601 return err;
602}
603
0f295b06
JG
604static void sync_rtc_clock(void)
605{
c9e6189f
TG
606 unsigned long offset_nsec;
607 struct timespec64 adjust;
0f295b06
JG
608 int rc;
609
c9e6189f 610 ktime_get_real_ts64(&adjust);
0f295b06 611
0f295b06
JG
612 if (persistent_clock_is_local)
613 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
614
615 /*
c9e6189f
TG
616 * The current RTC in use will provide the nanoseconds offset prior
617 * to a full second it wants to be called at, and invokes
618 * rtc_tv_nsec_ok() internally.
0f295b06 619 */
c9e6189f 620 rc = rtc_set_ntp_time(adjust, &offset_nsec);
0f295b06
JG
621 if (rc == -ENODEV)
622 return;
623
c9e6189f 624 sched_sync_hw_clock(offset_nsec, rc != 0);
0f295b06 625}
33e62e83
TG
626#else
627static inline void sync_rtc_clock(void) { }
628#endif
0f295b06 629
3c00a1fe
XP
630#ifdef CONFIG_GENERIC_CMOS_UPDATE
631int __weak update_persistent_clock64(struct timespec64 now64)
632{
92661788 633 return -ENODEV;
3c00a1fe
XP
634}
635#endif
636
0f295b06 637static bool sync_cmos_clock(void)
82644459 638{
0f295b06 639 static bool no_cmos;
d6d29896 640 struct timespec64 now;
0f295b06
JG
641 struct timespec64 adjust;
642 int rc = -EPROTO;
643 long target_nsec = NSEC_PER_SEC / 2;
644
645 if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
646 return false;
647
648 if (no_cmos)
649 return false;
82644459
TG
650
651 /*
0f295b06
JG
652 * Historically update_persistent_clock64() has followed x86
653 * semantics, which match the MC146818A/etc RTC. This RTC will store
654 * 'adjust' and then in .5s it will advance once second.
655 *
656 * Architectures are strongly encouraged to use rtclib and not
657 * implement this legacy API.
82644459 658 */
d30faff9 659 ktime_get_real_ts64(&now);
0f295b06 660 if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
84e345e4
PB
661 if (persistent_clock_is_local)
662 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
0f295b06
JG
663 rc = update_persistent_clock64(adjust);
664 /*
665 * The machine does not support update_persistent_clock64 even
666 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
667 */
668 if (rc == -ENODEV) {
669 no_cmos = true;
670 return false;
671 }
023f333a 672 }
82644459 673
c9e6189f 674 sched_sync_hw_clock(target_nsec, rc != 0);
0f295b06
JG
675 return true;
676}
82644459 677
0f295b06
JG
678/*
679 * If we have an externally synchronized Linux clock, then update RTC clock
680 * accordingly every ~11 minutes. Generally RTCs can only store second
681 * precision, but many RTCs will adjust the phase of their second tick to
682 * match the moment of update. This infrastructure arranges to call to the RTC
683 * set at the correct moment to phase synchronize the RTC second tick over
684 * with the kernel clock.
685 */
686static void sync_hw_clock(struct work_struct *work)
687{
c9e6189f
TG
688 /*
689 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
690 * managed to schedule the work between the timer firing and the
691 * work being able to rearm the timer. Wait for the timer to expire.
692 */
693 if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
0f295b06 694 return;
82644459 695
0f295b06
JG
696 if (sync_cmos_clock())
697 return;
698
699 sync_rtc_clock();
82644459
TG
700}
701
7bd36014 702void ntp_notify_cmos_timer(void)
4c7ee8de 703{
c9e6189f
TG
704 /*
705 * When the work is currently executed but has not yet the timer
706 * rearmed this queues the work immediately again. No big issue,
707 * just a pointless work scheduled.
708 */
709 if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
710 queue_work(system_power_efficient_wq, &sync_work);
711}
82644459 712
c9e6189f
TG
713static void __init ntp_init_cmos_sync(void)
714{
715 hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
716 sync_hrtimer.function = sync_timer_callback;
0f295b06 717}
c9e6189f
TG
718#else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
719static inline void __init ntp_init_cmos_sync(void) { }
720#endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
80f22571
IM
721
722/*
723 * Propagate a new txc->status value into the NTP state:
724 */
ead25417 725static inline void process_adj_status(const struct __kernel_timex *txc)
80f22571 726{
80f22571
IM
727 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
728 time_state = TIME_OK;
729 time_status = STA_UNSYNC;
833f32d7 730 ntp_next_leap_sec = TIME64_MAX;
025b40ab
AG
731 /* restart PPS frequency calibration */
732 pps_reset_freq_interval();
80f22571 733 }
80f22571
IM
734
735 /*
736 * If we turn on PLL adjustments then reset the
737 * reference time to current time.
738 */
739 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
0af86465 740 time_reftime = __ktime_get_real_seconds();
80f22571 741
a2a5ac86
JS
742 /* only set allowed bits */
743 time_status &= STA_RONLY;
80f22571 744 time_status |= txc->status & ~STA_RONLY;
80f22571 745}
cd5398be 746
a076b214 747
ead25417
DD
748static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
749 s32 *time_tai)
80f22571
IM
750{
751 if (txc->modes & ADJ_STATUS)
0f9987b6 752 process_adj_status(txc);
80f22571
IM
753
754 if (txc->modes & ADJ_NANO)
755 time_status |= STA_NANO;
e9629165 756
80f22571
IM
757 if (txc->modes & ADJ_MICRO)
758 time_status &= ~STA_NANO;
759
760 if (txc->modes & ADJ_FREQUENCY) {
2b9d1496 761 time_freq = txc->freq * PPM_SCALE;
80f22571
IM
762 time_freq = min(time_freq, MAXFREQ_SCALED);
763 time_freq = max(time_freq, -MAXFREQ_SCALED);
025b40ab
AG
764 /* update pps_freq */
765 pps_set_freq(time_freq);
80f22571
IM
766 }
767
768 if (txc->modes & ADJ_MAXERROR)
769 time_maxerror = txc->maxerror;
e9629165 770
80f22571
IM
771 if (txc->modes & ADJ_ESTERROR)
772 time_esterror = txc->esterror;
773
774 if (txc->modes & ADJ_TIMECONST) {
775 time_constant = txc->constant;
776 if (!(time_status & STA_NANO))
777 time_constant += 4;
778 time_constant = min(time_constant, (long)MAXTC);
779 time_constant = max(time_constant, 0l);
780 }
781
d897a4ab
ML
782 if (txc->modes & ADJ_TAI &&
783 txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
cc244dda 784 *time_tai = txc->constant;
80f22571
IM
785
786 if (txc->modes & ADJ_OFFSET)
787 ntp_update_offset(txc->offset);
e9629165 788
80f22571
IM
789 if (txc->modes & ADJ_TICK)
790 tick_usec = txc->tick;
791
792 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
793 ntp_update_frequency();
794}
795
ad460967 796
ad460967
JS
797/*
798 * adjtimex mainly allows reading (and writing, if superuser) of
799 * kernel time-keeping variables. used by xntpd.
800 */
ead25417 801int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
7e8eda73 802 s32 *time_tai, struct audit_ntp_data *ad)
ad460967 803{
ad460967
JS
804 int result;
805
916c7a85
RZ
806 if (txc->modes & ADJ_ADJTIME) {
807 long save_adjust = time_adjust;
808
809 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
810 /* adjtime() is independent from ntp_adjtime() */
811 time_adjust = txc->offset;
812 ntp_update_frequency();
7e8eda73
OM
813
814 audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust);
815 audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, time_adjust);
916c7a85
RZ
816 }
817 txc->offset = save_adjust;
e9629165 818 } else {
e9629165 819 /* If there are input parameters, then process them: */
7e8eda73
OM
820 if (txc->modes) {
821 audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, time_offset);
822 audit_ntp_set_old(ad, AUDIT_NTP_FREQ, time_freq);
823 audit_ntp_set_old(ad, AUDIT_NTP_STATUS, time_status);
824 audit_ntp_set_old(ad, AUDIT_NTP_TAI, *time_tai);
825 audit_ntp_set_old(ad, AUDIT_NTP_TICK, tick_usec);
826
0f9987b6 827 process_adjtimex_modes(txc, time_tai);
eea83d89 828
7e8eda73
OM
829 audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, time_offset);
830 audit_ntp_set_new(ad, AUDIT_NTP_FREQ, time_freq);
831 audit_ntp_set_new(ad, AUDIT_NTP_STATUS, time_status);
832 audit_ntp_set_new(ad, AUDIT_NTP_TAI, *time_tai);
833 audit_ntp_set_new(ad, AUDIT_NTP_TICK, tick_usec);
834 }
835
e9629165 836 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
916c7a85 837 NTP_SCALE_SHIFT);
e9629165 838 if (!(time_status & STA_NANO))
ead25417 839 txc->offset = (u32)txc->offset / NSEC_PER_USEC;
e9629165 840 }
916c7a85 841
eea83d89 842 result = time_state; /* mostly `TIME_OK' */
025b40ab
AG
843 /* check for errors */
844 if (is_error_status(time_status))
4c7ee8de
JS
845 result = TIME_ERROR;
846
d40e944c 847 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
2b9d1496 848 PPM_SCALE_INV, NTP_SCALE_SHIFT);
4c7ee8de
JS
849 txc->maxerror = time_maxerror;
850 txc->esterror = time_esterror;
851 txc->status = time_status;
852 txc->constant = time_constant;
70bc42f9 853 txc->precision = 1;
074b3b87 854 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
4c7ee8de 855 txc->tick = tick_usec;
87ace39b 856 txc->tai = *time_tai;
4c7ee8de 857
025b40ab
AG
858 /* fill PPS status fields */
859 pps_fill_timex(txc);
e9629165 860
2f584134 861 txc->time.tv_sec = ts->tv_sec;
87ace39b 862 txc->time.tv_usec = ts->tv_nsec;
eea83d89 863 if (!(time_status & STA_NANO))
ead25417 864 txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
ee9851b2 865
96efdcf2
JS
866 /* Handle leapsec adjustments */
867 if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
868 if ((time_state == TIME_INS) && (time_status & STA_INS)) {
869 result = TIME_OOP;
870 txc->tai++;
871 txc->time.tv_sec--;
872 }
873 if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
874 result = TIME_WAIT;
875 txc->tai--;
876 txc->time.tv_sec++;
877 }
878 if ((time_state == TIME_OOP) &&
879 (ts->tv_sec == ntp_next_leap_sec)) {
880 result = TIME_WAIT;
881 }
882 }
883
ee9851b2 884 return result;
4c7ee8de 885}
10a398d0 886
025b40ab
AG
887#ifdef CONFIG_NTP_PPS
888
889/* actually struct pps_normtime is good old struct timespec, but it is
890 * semantically different (and it is the reason why it was invented):
891 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
892 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
893struct pps_normtime {
7ec88e4b 894 s64 sec; /* seconds */
025b40ab
AG
895 long nsec; /* nanoseconds */
896};
897
898/* normalize the timestamp so that nsec is in the
899 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
7ec88e4b 900static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
025b40ab
AG
901{
902 struct pps_normtime norm = {
903 .sec = ts.tv_sec,
904 .nsec = ts.tv_nsec
905 };
906
907 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
908 norm.nsec -= NSEC_PER_SEC;
909 norm.sec++;
910 }
911
912 return norm;
913}
914
915/* get current phase correction and jitter */
916static inline long pps_phase_filter_get(long *jitter)
917{
918 *jitter = pps_tf[0] - pps_tf[1];
919 if (*jitter < 0)
920 *jitter = -*jitter;
921
922 /* TODO: test various filters */
923 return pps_tf[0];
924}
925
926/* add the sample to the phase filter */
927static inline void pps_phase_filter_add(long err)
928{
929 pps_tf[2] = pps_tf[1];
930 pps_tf[1] = pps_tf[0];
931 pps_tf[0] = err;
932}
933
934/* decrease frequency calibration interval length.
935 * It is halved after four consecutive unstable intervals.
936 */
937static inline void pps_dec_freq_interval(void)
938{
939 if (--pps_intcnt <= -PPS_INTCOUNT) {
940 pps_intcnt = -PPS_INTCOUNT;
941 if (pps_shift > PPS_INTMIN) {
942 pps_shift--;
943 pps_intcnt = 0;
944 }
945 }
946}
947
948/* increase frequency calibration interval length.
949 * It is doubled after four consecutive stable intervals.
950 */
951static inline void pps_inc_freq_interval(void)
952{
953 if (++pps_intcnt >= PPS_INTCOUNT) {
954 pps_intcnt = PPS_INTCOUNT;
955 if (pps_shift < PPS_INTMAX) {
956 pps_shift++;
957 pps_intcnt = 0;
958 }
959 }
960}
961
962/* update clock frequency based on MONOTONIC_RAW clock PPS signal
963 * timestamps
964 *
965 * At the end of the calibration interval the difference between the
966 * first and last MONOTONIC_RAW clock timestamps divided by the length
967 * of the interval becomes the frequency update. If the interval was
968 * too long, the data are discarded.
969 * Returns the difference between old and new frequency values.
970 */
971static long hardpps_update_freq(struct pps_normtime freq_norm)
972{
973 long delta, delta_mod;
974 s64 ftemp;
975
976 /* check if the frequency interval was too long */
977 if (freq_norm.sec > (2 << pps_shift)) {
978 time_status |= STA_PPSERROR;
979 pps_errcnt++;
980 pps_dec_freq_interval();
6d9bcb62 981 printk_deferred(KERN_ERR
7ec88e4b 982 "hardpps: PPSERROR: interval too long - %lld s\n",
6d9bcb62 983 freq_norm.sec);
025b40ab
AG
984 return 0;
985 }
986
987 /* here the raw frequency offset and wander (stability) is
988 * calculated. If the wander is less than the wander threshold
989 * the interval is increased; otherwise it is decreased.
990 */
991 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
992 freq_norm.sec);
993 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
994 pps_freq = ftemp;
995 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
6d9bcb62
JS
996 printk_deferred(KERN_WARNING
997 "hardpps: PPSWANDER: change=%ld\n", delta);
025b40ab
AG
998 time_status |= STA_PPSWANDER;
999 pps_stbcnt++;
1000 pps_dec_freq_interval();
1001 } else { /* good sample */
1002 pps_inc_freq_interval();
1003 }
1004
1005 /* the stability metric is calculated as the average of recent
1006 * frequency changes, but is used only for performance
1007 * monitoring
1008 */
1009 delta_mod = delta;
1010 if (delta_mod < 0)
1011 delta_mod = -delta_mod;
1012 pps_stabil += (div_s64(((s64)delta_mod) <<
1013 (NTP_SCALE_SHIFT - SHIFT_USEC),
1014 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
1015
1016 /* if enabled, the system clock frequency is updated */
1017 if ((time_status & STA_PPSFREQ) != 0 &&
1018 (time_status & STA_FREQHOLD) == 0) {
1019 time_freq = pps_freq;
1020 ntp_update_frequency();
1021 }
1022
1023 return delta;
1024}
1025
1026/* correct REALTIME clock phase error against PPS signal */
1027static void hardpps_update_phase(long error)
1028{
1029 long correction = -error;
1030 long jitter;
1031
1032 /* add the sample to the median filter */
1033 pps_phase_filter_add(correction);
1034 correction = pps_phase_filter_get(&jitter);
1035
1036 /* Nominal jitter is due to PPS signal noise. If it exceeds the
1037 * threshold, the sample is discarded; otherwise, if so enabled,
1038 * the time offset is updated.
1039 */
1040 if (jitter > (pps_jitter << PPS_POPCORN)) {
6d9bcb62
JS
1041 printk_deferred(KERN_WARNING
1042 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1043 jitter, (pps_jitter << PPS_POPCORN));
025b40ab
AG
1044 time_status |= STA_PPSJITTER;
1045 pps_jitcnt++;
1046 } else if (time_status & STA_PPSTIME) {
1047 /* correct the time using the phase offset */
1048 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
1049 NTP_INTERVAL_FREQ);
1050 /* cancel running adjtime() */
1051 time_adjust = 0;
1052 }
1053 /* update jitter */
1054 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
1055}
1056
1057/*
aa6f9c59 1058 * __hardpps() - discipline CPU clock oscillator to external PPS signal
025b40ab
AG
1059 *
1060 * This routine is called at each PPS signal arrival in order to
1061 * discipline the CPU clock oscillator to the PPS signal. It takes two
1062 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1063 * is used to correct clock phase error and the latter is used to
1064 * correct the frequency.
1065 *
1066 * This code is based on David Mills's reference nanokernel
1067 * implementation. It was mostly rewritten but keeps the same idea.
1068 */
7ec88e4b 1069void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
025b40ab
AG
1070{
1071 struct pps_normtime pts_norm, freq_norm;
025b40ab
AG
1072
1073 pts_norm = pps_normalize_ts(*phase_ts);
1074
025b40ab
AG
1075 /* clear the error bits, they will be set again if needed */
1076 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1077
1078 /* indicate signal presence */
1079 time_status |= STA_PPSSIGNAL;
1080 pps_valid = PPS_VALID;
1081
1082 /* when called for the first time,
1083 * just start the frequency interval */
1084 if (unlikely(pps_fbase.tv_sec == 0)) {
1085 pps_fbase = *raw_ts;
025b40ab
AG
1086 return;
1087 }
1088
1089 /* ok, now we have a base for frequency calculation */
7ec88e4b 1090 freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
025b40ab
AG
1091
1092 /* check that the signal is in the range
1093 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1094 if ((freq_norm.sec == 0) ||
1095 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1096 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1097 time_status |= STA_PPSJITTER;
1098 /* restart the frequency calibration interval */
1099 pps_fbase = *raw_ts;
6d9bcb62 1100 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
025b40ab
AG
1101 return;
1102 }
1103
1104 /* signal is ok */
1105
1106 /* check if the current frequency interval is finished */
1107 if (freq_norm.sec >= (1 << pps_shift)) {
1108 pps_calcnt++;
1109 /* restart the frequency calibration interval */
1110 pps_fbase = *raw_ts;
1111 hardpps_update_freq(freq_norm);
1112 }
1113
1114 hardpps_update_phase(pts_norm.nsec);
1115
025b40ab 1116}
025b40ab
AG
1117#endif /* CONFIG_NTP_PPS */
1118
10a398d0
RZ
1119static int __init ntp_tick_adj_setup(char *str)
1120{
86b2dcd4 1121 int rc = kstrtos64(str, 0, &ntp_tick_adj);
cdafb93f
FF
1122 if (rc)
1123 return rc;
069569e0 1124
86b2dcd4 1125 ntp_tick_adj <<= NTP_SCALE_SHIFT;
10a398d0
RZ
1126 return 1;
1127}
1128
1129__setup("ntp_tick_adj=", ntp_tick_adj_setup);
7dffa3c6
RZ
1130
1131void __init ntp_init(void)
1132{
1133 ntp_clear();
c9e6189f 1134 ntp_init_cmos_sync();
7dffa3c6 1135}