]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/time/ntp.c
ntp: Verify offset doesn't overflow in ntp_update_offset
[mirror_ubuntu-zesty-kernel.git] / kernel / time / ntp.c
CommitLineData
4c7ee8de 1/*
4c7ee8de
JS
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
aa0ac365 8#include <linux/capability.h>
7dffa3c6 9#include <linux/clocksource.h>
eb3f938f 10#include <linux/workqueue.h>
53bbfa9e
IM
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
025b40ab 17#include <linux/module.h>
023f333a 18#include <linux/rtc.h>
4c7ee8de 19
aa6f9c59 20#include "ntp_internal.h"
e2830b5c 21
b0ee7556 22/*
53bbfa9e 23 * NTP timekeeping variables:
a076b214
JS
24 *
25 * Note: All of the NTP state is protected by the timekeeping locks.
b0ee7556 26 */
b0ee7556 27
bd331268 28
53bbfa9e
IM
29/* USER_HZ period (usecs): */
30unsigned long tick_usec = TICK_USEC;
31
02ab20ae 32/* SHIFTED_HZ period (nsecs): */
53bbfa9e 33unsigned long tick_nsec;
7dffa3c6 34
ea7cf49a 35static u64 tick_length;
53bbfa9e
IM
36static u64 tick_length_base;
37
90bf361c 38#define SECS_PER_DAY 86400
bbd12676 39#define MAX_TICKADJ 500LL /* usecs */
53bbfa9e 40#define MAX_TICKADJ_SCALED \
bbd12676 41 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
4c7ee8de
JS
42
43/*
44 * phase-lock loop variables
45 */
53bbfa9e
IM
46
47/*
48 * clock synchronization status
49 *
50 * (TIME_ERROR prevents overwriting the CMOS clock)
51 */
52static int time_state = TIME_OK;
53
54/* clock status bits: */
8357929e 55static int time_status = STA_UNSYNC;
53bbfa9e 56
53bbfa9e
IM
57/* time adjustment (nsecs): */
58static s64 time_offset;
59
60/* pll time constant: */
61static long time_constant = 2;
62
63/* maximum error (usecs): */
1f5b8f8a 64static long time_maxerror = NTP_PHASE_LIMIT;
53bbfa9e
IM
65
66/* estimated error (usecs): */
1f5b8f8a 67static long time_esterror = NTP_PHASE_LIMIT;
53bbfa9e
IM
68
69/* frequency offset (scaled nsecs/secs): */
70static s64 time_freq;
71
72/* time at last adjustment (secs): */
73static long time_reftime;
74
e1292ba1 75static long time_adjust;
53bbfa9e 76
069569e0
IM
77/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78static s64 ntp_tick_adj;
53bbfa9e 79
833f32d7
JS
80/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
81static time64_t ntp_next_leap_sec = TIME64_MAX;
82
025b40ab
AG
83#ifdef CONFIG_NTP_PPS
84
85/*
86 * The following variables are used when a pulse-per-second (PPS) signal
87 * is available. They establish the engineering parameters of the clock
88 * discipline loop when controlled by the PPS signal.
89 */
90#define PPS_VALID 10 /* PPS signal watchdog max (s) */
91#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
92#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
93#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
94#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
95 increase pps_shift or consecutive bad
96 intervals to decrease it */
97#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
98
99static int pps_valid; /* signal watchdog counter */
100static long pps_tf[3]; /* phase median filter */
101static long pps_jitter; /* current jitter (ns) */
7ec88e4b 102static struct timespec64 pps_fbase; /* beginning of the last freq interval */
025b40ab
AG
103static int pps_shift; /* current interval duration (s) (shift) */
104static int pps_intcnt; /* interval counter */
105static s64 pps_freq; /* frequency offset (scaled ns/s) */
106static long pps_stabil; /* current stability (scaled ns/s) */
107
108/*
109 * PPS signal quality monitors
110 */
111static long pps_calcnt; /* calibration intervals */
112static long pps_jitcnt; /* jitter limit exceeded */
113static long pps_stbcnt; /* stability limit exceeded */
114static long pps_errcnt; /* calibration errors */
115
116
117/* PPS kernel consumer compensates the whole phase error immediately.
118 * Otherwise, reduce the offset by a fixed factor times the time constant.
119 */
120static inline s64 ntp_offset_chunk(s64 offset)
121{
122 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
123 return offset;
124 else
125 return shift_right(offset, SHIFT_PLL + time_constant);
126}
127
128static inline void pps_reset_freq_interval(void)
129{
130 /* the PPS calibration interval may end
131 surprisingly early */
132 pps_shift = PPS_INTMIN;
133 pps_intcnt = 0;
134}
135
136/**
137 * pps_clear - Clears the PPS state variables
025b40ab
AG
138 */
139static inline void pps_clear(void)
140{
141 pps_reset_freq_interval();
142 pps_tf[0] = 0;
143 pps_tf[1] = 0;
144 pps_tf[2] = 0;
145 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146 pps_freq = 0;
147}
148
149/* Decrease pps_valid to indicate that another second has passed since
150 * the last PPS signal. When it reaches 0, indicate that PPS signal is
151 * missing.
025b40ab
AG
152 */
153static inline void pps_dec_valid(void)
154{
155 if (pps_valid > 0)
156 pps_valid--;
157 else {
158 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
159 STA_PPSWANDER | STA_PPSERROR);
160 pps_clear();
161 }
162}
163
164static inline void pps_set_freq(s64 freq)
165{
166 pps_freq = freq;
167}
168
169static inline int is_error_status(int status)
170{
ea54bca3 171 return (status & (STA_UNSYNC|STA_CLOCKERR))
025b40ab
AG
172 /* PPS signal lost when either PPS time or
173 * PPS frequency synchronization requested
174 */
ea54bca3
GS
175 || ((status & (STA_PPSFREQ|STA_PPSTIME))
176 && !(status & STA_PPSSIGNAL))
025b40ab
AG
177 /* PPS jitter exceeded when
178 * PPS time synchronization requested */
ea54bca3 179 || ((status & (STA_PPSTIME|STA_PPSJITTER))
025b40ab
AG
180 == (STA_PPSTIME|STA_PPSJITTER))
181 /* PPS wander exceeded or calibration error when
182 * PPS frequency synchronization requested
183 */
ea54bca3
GS
184 || ((status & STA_PPSFREQ)
185 && (status & (STA_PPSWANDER|STA_PPSERROR)));
025b40ab
AG
186}
187
188static inline void pps_fill_timex(struct timex *txc)
189{
190 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
191 PPM_SCALE_INV, NTP_SCALE_SHIFT);
192 txc->jitter = pps_jitter;
193 if (!(time_status & STA_NANO))
194 txc->jitter /= NSEC_PER_USEC;
195 txc->shift = pps_shift;
196 txc->stabil = pps_stabil;
197 txc->jitcnt = pps_jitcnt;
198 txc->calcnt = pps_calcnt;
199 txc->errcnt = pps_errcnt;
200 txc->stbcnt = pps_stbcnt;
201}
202
203#else /* !CONFIG_NTP_PPS */
204
205static inline s64 ntp_offset_chunk(s64 offset)
206{
207 return shift_right(offset, SHIFT_PLL + time_constant);
208}
209
210static inline void pps_reset_freq_interval(void) {}
211static inline void pps_clear(void) {}
212static inline void pps_dec_valid(void) {}
213static inline void pps_set_freq(s64 freq) {}
214
215static inline int is_error_status(int status)
216{
217 return status & (STA_UNSYNC|STA_CLOCKERR);
218}
219
220static inline void pps_fill_timex(struct timex *txc)
221{
222 /* PPS is not implemented, so these are zero */
223 txc->ppsfreq = 0;
224 txc->jitter = 0;
225 txc->shift = 0;
226 txc->stabil = 0;
227 txc->jitcnt = 0;
228 txc->calcnt = 0;
229 txc->errcnt = 0;
230 txc->stbcnt = 0;
231}
232
233#endif /* CONFIG_NTP_PPS */
234
8357929e
JS
235
236/**
237 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
238 *
239 */
240static inline int ntp_synced(void)
241{
242 return !(time_status & STA_UNSYNC);
243}
244
245
53bbfa9e
IM
246/*
247 * NTP methods:
248 */
4c7ee8de 249
9ce616aa
IM
250/*
251 * Update (tick_length, tick_length_base, tick_nsec), based
252 * on (tick_usec, ntp_tick_adj, time_freq):
253 */
70bc42f9
AB
254static void ntp_update_frequency(void)
255{
9ce616aa 256 u64 second_length;
bc26c31d 257 u64 new_base;
9ce616aa
IM
258
259 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
260 << NTP_SCALE_SHIFT;
261
069569e0 262 second_length += ntp_tick_adj;
9ce616aa 263 second_length += time_freq;
70bc42f9 264
9ce616aa 265 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
bc26c31d 266 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
fdcedf7b
JS
267
268 /*
269 * Don't wait for the next second_overflow, apply
bc26c31d 270 * the change to the tick length immediately:
fdcedf7b 271 */
bc26c31d
IM
272 tick_length += new_base - tick_length_base;
273 tick_length_base = new_base;
70bc42f9
AB
274}
275
478b7aab 276static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
f939890b
IM
277{
278 time_status &= ~STA_MODE;
279
280 if (secs < MINSEC)
478b7aab 281 return 0;
f939890b
IM
282
283 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
478b7aab 284 return 0;
f939890b 285
f939890b
IM
286 time_status |= STA_MODE;
287
a078c6d0 288 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
f939890b
IM
289}
290
ee9851b2
RZ
291static void ntp_update_offset(long offset)
292{
ee9851b2 293 s64 freq_adj;
f939890b
IM
294 s64 offset64;
295 long secs;
ee9851b2
RZ
296
297 if (!(time_status & STA_PLL))
298 return;
299
52d189f1
SL
300 if (!(time_status & STA_NANO)) {
301 /* Make sure the multiplication below won't overflow */
302 offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
9f14f669 303 offset *= NSEC_PER_USEC;
52d189f1 304 }
ee9851b2
RZ
305
306 /*
307 * Scale the phase adjustment and
308 * clamp to the operating range.
309 */
52d189f1 310 offset = clamp(offset, -MAXPHASE, MAXPHASE);
ee9851b2
RZ
311
312 /*
313 * Select how the frequency is to be controlled
314 * and in which mode (PLL or FLL).
315 */
7e1b5847 316 secs = get_seconds() - time_reftime;
10dd31a7 317 if (unlikely(time_status & STA_FREQHOLD))
c7986acb
IM
318 secs = 0;
319
7e1b5847 320 time_reftime = get_seconds();
ee9851b2 321
f939890b 322 offset64 = offset;
8af3c153 323 freq_adj = ntp_update_offset_fll(offset64, secs);
f939890b 324
8af3c153
ML
325 /*
326 * Clamp update interval to reduce PLL gain with low
327 * sampling rate (e.g. intermittent network connection)
328 * to avoid instability.
329 */
330 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
331 secs = 1 << (SHIFT_PLL + 1 + time_constant);
332
333 freq_adj += (offset64 * secs) <<
334 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
f939890b
IM
335
336 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
337
338 time_freq = max(freq_adj, -MAXFREQ_SCALED);
339
340 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
ee9851b2
RZ
341}
342
b0ee7556
RZ
343/**
344 * ntp_clear - Clears the NTP state variables
b0ee7556
RZ
345 */
346void ntp_clear(void)
347{
53bbfa9e
IM
348 time_adjust = 0; /* stop active adjtime() */
349 time_status |= STA_UNSYNC;
350 time_maxerror = NTP_PHASE_LIMIT;
351 time_esterror = NTP_PHASE_LIMIT;
b0ee7556
RZ
352
353 ntp_update_frequency();
354
53bbfa9e
IM
355 tick_length = tick_length_base;
356 time_offset = 0;
025b40ab 357
833f32d7 358 ntp_next_leap_sec = TIME64_MAX;
025b40ab
AG
359 /* Clear PPS state variables */
360 pps_clear();
b0ee7556
RZ
361}
362
ea7cf49a
JS
363
364u64 ntp_tick_length(void)
365{
a076b214 366 return tick_length;
ea7cf49a
JS
367}
368
833f32d7
JS
369/**
370 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
371 *
372 * Provides the time of the next leapsecond against CLOCK_REALTIME in
373 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
374 */
375ktime_t ntp_get_next_leap(void)
376{
377 ktime_t ret;
378
379 if ((time_state == TIME_INS) && (time_status & STA_INS))
380 return ktime_set(ntp_next_leap_sec, 0);
381 ret.tv64 = KTIME_MAX;
382 return ret;
383}
ea7cf49a 384
4c7ee8de 385/*
6b43ae8a
JS
386 * this routine handles the overflow of the microsecond field
387 *
388 * The tricky bits of code to handle the accurate clock support
389 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
390 * They were originally developed for SUN and DEC kernels.
391 * All the kudos should go to Dave for this stuff.
392 *
393 * Also handles leap second processing, and returns leap offset
4c7ee8de 394 */
6b43ae8a 395int second_overflow(unsigned long secs)
4c7ee8de 396{
6b43ae8a 397 s64 delta;
bd331268 398 int leap = 0;
6b43ae8a
JS
399
400 /*
401 * Leap second processing. If in leap-insert state at the end of the
402 * day, the system clock is set back one second; if in leap-delete
403 * state, the system clock is set ahead one second.
404 */
4c7ee8de
JS
405 switch (time_state) {
406 case TIME_OK:
833f32d7 407 if (time_status & STA_INS) {
6b43ae8a 408 time_state = TIME_INS;
833f32d7
JS
409 ntp_next_leap_sec = secs + SECS_PER_DAY -
410 (secs % SECS_PER_DAY);
411 } else if (time_status & STA_DEL) {
6b43ae8a 412 time_state = TIME_DEL;
833f32d7
JS
413 ntp_next_leap_sec = secs + SECS_PER_DAY -
414 ((secs+1) % SECS_PER_DAY);
415 }
4c7ee8de
JS
416 break;
417 case TIME_INS:
833f32d7
JS
418 if (!(time_status & STA_INS)) {
419 ntp_next_leap_sec = TIME64_MAX;
6b1859db 420 time_state = TIME_OK;
833f32d7 421 } else if (secs % SECS_PER_DAY == 0) {
6b43ae8a
JS
422 leap = -1;
423 time_state = TIME_OOP;
424 printk(KERN_NOTICE
425 "Clock: inserting leap second 23:59:60 UTC\n");
426 }
4c7ee8de
JS
427 break;
428 case TIME_DEL:
833f32d7
JS
429 if (!(time_status & STA_DEL)) {
430 ntp_next_leap_sec = TIME64_MAX;
6b1859db 431 time_state = TIME_OK;
833f32d7 432 } else if ((secs + 1) % SECS_PER_DAY == 0) {
6b43ae8a 433 leap = 1;
833f32d7 434 ntp_next_leap_sec = TIME64_MAX;
6b43ae8a
JS
435 time_state = TIME_WAIT;
436 printk(KERN_NOTICE
437 "Clock: deleting leap second 23:59:59 UTC\n");
438 }
4c7ee8de
JS
439 break;
440 case TIME_OOP:
833f32d7 441 ntp_next_leap_sec = TIME64_MAX;
4c7ee8de 442 time_state = TIME_WAIT;
6b43ae8a 443 break;
4c7ee8de
JS
444 case TIME_WAIT:
445 if (!(time_status & (STA_INS | STA_DEL)))
ee9851b2 446 time_state = TIME_OK;
7dffa3c6
RZ
447 break;
448 }
bd331268 449
7dffa3c6
RZ
450
451 /* Bump the maxerror field */
452 time_maxerror += MAXFREQ / NSEC_PER_USEC;
453 if (time_maxerror > NTP_PHASE_LIMIT) {
454 time_maxerror = NTP_PHASE_LIMIT;
455 time_status |= STA_UNSYNC;
4c7ee8de
JS
456 }
457
025b40ab 458 /* Compute the phase adjustment for the next second */
39854fe8
IM
459 tick_length = tick_length_base;
460
025b40ab 461 delta = ntp_offset_chunk(time_offset);
39854fe8
IM
462 time_offset -= delta;
463 tick_length += delta;
4c7ee8de 464
025b40ab
AG
465 /* Check PPS signal */
466 pps_dec_valid();
467
3c972c24 468 if (!time_adjust)
bd331268 469 goto out;
3c972c24
IM
470
471 if (time_adjust > MAX_TICKADJ) {
472 time_adjust -= MAX_TICKADJ;
473 tick_length += MAX_TICKADJ_SCALED;
bd331268 474 goto out;
4c7ee8de 475 }
3c972c24
IM
476
477 if (time_adjust < -MAX_TICKADJ) {
478 time_adjust += MAX_TICKADJ;
479 tick_length -= MAX_TICKADJ_SCALED;
bd331268 480 goto out;
3c972c24
IM
481 }
482
483 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
484 << NTP_SCALE_SHIFT;
485 time_adjust = 0;
6b43ae8a 486
bd331268 487out:
6b43ae8a 488 return leap;
4c7ee8de
JS
489}
490
3c00a1fe 491#ifdef CONFIG_GENERIC_CMOS_UPDATE
7494e9ee
XP
492int __weak update_persistent_clock(struct timespec now)
493{
494 return -ENODEV;
495}
496
3c00a1fe
XP
497int __weak update_persistent_clock64(struct timespec64 now64)
498{
499 struct timespec now;
500
501 now = timespec64_to_timespec(now64);
502 return update_persistent_clock(now);
503}
504#endif
505
023f333a 506#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
eb3f938f 507static void sync_cmos_clock(struct work_struct *work);
82644459 508
eb3f938f 509static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
82644459 510
eb3f938f 511static void sync_cmos_clock(struct work_struct *work)
82644459 512{
d6d29896 513 struct timespec64 now;
5fd96c42 514 struct timespec64 next;
82644459
TG
515 int fail = 1;
516
517 /*
518 * If we have an externally synchronized Linux clock, then update
519 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
520 * called as close as possible to 500 ms before the new second starts.
521 * This code is run on a timer. If the clock is set, that timer
522 * may not expire at the correct time. Thus, we adjust...
a97ad0c4 523 * We want the clock to be within a couple of ticks from the target.
82644459 524 */
53bbfa9e 525 if (!ntp_synced()) {
82644459
TG
526 /*
527 * Not synced, exit, do not restart a timer (if one is
528 * running, let it run out).
529 */
530 return;
53bbfa9e 531 }
82644459 532
d6d29896 533 getnstimeofday64(&now);
a97ad0c4 534 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
9a4a445e 535 struct timespec64 adjust = now;
84e345e4 536
023f333a 537 fail = -ENODEV;
84e345e4
PB
538 if (persistent_clock_is_local)
539 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
023f333a 540#ifdef CONFIG_GENERIC_CMOS_UPDATE
3c00a1fe 541 fail = update_persistent_clock64(adjust);
023f333a 542#endif
3c00a1fe 543
023f333a
JG
544#ifdef CONFIG_RTC_SYSTOHC
545 if (fail == -ENODEV)
84e345e4 546 fail = rtc_set_ntp_time(adjust);
023f333a
JG
547#endif
548 }
82644459 549
4ff4b9e1 550 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
82644459
TG
551 if (next.tv_nsec <= 0)
552 next.tv_nsec += NSEC_PER_SEC;
553
023f333a 554 if (!fail || fail == -ENODEV)
82644459
TG
555 next.tv_sec = 659;
556 else
557 next.tv_sec = 0;
558
559 if (next.tv_nsec >= NSEC_PER_SEC) {
560 next.tv_sec++;
561 next.tv_nsec -= NSEC_PER_SEC;
562 }
e8b17594 563 queue_delayed_work(system_power_efficient_wq,
5fd96c42 564 &sync_cmos_work, timespec64_to_jiffies(&next));
82644459
TG
565}
566
7bd36014 567void ntp_notify_cmos_timer(void)
4c7ee8de 568{
e8b17594 569 queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
4c7ee8de
JS
570}
571
82644459 572#else
7bd36014 573void ntp_notify_cmos_timer(void) { }
82644459
TG
574#endif
575
80f22571
IM
576
577/*
578 * Propagate a new txc->status value into the NTP state:
579 */
7d489d15 580static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
80f22571 581{
80f22571
IM
582 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
583 time_state = TIME_OK;
584 time_status = STA_UNSYNC;
833f32d7 585 ntp_next_leap_sec = TIME64_MAX;
025b40ab
AG
586 /* restart PPS frequency calibration */
587 pps_reset_freq_interval();
80f22571 588 }
80f22571
IM
589
590 /*
591 * If we turn on PLL adjustments then reset the
592 * reference time to current time.
593 */
594 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
7e1b5847 595 time_reftime = get_seconds();
80f22571 596
a2a5ac86
JS
597 /* only set allowed bits */
598 time_status &= STA_RONLY;
80f22571 599 time_status |= txc->status & ~STA_RONLY;
80f22571 600}
cd5398be 601
a076b214 602
cc244dda 603static inline void process_adjtimex_modes(struct timex *txc,
7d489d15 604 struct timespec64 *ts,
cc244dda 605 s32 *time_tai)
80f22571
IM
606{
607 if (txc->modes & ADJ_STATUS)
608 process_adj_status(txc, ts);
609
610 if (txc->modes & ADJ_NANO)
611 time_status |= STA_NANO;
e9629165 612
80f22571
IM
613 if (txc->modes & ADJ_MICRO)
614 time_status &= ~STA_NANO;
615
616 if (txc->modes & ADJ_FREQUENCY) {
2b9d1496 617 time_freq = txc->freq * PPM_SCALE;
80f22571
IM
618 time_freq = min(time_freq, MAXFREQ_SCALED);
619 time_freq = max(time_freq, -MAXFREQ_SCALED);
025b40ab
AG
620 /* update pps_freq */
621 pps_set_freq(time_freq);
80f22571
IM
622 }
623
624 if (txc->modes & ADJ_MAXERROR)
625 time_maxerror = txc->maxerror;
e9629165 626
80f22571
IM
627 if (txc->modes & ADJ_ESTERROR)
628 time_esterror = txc->esterror;
629
630 if (txc->modes & ADJ_TIMECONST) {
631 time_constant = txc->constant;
632 if (!(time_status & STA_NANO))
633 time_constant += 4;
634 time_constant = min(time_constant, (long)MAXTC);
635 time_constant = max(time_constant, 0l);
636 }
637
638 if (txc->modes & ADJ_TAI && txc->constant > 0)
cc244dda 639 *time_tai = txc->constant;
80f22571
IM
640
641 if (txc->modes & ADJ_OFFSET)
642 ntp_update_offset(txc->offset);
e9629165 643
80f22571
IM
644 if (txc->modes & ADJ_TICK)
645 tick_usec = txc->tick;
646
647 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
648 ntp_update_frequency();
649}
650
ad460967
JS
651
652
653/**
654 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
4c7ee8de 655 */
ad460967 656int ntp_validate_timex(struct timex *txc)
4c7ee8de 657{
916c7a85 658 if (txc->modes & ADJ_ADJTIME) {
eea83d89 659 /* singleshot must not be used with any other mode bits */
916c7a85 660 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
4c7ee8de 661 return -EINVAL;
916c7a85
RZ
662 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
663 !capable(CAP_SYS_TIME))
664 return -EPERM;
665 } else {
666 /* In order to modify anything, you gotta be super-user! */
667 if (txc->modes && !capable(CAP_SYS_TIME))
668 return -EPERM;
53bbfa9e
IM
669 /*
670 * if the quartz is off by more than 10% then
671 * something is VERY wrong!
672 */
916c7a85
RZ
673 if (txc->modes & ADJ_TICK &&
674 (txc->tick < 900000/USER_HZ ||
675 txc->tick > 1100000/USER_HZ))
e9629165 676 return -EINVAL;
52bfb360 677 }
4c7ee8de 678
ad460967
JS
679 if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
680 return -EPERM;
681
29183a70
JS
682 /*
683 * Check for potential multiplication overflows that can
684 * only happen on 64-bit systems:
685 */
686 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
687 if (LLONG_MIN / PPM_SCALE > txc->freq)
5e5aeb43 688 return -EINVAL;
29183a70 689 if (LLONG_MAX / PPM_SCALE < txc->freq)
5e5aeb43
SL
690 return -EINVAL;
691 }
692
ad460967
JS
693 return 0;
694}
695
696
697/*
698 * adjtimex mainly allows reading (and writing, if superuser) of
699 * kernel time-keeping variables. used by xntpd.
700 */
7d489d15 701int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
ad460967 702{
ad460967
JS
703 int result;
704
916c7a85
RZ
705 if (txc->modes & ADJ_ADJTIME) {
706 long save_adjust = time_adjust;
707
708 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
709 /* adjtime() is independent from ntp_adjtime() */
710 time_adjust = txc->offset;
711 ntp_update_frequency();
712 }
713 txc->offset = save_adjust;
e9629165 714 } else {
ee9851b2 715
e9629165
IM
716 /* If there are input parameters, then process them: */
717 if (txc->modes)
87ace39b 718 process_adjtimex_modes(txc, ts, time_tai);
eea83d89 719
e9629165 720 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
916c7a85 721 NTP_SCALE_SHIFT);
e9629165
IM
722 if (!(time_status & STA_NANO))
723 txc->offset /= NSEC_PER_USEC;
724 }
916c7a85 725
eea83d89 726 result = time_state; /* mostly `TIME_OK' */
025b40ab
AG
727 /* check for errors */
728 if (is_error_status(time_status))
4c7ee8de
JS
729 result = TIME_ERROR;
730
d40e944c 731 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
2b9d1496 732 PPM_SCALE_INV, NTP_SCALE_SHIFT);
4c7ee8de
JS
733 txc->maxerror = time_maxerror;
734 txc->esterror = time_esterror;
735 txc->status = time_status;
736 txc->constant = time_constant;
70bc42f9 737 txc->precision = 1;
074b3b87 738 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
4c7ee8de 739 txc->tick = tick_usec;
87ace39b 740 txc->tai = *time_tai;
4c7ee8de 741
025b40ab
AG
742 /* fill PPS status fields */
743 pps_fill_timex(txc);
e9629165 744
7d489d15 745 txc->time.tv_sec = (time_t)ts->tv_sec;
87ace39b 746 txc->time.tv_usec = ts->tv_nsec;
eea83d89
RZ
747 if (!(time_status & STA_NANO))
748 txc->time.tv_usec /= NSEC_PER_USEC;
ee9851b2 749
96efdcf2
JS
750 /* Handle leapsec adjustments */
751 if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
752 if ((time_state == TIME_INS) && (time_status & STA_INS)) {
753 result = TIME_OOP;
754 txc->tai++;
755 txc->time.tv_sec--;
756 }
757 if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
758 result = TIME_WAIT;
759 txc->tai--;
760 txc->time.tv_sec++;
761 }
762 if ((time_state == TIME_OOP) &&
763 (ts->tv_sec == ntp_next_leap_sec)) {
764 result = TIME_WAIT;
765 }
766 }
767
ee9851b2 768 return result;
4c7ee8de 769}
10a398d0 770
025b40ab
AG
771#ifdef CONFIG_NTP_PPS
772
773/* actually struct pps_normtime is good old struct timespec, but it is
774 * semantically different (and it is the reason why it was invented):
775 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
776 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
777struct pps_normtime {
7ec88e4b 778 s64 sec; /* seconds */
025b40ab
AG
779 long nsec; /* nanoseconds */
780};
781
782/* normalize the timestamp so that nsec is in the
783 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
7ec88e4b 784static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
025b40ab
AG
785{
786 struct pps_normtime norm = {
787 .sec = ts.tv_sec,
788 .nsec = ts.tv_nsec
789 };
790
791 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
792 norm.nsec -= NSEC_PER_SEC;
793 norm.sec++;
794 }
795
796 return norm;
797}
798
799/* get current phase correction and jitter */
800static inline long pps_phase_filter_get(long *jitter)
801{
802 *jitter = pps_tf[0] - pps_tf[1];
803 if (*jitter < 0)
804 *jitter = -*jitter;
805
806 /* TODO: test various filters */
807 return pps_tf[0];
808}
809
810/* add the sample to the phase filter */
811static inline void pps_phase_filter_add(long err)
812{
813 pps_tf[2] = pps_tf[1];
814 pps_tf[1] = pps_tf[0];
815 pps_tf[0] = err;
816}
817
818/* decrease frequency calibration interval length.
819 * It is halved after four consecutive unstable intervals.
820 */
821static inline void pps_dec_freq_interval(void)
822{
823 if (--pps_intcnt <= -PPS_INTCOUNT) {
824 pps_intcnt = -PPS_INTCOUNT;
825 if (pps_shift > PPS_INTMIN) {
826 pps_shift--;
827 pps_intcnt = 0;
828 }
829 }
830}
831
832/* increase frequency calibration interval length.
833 * It is doubled after four consecutive stable intervals.
834 */
835static inline void pps_inc_freq_interval(void)
836{
837 if (++pps_intcnt >= PPS_INTCOUNT) {
838 pps_intcnt = PPS_INTCOUNT;
839 if (pps_shift < PPS_INTMAX) {
840 pps_shift++;
841 pps_intcnt = 0;
842 }
843 }
844}
845
846/* update clock frequency based on MONOTONIC_RAW clock PPS signal
847 * timestamps
848 *
849 * At the end of the calibration interval the difference between the
850 * first and last MONOTONIC_RAW clock timestamps divided by the length
851 * of the interval becomes the frequency update. If the interval was
852 * too long, the data are discarded.
853 * Returns the difference between old and new frequency values.
854 */
855static long hardpps_update_freq(struct pps_normtime freq_norm)
856{
857 long delta, delta_mod;
858 s64 ftemp;
859
860 /* check if the frequency interval was too long */
861 if (freq_norm.sec > (2 << pps_shift)) {
862 time_status |= STA_PPSERROR;
863 pps_errcnt++;
864 pps_dec_freq_interval();
6d9bcb62 865 printk_deferred(KERN_ERR
7ec88e4b 866 "hardpps: PPSERROR: interval too long - %lld s\n",
6d9bcb62 867 freq_norm.sec);
025b40ab
AG
868 return 0;
869 }
870
871 /* here the raw frequency offset and wander (stability) is
872 * calculated. If the wander is less than the wander threshold
873 * the interval is increased; otherwise it is decreased.
874 */
875 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
876 freq_norm.sec);
877 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
878 pps_freq = ftemp;
879 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
6d9bcb62
JS
880 printk_deferred(KERN_WARNING
881 "hardpps: PPSWANDER: change=%ld\n", delta);
025b40ab
AG
882 time_status |= STA_PPSWANDER;
883 pps_stbcnt++;
884 pps_dec_freq_interval();
885 } else { /* good sample */
886 pps_inc_freq_interval();
887 }
888
889 /* the stability metric is calculated as the average of recent
890 * frequency changes, but is used only for performance
891 * monitoring
892 */
893 delta_mod = delta;
894 if (delta_mod < 0)
895 delta_mod = -delta_mod;
896 pps_stabil += (div_s64(((s64)delta_mod) <<
897 (NTP_SCALE_SHIFT - SHIFT_USEC),
898 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
899
900 /* if enabled, the system clock frequency is updated */
901 if ((time_status & STA_PPSFREQ) != 0 &&
902 (time_status & STA_FREQHOLD) == 0) {
903 time_freq = pps_freq;
904 ntp_update_frequency();
905 }
906
907 return delta;
908}
909
910/* correct REALTIME clock phase error against PPS signal */
911static void hardpps_update_phase(long error)
912{
913 long correction = -error;
914 long jitter;
915
916 /* add the sample to the median filter */
917 pps_phase_filter_add(correction);
918 correction = pps_phase_filter_get(&jitter);
919
920 /* Nominal jitter is due to PPS signal noise. If it exceeds the
921 * threshold, the sample is discarded; otherwise, if so enabled,
922 * the time offset is updated.
923 */
924 if (jitter > (pps_jitter << PPS_POPCORN)) {
6d9bcb62
JS
925 printk_deferred(KERN_WARNING
926 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
927 jitter, (pps_jitter << PPS_POPCORN));
025b40ab
AG
928 time_status |= STA_PPSJITTER;
929 pps_jitcnt++;
930 } else if (time_status & STA_PPSTIME) {
931 /* correct the time using the phase offset */
932 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
933 NTP_INTERVAL_FREQ);
934 /* cancel running adjtime() */
935 time_adjust = 0;
936 }
937 /* update jitter */
938 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
939}
940
941/*
aa6f9c59 942 * __hardpps() - discipline CPU clock oscillator to external PPS signal
025b40ab
AG
943 *
944 * This routine is called at each PPS signal arrival in order to
945 * discipline the CPU clock oscillator to the PPS signal. It takes two
946 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
947 * is used to correct clock phase error and the latter is used to
948 * correct the frequency.
949 *
950 * This code is based on David Mills's reference nanokernel
951 * implementation. It was mostly rewritten but keeps the same idea.
952 */
7ec88e4b 953void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
025b40ab
AG
954{
955 struct pps_normtime pts_norm, freq_norm;
025b40ab
AG
956
957 pts_norm = pps_normalize_ts(*phase_ts);
958
025b40ab
AG
959 /* clear the error bits, they will be set again if needed */
960 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
961
962 /* indicate signal presence */
963 time_status |= STA_PPSSIGNAL;
964 pps_valid = PPS_VALID;
965
966 /* when called for the first time,
967 * just start the frequency interval */
968 if (unlikely(pps_fbase.tv_sec == 0)) {
969 pps_fbase = *raw_ts;
025b40ab
AG
970 return;
971 }
972
973 /* ok, now we have a base for frequency calculation */
7ec88e4b 974 freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
025b40ab
AG
975
976 /* check that the signal is in the range
977 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
978 if ((freq_norm.sec == 0) ||
979 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
980 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
981 time_status |= STA_PPSJITTER;
982 /* restart the frequency calibration interval */
983 pps_fbase = *raw_ts;
6d9bcb62 984 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
025b40ab
AG
985 return;
986 }
987
988 /* signal is ok */
989
990 /* check if the current frequency interval is finished */
991 if (freq_norm.sec >= (1 << pps_shift)) {
992 pps_calcnt++;
993 /* restart the frequency calibration interval */
994 pps_fbase = *raw_ts;
995 hardpps_update_freq(freq_norm);
996 }
997
998 hardpps_update_phase(pts_norm.nsec);
999
025b40ab 1000}
025b40ab
AG
1001#endif /* CONFIG_NTP_PPS */
1002
10a398d0
RZ
1003static int __init ntp_tick_adj_setup(char *str)
1004{
cdafb93f
FF
1005 int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1006
1007 if (rc)
1008 return rc;
069569e0
IM
1009 ntp_tick_adj <<= NTP_SCALE_SHIFT;
1010
10a398d0
RZ
1011 return 1;
1012}
1013
1014__setup("ntp_tick_adj=", ntp_tick_adj_setup);
7dffa3c6
RZ
1015
1016void __init ntp_init(void)
1017{
1018 ntp_clear();
7dffa3c6 1019}