]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/time/ntp.c
time: ntp: clean up kernel/time/ntp.c
[mirror_ubuntu-zesty-kernel.git] / kernel / time / ntp.c
CommitLineData
4c7ee8de 1/*
4c7ee8de
JS
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
aa0ac365 8#include <linux/capability.h>
7dffa3c6 9#include <linux/clocksource.h>
eb3f938f 10#include <linux/workqueue.h>
53bbfa9e
IM
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
4c7ee8de 17
b0ee7556 18/*
53bbfa9e 19 * NTP timekeeping variables:
b0ee7556 20 */
b0ee7556 21
53bbfa9e
IM
22/* USER_HZ period (usecs): */
23unsigned long tick_usec = TICK_USEC;
24
25/* ACTHZ period (nsecs): */
26unsigned long tick_nsec;
7dffa3c6 27
53bbfa9e
IM
28u64 tick_length;
29static u64 tick_length_base;
30
31static struct hrtimer leap_timer;
32
33#define MAX_TICKADJ 500 /* usecs */
34#define MAX_TICKADJ_SCALED \
35 (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
4c7ee8de
JS
36
37/*
38 * phase-lock loop variables
39 */
53bbfa9e
IM
40
41/*
42 * clock synchronization status
43 *
44 * (TIME_ERROR prevents overwriting the CMOS clock)
45 */
46static int time_state = TIME_OK;
47
48/* clock status bits: */
49int time_status = STA_UNSYNC;
50
51/* TAI offset (secs): */
52static long time_tai;
53
54/* time adjustment (nsecs): */
55static s64 time_offset;
56
57/* pll time constant: */
58static long time_constant = 2;
59
60/* maximum error (usecs): */
61long time_maxerror = NTP_PHASE_LIMIT;
62
63/* estimated error (usecs): */
64long time_esterror = NTP_PHASE_LIMIT;
65
66/* frequency offset (scaled nsecs/secs): */
67static s64 time_freq;
68
69/* time at last adjustment (secs): */
70static long time_reftime;
71
72long time_adjust;
73
74static long ntp_tick_adj;
75
76/*
77 * NTP methods:
78 */
4c7ee8de 79
70bc42f9
AB
80static void ntp_update_frequency(void)
81{
fdcedf7b 82 u64 old_tick_length_base = tick_length_base;
f4304ab2 83 u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
7fc5c784
RZ
84 << NTP_SCALE_SHIFT;
85 second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT;
074b3b87 86 second_length += time_freq;
70bc42f9 87
f4304ab2 88 tick_length_base = second_length;
70bc42f9 89
7fc5c784 90 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
71abb3af 91 tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ);
fdcedf7b
JS
92
93 /*
94 * Don't wait for the next second_overflow, apply
95 * the change to the tick length immediately
96 */
97 tick_length += tick_length_base - old_tick_length_base;
70bc42f9
AB
98}
99
ee9851b2
RZ
100static void ntp_update_offset(long offset)
101{
102 long mtemp;
103 s64 freq_adj;
104
105 if (!(time_status & STA_PLL))
106 return;
107
eea83d89 108 if (!(time_status & STA_NANO))
9f14f669 109 offset *= NSEC_PER_USEC;
ee9851b2
RZ
110
111 /*
112 * Scale the phase adjustment and
113 * clamp to the operating range.
114 */
9f14f669
RZ
115 offset = min(offset, MAXPHASE);
116 offset = max(offset, -MAXPHASE);
ee9851b2
RZ
117
118 /*
119 * Select how the frequency is to be controlled
120 * and in which mode (PLL or FLL).
121 */
122 if (time_status & STA_FREQHOLD || time_reftime == 0)
123 time_reftime = xtime.tv_sec;
124 mtemp = xtime.tv_sec - time_reftime;
125 time_reftime = xtime.tv_sec;
126
9f14f669 127 freq_adj = (s64)offset * mtemp;
7fc5c784 128 freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant);
eea83d89
RZ
129 time_status &= ~STA_MODE;
130 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
7fc5c784 131 freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL),
074b3b87 132 mtemp);
eea83d89
RZ
133 time_status |= STA_MODE;
134 }
ee9851b2 135 freq_adj += time_freq;
074b3b87
RZ
136 freq_adj = min(freq_adj, MAXFREQ_SCALED);
137 time_freq = max(freq_adj, -MAXFREQ_SCALED);
9f14f669 138
7fc5c784 139 time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
ee9851b2
RZ
140}
141
b0ee7556
RZ
142/**
143 * ntp_clear - Clears the NTP state variables
144 *
145 * Must be called while holding a write on the xtime_lock
146 */
147void ntp_clear(void)
148{
53bbfa9e
IM
149 time_adjust = 0; /* stop active adjtime() */
150 time_status |= STA_UNSYNC;
151 time_maxerror = NTP_PHASE_LIMIT;
152 time_esterror = NTP_PHASE_LIMIT;
b0ee7556
RZ
153
154 ntp_update_frequency();
155
53bbfa9e
IM
156 tick_length = tick_length_base;
157 time_offset = 0;
b0ee7556
RZ
158}
159
4c7ee8de 160/*
7dffa3c6
RZ
161 * Leap second processing. If in leap-insert state at the end of the
162 * day, the system clock is set back one second; if in leap-delete
163 * state, the system clock is set ahead one second.
4c7ee8de 164 */
7dffa3c6 165static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
4c7ee8de 166{
7dffa3c6 167 enum hrtimer_restart res = HRTIMER_NORESTART;
4c7ee8de 168
ca109491 169 write_seqlock(&xtime_lock);
4c7ee8de 170
4c7ee8de
JS
171 switch (time_state) {
172 case TIME_OK:
4c7ee8de
JS
173 break;
174 case TIME_INS:
7dffa3c6
RZ
175 xtime.tv_sec--;
176 wall_to_monotonic.tv_sec++;
177 time_state = TIME_OOP;
53bbfa9e
IM
178 printk(KERN_NOTICE
179 "Clock: inserting leap second 23:59:60 UTC\n");
cc584b21 180 hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
7dffa3c6 181 res = HRTIMER_RESTART;
4c7ee8de
JS
182 break;
183 case TIME_DEL:
7dffa3c6
RZ
184 xtime.tv_sec++;
185 time_tai--;
186 wall_to_monotonic.tv_sec--;
187 time_state = TIME_WAIT;
53bbfa9e
IM
188 printk(KERN_NOTICE
189 "Clock: deleting leap second 23:59:59 UTC\n");
4c7ee8de
JS
190 break;
191 case TIME_OOP:
153b5d05 192 time_tai++;
4c7ee8de 193 time_state = TIME_WAIT;
7dffa3c6 194 /* fall through */
4c7ee8de
JS
195 case TIME_WAIT:
196 if (!(time_status & (STA_INS | STA_DEL)))
ee9851b2 197 time_state = TIME_OK;
7dffa3c6
RZ
198 break;
199 }
200 update_vsyscall(&xtime, clock);
201
ca109491 202 write_sequnlock(&xtime_lock);
7dffa3c6
RZ
203
204 return res;
205}
206
207/*
208 * this routine handles the overflow of the microsecond field
209 *
210 * The tricky bits of code to handle the accurate clock support
211 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
212 * They were originally developed for SUN and DEC kernels.
213 * All the kudos should go to Dave for this stuff.
214 */
215void second_overflow(void)
216{
217 s64 time_adj;
218
219 /* Bump the maxerror field */
220 time_maxerror += MAXFREQ / NSEC_PER_USEC;
221 if (time_maxerror > NTP_PHASE_LIMIT) {
222 time_maxerror = NTP_PHASE_LIMIT;
223 time_status |= STA_UNSYNC;
4c7ee8de
JS
224 }
225
226 /*
f1992393
RZ
227 * Compute the phase adjustment for the next second. The offset is
228 * reduced by a fixed factor times the time constant.
4c7ee8de 229 */
53bbfa9e
IM
230 tick_length = tick_length_base;
231 time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
232 time_offset -= time_adj;
233 tick_length += time_adj;
4c7ee8de 234
8f807f8d
RZ
235 if (unlikely(time_adjust)) {
236 if (time_adjust > MAX_TICKADJ) {
237 time_adjust -= MAX_TICKADJ;
238 tick_length += MAX_TICKADJ_SCALED;
239 } else if (time_adjust < -MAX_TICKADJ) {
240 time_adjust += MAX_TICKADJ;
241 tick_length -= MAX_TICKADJ_SCALED;
242 } else {
8f807f8d 243 tick_length += (s64)(time_adjust * NSEC_PER_USEC /
7fc5c784 244 NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT;
bb1d8605 245 time_adjust = 0;
8f807f8d 246 }
4c7ee8de
JS
247 }
248}
249
82644459 250#ifdef CONFIG_GENERIC_CMOS_UPDATE
4c7ee8de 251
82644459
TG
252/* Disable the cmos update - used by virtualization and embedded */
253int no_sync_cmos_clock __read_mostly;
254
eb3f938f 255static void sync_cmos_clock(struct work_struct *work);
82644459 256
eb3f938f 257static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
82644459 258
eb3f938f 259static void sync_cmos_clock(struct work_struct *work)
82644459
TG
260{
261 struct timespec now, next;
262 int fail = 1;
263
264 /*
265 * If we have an externally synchronized Linux clock, then update
266 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
267 * called as close as possible to 500 ms before the new second starts.
268 * This code is run on a timer. If the clock is set, that timer
269 * may not expire at the correct time. Thus, we adjust...
270 */
53bbfa9e 271 if (!ntp_synced()) {
82644459
TG
272 /*
273 * Not synced, exit, do not restart a timer (if one is
274 * running, let it run out).
275 */
276 return;
53bbfa9e 277 }
82644459
TG
278
279 getnstimeofday(&now);
fa6a1a55 280 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
82644459
TG
281 fail = update_persistent_clock(now);
282
4ff4b9e1 283 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
82644459
TG
284 if (next.tv_nsec <= 0)
285 next.tv_nsec += NSEC_PER_SEC;
286
287 if (!fail)
288 next.tv_sec = 659;
289 else
290 next.tv_sec = 0;
291
292 if (next.tv_nsec >= NSEC_PER_SEC) {
293 next.tv_sec++;
294 next.tv_nsec -= NSEC_PER_SEC;
295 }
eb3f938f 296 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
82644459
TG
297}
298
299static void notify_cmos_timer(void)
4c7ee8de 300{
298a5df4 301 if (!no_sync_cmos_clock)
eb3f938f 302 schedule_delayed_work(&sync_cmos_work, 0);
4c7ee8de
JS
303}
304
82644459
TG
305#else
306static inline void notify_cmos_timer(void) { }
307#endif
308
53bbfa9e
IM
309/*
310 * adjtimex mainly allows reading (and writing, if superuser) of
4c7ee8de
JS
311 * kernel time-keeping variables. used by xntpd.
312 */
313int do_adjtimex(struct timex *txc)
314{
eea83d89 315 struct timespec ts;
4c7ee8de
JS
316 int result;
317
916c7a85
RZ
318 /* Validate the data before disabling interrupts */
319 if (txc->modes & ADJ_ADJTIME) {
eea83d89 320 /* singleshot must not be used with any other mode bits */
916c7a85 321 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
4c7ee8de 322 return -EINVAL;
916c7a85
RZ
323 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
324 !capable(CAP_SYS_TIME))
325 return -EPERM;
326 } else {
327 /* In order to modify anything, you gotta be super-user! */
328 if (txc->modes && !capable(CAP_SYS_TIME))
329 return -EPERM;
330
53bbfa9e
IM
331 /*
332 * if the quartz is off by more than 10% then
333 * something is VERY wrong!
334 */
916c7a85
RZ
335 if (txc->modes & ADJ_TICK &&
336 (txc->tick < 900000/USER_HZ ||
337 txc->tick > 1100000/USER_HZ))
338 return -EINVAL;
339
340 if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
341 hrtimer_cancel(&leap_timer);
52bfb360 342 }
4c7ee8de 343
7dffa3c6
RZ
344 getnstimeofday(&ts);
345
4c7ee8de 346 write_seqlock_irq(&xtime_lock);
4c7ee8de 347
4c7ee8de 348 /* If there are input parameters, then process them */
916c7a85
RZ
349 if (txc->modes & ADJ_ADJTIME) {
350 long save_adjust = time_adjust;
351
352 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
353 /* adjtime() is independent from ntp_adjtime() */
354 time_adjust = txc->offset;
355 ntp_update_frequency();
356 }
357 txc->offset = save_adjust;
358 goto adj_done;
359 }
ee9851b2 360 if (txc->modes) {
916c7a85
RZ
361 long sec;
362
eea83d89
RZ
363 if (txc->modes & ADJ_STATUS) {
364 if ((time_status & STA_PLL) &&
365 !(txc->status & STA_PLL)) {
366 time_state = TIME_OK;
367 time_status = STA_UNSYNC;
368 }
369 /* only set allowed bits */
370 time_status &= STA_RONLY;
371 time_status |= txc->status & ~STA_RONLY;
7dffa3c6
RZ
372
373 switch (time_state) {
374 case TIME_OK:
375 start_timer:
376 sec = ts.tv_sec;
377 if (time_status & STA_INS) {
378 time_state = TIME_INS;
379 sec += 86400 - sec % 86400;
380 hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
381 } else if (time_status & STA_DEL) {
382 time_state = TIME_DEL;
383 sec += 86400 - (sec + 1) % 86400;
384 hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
385 }
386 break;
387 case TIME_INS:
388 case TIME_DEL:
389 time_state = TIME_OK;
390 goto start_timer;
391 break;
392 case TIME_WAIT:
393 if (!(time_status & (STA_INS | STA_DEL)))
394 time_state = TIME_OK;
395 break;
396 case TIME_OOP:
397 hrtimer_restart(&leap_timer);
398 break;
399 }
eea83d89
RZ
400 }
401
402 if (txc->modes & ADJ_NANO)
403 time_status |= STA_NANO;
404 if (txc->modes & ADJ_MICRO)
405 time_status &= ~STA_NANO;
ee9851b2
RZ
406
407 if (txc->modes & ADJ_FREQUENCY) {
074b3b87
RZ
408 time_freq = (s64)txc->freq * PPM_SCALE;
409 time_freq = min(time_freq, MAXFREQ_SCALED);
410 time_freq = max(time_freq, -MAXFREQ_SCALED);
4c7ee8de 411 }
ee9851b2 412
eea83d89 413 if (txc->modes & ADJ_MAXERROR)
ee9851b2 414 time_maxerror = txc->maxerror;
eea83d89 415 if (txc->modes & ADJ_ESTERROR)
ee9851b2 416 time_esterror = txc->esterror;
4c7ee8de 417
ee9851b2 418 if (txc->modes & ADJ_TIMECONST) {
eea83d89
RZ
419 time_constant = txc->constant;
420 if (!(time_status & STA_NANO))
421 time_constant += 4;
422 time_constant = min(time_constant, (long)MAXTC);
423 time_constant = max(time_constant, 0l);
4c7ee8de 424 }
4c7ee8de 425
153b5d05
RZ
426 if (txc->modes & ADJ_TAI && txc->constant > 0)
427 time_tai = txc->constant;
428
916c7a85
RZ
429 if (txc->modes & ADJ_OFFSET)
430 ntp_update_offset(txc->offset);
ee9851b2
RZ
431 if (txc->modes & ADJ_TICK)
432 tick_usec = txc->tick;
433
434 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
435 ntp_update_frequency();
436 }
eea83d89 437
916c7a85
RZ
438 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
439 NTP_SCALE_SHIFT);
440 if (!(time_status & STA_NANO))
441 txc->offset /= NSEC_PER_USEC;
442
443adj_done:
eea83d89 444 result = time_state; /* mostly `TIME_OK' */
ee9851b2 445 if (time_status & (STA_UNSYNC|STA_CLOCKERR))
4c7ee8de
JS
446 result = TIME_ERROR;
447
d40e944c
RZ
448 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
449 (s64)PPM_SCALE_INV, NTP_SCALE_SHIFT);
4c7ee8de
JS
450 txc->maxerror = time_maxerror;
451 txc->esterror = time_esterror;
452 txc->status = time_status;
453 txc->constant = time_constant;
70bc42f9 454 txc->precision = 1;
074b3b87 455 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
4c7ee8de 456 txc->tick = tick_usec;
153b5d05 457 txc->tai = time_tai;
4c7ee8de
JS
458
459 /* PPS is not implemented, so these are zero */
460 txc->ppsfreq = 0;
461 txc->jitter = 0;
462 txc->shift = 0;
463 txc->stabil = 0;
464 txc->jitcnt = 0;
465 txc->calcnt = 0;
466 txc->errcnt = 0;
467 txc->stbcnt = 0;
468 write_sequnlock_irq(&xtime_lock);
ee9851b2 469
eea83d89
RZ
470 txc->time.tv_sec = ts.tv_sec;
471 txc->time.tv_usec = ts.tv_nsec;
472 if (!(time_status & STA_NANO))
473 txc->time.tv_usec /= NSEC_PER_USEC;
ee9851b2 474
82644459 475 notify_cmos_timer();
ee9851b2
RZ
476
477 return result;
4c7ee8de 478}
10a398d0
RZ
479
480static int __init ntp_tick_adj_setup(char *str)
481{
482 ntp_tick_adj = simple_strtol(str, NULL, 0);
483 return 1;
484}
485
486__setup("ntp_tick_adj=", ntp_tick_adj_setup);
7dffa3c6
RZ
487
488void __init ntp_init(void)
489{
490 ntp_clear();
491 hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
492 leap_timer.function = ntp_leap_second;
493}