]>
Commit | Line | Data |
---|---|---|
4c7ee8de | 1 | /* |
4c7ee8de JS |
2 | * NTP state machine interfaces and logic. |
3 | * | |
4 | * This code was mainly moved from kernel/timer.c and kernel/time.c | |
5 | * Please see those files for relevant copyright info and historical | |
6 | * changelogs. | |
7 | */ | |
aa0ac365 | 8 | #include <linux/capability.h> |
7dffa3c6 | 9 | #include <linux/clocksource.h> |
eb3f938f | 10 | #include <linux/workqueue.h> |
53bbfa9e IM |
11 | #include <linux/hrtimer.h> |
12 | #include <linux/jiffies.h> | |
13 | #include <linux/math64.h> | |
14 | #include <linux/timex.h> | |
15 | #include <linux/time.h> | |
16 | #include <linux/mm.h> | |
025b40ab | 17 | #include <linux/module.h> |
023f333a | 18 | #include <linux/rtc.h> |
c7963487 | 19 | #include <linux/math64.h> |
4c7ee8de | 20 | |
aa6f9c59 | 21 | #include "ntp_internal.h" |
0af86465 D |
22 | #include "timekeeping_internal.h" |
23 | ||
e2830b5c | 24 | |
b0ee7556 | 25 | /* |
53bbfa9e | 26 | * NTP timekeeping variables: |
a076b214 JS |
27 | * |
28 | * Note: All of the NTP state is protected by the timekeeping locks. | |
b0ee7556 | 29 | */ |
b0ee7556 | 30 | |
bd331268 | 31 | |
53bbfa9e IM |
32 | /* USER_HZ period (usecs): */ |
33 | unsigned long tick_usec = TICK_USEC; | |
34 | ||
02ab20ae | 35 | /* SHIFTED_HZ period (nsecs): */ |
53bbfa9e | 36 | unsigned long tick_nsec; |
7dffa3c6 | 37 | |
ea7cf49a | 38 | static u64 tick_length; |
53bbfa9e IM |
39 | static u64 tick_length_base; |
40 | ||
90bf361c | 41 | #define SECS_PER_DAY 86400 |
bbd12676 | 42 | #define MAX_TICKADJ 500LL /* usecs */ |
53bbfa9e | 43 | #define MAX_TICKADJ_SCALED \ |
bbd12676 | 44 | (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) |
4c7ee8de JS |
45 | |
46 | /* | |
47 | * phase-lock loop variables | |
48 | */ | |
53bbfa9e IM |
49 | |
50 | /* | |
51 | * clock synchronization status | |
52 | * | |
53 | * (TIME_ERROR prevents overwriting the CMOS clock) | |
54 | */ | |
55 | static int time_state = TIME_OK; | |
56 | ||
57 | /* clock status bits: */ | |
8357929e | 58 | static int time_status = STA_UNSYNC; |
53bbfa9e | 59 | |
53bbfa9e IM |
60 | /* time adjustment (nsecs): */ |
61 | static s64 time_offset; | |
62 | ||
63 | /* pll time constant: */ | |
64 | static long time_constant = 2; | |
65 | ||
66 | /* maximum error (usecs): */ | |
1f5b8f8a | 67 | static long time_maxerror = NTP_PHASE_LIMIT; |
53bbfa9e IM |
68 | |
69 | /* estimated error (usecs): */ | |
1f5b8f8a | 70 | static long time_esterror = NTP_PHASE_LIMIT; |
53bbfa9e IM |
71 | |
72 | /* frequency offset (scaled nsecs/secs): */ | |
73 | static s64 time_freq; | |
74 | ||
75 | /* time at last adjustment (secs): */ | |
0af86465 | 76 | static time64_t time_reftime; |
53bbfa9e | 77 | |
e1292ba1 | 78 | static long time_adjust; |
53bbfa9e | 79 | |
069569e0 IM |
80 | /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ |
81 | static s64 ntp_tick_adj; | |
53bbfa9e | 82 | |
833f32d7 JS |
83 | /* second value of the next pending leapsecond, or TIME64_MAX if no leap */ |
84 | static time64_t ntp_next_leap_sec = TIME64_MAX; | |
85 | ||
025b40ab AG |
86 | #ifdef CONFIG_NTP_PPS |
87 | ||
88 | /* | |
89 | * The following variables are used when a pulse-per-second (PPS) signal | |
90 | * is available. They establish the engineering parameters of the clock | |
91 | * discipline loop when controlled by the PPS signal. | |
92 | */ | |
93 | #define PPS_VALID 10 /* PPS signal watchdog max (s) */ | |
94 | #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */ | |
95 | #define PPS_INTMIN 2 /* min freq interval (s) (shift) */ | |
96 | #define PPS_INTMAX 8 /* max freq interval (s) (shift) */ | |
97 | #define PPS_INTCOUNT 4 /* number of consecutive good intervals to | |
98 | increase pps_shift or consecutive bad | |
99 | intervals to decrease it */ | |
100 | #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */ | |
101 | ||
102 | static int pps_valid; /* signal watchdog counter */ | |
103 | static long pps_tf[3]; /* phase median filter */ | |
104 | static long pps_jitter; /* current jitter (ns) */ | |
7ec88e4b | 105 | static struct timespec64 pps_fbase; /* beginning of the last freq interval */ |
025b40ab AG |
106 | static int pps_shift; /* current interval duration (s) (shift) */ |
107 | static int pps_intcnt; /* interval counter */ | |
108 | static s64 pps_freq; /* frequency offset (scaled ns/s) */ | |
109 | static long pps_stabil; /* current stability (scaled ns/s) */ | |
110 | ||
111 | /* | |
112 | * PPS signal quality monitors | |
113 | */ | |
114 | static long pps_calcnt; /* calibration intervals */ | |
115 | static long pps_jitcnt; /* jitter limit exceeded */ | |
116 | static long pps_stbcnt; /* stability limit exceeded */ | |
117 | static long pps_errcnt; /* calibration errors */ | |
118 | ||
119 | ||
120 | /* PPS kernel consumer compensates the whole phase error immediately. | |
121 | * Otherwise, reduce the offset by a fixed factor times the time constant. | |
122 | */ | |
123 | static inline s64 ntp_offset_chunk(s64 offset) | |
124 | { | |
125 | if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) | |
126 | return offset; | |
127 | else | |
128 | return shift_right(offset, SHIFT_PLL + time_constant); | |
129 | } | |
130 | ||
131 | static inline void pps_reset_freq_interval(void) | |
132 | { | |
133 | /* the PPS calibration interval may end | |
134 | surprisingly early */ | |
135 | pps_shift = PPS_INTMIN; | |
136 | pps_intcnt = 0; | |
137 | } | |
138 | ||
139 | /** | |
140 | * pps_clear - Clears the PPS state variables | |
025b40ab AG |
141 | */ |
142 | static inline void pps_clear(void) | |
143 | { | |
144 | pps_reset_freq_interval(); | |
145 | pps_tf[0] = 0; | |
146 | pps_tf[1] = 0; | |
147 | pps_tf[2] = 0; | |
148 | pps_fbase.tv_sec = pps_fbase.tv_nsec = 0; | |
149 | pps_freq = 0; | |
150 | } | |
151 | ||
152 | /* Decrease pps_valid to indicate that another second has passed since | |
153 | * the last PPS signal. When it reaches 0, indicate that PPS signal is | |
154 | * missing. | |
025b40ab AG |
155 | */ |
156 | static inline void pps_dec_valid(void) | |
157 | { | |
158 | if (pps_valid > 0) | |
159 | pps_valid--; | |
160 | else { | |
161 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | |
162 | STA_PPSWANDER | STA_PPSERROR); | |
163 | pps_clear(); | |
164 | } | |
165 | } | |
166 | ||
167 | static inline void pps_set_freq(s64 freq) | |
168 | { | |
169 | pps_freq = freq; | |
170 | } | |
171 | ||
172 | static inline int is_error_status(int status) | |
173 | { | |
ea54bca3 | 174 | return (status & (STA_UNSYNC|STA_CLOCKERR)) |
025b40ab AG |
175 | /* PPS signal lost when either PPS time or |
176 | * PPS frequency synchronization requested | |
177 | */ | |
ea54bca3 GS |
178 | || ((status & (STA_PPSFREQ|STA_PPSTIME)) |
179 | && !(status & STA_PPSSIGNAL)) | |
025b40ab AG |
180 | /* PPS jitter exceeded when |
181 | * PPS time synchronization requested */ | |
ea54bca3 | 182 | || ((status & (STA_PPSTIME|STA_PPSJITTER)) |
025b40ab AG |
183 | == (STA_PPSTIME|STA_PPSJITTER)) |
184 | /* PPS wander exceeded or calibration error when | |
185 | * PPS frequency synchronization requested | |
186 | */ | |
ea54bca3 GS |
187 | || ((status & STA_PPSFREQ) |
188 | && (status & (STA_PPSWANDER|STA_PPSERROR))); | |
025b40ab AG |
189 | } |
190 | ||
191 | static inline void pps_fill_timex(struct timex *txc) | |
192 | { | |
193 | txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) * | |
194 | PPM_SCALE_INV, NTP_SCALE_SHIFT); | |
195 | txc->jitter = pps_jitter; | |
196 | if (!(time_status & STA_NANO)) | |
197 | txc->jitter /= NSEC_PER_USEC; | |
198 | txc->shift = pps_shift; | |
199 | txc->stabil = pps_stabil; | |
200 | txc->jitcnt = pps_jitcnt; | |
201 | txc->calcnt = pps_calcnt; | |
202 | txc->errcnt = pps_errcnt; | |
203 | txc->stbcnt = pps_stbcnt; | |
204 | } | |
205 | ||
206 | #else /* !CONFIG_NTP_PPS */ | |
207 | ||
208 | static inline s64 ntp_offset_chunk(s64 offset) | |
209 | { | |
210 | return shift_right(offset, SHIFT_PLL + time_constant); | |
211 | } | |
212 | ||
213 | static inline void pps_reset_freq_interval(void) {} | |
214 | static inline void pps_clear(void) {} | |
215 | static inline void pps_dec_valid(void) {} | |
216 | static inline void pps_set_freq(s64 freq) {} | |
217 | ||
218 | static inline int is_error_status(int status) | |
219 | { | |
220 | return status & (STA_UNSYNC|STA_CLOCKERR); | |
221 | } | |
222 | ||
223 | static inline void pps_fill_timex(struct timex *txc) | |
224 | { | |
225 | /* PPS is not implemented, so these are zero */ | |
226 | txc->ppsfreq = 0; | |
227 | txc->jitter = 0; | |
228 | txc->shift = 0; | |
229 | txc->stabil = 0; | |
230 | txc->jitcnt = 0; | |
231 | txc->calcnt = 0; | |
232 | txc->errcnt = 0; | |
233 | txc->stbcnt = 0; | |
234 | } | |
235 | ||
236 | #endif /* CONFIG_NTP_PPS */ | |
237 | ||
8357929e JS |
238 | |
239 | /** | |
240 | * ntp_synced - Returns 1 if the NTP status is not UNSYNC | |
241 | * | |
242 | */ | |
243 | static inline int ntp_synced(void) | |
244 | { | |
245 | return !(time_status & STA_UNSYNC); | |
246 | } | |
247 | ||
248 | ||
53bbfa9e IM |
249 | /* |
250 | * NTP methods: | |
251 | */ | |
4c7ee8de | 252 | |
9ce616aa IM |
253 | /* |
254 | * Update (tick_length, tick_length_base, tick_nsec), based | |
255 | * on (tick_usec, ntp_tick_adj, time_freq): | |
256 | */ | |
70bc42f9 AB |
257 | static void ntp_update_frequency(void) |
258 | { | |
9ce616aa | 259 | u64 second_length; |
bc26c31d | 260 | u64 new_base; |
9ce616aa IM |
261 | |
262 | second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) | |
263 | << NTP_SCALE_SHIFT; | |
264 | ||
069569e0 | 265 | second_length += ntp_tick_adj; |
9ce616aa | 266 | second_length += time_freq; |
70bc42f9 | 267 | |
9ce616aa | 268 | tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; |
bc26c31d | 269 | new_base = div_u64(second_length, NTP_INTERVAL_FREQ); |
fdcedf7b JS |
270 | |
271 | /* | |
272 | * Don't wait for the next second_overflow, apply | |
bc26c31d | 273 | * the change to the tick length immediately: |
fdcedf7b | 274 | */ |
bc26c31d IM |
275 | tick_length += new_base - tick_length_base; |
276 | tick_length_base = new_base; | |
70bc42f9 AB |
277 | } |
278 | ||
478b7aab | 279 | static inline s64 ntp_update_offset_fll(s64 offset64, long secs) |
f939890b IM |
280 | { |
281 | time_status &= ~STA_MODE; | |
282 | ||
283 | if (secs < MINSEC) | |
478b7aab | 284 | return 0; |
f939890b IM |
285 | |
286 | if (!(time_status & STA_FLL) && (secs <= MAXSEC)) | |
478b7aab | 287 | return 0; |
f939890b | 288 | |
f939890b IM |
289 | time_status |= STA_MODE; |
290 | ||
a078c6d0 | 291 | return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); |
f939890b IM |
292 | } |
293 | ||
ee9851b2 RZ |
294 | static void ntp_update_offset(long offset) |
295 | { | |
ee9851b2 | 296 | s64 freq_adj; |
f939890b IM |
297 | s64 offset64; |
298 | long secs; | |
ee9851b2 RZ |
299 | |
300 | if (!(time_status & STA_PLL)) | |
301 | return; | |
302 | ||
52d189f1 SL |
303 | if (!(time_status & STA_NANO)) { |
304 | /* Make sure the multiplication below won't overflow */ | |
305 | offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC); | |
9f14f669 | 306 | offset *= NSEC_PER_USEC; |
52d189f1 | 307 | } |
ee9851b2 RZ |
308 | |
309 | /* | |
310 | * Scale the phase adjustment and | |
311 | * clamp to the operating range. | |
312 | */ | |
52d189f1 | 313 | offset = clamp(offset, -MAXPHASE, MAXPHASE); |
ee9851b2 RZ |
314 | |
315 | /* | |
316 | * Select how the frequency is to be controlled | |
317 | * and in which mode (PLL or FLL). | |
318 | */ | |
0af86465 | 319 | secs = (long)(__ktime_get_real_seconds() - time_reftime); |
10dd31a7 | 320 | if (unlikely(time_status & STA_FREQHOLD)) |
c7986acb IM |
321 | secs = 0; |
322 | ||
0af86465 | 323 | time_reftime = __ktime_get_real_seconds(); |
ee9851b2 | 324 | |
f939890b | 325 | offset64 = offset; |
8af3c153 | 326 | freq_adj = ntp_update_offset_fll(offset64, secs); |
f939890b | 327 | |
8af3c153 ML |
328 | /* |
329 | * Clamp update interval to reduce PLL gain with low | |
330 | * sampling rate (e.g. intermittent network connection) | |
331 | * to avoid instability. | |
332 | */ | |
333 | if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant))) | |
334 | secs = 1 << (SHIFT_PLL + 1 + time_constant); | |
335 | ||
336 | freq_adj += (offset64 * secs) << | |
337 | (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); | |
f939890b IM |
338 | |
339 | freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED); | |
340 | ||
341 | time_freq = max(freq_adj, -MAXFREQ_SCALED); | |
342 | ||
343 | time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | |
ee9851b2 RZ |
344 | } |
345 | ||
b0ee7556 RZ |
346 | /** |
347 | * ntp_clear - Clears the NTP state variables | |
b0ee7556 RZ |
348 | */ |
349 | void ntp_clear(void) | |
350 | { | |
53bbfa9e IM |
351 | time_adjust = 0; /* stop active adjtime() */ |
352 | time_status |= STA_UNSYNC; | |
353 | time_maxerror = NTP_PHASE_LIMIT; | |
354 | time_esterror = NTP_PHASE_LIMIT; | |
b0ee7556 RZ |
355 | |
356 | ntp_update_frequency(); | |
357 | ||
53bbfa9e IM |
358 | tick_length = tick_length_base; |
359 | time_offset = 0; | |
025b40ab | 360 | |
833f32d7 | 361 | ntp_next_leap_sec = TIME64_MAX; |
025b40ab AG |
362 | /* Clear PPS state variables */ |
363 | pps_clear(); | |
b0ee7556 RZ |
364 | } |
365 | ||
ea7cf49a JS |
366 | |
367 | u64 ntp_tick_length(void) | |
368 | { | |
a076b214 | 369 | return tick_length; |
ea7cf49a JS |
370 | } |
371 | ||
833f32d7 JS |
372 | /** |
373 | * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t | |
374 | * | |
375 | * Provides the time of the next leapsecond against CLOCK_REALTIME in | |
376 | * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending. | |
377 | */ | |
378 | ktime_t ntp_get_next_leap(void) | |
379 | { | |
380 | ktime_t ret; | |
381 | ||
382 | if ((time_state == TIME_INS) && (time_status & STA_INS)) | |
383 | return ktime_set(ntp_next_leap_sec, 0); | |
384 | ret.tv64 = KTIME_MAX; | |
385 | return ret; | |
386 | } | |
ea7cf49a | 387 | |
4c7ee8de | 388 | /* |
6b43ae8a JS |
389 | * this routine handles the overflow of the microsecond field |
390 | * | |
391 | * The tricky bits of code to handle the accurate clock support | |
392 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | |
393 | * They were originally developed for SUN and DEC kernels. | |
394 | * All the kudos should go to Dave for this stuff. | |
395 | * | |
396 | * Also handles leap second processing, and returns leap offset | |
4c7ee8de | 397 | */ |
c7963487 | 398 | int second_overflow(time64_t secs) |
4c7ee8de | 399 | { |
6b43ae8a | 400 | s64 delta; |
bd331268 | 401 | int leap = 0; |
c7963487 | 402 | s32 rem; |
6b43ae8a JS |
403 | |
404 | /* | |
405 | * Leap second processing. If in leap-insert state at the end of the | |
406 | * day, the system clock is set back one second; if in leap-delete | |
407 | * state, the system clock is set ahead one second. | |
408 | */ | |
4c7ee8de JS |
409 | switch (time_state) { |
410 | case TIME_OK: | |
833f32d7 | 411 | if (time_status & STA_INS) { |
6b43ae8a | 412 | time_state = TIME_INS; |
c7963487 D |
413 | div_s64_rem(secs, SECS_PER_DAY, &rem); |
414 | ntp_next_leap_sec = secs + SECS_PER_DAY - rem; | |
833f32d7 | 415 | } else if (time_status & STA_DEL) { |
6b43ae8a | 416 | time_state = TIME_DEL; |
c7963487 D |
417 | div_s64_rem(secs + 1, SECS_PER_DAY, &rem); |
418 | ntp_next_leap_sec = secs + SECS_PER_DAY - rem; | |
833f32d7 | 419 | } |
4c7ee8de JS |
420 | break; |
421 | case TIME_INS: | |
833f32d7 JS |
422 | if (!(time_status & STA_INS)) { |
423 | ntp_next_leap_sec = TIME64_MAX; | |
6b1859db | 424 | time_state = TIME_OK; |
c7963487 | 425 | } else if (secs == ntp_next_leap_sec) { |
6b43ae8a JS |
426 | leap = -1; |
427 | time_state = TIME_OOP; | |
428 | printk(KERN_NOTICE | |
429 | "Clock: inserting leap second 23:59:60 UTC\n"); | |
430 | } | |
4c7ee8de JS |
431 | break; |
432 | case TIME_DEL: | |
833f32d7 JS |
433 | if (!(time_status & STA_DEL)) { |
434 | ntp_next_leap_sec = TIME64_MAX; | |
6b1859db | 435 | time_state = TIME_OK; |
c7963487 | 436 | } else if (secs == ntp_next_leap_sec) { |
6b43ae8a | 437 | leap = 1; |
833f32d7 | 438 | ntp_next_leap_sec = TIME64_MAX; |
6b43ae8a JS |
439 | time_state = TIME_WAIT; |
440 | printk(KERN_NOTICE | |
441 | "Clock: deleting leap second 23:59:59 UTC\n"); | |
442 | } | |
4c7ee8de JS |
443 | break; |
444 | case TIME_OOP: | |
833f32d7 | 445 | ntp_next_leap_sec = TIME64_MAX; |
4c7ee8de | 446 | time_state = TIME_WAIT; |
6b43ae8a | 447 | break; |
4c7ee8de JS |
448 | case TIME_WAIT: |
449 | if (!(time_status & (STA_INS | STA_DEL))) | |
ee9851b2 | 450 | time_state = TIME_OK; |
7dffa3c6 RZ |
451 | break; |
452 | } | |
bd331268 | 453 | |
7dffa3c6 RZ |
454 | |
455 | /* Bump the maxerror field */ | |
456 | time_maxerror += MAXFREQ / NSEC_PER_USEC; | |
457 | if (time_maxerror > NTP_PHASE_LIMIT) { | |
458 | time_maxerror = NTP_PHASE_LIMIT; | |
459 | time_status |= STA_UNSYNC; | |
4c7ee8de JS |
460 | } |
461 | ||
025b40ab | 462 | /* Compute the phase adjustment for the next second */ |
39854fe8 IM |
463 | tick_length = tick_length_base; |
464 | ||
025b40ab | 465 | delta = ntp_offset_chunk(time_offset); |
39854fe8 IM |
466 | time_offset -= delta; |
467 | tick_length += delta; | |
4c7ee8de | 468 | |
025b40ab AG |
469 | /* Check PPS signal */ |
470 | pps_dec_valid(); | |
471 | ||
3c972c24 | 472 | if (!time_adjust) |
bd331268 | 473 | goto out; |
3c972c24 IM |
474 | |
475 | if (time_adjust > MAX_TICKADJ) { | |
476 | time_adjust -= MAX_TICKADJ; | |
477 | tick_length += MAX_TICKADJ_SCALED; | |
bd331268 | 478 | goto out; |
4c7ee8de | 479 | } |
3c972c24 IM |
480 | |
481 | if (time_adjust < -MAX_TICKADJ) { | |
482 | time_adjust += MAX_TICKADJ; | |
483 | tick_length -= MAX_TICKADJ_SCALED; | |
bd331268 | 484 | goto out; |
3c972c24 IM |
485 | } |
486 | ||
487 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) | |
488 | << NTP_SCALE_SHIFT; | |
489 | time_adjust = 0; | |
6b43ae8a | 490 | |
bd331268 | 491 | out: |
6b43ae8a | 492 | return leap; |
4c7ee8de JS |
493 | } |
494 | ||
3c00a1fe | 495 | #ifdef CONFIG_GENERIC_CMOS_UPDATE |
7494e9ee XP |
496 | int __weak update_persistent_clock(struct timespec now) |
497 | { | |
498 | return -ENODEV; | |
499 | } | |
500 | ||
3c00a1fe XP |
501 | int __weak update_persistent_clock64(struct timespec64 now64) |
502 | { | |
503 | struct timespec now; | |
504 | ||
505 | now = timespec64_to_timespec(now64); | |
506 | return update_persistent_clock(now); | |
507 | } | |
508 | #endif | |
509 | ||
023f333a | 510 | #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) |
eb3f938f | 511 | static void sync_cmos_clock(struct work_struct *work); |
82644459 | 512 | |
eb3f938f | 513 | static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock); |
82644459 | 514 | |
eb3f938f | 515 | static void sync_cmos_clock(struct work_struct *work) |
82644459 | 516 | { |
d6d29896 | 517 | struct timespec64 now; |
5fd96c42 | 518 | struct timespec64 next; |
82644459 TG |
519 | int fail = 1; |
520 | ||
521 | /* | |
522 | * If we have an externally synchronized Linux clock, then update | |
523 | * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | |
524 | * called as close as possible to 500 ms before the new second starts. | |
525 | * This code is run on a timer. If the clock is set, that timer | |
526 | * may not expire at the correct time. Thus, we adjust... | |
a97ad0c4 | 527 | * We want the clock to be within a couple of ticks from the target. |
82644459 | 528 | */ |
53bbfa9e | 529 | if (!ntp_synced()) { |
82644459 TG |
530 | /* |
531 | * Not synced, exit, do not restart a timer (if one is | |
532 | * running, let it run out). | |
533 | */ | |
534 | return; | |
53bbfa9e | 535 | } |
82644459 | 536 | |
d6d29896 | 537 | getnstimeofday64(&now); |
a97ad0c4 | 538 | if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) { |
9a4a445e | 539 | struct timespec64 adjust = now; |
84e345e4 | 540 | |
023f333a | 541 | fail = -ENODEV; |
84e345e4 PB |
542 | if (persistent_clock_is_local) |
543 | adjust.tv_sec -= (sys_tz.tz_minuteswest * 60); | |
023f333a | 544 | #ifdef CONFIG_GENERIC_CMOS_UPDATE |
3c00a1fe | 545 | fail = update_persistent_clock64(adjust); |
023f333a | 546 | #endif |
3c00a1fe | 547 | |
023f333a JG |
548 | #ifdef CONFIG_RTC_SYSTOHC |
549 | if (fail == -ENODEV) | |
84e345e4 | 550 | fail = rtc_set_ntp_time(adjust); |
023f333a JG |
551 | #endif |
552 | } | |
82644459 | 553 | |
4ff4b9e1 | 554 | next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2); |
82644459 TG |
555 | if (next.tv_nsec <= 0) |
556 | next.tv_nsec += NSEC_PER_SEC; | |
557 | ||
023f333a | 558 | if (!fail || fail == -ENODEV) |
82644459 TG |
559 | next.tv_sec = 659; |
560 | else | |
561 | next.tv_sec = 0; | |
562 | ||
563 | if (next.tv_nsec >= NSEC_PER_SEC) { | |
564 | next.tv_sec++; | |
565 | next.tv_nsec -= NSEC_PER_SEC; | |
566 | } | |
e8b17594 | 567 | queue_delayed_work(system_power_efficient_wq, |
5fd96c42 | 568 | &sync_cmos_work, timespec64_to_jiffies(&next)); |
82644459 TG |
569 | } |
570 | ||
7bd36014 | 571 | void ntp_notify_cmos_timer(void) |
4c7ee8de | 572 | { |
e8b17594 | 573 | queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0); |
4c7ee8de JS |
574 | } |
575 | ||
82644459 | 576 | #else |
7bd36014 | 577 | void ntp_notify_cmos_timer(void) { } |
82644459 TG |
578 | #endif |
579 | ||
80f22571 IM |
580 | |
581 | /* | |
582 | * Propagate a new txc->status value into the NTP state: | |
583 | */ | |
7d489d15 | 584 | static inline void process_adj_status(struct timex *txc, struct timespec64 *ts) |
80f22571 | 585 | { |
80f22571 IM |
586 | if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { |
587 | time_state = TIME_OK; | |
588 | time_status = STA_UNSYNC; | |
833f32d7 | 589 | ntp_next_leap_sec = TIME64_MAX; |
025b40ab AG |
590 | /* restart PPS frequency calibration */ |
591 | pps_reset_freq_interval(); | |
80f22571 | 592 | } |
80f22571 IM |
593 | |
594 | /* | |
595 | * If we turn on PLL adjustments then reset the | |
596 | * reference time to current time. | |
597 | */ | |
598 | if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) | |
0af86465 | 599 | time_reftime = __ktime_get_real_seconds(); |
80f22571 | 600 | |
a2a5ac86 JS |
601 | /* only set allowed bits */ |
602 | time_status &= STA_RONLY; | |
80f22571 | 603 | time_status |= txc->status & ~STA_RONLY; |
80f22571 | 604 | } |
cd5398be | 605 | |
a076b214 | 606 | |
cc244dda | 607 | static inline void process_adjtimex_modes(struct timex *txc, |
7d489d15 | 608 | struct timespec64 *ts, |
cc244dda | 609 | s32 *time_tai) |
80f22571 IM |
610 | { |
611 | if (txc->modes & ADJ_STATUS) | |
612 | process_adj_status(txc, ts); | |
613 | ||
614 | if (txc->modes & ADJ_NANO) | |
615 | time_status |= STA_NANO; | |
e9629165 | 616 | |
80f22571 IM |
617 | if (txc->modes & ADJ_MICRO) |
618 | time_status &= ~STA_NANO; | |
619 | ||
620 | if (txc->modes & ADJ_FREQUENCY) { | |
2b9d1496 | 621 | time_freq = txc->freq * PPM_SCALE; |
80f22571 IM |
622 | time_freq = min(time_freq, MAXFREQ_SCALED); |
623 | time_freq = max(time_freq, -MAXFREQ_SCALED); | |
025b40ab AG |
624 | /* update pps_freq */ |
625 | pps_set_freq(time_freq); | |
80f22571 IM |
626 | } |
627 | ||
628 | if (txc->modes & ADJ_MAXERROR) | |
629 | time_maxerror = txc->maxerror; | |
e9629165 | 630 | |
80f22571 IM |
631 | if (txc->modes & ADJ_ESTERROR) |
632 | time_esterror = txc->esterror; | |
633 | ||
634 | if (txc->modes & ADJ_TIMECONST) { | |
635 | time_constant = txc->constant; | |
636 | if (!(time_status & STA_NANO)) | |
637 | time_constant += 4; | |
638 | time_constant = min(time_constant, (long)MAXTC); | |
639 | time_constant = max(time_constant, 0l); | |
640 | } | |
641 | ||
642 | if (txc->modes & ADJ_TAI && txc->constant > 0) | |
cc244dda | 643 | *time_tai = txc->constant; |
80f22571 IM |
644 | |
645 | if (txc->modes & ADJ_OFFSET) | |
646 | ntp_update_offset(txc->offset); | |
e9629165 | 647 | |
80f22571 IM |
648 | if (txc->modes & ADJ_TICK) |
649 | tick_usec = txc->tick; | |
650 | ||
651 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | |
652 | ntp_update_frequency(); | |
653 | } | |
654 | ||
ad460967 JS |
655 | |
656 | ||
657 | /** | |
658 | * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex | |
4c7ee8de | 659 | */ |
ad460967 | 660 | int ntp_validate_timex(struct timex *txc) |
4c7ee8de | 661 | { |
916c7a85 | 662 | if (txc->modes & ADJ_ADJTIME) { |
eea83d89 | 663 | /* singleshot must not be used with any other mode bits */ |
916c7a85 | 664 | if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) |
4c7ee8de | 665 | return -EINVAL; |
916c7a85 RZ |
666 | if (!(txc->modes & ADJ_OFFSET_READONLY) && |
667 | !capable(CAP_SYS_TIME)) | |
668 | return -EPERM; | |
669 | } else { | |
670 | /* In order to modify anything, you gotta be super-user! */ | |
671 | if (txc->modes && !capable(CAP_SYS_TIME)) | |
672 | return -EPERM; | |
53bbfa9e IM |
673 | /* |
674 | * if the quartz is off by more than 10% then | |
675 | * something is VERY wrong! | |
676 | */ | |
916c7a85 RZ |
677 | if (txc->modes & ADJ_TICK && |
678 | (txc->tick < 900000/USER_HZ || | |
679 | txc->tick > 1100000/USER_HZ)) | |
e9629165 | 680 | return -EINVAL; |
52bfb360 | 681 | } |
4c7ee8de | 682 | |
37cf4dc3 JS |
683 | if (txc->modes & ADJ_SETOFFSET) { |
684 | /* In order to inject time, you gotta be super-user! */ | |
685 | if (!capable(CAP_SYS_TIME)) | |
686 | return -EPERM; | |
687 | ||
dd4e17ab JS |
688 | if (txc->modes & ADJ_NANO) { |
689 | struct timespec ts; | |
690 | ||
691 | ts.tv_sec = txc->time.tv_sec; | |
692 | ts.tv_nsec = txc->time.tv_usec; | |
693 | if (!timespec_inject_offset_valid(&ts)) | |
694 | return -EINVAL; | |
695 | ||
696 | } else { | |
697 | if (!timeval_inject_offset_valid(&txc->time)) | |
698 | return -EINVAL; | |
699 | } | |
37cf4dc3 | 700 | } |
ad460967 | 701 | |
29183a70 JS |
702 | /* |
703 | * Check for potential multiplication overflows that can | |
704 | * only happen on 64-bit systems: | |
705 | */ | |
706 | if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { | |
707 | if (LLONG_MIN / PPM_SCALE > txc->freq) | |
5e5aeb43 | 708 | return -EINVAL; |
29183a70 | 709 | if (LLONG_MAX / PPM_SCALE < txc->freq) |
5e5aeb43 SL |
710 | return -EINVAL; |
711 | } | |
712 | ||
ad460967 JS |
713 | return 0; |
714 | } | |
715 | ||
716 | ||
717 | /* | |
718 | * adjtimex mainly allows reading (and writing, if superuser) of | |
719 | * kernel time-keeping variables. used by xntpd. | |
720 | */ | |
7d489d15 | 721 | int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai) |
ad460967 | 722 | { |
ad460967 JS |
723 | int result; |
724 | ||
916c7a85 RZ |
725 | if (txc->modes & ADJ_ADJTIME) { |
726 | long save_adjust = time_adjust; | |
727 | ||
728 | if (!(txc->modes & ADJ_OFFSET_READONLY)) { | |
729 | /* adjtime() is independent from ntp_adjtime() */ | |
730 | time_adjust = txc->offset; | |
731 | ntp_update_frequency(); | |
732 | } | |
733 | txc->offset = save_adjust; | |
e9629165 | 734 | } else { |
ee9851b2 | 735 | |
e9629165 IM |
736 | /* If there are input parameters, then process them: */ |
737 | if (txc->modes) | |
87ace39b | 738 | process_adjtimex_modes(txc, ts, time_tai); |
eea83d89 | 739 | |
e9629165 | 740 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, |
916c7a85 | 741 | NTP_SCALE_SHIFT); |
e9629165 IM |
742 | if (!(time_status & STA_NANO)) |
743 | txc->offset /= NSEC_PER_USEC; | |
744 | } | |
916c7a85 | 745 | |
eea83d89 | 746 | result = time_state; /* mostly `TIME_OK' */ |
025b40ab AG |
747 | /* check for errors */ |
748 | if (is_error_status(time_status)) | |
4c7ee8de JS |
749 | result = TIME_ERROR; |
750 | ||
d40e944c | 751 | txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * |
2b9d1496 | 752 | PPM_SCALE_INV, NTP_SCALE_SHIFT); |
4c7ee8de JS |
753 | txc->maxerror = time_maxerror; |
754 | txc->esterror = time_esterror; | |
755 | txc->status = time_status; | |
756 | txc->constant = time_constant; | |
70bc42f9 | 757 | txc->precision = 1; |
074b3b87 | 758 | txc->tolerance = MAXFREQ_SCALED / PPM_SCALE; |
4c7ee8de | 759 | txc->tick = tick_usec; |
87ace39b | 760 | txc->tai = *time_tai; |
4c7ee8de | 761 | |
025b40ab AG |
762 | /* fill PPS status fields */ |
763 | pps_fill_timex(txc); | |
e9629165 | 764 | |
7d489d15 | 765 | txc->time.tv_sec = (time_t)ts->tv_sec; |
87ace39b | 766 | txc->time.tv_usec = ts->tv_nsec; |
eea83d89 RZ |
767 | if (!(time_status & STA_NANO)) |
768 | txc->time.tv_usec /= NSEC_PER_USEC; | |
ee9851b2 | 769 | |
96efdcf2 JS |
770 | /* Handle leapsec adjustments */ |
771 | if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) { | |
772 | if ((time_state == TIME_INS) && (time_status & STA_INS)) { | |
773 | result = TIME_OOP; | |
774 | txc->tai++; | |
775 | txc->time.tv_sec--; | |
776 | } | |
777 | if ((time_state == TIME_DEL) && (time_status & STA_DEL)) { | |
778 | result = TIME_WAIT; | |
779 | txc->tai--; | |
780 | txc->time.tv_sec++; | |
781 | } | |
782 | if ((time_state == TIME_OOP) && | |
783 | (ts->tv_sec == ntp_next_leap_sec)) { | |
784 | result = TIME_WAIT; | |
785 | } | |
786 | } | |
787 | ||
ee9851b2 | 788 | return result; |
4c7ee8de | 789 | } |
10a398d0 | 790 | |
025b40ab AG |
791 | #ifdef CONFIG_NTP_PPS |
792 | ||
793 | /* actually struct pps_normtime is good old struct timespec, but it is | |
794 | * semantically different (and it is the reason why it was invented): | |
795 | * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] | |
796 | * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */ | |
797 | struct pps_normtime { | |
7ec88e4b | 798 | s64 sec; /* seconds */ |
025b40ab AG |
799 | long nsec; /* nanoseconds */ |
800 | }; | |
801 | ||
802 | /* normalize the timestamp so that nsec is in the | |
803 | ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */ | |
7ec88e4b | 804 | static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts) |
025b40ab AG |
805 | { |
806 | struct pps_normtime norm = { | |
807 | .sec = ts.tv_sec, | |
808 | .nsec = ts.tv_nsec | |
809 | }; | |
810 | ||
811 | if (norm.nsec > (NSEC_PER_SEC >> 1)) { | |
812 | norm.nsec -= NSEC_PER_SEC; | |
813 | norm.sec++; | |
814 | } | |
815 | ||
816 | return norm; | |
817 | } | |
818 | ||
819 | /* get current phase correction and jitter */ | |
820 | static inline long pps_phase_filter_get(long *jitter) | |
821 | { | |
822 | *jitter = pps_tf[0] - pps_tf[1]; | |
823 | if (*jitter < 0) | |
824 | *jitter = -*jitter; | |
825 | ||
826 | /* TODO: test various filters */ | |
827 | return pps_tf[0]; | |
828 | } | |
829 | ||
830 | /* add the sample to the phase filter */ | |
831 | static inline void pps_phase_filter_add(long err) | |
832 | { | |
833 | pps_tf[2] = pps_tf[1]; | |
834 | pps_tf[1] = pps_tf[0]; | |
835 | pps_tf[0] = err; | |
836 | } | |
837 | ||
838 | /* decrease frequency calibration interval length. | |
839 | * It is halved after four consecutive unstable intervals. | |
840 | */ | |
841 | static inline void pps_dec_freq_interval(void) | |
842 | { | |
843 | if (--pps_intcnt <= -PPS_INTCOUNT) { | |
844 | pps_intcnt = -PPS_INTCOUNT; | |
845 | if (pps_shift > PPS_INTMIN) { | |
846 | pps_shift--; | |
847 | pps_intcnt = 0; | |
848 | } | |
849 | } | |
850 | } | |
851 | ||
852 | /* increase frequency calibration interval length. | |
853 | * It is doubled after four consecutive stable intervals. | |
854 | */ | |
855 | static inline void pps_inc_freq_interval(void) | |
856 | { | |
857 | if (++pps_intcnt >= PPS_INTCOUNT) { | |
858 | pps_intcnt = PPS_INTCOUNT; | |
859 | if (pps_shift < PPS_INTMAX) { | |
860 | pps_shift++; | |
861 | pps_intcnt = 0; | |
862 | } | |
863 | } | |
864 | } | |
865 | ||
866 | /* update clock frequency based on MONOTONIC_RAW clock PPS signal | |
867 | * timestamps | |
868 | * | |
869 | * At the end of the calibration interval the difference between the | |
870 | * first and last MONOTONIC_RAW clock timestamps divided by the length | |
871 | * of the interval becomes the frequency update. If the interval was | |
872 | * too long, the data are discarded. | |
873 | * Returns the difference between old and new frequency values. | |
874 | */ | |
875 | static long hardpps_update_freq(struct pps_normtime freq_norm) | |
876 | { | |
877 | long delta, delta_mod; | |
878 | s64 ftemp; | |
879 | ||
880 | /* check if the frequency interval was too long */ | |
881 | if (freq_norm.sec > (2 << pps_shift)) { | |
882 | time_status |= STA_PPSERROR; | |
883 | pps_errcnt++; | |
884 | pps_dec_freq_interval(); | |
6d9bcb62 | 885 | printk_deferred(KERN_ERR |
7ec88e4b | 886 | "hardpps: PPSERROR: interval too long - %lld s\n", |
6d9bcb62 | 887 | freq_norm.sec); |
025b40ab AG |
888 | return 0; |
889 | } | |
890 | ||
891 | /* here the raw frequency offset and wander (stability) is | |
892 | * calculated. If the wander is less than the wander threshold | |
893 | * the interval is increased; otherwise it is decreased. | |
894 | */ | |
895 | ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT, | |
896 | freq_norm.sec); | |
897 | delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT); | |
898 | pps_freq = ftemp; | |
899 | if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) { | |
6d9bcb62 JS |
900 | printk_deferred(KERN_WARNING |
901 | "hardpps: PPSWANDER: change=%ld\n", delta); | |
025b40ab AG |
902 | time_status |= STA_PPSWANDER; |
903 | pps_stbcnt++; | |
904 | pps_dec_freq_interval(); | |
905 | } else { /* good sample */ | |
906 | pps_inc_freq_interval(); | |
907 | } | |
908 | ||
909 | /* the stability metric is calculated as the average of recent | |
910 | * frequency changes, but is used only for performance | |
911 | * monitoring | |
912 | */ | |
913 | delta_mod = delta; | |
914 | if (delta_mod < 0) | |
915 | delta_mod = -delta_mod; | |
916 | pps_stabil += (div_s64(((s64)delta_mod) << | |
917 | (NTP_SCALE_SHIFT - SHIFT_USEC), | |
918 | NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN; | |
919 | ||
920 | /* if enabled, the system clock frequency is updated */ | |
921 | if ((time_status & STA_PPSFREQ) != 0 && | |
922 | (time_status & STA_FREQHOLD) == 0) { | |
923 | time_freq = pps_freq; | |
924 | ntp_update_frequency(); | |
925 | } | |
926 | ||
927 | return delta; | |
928 | } | |
929 | ||
930 | /* correct REALTIME clock phase error against PPS signal */ | |
931 | static void hardpps_update_phase(long error) | |
932 | { | |
933 | long correction = -error; | |
934 | long jitter; | |
935 | ||
936 | /* add the sample to the median filter */ | |
937 | pps_phase_filter_add(correction); | |
938 | correction = pps_phase_filter_get(&jitter); | |
939 | ||
940 | /* Nominal jitter is due to PPS signal noise. If it exceeds the | |
941 | * threshold, the sample is discarded; otherwise, if so enabled, | |
942 | * the time offset is updated. | |
943 | */ | |
944 | if (jitter > (pps_jitter << PPS_POPCORN)) { | |
6d9bcb62 JS |
945 | printk_deferred(KERN_WARNING |
946 | "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n", | |
947 | jitter, (pps_jitter << PPS_POPCORN)); | |
025b40ab AG |
948 | time_status |= STA_PPSJITTER; |
949 | pps_jitcnt++; | |
950 | } else if (time_status & STA_PPSTIME) { | |
951 | /* correct the time using the phase offset */ | |
952 | time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT, | |
953 | NTP_INTERVAL_FREQ); | |
954 | /* cancel running adjtime() */ | |
955 | time_adjust = 0; | |
956 | } | |
957 | /* update jitter */ | |
958 | pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN; | |
959 | } | |
960 | ||
961 | /* | |
aa6f9c59 | 962 | * __hardpps() - discipline CPU clock oscillator to external PPS signal |
025b40ab AG |
963 | * |
964 | * This routine is called at each PPS signal arrival in order to | |
965 | * discipline the CPU clock oscillator to the PPS signal. It takes two | |
966 | * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former | |
967 | * is used to correct clock phase error and the latter is used to | |
968 | * correct the frequency. | |
969 | * | |
970 | * This code is based on David Mills's reference nanokernel | |
971 | * implementation. It was mostly rewritten but keeps the same idea. | |
972 | */ | |
7ec88e4b | 973 | void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) |
025b40ab AG |
974 | { |
975 | struct pps_normtime pts_norm, freq_norm; | |
025b40ab AG |
976 | |
977 | pts_norm = pps_normalize_ts(*phase_ts); | |
978 | ||
025b40ab AG |
979 | /* clear the error bits, they will be set again if needed */ |
980 | time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); | |
981 | ||
982 | /* indicate signal presence */ | |
983 | time_status |= STA_PPSSIGNAL; | |
984 | pps_valid = PPS_VALID; | |
985 | ||
986 | /* when called for the first time, | |
987 | * just start the frequency interval */ | |
988 | if (unlikely(pps_fbase.tv_sec == 0)) { | |
989 | pps_fbase = *raw_ts; | |
025b40ab AG |
990 | return; |
991 | } | |
992 | ||
993 | /* ok, now we have a base for frequency calculation */ | |
7ec88e4b | 994 | freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase)); |
025b40ab AG |
995 | |
996 | /* check that the signal is in the range | |
997 | * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */ | |
998 | if ((freq_norm.sec == 0) || | |
999 | (freq_norm.nsec > MAXFREQ * freq_norm.sec) || | |
1000 | (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) { | |
1001 | time_status |= STA_PPSJITTER; | |
1002 | /* restart the frequency calibration interval */ | |
1003 | pps_fbase = *raw_ts; | |
6d9bcb62 | 1004 | printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n"); |
025b40ab AG |
1005 | return; |
1006 | } | |
1007 | ||
1008 | /* signal is ok */ | |
1009 | ||
1010 | /* check if the current frequency interval is finished */ | |
1011 | if (freq_norm.sec >= (1 << pps_shift)) { | |
1012 | pps_calcnt++; | |
1013 | /* restart the frequency calibration interval */ | |
1014 | pps_fbase = *raw_ts; | |
1015 | hardpps_update_freq(freq_norm); | |
1016 | } | |
1017 | ||
1018 | hardpps_update_phase(pts_norm.nsec); | |
1019 | ||
025b40ab | 1020 | } |
025b40ab AG |
1021 | #endif /* CONFIG_NTP_PPS */ |
1022 | ||
10a398d0 RZ |
1023 | static int __init ntp_tick_adj_setup(char *str) |
1024 | { | |
cdafb93f FF |
1025 | int rc = kstrtol(str, 0, (long *)&ntp_tick_adj); |
1026 | ||
1027 | if (rc) | |
1028 | return rc; | |
069569e0 IM |
1029 | ntp_tick_adj <<= NTP_SCALE_SHIFT; |
1030 | ||
10a398d0 RZ |
1031 | return 1; |
1032 | } | |
1033 | ||
1034 | __setup("ntp_tick_adj=", ntp_tick_adj_setup); | |
7dffa3c6 RZ |
1035 | |
1036 | void __init ntp_init(void) | |
1037 | { | |
1038 | ntp_clear(); | |
7dffa3c6 | 1039 | } |