]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/time/ntp.c
ntp: Move timex validation to timekeeping do_adjtimex call.
[mirror_ubuntu-hirsute-kernel.git] / kernel / time / ntp.c
CommitLineData
4c7ee8de 1/*
4c7ee8de
JS
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
aa0ac365 8#include <linux/capability.h>
7dffa3c6 9#include <linux/clocksource.h>
eb3f938f 10#include <linux/workqueue.h>
53bbfa9e
IM
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
025b40ab 17#include <linux/module.h>
023f333a 18#include <linux/rtc.h>
4c7ee8de 19
e2830b5c 20#include "tick-internal.h"
aa6f9c59 21#include "ntp_internal.h"
e2830b5c 22
b0ee7556 23/*
53bbfa9e 24 * NTP timekeeping variables:
b0ee7556 25 */
b0ee7556 26
a6c0c943 27DEFINE_RAW_SPINLOCK(ntp_lock);
bd331268
JS
28
29
53bbfa9e
IM
30/* USER_HZ period (usecs): */
31unsigned long tick_usec = TICK_USEC;
32
02ab20ae 33/* SHIFTED_HZ period (nsecs): */
53bbfa9e 34unsigned long tick_nsec;
7dffa3c6 35
ea7cf49a 36static u64 tick_length;
53bbfa9e
IM
37static u64 tick_length_base;
38
bbd12676 39#define MAX_TICKADJ 500LL /* usecs */
53bbfa9e 40#define MAX_TICKADJ_SCALED \
bbd12676 41 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
4c7ee8de
JS
42
43/*
44 * phase-lock loop variables
45 */
53bbfa9e
IM
46
47/*
48 * clock synchronization status
49 *
50 * (TIME_ERROR prevents overwriting the CMOS clock)
51 */
52static int time_state = TIME_OK;
53
54/* clock status bits: */
8357929e 55static int time_status = STA_UNSYNC;
53bbfa9e 56
53bbfa9e
IM
57/* time adjustment (nsecs): */
58static s64 time_offset;
59
60/* pll time constant: */
61static long time_constant = 2;
62
63/* maximum error (usecs): */
1f5b8f8a 64static long time_maxerror = NTP_PHASE_LIMIT;
53bbfa9e
IM
65
66/* estimated error (usecs): */
1f5b8f8a 67static long time_esterror = NTP_PHASE_LIMIT;
53bbfa9e
IM
68
69/* frequency offset (scaled nsecs/secs): */
70static s64 time_freq;
71
72/* time at last adjustment (secs): */
73static long time_reftime;
74
e1292ba1 75static long time_adjust;
53bbfa9e 76
069569e0
IM
77/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78static s64 ntp_tick_adj;
53bbfa9e 79
025b40ab
AG
80#ifdef CONFIG_NTP_PPS
81
82/*
83 * The following variables are used when a pulse-per-second (PPS) signal
84 * is available. They establish the engineering parameters of the clock
85 * discipline loop when controlled by the PPS signal.
86 */
87#define PPS_VALID 10 /* PPS signal watchdog max (s) */
88#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
89#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
90#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
91#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
92 increase pps_shift or consecutive bad
93 intervals to decrease it */
94#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
95
96static int pps_valid; /* signal watchdog counter */
97static long pps_tf[3]; /* phase median filter */
98static long pps_jitter; /* current jitter (ns) */
99static struct timespec pps_fbase; /* beginning of the last freq interval */
100static int pps_shift; /* current interval duration (s) (shift) */
101static int pps_intcnt; /* interval counter */
102static s64 pps_freq; /* frequency offset (scaled ns/s) */
103static long pps_stabil; /* current stability (scaled ns/s) */
104
105/*
106 * PPS signal quality monitors
107 */
108static long pps_calcnt; /* calibration intervals */
109static long pps_jitcnt; /* jitter limit exceeded */
110static long pps_stbcnt; /* stability limit exceeded */
111static long pps_errcnt; /* calibration errors */
112
113
114/* PPS kernel consumer compensates the whole phase error immediately.
115 * Otherwise, reduce the offset by a fixed factor times the time constant.
116 */
117static inline s64 ntp_offset_chunk(s64 offset)
118{
119 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
120 return offset;
121 else
122 return shift_right(offset, SHIFT_PLL + time_constant);
123}
124
125static inline void pps_reset_freq_interval(void)
126{
127 /* the PPS calibration interval may end
128 surprisingly early */
129 pps_shift = PPS_INTMIN;
130 pps_intcnt = 0;
131}
132
133/**
134 * pps_clear - Clears the PPS state variables
135 *
bd331268 136 * Must be called while holding a write on the ntp_lock
025b40ab
AG
137 */
138static inline void pps_clear(void)
139{
140 pps_reset_freq_interval();
141 pps_tf[0] = 0;
142 pps_tf[1] = 0;
143 pps_tf[2] = 0;
144 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
145 pps_freq = 0;
146}
147
148/* Decrease pps_valid to indicate that another second has passed since
149 * the last PPS signal. When it reaches 0, indicate that PPS signal is
150 * missing.
151 *
bd331268 152 * Must be called while holding a write on the ntp_lock
025b40ab
AG
153 */
154static inline void pps_dec_valid(void)
155{
156 if (pps_valid > 0)
157 pps_valid--;
158 else {
159 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
160 STA_PPSWANDER | STA_PPSERROR);
161 pps_clear();
162 }
163}
164
165static inline void pps_set_freq(s64 freq)
166{
167 pps_freq = freq;
168}
169
170static inline int is_error_status(int status)
171{
172 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
173 /* PPS signal lost when either PPS time or
174 * PPS frequency synchronization requested
175 */
176 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
177 && !(time_status & STA_PPSSIGNAL))
178 /* PPS jitter exceeded when
179 * PPS time synchronization requested */
180 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
181 == (STA_PPSTIME|STA_PPSJITTER))
182 /* PPS wander exceeded or calibration error when
183 * PPS frequency synchronization requested
184 */
185 || ((time_status & STA_PPSFREQ)
186 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
187}
188
189static inline void pps_fill_timex(struct timex *txc)
190{
191 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
192 PPM_SCALE_INV, NTP_SCALE_SHIFT);
193 txc->jitter = pps_jitter;
194 if (!(time_status & STA_NANO))
195 txc->jitter /= NSEC_PER_USEC;
196 txc->shift = pps_shift;
197 txc->stabil = pps_stabil;
198 txc->jitcnt = pps_jitcnt;
199 txc->calcnt = pps_calcnt;
200 txc->errcnt = pps_errcnt;
201 txc->stbcnt = pps_stbcnt;
202}
203
204#else /* !CONFIG_NTP_PPS */
205
206static inline s64 ntp_offset_chunk(s64 offset)
207{
208 return shift_right(offset, SHIFT_PLL + time_constant);
209}
210
211static inline void pps_reset_freq_interval(void) {}
212static inline void pps_clear(void) {}
213static inline void pps_dec_valid(void) {}
214static inline void pps_set_freq(s64 freq) {}
215
216static inline int is_error_status(int status)
217{
218 return status & (STA_UNSYNC|STA_CLOCKERR);
219}
220
221static inline void pps_fill_timex(struct timex *txc)
222{
223 /* PPS is not implemented, so these are zero */
224 txc->ppsfreq = 0;
225 txc->jitter = 0;
226 txc->shift = 0;
227 txc->stabil = 0;
228 txc->jitcnt = 0;
229 txc->calcnt = 0;
230 txc->errcnt = 0;
231 txc->stbcnt = 0;
232}
233
234#endif /* CONFIG_NTP_PPS */
235
8357929e
JS
236
237/**
238 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
239 *
240 */
241static inline int ntp_synced(void)
242{
243 return !(time_status & STA_UNSYNC);
244}
245
246
53bbfa9e
IM
247/*
248 * NTP methods:
249 */
4c7ee8de 250
9ce616aa
IM
251/*
252 * Update (tick_length, tick_length_base, tick_nsec), based
253 * on (tick_usec, ntp_tick_adj, time_freq):
254 */
70bc42f9
AB
255static void ntp_update_frequency(void)
256{
9ce616aa 257 u64 second_length;
bc26c31d 258 u64 new_base;
9ce616aa
IM
259
260 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
261 << NTP_SCALE_SHIFT;
262
069569e0 263 second_length += ntp_tick_adj;
9ce616aa 264 second_length += time_freq;
70bc42f9 265
9ce616aa 266 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
bc26c31d 267 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
fdcedf7b
JS
268
269 /*
270 * Don't wait for the next second_overflow, apply
bc26c31d 271 * the change to the tick length immediately:
fdcedf7b 272 */
bc26c31d
IM
273 tick_length += new_base - tick_length_base;
274 tick_length_base = new_base;
70bc42f9
AB
275}
276
478b7aab 277static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
f939890b
IM
278{
279 time_status &= ~STA_MODE;
280
281 if (secs < MINSEC)
478b7aab 282 return 0;
f939890b
IM
283
284 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
478b7aab 285 return 0;
f939890b 286
f939890b
IM
287 time_status |= STA_MODE;
288
a078c6d0 289 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
f939890b
IM
290}
291
ee9851b2
RZ
292static void ntp_update_offset(long offset)
293{
ee9851b2 294 s64 freq_adj;
f939890b
IM
295 s64 offset64;
296 long secs;
ee9851b2
RZ
297
298 if (!(time_status & STA_PLL))
299 return;
300
eea83d89 301 if (!(time_status & STA_NANO))
9f14f669 302 offset *= NSEC_PER_USEC;
ee9851b2
RZ
303
304 /*
305 * Scale the phase adjustment and
306 * clamp to the operating range.
307 */
9f14f669
RZ
308 offset = min(offset, MAXPHASE);
309 offset = max(offset, -MAXPHASE);
ee9851b2
RZ
310
311 /*
312 * Select how the frequency is to be controlled
313 * and in which mode (PLL or FLL).
314 */
7e1b5847 315 secs = get_seconds() - time_reftime;
10dd31a7 316 if (unlikely(time_status & STA_FREQHOLD))
c7986acb
IM
317 secs = 0;
318
7e1b5847 319 time_reftime = get_seconds();
ee9851b2 320
f939890b 321 offset64 = offset;
8af3c153 322 freq_adj = ntp_update_offset_fll(offset64, secs);
f939890b 323
8af3c153
ML
324 /*
325 * Clamp update interval to reduce PLL gain with low
326 * sampling rate (e.g. intermittent network connection)
327 * to avoid instability.
328 */
329 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
330 secs = 1 << (SHIFT_PLL + 1 + time_constant);
331
332 freq_adj += (offset64 * secs) <<
333 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
f939890b
IM
334
335 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
336
337 time_freq = max(freq_adj, -MAXFREQ_SCALED);
338
339 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
ee9851b2
RZ
340}
341
b0ee7556
RZ
342/**
343 * ntp_clear - Clears the NTP state variables
b0ee7556
RZ
344 */
345void ntp_clear(void)
346{
bd331268
JS
347 unsigned long flags;
348
a6c0c943 349 raw_spin_lock_irqsave(&ntp_lock, flags);
bd331268 350
53bbfa9e
IM
351 time_adjust = 0; /* stop active adjtime() */
352 time_status |= STA_UNSYNC;
353 time_maxerror = NTP_PHASE_LIMIT;
354 time_esterror = NTP_PHASE_LIMIT;
b0ee7556
RZ
355
356 ntp_update_frequency();
357
53bbfa9e
IM
358 tick_length = tick_length_base;
359 time_offset = 0;
025b40ab
AG
360
361 /* Clear PPS state variables */
362 pps_clear();
a6c0c943 363 raw_spin_unlock_irqrestore(&ntp_lock, flags);
bd331268 364
b0ee7556
RZ
365}
366
ea7cf49a
JS
367
368u64 ntp_tick_length(void)
369{
bd331268
JS
370 unsigned long flags;
371 s64 ret;
372
a6c0c943 373 raw_spin_lock_irqsave(&ntp_lock, flags);
bd331268 374 ret = tick_length;
a6c0c943 375 raw_spin_unlock_irqrestore(&ntp_lock, flags);
bd331268 376 return ret;
ea7cf49a
JS
377}
378
379
4c7ee8de 380/*
6b43ae8a
JS
381 * this routine handles the overflow of the microsecond field
382 *
383 * The tricky bits of code to handle the accurate clock support
384 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
385 * They were originally developed for SUN and DEC kernels.
386 * All the kudos should go to Dave for this stuff.
387 *
388 * Also handles leap second processing, and returns leap offset
4c7ee8de 389 */
6b43ae8a 390int second_overflow(unsigned long secs)
4c7ee8de 391{
6b43ae8a 392 s64 delta;
bd331268 393 int leap = 0;
6b43ae8a 394 unsigned long flags;
4c7ee8de 395
a6c0c943 396 raw_spin_lock_irqsave(&ntp_lock, flags);
6b43ae8a
JS
397
398 /*
399 * Leap second processing. If in leap-insert state at the end of the
400 * day, the system clock is set back one second; if in leap-delete
401 * state, the system clock is set ahead one second.
402 */
4c7ee8de
JS
403 switch (time_state) {
404 case TIME_OK:
6b43ae8a
JS
405 if (time_status & STA_INS)
406 time_state = TIME_INS;
407 else if (time_status & STA_DEL)
408 time_state = TIME_DEL;
4c7ee8de
JS
409 break;
410 case TIME_INS:
6b1859db
JS
411 if (!(time_status & STA_INS))
412 time_state = TIME_OK;
413 else if (secs % 86400 == 0) {
6b43ae8a
JS
414 leap = -1;
415 time_state = TIME_OOP;
416 printk(KERN_NOTICE
417 "Clock: inserting leap second 23:59:60 UTC\n");
418 }
4c7ee8de
JS
419 break;
420 case TIME_DEL:
6b1859db
JS
421 if (!(time_status & STA_DEL))
422 time_state = TIME_OK;
423 else if ((secs + 1) % 86400 == 0) {
6b43ae8a 424 leap = 1;
6b43ae8a
JS
425 time_state = TIME_WAIT;
426 printk(KERN_NOTICE
427 "Clock: deleting leap second 23:59:59 UTC\n");
428 }
4c7ee8de
JS
429 break;
430 case TIME_OOP:
431 time_state = TIME_WAIT;
6b43ae8a
JS
432 break;
433
4c7ee8de
JS
434 case TIME_WAIT:
435 if (!(time_status & (STA_INS | STA_DEL)))
ee9851b2 436 time_state = TIME_OK;
7dffa3c6
RZ
437 break;
438 }
bd331268 439
7dffa3c6
RZ
440
441 /* Bump the maxerror field */
442 time_maxerror += MAXFREQ / NSEC_PER_USEC;
443 if (time_maxerror > NTP_PHASE_LIMIT) {
444 time_maxerror = NTP_PHASE_LIMIT;
445 time_status |= STA_UNSYNC;
4c7ee8de
JS
446 }
447
025b40ab 448 /* Compute the phase adjustment for the next second */
39854fe8
IM
449 tick_length = tick_length_base;
450
025b40ab 451 delta = ntp_offset_chunk(time_offset);
39854fe8
IM
452 time_offset -= delta;
453 tick_length += delta;
4c7ee8de 454
025b40ab
AG
455 /* Check PPS signal */
456 pps_dec_valid();
457
3c972c24 458 if (!time_adjust)
bd331268 459 goto out;
3c972c24
IM
460
461 if (time_adjust > MAX_TICKADJ) {
462 time_adjust -= MAX_TICKADJ;
463 tick_length += MAX_TICKADJ_SCALED;
bd331268 464 goto out;
4c7ee8de 465 }
3c972c24
IM
466
467 if (time_adjust < -MAX_TICKADJ) {
468 time_adjust += MAX_TICKADJ;
469 tick_length -= MAX_TICKADJ_SCALED;
bd331268 470 goto out;
3c972c24
IM
471 }
472
473 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
474 << NTP_SCALE_SHIFT;
475 time_adjust = 0;
6b43ae8a 476
bd331268 477out:
a6c0c943 478 raw_spin_unlock_irqrestore(&ntp_lock, flags);
6b43ae8a
JS
479
480 return leap;
4c7ee8de
JS
481}
482
023f333a 483#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
eb3f938f 484static void sync_cmos_clock(struct work_struct *work);
82644459 485
eb3f938f 486static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
82644459 487
eb3f938f 488static void sync_cmos_clock(struct work_struct *work)
82644459
TG
489{
490 struct timespec now, next;
491 int fail = 1;
492
493 /*
494 * If we have an externally synchronized Linux clock, then update
495 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
496 * called as close as possible to 500 ms before the new second starts.
497 * This code is run on a timer. If the clock is set, that timer
498 * may not expire at the correct time. Thus, we adjust...
499 */
53bbfa9e 500 if (!ntp_synced()) {
82644459
TG
501 /*
502 * Not synced, exit, do not restart a timer (if one is
503 * running, let it run out).
504 */
505 return;
53bbfa9e 506 }
82644459
TG
507
508 getnstimeofday(&now);
023f333a 509 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) {
84e345e4
PB
510 struct timespec adjust = now;
511
023f333a 512 fail = -ENODEV;
84e345e4
PB
513 if (persistent_clock_is_local)
514 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
023f333a 515#ifdef CONFIG_GENERIC_CMOS_UPDATE
84e345e4 516 fail = update_persistent_clock(adjust);
023f333a
JG
517#endif
518#ifdef CONFIG_RTC_SYSTOHC
519 if (fail == -ENODEV)
84e345e4 520 fail = rtc_set_ntp_time(adjust);
023f333a
JG
521#endif
522 }
82644459 523
4ff4b9e1 524 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
82644459
TG
525 if (next.tv_nsec <= 0)
526 next.tv_nsec += NSEC_PER_SEC;
527
023f333a 528 if (!fail || fail == -ENODEV)
82644459
TG
529 next.tv_sec = 659;
530 else
531 next.tv_sec = 0;
532
533 if (next.tv_nsec >= NSEC_PER_SEC) {
534 next.tv_sec++;
535 next.tv_nsec -= NSEC_PER_SEC;
536 }
eb3f938f 537 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
82644459
TG
538}
539
540static void notify_cmos_timer(void)
4c7ee8de 541{
335dd858 542 schedule_delayed_work(&sync_cmos_work, 0);
4c7ee8de
JS
543}
544
82644459
TG
545#else
546static inline void notify_cmos_timer(void) { }
547#endif
548
80f22571
IM
549
550/*
551 * Propagate a new txc->status value into the NTP state:
552 */
553static inline void process_adj_status(struct timex *txc, struct timespec *ts)
554{
80f22571
IM
555 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
556 time_state = TIME_OK;
557 time_status = STA_UNSYNC;
025b40ab
AG
558 /* restart PPS frequency calibration */
559 pps_reset_freq_interval();
80f22571 560 }
80f22571
IM
561
562 /*
563 * If we turn on PLL adjustments then reset the
564 * reference time to current time.
565 */
566 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
7e1b5847 567 time_reftime = get_seconds();
80f22571 568
a2a5ac86
JS
569 /* only set allowed bits */
570 time_status &= STA_RONLY;
80f22571 571 time_status |= txc->status & ~STA_RONLY;
80f22571 572}
cd5398be 573
80f22571 574/*
cd5398be 575 * Called with ntp_lock held, so we can access and modify
80f22571
IM
576 * all the global NTP state:
577 */
cc244dda
JS
578static inline void process_adjtimex_modes(struct timex *txc,
579 struct timespec *ts,
580 s32 *time_tai)
80f22571
IM
581{
582 if (txc->modes & ADJ_STATUS)
583 process_adj_status(txc, ts);
584
585 if (txc->modes & ADJ_NANO)
586 time_status |= STA_NANO;
e9629165 587
80f22571
IM
588 if (txc->modes & ADJ_MICRO)
589 time_status &= ~STA_NANO;
590
591 if (txc->modes & ADJ_FREQUENCY) {
2b9d1496 592 time_freq = txc->freq * PPM_SCALE;
80f22571
IM
593 time_freq = min(time_freq, MAXFREQ_SCALED);
594 time_freq = max(time_freq, -MAXFREQ_SCALED);
025b40ab
AG
595 /* update pps_freq */
596 pps_set_freq(time_freq);
80f22571
IM
597 }
598
599 if (txc->modes & ADJ_MAXERROR)
600 time_maxerror = txc->maxerror;
e9629165 601
80f22571
IM
602 if (txc->modes & ADJ_ESTERROR)
603 time_esterror = txc->esterror;
604
605 if (txc->modes & ADJ_TIMECONST) {
606 time_constant = txc->constant;
607 if (!(time_status & STA_NANO))
608 time_constant += 4;
609 time_constant = min(time_constant, (long)MAXTC);
610 time_constant = max(time_constant, 0l);
611 }
612
613 if (txc->modes & ADJ_TAI && txc->constant > 0)
cc244dda 614 *time_tai = txc->constant;
80f22571
IM
615
616 if (txc->modes & ADJ_OFFSET)
617 ntp_update_offset(txc->offset);
e9629165 618
80f22571
IM
619 if (txc->modes & ADJ_TICK)
620 tick_usec = txc->tick;
621
622 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
623 ntp_update_frequency();
624}
625
ad460967
JS
626
627
628/**
629 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
4c7ee8de 630 */
ad460967 631int ntp_validate_timex(struct timex *txc)
4c7ee8de 632{
916c7a85 633 if (txc->modes & ADJ_ADJTIME) {
eea83d89 634 /* singleshot must not be used with any other mode bits */
916c7a85 635 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
4c7ee8de 636 return -EINVAL;
916c7a85
RZ
637 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
638 !capable(CAP_SYS_TIME))
639 return -EPERM;
640 } else {
641 /* In order to modify anything, you gotta be super-user! */
642 if (txc->modes && !capable(CAP_SYS_TIME))
643 return -EPERM;
53bbfa9e
IM
644 /*
645 * if the quartz is off by more than 10% then
646 * something is VERY wrong!
647 */
916c7a85
RZ
648 if (txc->modes & ADJ_TICK &&
649 (txc->tick < 900000/USER_HZ ||
650 txc->tick > 1100000/USER_HZ))
e9629165 651 return -EINVAL;
52bfb360 652 }
4c7ee8de 653
ad460967
JS
654 if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
655 return -EPERM;
656
657 return 0;
658}
659
660
661/*
662 * adjtimex mainly allows reading (and writing, if superuser) of
663 * kernel time-keeping variables. used by xntpd.
664 */
aa6f9c59 665int __do_adjtimex(struct timex *txc)
ad460967
JS
666{
667 struct timespec ts;
668 u32 time_tai, orig_tai;
669 int result;
670
094aa188
RC
671 if (txc->modes & ADJ_SETOFFSET) {
672 struct timespec delta;
094aa188
RC
673 delta.tv_sec = txc->time.tv_sec;
674 delta.tv_nsec = txc->time.tv_usec;
675 if (!(txc->modes & ADJ_NANO))
676 delta.tv_nsec *= 1000;
db1c1cce
RC
677 result = timekeeping_inject_offset(&delta);
678 if (result)
679 return result;
094aa188
RC
680 }
681
7dffa3c6 682 getnstimeofday(&ts);
cc244dda 683 orig_tai = time_tai = timekeeping_get_tai_offset();
7dffa3c6 684
a6c0c943 685 raw_spin_lock_irq(&ntp_lock);
4c7ee8de 686
916c7a85
RZ
687 if (txc->modes & ADJ_ADJTIME) {
688 long save_adjust = time_adjust;
689
690 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
691 /* adjtime() is independent from ntp_adjtime() */
692 time_adjust = txc->offset;
693 ntp_update_frequency();
694 }
695 txc->offset = save_adjust;
e9629165 696 } else {
ee9851b2 697
e9629165
IM
698 /* If there are input parameters, then process them: */
699 if (txc->modes)
cc244dda 700 process_adjtimex_modes(txc, &ts, &time_tai);
eea83d89 701
e9629165 702 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
916c7a85 703 NTP_SCALE_SHIFT);
e9629165
IM
704 if (!(time_status & STA_NANO))
705 txc->offset /= NSEC_PER_USEC;
706 }
916c7a85 707
eea83d89 708 result = time_state; /* mostly `TIME_OK' */
025b40ab
AG
709 /* check for errors */
710 if (is_error_status(time_status))
4c7ee8de
JS
711 result = TIME_ERROR;
712
d40e944c 713 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
2b9d1496 714 PPM_SCALE_INV, NTP_SCALE_SHIFT);
4c7ee8de
JS
715 txc->maxerror = time_maxerror;
716 txc->esterror = time_esterror;
717 txc->status = time_status;
718 txc->constant = time_constant;
70bc42f9 719 txc->precision = 1;
074b3b87 720 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
4c7ee8de 721 txc->tick = tick_usec;
153b5d05 722 txc->tai = time_tai;
4c7ee8de 723
025b40ab
AG
724 /* fill PPS status fields */
725 pps_fill_timex(txc);
e9629165 726
a6c0c943 727 raw_spin_unlock_irq(&ntp_lock);
ee9851b2 728
cc244dda
JS
729 if (time_tai != orig_tai)
730 timekeeping_set_tai_offset(time_tai);
731
eea83d89
RZ
732 txc->time.tv_sec = ts.tv_sec;
733 txc->time.tv_usec = ts.tv_nsec;
734 if (!(time_status & STA_NANO))
735 txc->time.tv_usec /= NSEC_PER_USEC;
ee9851b2 736
82644459 737 notify_cmos_timer();
ee9851b2
RZ
738
739 return result;
4c7ee8de 740}
10a398d0 741
025b40ab
AG
742#ifdef CONFIG_NTP_PPS
743
744/* actually struct pps_normtime is good old struct timespec, but it is
745 * semantically different (and it is the reason why it was invented):
746 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
747 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
748struct pps_normtime {
749 __kernel_time_t sec; /* seconds */
750 long nsec; /* nanoseconds */
751};
752
753/* normalize the timestamp so that nsec is in the
754 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
755static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
756{
757 struct pps_normtime norm = {
758 .sec = ts.tv_sec,
759 .nsec = ts.tv_nsec
760 };
761
762 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
763 norm.nsec -= NSEC_PER_SEC;
764 norm.sec++;
765 }
766
767 return norm;
768}
769
770/* get current phase correction and jitter */
771static inline long pps_phase_filter_get(long *jitter)
772{
773 *jitter = pps_tf[0] - pps_tf[1];
774 if (*jitter < 0)
775 *jitter = -*jitter;
776
777 /* TODO: test various filters */
778 return pps_tf[0];
779}
780
781/* add the sample to the phase filter */
782static inline void pps_phase_filter_add(long err)
783{
784 pps_tf[2] = pps_tf[1];
785 pps_tf[1] = pps_tf[0];
786 pps_tf[0] = err;
787}
788
789/* decrease frequency calibration interval length.
790 * It is halved after four consecutive unstable intervals.
791 */
792static inline void pps_dec_freq_interval(void)
793{
794 if (--pps_intcnt <= -PPS_INTCOUNT) {
795 pps_intcnt = -PPS_INTCOUNT;
796 if (pps_shift > PPS_INTMIN) {
797 pps_shift--;
798 pps_intcnt = 0;
799 }
800 }
801}
802
803/* increase frequency calibration interval length.
804 * It is doubled after four consecutive stable intervals.
805 */
806static inline void pps_inc_freq_interval(void)
807{
808 if (++pps_intcnt >= PPS_INTCOUNT) {
809 pps_intcnt = PPS_INTCOUNT;
810 if (pps_shift < PPS_INTMAX) {
811 pps_shift++;
812 pps_intcnt = 0;
813 }
814 }
815}
816
817/* update clock frequency based on MONOTONIC_RAW clock PPS signal
818 * timestamps
819 *
820 * At the end of the calibration interval the difference between the
821 * first and last MONOTONIC_RAW clock timestamps divided by the length
822 * of the interval becomes the frequency update. If the interval was
823 * too long, the data are discarded.
824 * Returns the difference between old and new frequency values.
825 */
826static long hardpps_update_freq(struct pps_normtime freq_norm)
827{
828 long delta, delta_mod;
829 s64 ftemp;
830
831 /* check if the frequency interval was too long */
832 if (freq_norm.sec > (2 << pps_shift)) {
833 time_status |= STA_PPSERROR;
834 pps_errcnt++;
835 pps_dec_freq_interval();
836 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
837 freq_norm.sec);
838 return 0;
839 }
840
841 /* here the raw frequency offset and wander (stability) is
842 * calculated. If the wander is less than the wander threshold
843 * the interval is increased; otherwise it is decreased.
844 */
845 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
846 freq_norm.sec);
847 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
848 pps_freq = ftemp;
849 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
850 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
851 time_status |= STA_PPSWANDER;
852 pps_stbcnt++;
853 pps_dec_freq_interval();
854 } else { /* good sample */
855 pps_inc_freq_interval();
856 }
857
858 /* the stability metric is calculated as the average of recent
859 * frequency changes, but is used only for performance
860 * monitoring
861 */
862 delta_mod = delta;
863 if (delta_mod < 0)
864 delta_mod = -delta_mod;
865 pps_stabil += (div_s64(((s64)delta_mod) <<
866 (NTP_SCALE_SHIFT - SHIFT_USEC),
867 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
868
869 /* if enabled, the system clock frequency is updated */
870 if ((time_status & STA_PPSFREQ) != 0 &&
871 (time_status & STA_FREQHOLD) == 0) {
872 time_freq = pps_freq;
873 ntp_update_frequency();
874 }
875
876 return delta;
877}
878
879/* correct REALTIME clock phase error against PPS signal */
880static void hardpps_update_phase(long error)
881{
882 long correction = -error;
883 long jitter;
884
885 /* add the sample to the median filter */
886 pps_phase_filter_add(correction);
887 correction = pps_phase_filter_get(&jitter);
888
889 /* Nominal jitter is due to PPS signal noise. If it exceeds the
890 * threshold, the sample is discarded; otherwise, if so enabled,
891 * the time offset is updated.
892 */
893 if (jitter > (pps_jitter << PPS_POPCORN)) {
894 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
895 jitter, (pps_jitter << PPS_POPCORN));
896 time_status |= STA_PPSJITTER;
897 pps_jitcnt++;
898 } else if (time_status & STA_PPSTIME) {
899 /* correct the time using the phase offset */
900 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
901 NTP_INTERVAL_FREQ);
902 /* cancel running adjtime() */
903 time_adjust = 0;
904 }
905 /* update jitter */
906 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
907}
908
909/*
aa6f9c59 910 * __hardpps() - discipline CPU clock oscillator to external PPS signal
025b40ab
AG
911 *
912 * This routine is called at each PPS signal arrival in order to
913 * discipline the CPU clock oscillator to the PPS signal. It takes two
914 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
915 * is used to correct clock phase error and the latter is used to
916 * correct the frequency.
917 *
918 * This code is based on David Mills's reference nanokernel
919 * implementation. It was mostly rewritten but keeps the same idea.
920 */
aa6f9c59 921void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
025b40ab
AG
922{
923 struct pps_normtime pts_norm, freq_norm;
924 unsigned long flags;
925
926 pts_norm = pps_normalize_ts(*phase_ts);
927
a6c0c943 928 raw_spin_lock_irqsave(&ntp_lock, flags);
025b40ab
AG
929
930 /* clear the error bits, they will be set again if needed */
931 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
932
933 /* indicate signal presence */
934 time_status |= STA_PPSSIGNAL;
935 pps_valid = PPS_VALID;
936
937 /* when called for the first time,
938 * just start the frequency interval */
939 if (unlikely(pps_fbase.tv_sec == 0)) {
940 pps_fbase = *raw_ts;
a6c0c943 941 raw_spin_unlock_irqrestore(&ntp_lock, flags);
025b40ab
AG
942 return;
943 }
944
945 /* ok, now we have a base for frequency calculation */
946 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
947
948 /* check that the signal is in the range
949 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
950 if ((freq_norm.sec == 0) ||
951 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
952 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
953 time_status |= STA_PPSJITTER;
954 /* restart the frequency calibration interval */
955 pps_fbase = *raw_ts;
a6c0c943 956 raw_spin_unlock_irqrestore(&ntp_lock, flags);
025b40ab
AG
957 pr_err("hardpps: PPSJITTER: bad pulse\n");
958 return;
959 }
960
961 /* signal is ok */
962
963 /* check if the current frequency interval is finished */
964 if (freq_norm.sec >= (1 << pps_shift)) {
965 pps_calcnt++;
966 /* restart the frequency calibration interval */
967 pps_fbase = *raw_ts;
968 hardpps_update_freq(freq_norm);
969 }
970
971 hardpps_update_phase(pts_norm.nsec);
972
a6c0c943 973 raw_spin_unlock_irqrestore(&ntp_lock, flags);
025b40ab 974}
025b40ab
AG
975#endif /* CONFIG_NTP_PPS */
976
10a398d0
RZ
977static int __init ntp_tick_adj_setup(char *str)
978{
979 ntp_tick_adj = simple_strtol(str, NULL, 0);
069569e0
IM
980 ntp_tick_adj <<= NTP_SCALE_SHIFT;
981
10a398d0
RZ
982 return 1;
983}
984
985__setup("ntp_tick_adj=", ntp_tick_adj_setup);
7dffa3c6
RZ
986
987void __init ntp_init(void)
988{
989 ntp_clear();
7dffa3c6 990}