]>
Commit | Line | Data |
---|---|---|
4c7ee8de | 1 | /* |
4c7ee8de JS |
2 | * NTP state machine interfaces and logic. |
3 | * | |
4 | * This code was mainly moved from kernel/timer.c and kernel/time.c | |
5 | * Please see those files for relevant copyright info and historical | |
6 | * changelogs. | |
7 | */ | |
aa0ac365 | 8 | #include <linux/capability.h> |
7dffa3c6 | 9 | #include <linux/clocksource.h> |
eb3f938f | 10 | #include <linux/workqueue.h> |
53bbfa9e IM |
11 | #include <linux/hrtimer.h> |
12 | #include <linux/jiffies.h> | |
13 | #include <linux/math64.h> | |
14 | #include <linux/timex.h> | |
15 | #include <linux/time.h> | |
16 | #include <linux/mm.h> | |
025b40ab | 17 | #include <linux/module.h> |
023f333a | 18 | #include <linux/rtc.h> |
4c7ee8de | 19 | |
e2830b5c TH |
20 | #include "tick-internal.h" |
21 | ||
b0ee7556 | 22 | /* |
53bbfa9e | 23 | * NTP timekeeping variables: |
b0ee7556 | 24 | */ |
b0ee7556 | 25 | |
a6c0c943 | 26 | DEFINE_RAW_SPINLOCK(ntp_lock); |
bd331268 JS |
27 | |
28 | ||
53bbfa9e IM |
29 | /* USER_HZ period (usecs): */ |
30 | unsigned long tick_usec = TICK_USEC; | |
31 | ||
02ab20ae | 32 | /* SHIFTED_HZ period (nsecs): */ |
53bbfa9e | 33 | unsigned long tick_nsec; |
7dffa3c6 | 34 | |
ea7cf49a | 35 | static u64 tick_length; |
53bbfa9e IM |
36 | static u64 tick_length_base; |
37 | ||
bbd12676 | 38 | #define MAX_TICKADJ 500LL /* usecs */ |
53bbfa9e | 39 | #define MAX_TICKADJ_SCALED \ |
bbd12676 | 40 | (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) |
4c7ee8de JS |
41 | |
42 | /* | |
43 | * phase-lock loop variables | |
44 | */ | |
53bbfa9e IM |
45 | |
46 | /* | |
47 | * clock synchronization status | |
48 | * | |
49 | * (TIME_ERROR prevents overwriting the CMOS clock) | |
50 | */ | |
51 | static int time_state = TIME_OK; | |
52 | ||
53 | /* clock status bits: */ | |
8357929e | 54 | static int time_status = STA_UNSYNC; |
53bbfa9e IM |
55 | |
56 | /* TAI offset (secs): */ | |
57 | static long time_tai; | |
58 | ||
59 | /* time adjustment (nsecs): */ | |
60 | static s64 time_offset; | |
61 | ||
62 | /* pll time constant: */ | |
63 | static long time_constant = 2; | |
64 | ||
65 | /* maximum error (usecs): */ | |
1f5b8f8a | 66 | static long time_maxerror = NTP_PHASE_LIMIT; |
53bbfa9e IM |
67 | |
68 | /* estimated error (usecs): */ | |
1f5b8f8a | 69 | static long time_esterror = NTP_PHASE_LIMIT; |
53bbfa9e IM |
70 | |
71 | /* frequency offset (scaled nsecs/secs): */ | |
72 | static s64 time_freq; | |
73 | ||
74 | /* time at last adjustment (secs): */ | |
75 | static long time_reftime; | |
76 | ||
e1292ba1 | 77 | static long time_adjust; |
53bbfa9e | 78 | |
069569e0 IM |
79 | /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ |
80 | static s64 ntp_tick_adj; | |
53bbfa9e | 81 | |
025b40ab AG |
82 | #ifdef CONFIG_NTP_PPS |
83 | ||
84 | /* | |
85 | * The following variables are used when a pulse-per-second (PPS) signal | |
86 | * is available. They establish the engineering parameters of the clock | |
87 | * discipline loop when controlled by the PPS signal. | |
88 | */ | |
89 | #define PPS_VALID 10 /* PPS signal watchdog max (s) */ | |
90 | #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */ | |
91 | #define PPS_INTMIN 2 /* min freq interval (s) (shift) */ | |
92 | #define PPS_INTMAX 8 /* max freq interval (s) (shift) */ | |
93 | #define PPS_INTCOUNT 4 /* number of consecutive good intervals to | |
94 | increase pps_shift or consecutive bad | |
95 | intervals to decrease it */ | |
96 | #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */ | |
97 | ||
98 | static int pps_valid; /* signal watchdog counter */ | |
99 | static long pps_tf[3]; /* phase median filter */ | |
100 | static long pps_jitter; /* current jitter (ns) */ | |
101 | static struct timespec pps_fbase; /* beginning of the last freq interval */ | |
102 | static int pps_shift; /* current interval duration (s) (shift) */ | |
103 | static int pps_intcnt; /* interval counter */ | |
104 | static s64 pps_freq; /* frequency offset (scaled ns/s) */ | |
105 | static long pps_stabil; /* current stability (scaled ns/s) */ | |
106 | ||
107 | /* | |
108 | * PPS signal quality monitors | |
109 | */ | |
110 | static long pps_calcnt; /* calibration intervals */ | |
111 | static long pps_jitcnt; /* jitter limit exceeded */ | |
112 | static long pps_stbcnt; /* stability limit exceeded */ | |
113 | static long pps_errcnt; /* calibration errors */ | |
114 | ||
115 | ||
116 | /* PPS kernel consumer compensates the whole phase error immediately. | |
117 | * Otherwise, reduce the offset by a fixed factor times the time constant. | |
118 | */ | |
119 | static inline s64 ntp_offset_chunk(s64 offset) | |
120 | { | |
121 | if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) | |
122 | return offset; | |
123 | else | |
124 | return shift_right(offset, SHIFT_PLL + time_constant); | |
125 | } | |
126 | ||
127 | static inline void pps_reset_freq_interval(void) | |
128 | { | |
129 | /* the PPS calibration interval may end | |
130 | surprisingly early */ | |
131 | pps_shift = PPS_INTMIN; | |
132 | pps_intcnt = 0; | |
133 | } | |
134 | ||
135 | /** | |
136 | * pps_clear - Clears the PPS state variables | |
137 | * | |
bd331268 | 138 | * Must be called while holding a write on the ntp_lock |
025b40ab AG |
139 | */ |
140 | static inline void pps_clear(void) | |
141 | { | |
142 | pps_reset_freq_interval(); | |
143 | pps_tf[0] = 0; | |
144 | pps_tf[1] = 0; | |
145 | pps_tf[2] = 0; | |
146 | pps_fbase.tv_sec = pps_fbase.tv_nsec = 0; | |
147 | pps_freq = 0; | |
148 | } | |
149 | ||
150 | /* Decrease pps_valid to indicate that another second has passed since | |
151 | * the last PPS signal. When it reaches 0, indicate that PPS signal is | |
152 | * missing. | |
153 | * | |
bd331268 | 154 | * Must be called while holding a write on the ntp_lock |
025b40ab AG |
155 | */ |
156 | static inline void pps_dec_valid(void) | |
157 | { | |
158 | if (pps_valid > 0) | |
159 | pps_valid--; | |
160 | else { | |
161 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | |
162 | STA_PPSWANDER | STA_PPSERROR); | |
163 | pps_clear(); | |
164 | } | |
165 | } | |
166 | ||
167 | static inline void pps_set_freq(s64 freq) | |
168 | { | |
169 | pps_freq = freq; | |
170 | } | |
171 | ||
172 | static inline int is_error_status(int status) | |
173 | { | |
174 | return (time_status & (STA_UNSYNC|STA_CLOCKERR)) | |
175 | /* PPS signal lost when either PPS time or | |
176 | * PPS frequency synchronization requested | |
177 | */ | |
178 | || ((time_status & (STA_PPSFREQ|STA_PPSTIME)) | |
179 | && !(time_status & STA_PPSSIGNAL)) | |
180 | /* PPS jitter exceeded when | |
181 | * PPS time synchronization requested */ | |
182 | || ((time_status & (STA_PPSTIME|STA_PPSJITTER)) | |
183 | == (STA_PPSTIME|STA_PPSJITTER)) | |
184 | /* PPS wander exceeded or calibration error when | |
185 | * PPS frequency synchronization requested | |
186 | */ | |
187 | || ((time_status & STA_PPSFREQ) | |
188 | && (time_status & (STA_PPSWANDER|STA_PPSERROR))); | |
189 | } | |
190 | ||
191 | static inline void pps_fill_timex(struct timex *txc) | |
192 | { | |
193 | txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) * | |
194 | PPM_SCALE_INV, NTP_SCALE_SHIFT); | |
195 | txc->jitter = pps_jitter; | |
196 | if (!(time_status & STA_NANO)) | |
197 | txc->jitter /= NSEC_PER_USEC; | |
198 | txc->shift = pps_shift; | |
199 | txc->stabil = pps_stabil; | |
200 | txc->jitcnt = pps_jitcnt; | |
201 | txc->calcnt = pps_calcnt; | |
202 | txc->errcnt = pps_errcnt; | |
203 | txc->stbcnt = pps_stbcnt; | |
204 | } | |
205 | ||
206 | #else /* !CONFIG_NTP_PPS */ | |
207 | ||
208 | static inline s64 ntp_offset_chunk(s64 offset) | |
209 | { | |
210 | return shift_right(offset, SHIFT_PLL + time_constant); | |
211 | } | |
212 | ||
213 | static inline void pps_reset_freq_interval(void) {} | |
214 | static inline void pps_clear(void) {} | |
215 | static inline void pps_dec_valid(void) {} | |
216 | static inline void pps_set_freq(s64 freq) {} | |
217 | ||
218 | static inline int is_error_status(int status) | |
219 | { | |
220 | return status & (STA_UNSYNC|STA_CLOCKERR); | |
221 | } | |
222 | ||
223 | static inline void pps_fill_timex(struct timex *txc) | |
224 | { | |
225 | /* PPS is not implemented, so these are zero */ | |
226 | txc->ppsfreq = 0; | |
227 | txc->jitter = 0; | |
228 | txc->shift = 0; | |
229 | txc->stabil = 0; | |
230 | txc->jitcnt = 0; | |
231 | txc->calcnt = 0; | |
232 | txc->errcnt = 0; | |
233 | txc->stbcnt = 0; | |
234 | } | |
235 | ||
236 | #endif /* CONFIG_NTP_PPS */ | |
237 | ||
8357929e JS |
238 | |
239 | /** | |
240 | * ntp_synced - Returns 1 if the NTP status is not UNSYNC | |
241 | * | |
242 | */ | |
243 | static inline int ntp_synced(void) | |
244 | { | |
245 | return !(time_status & STA_UNSYNC); | |
246 | } | |
247 | ||
248 | ||
53bbfa9e IM |
249 | /* |
250 | * NTP methods: | |
251 | */ | |
4c7ee8de | 252 | |
9ce616aa IM |
253 | /* |
254 | * Update (tick_length, tick_length_base, tick_nsec), based | |
255 | * on (tick_usec, ntp_tick_adj, time_freq): | |
256 | */ | |
70bc42f9 AB |
257 | static void ntp_update_frequency(void) |
258 | { | |
9ce616aa | 259 | u64 second_length; |
bc26c31d | 260 | u64 new_base; |
9ce616aa IM |
261 | |
262 | second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) | |
263 | << NTP_SCALE_SHIFT; | |
264 | ||
069569e0 | 265 | second_length += ntp_tick_adj; |
9ce616aa | 266 | second_length += time_freq; |
70bc42f9 | 267 | |
9ce616aa | 268 | tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; |
bc26c31d | 269 | new_base = div_u64(second_length, NTP_INTERVAL_FREQ); |
fdcedf7b JS |
270 | |
271 | /* | |
272 | * Don't wait for the next second_overflow, apply | |
bc26c31d | 273 | * the change to the tick length immediately: |
fdcedf7b | 274 | */ |
bc26c31d IM |
275 | tick_length += new_base - tick_length_base; |
276 | tick_length_base = new_base; | |
70bc42f9 AB |
277 | } |
278 | ||
478b7aab | 279 | static inline s64 ntp_update_offset_fll(s64 offset64, long secs) |
f939890b IM |
280 | { |
281 | time_status &= ~STA_MODE; | |
282 | ||
283 | if (secs < MINSEC) | |
478b7aab | 284 | return 0; |
f939890b IM |
285 | |
286 | if (!(time_status & STA_FLL) && (secs <= MAXSEC)) | |
478b7aab | 287 | return 0; |
f939890b | 288 | |
f939890b IM |
289 | time_status |= STA_MODE; |
290 | ||
a078c6d0 | 291 | return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); |
f939890b IM |
292 | } |
293 | ||
ee9851b2 RZ |
294 | static void ntp_update_offset(long offset) |
295 | { | |
ee9851b2 | 296 | s64 freq_adj; |
f939890b IM |
297 | s64 offset64; |
298 | long secs; | |
ee9851b2 RZ |
299 | |
300 | if (!(time_status & STA_PLL)) | |
301 | return; | |
302 | ||
eea83d89 | 303 | if (!(time_status & STA_NANO)) |
9f14f669 | 304 | offset *= NSEC_PER_USEC; |
ee9851b2 RZ |
305 | |
306 | /* | |
307 | * Scale the phase adjustment and | |
308 | * clamp to the operating range. | |
309 | */ | |
9f14f669 RZ |
310 | offset = min(offset, MAXPHASE); |
311 | offset = max(offset, -MAXPHASE); | |
ee9851b2 RZ |
312 | |
313 | /* | |
314 | * Select how the frequency is to be controlled | |
315 | * and in which mode (PLL or FLL). | |
316 | */ | |
7e1b5847 | 317 | secs = get_seconds() - time_reftime; |
10dd31a7 | 318 | if (unlikely(time_status & STA_FREQHOLD)) |
c7986acb IM |
319 | secs = 0; |
320 | ||
7e1b5847 | 321 | time_reftime = get_seconds(); |
ee9851b2 | 322 | |
f939890b | 323 | offset64 = offset; |
8af3c153 | 324 | freq_adj = ntp_update_offset_fll(offset64, secs); |
f939890b | 325 | |
8af3c153 ML |
326 | /* |
327 | * Clamp update interval to reduce PLL gain with low | |
328 | * sampling rate (e.g. intermittent network connection) | |
329 | * to avoid instability. | |
330 | */ | |
331 | if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant))) | |
332 | secs = 1 << (SHIFT_PLL + 1 + time_constant); | |
333 | ||
334 | freq_adj += (offset64 * secs) << | |
335 | (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); | |
f939890b IM |
336 | |
337 | freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED); | |
338 | ||
339 | time_freq = max(freq_adj, -MAXFREQ_SCALED); | |
340 | ||
341 | time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | |
ee9851b2 RZ |
342 | } |
343 | ||
b0ee7556 RZ |
344 | /** |
345 | * ntp_clear - Clears the NTP state variables | |
b0ee7556 RZ |
346 | */ |
347 | void ntp_clear(void) | |
348 | { | |
bd331268 JS |
349 | unsigned long flags; |
350 | ||
a6c0c943 | 351 | raw_spin_lock_irqsave(&ntp_lock, flags); |
bd331268 | 352 | |
53bbfa9e IM |
353 | time_adjust = 0; /* stop active adjtime() */ |
354 | time_status |= STA_UNSYNC; | |
355 | time_maxerror = NTP_PHASE_LIMIT; | |
356 | time_esterror = NTP_PHASE_LIMIT; | |
b0ee7556 RZ |
357 | |
358 | ntp_update_frequency(); | |
359 | ||
53bbfa9e IM |
360 | tick_length = tick_length_base; |
361 | time_offset = 0; | |
025b40ab AG |
362 | |
363 | /* Clear PPS state variables */ | |
364 | pps_clear(); | |
a6c0c943 | 365 | raw_spin_unlock_irqrestore(&ntp_lock, flags); |
bd331268 | 366 | |
b0ee7556 RZ |
367 | } |
368 | ||
ea7cf49a JS |
369 | |
370 | u64 ntp_tick_length(void) | |
371 | { | |
bd331268 JS |
372 | unsigned long flags; |
373 | s64 ret; | |
374 | ||
a6c0c943 | 375 | raw_spin_lock_irqsave(&ntp_lock, flags); |
bd331268 | 376 | ret = tick_length; |
a6c0c943 | 377 | raw_spin_unlock_irqrestore(&ntp_lock, flags); |
bd331268 | 378 | return ret; |
ea7cf49a JS |
379 | } |
380 | ||
381 | ||
4c7ee8de | 382 | /* |
6b43ae8a JS |
383 | * this routine handles the overflow of the microsecond field |
384 | * | |
385 | * The tricky bits of code to handle the accurate clock support | |
386 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | |
387 | * They were originally developed for SUN and DEC kernels. | |
388 | * All the kudos should go to Dave for this stuff. | |
389 | * | |
390 | * Also handles leap second processing, and returns leap offset | |
4c7ee8de | 391 | */ |
6b43ae8a | 392 | int second_overflow(unsigned long secs) |
4c7ee8de | 393 | { |
6b43ae8a | 394 | s64 delta; |
bd331268 | 395 | int leap = 0; |
6b43ae8a | 396 | unsigned long flags; |
4c7ee8de | 397 | |
a6c0c943 | 398 | raw_spin_lock_irqsave(&ntp_lock, flags); |
6b43ae8a JS |
399 | |
400 | /* | |
401 | * Leap second processing. If in leap-insert state at the end of the | |
402 | * day, the system clock is set back one second; if in leap-delete | |
403 | * state, the system clock is set ahead one second. | |
404 | */ | |
4c7ee8de JS |
405 | switch (time_state) { |
406 | case TIME_OK: | |
6b43ae8a JS |
407 | if (time_status & STA_INS) |
408 | time_state = TIME_INS; | |
409 | else if (time_status & STA_DEL) | |
410 | time_state = TIME_DEL; | |
4c7ee8de JS |
411 | break; |
412 | case TIME_INS: | |
6b1859db JS |
413 | if (!(time_status & STA_INS)) |
414 | time_state = TIME_OK; | |
415 | else if (secs % 86400 == 0) { | |
6b43ae8a JS |
416 | leap = -1; |
417 | time_state = TIME_OOP; | |
dd48d708 | 418 | time_tai++; |
6b43ae8a JS |
419 | printk(KERN_NOTICE |
420 | "Clock: inserting leap second 23:59:60 UTC\n"); | |
421 | } | |
4c7ee8de JS |
422 | break; |
423 | case TIME_DEL: | |
6b1859db JS |
424 | if (!(time_status & STA_DEL)) |
425 | time_state = TIME_OK; | |
426 | else if ((secs + 1) % 86400 == 0) { | |
6b43ae8a JS |
427 | leap = 1; |
428 | time_tai--; | |
429 | time_state = TIME_WAIT; | |
430 | printk(KERN_NOTICE | |
431 | "Clock: deleting leap second 23:59:59 UTC\n"); | |
432 | } | |
4c7ee8de JS |
433 | break; |
434 | case TIME_OOP: | |
435 | time_state = TIME_WAIT; | |
6b43ae8a JS |
436 | break; |
437 | ||
4c7ee8de JS |
438 | case TIME_WAIT: |
439 | if (!(time_status & (STA_INS | STA_DEL))) | |
ee9851b2 | 440 | time_state = TIME_OK; |
7dffa3c6 RZ |
441 | break; |
442 | } | |
bd331268 | 443 | |
7dffa3c6 RZ |
444 | |
445 | /* Bump the maxerror field */ | |
446 | time_maxerror += MAXFREQ / NSEC_PER_USEC; | |
447 | if (time_maxerror > NTP_PHASE_LIMIT) { | |
448 | time_maxerror = NTP_PHASE_LIMIT; | |
449 | time_status |= STA_UNSYNC; | |
4c7ee8de JS |
450 | } |
451 | ||
025b40ab | 452 | /* Compute the phase adjustment for the next second */ |
39854fe8 IM |
453 | tick_length = tick_length_base; |
454 | ||
025b40ab | 455 | delta = ntp_offset_chunk(time_offset); |
39854fe8 IM |
456 | time_offset -= delta; |
457 | tick_length += delta; | |
4c7ee8de | 458 | |
025b40ab AG |
459 | /* Check PPS signal */ |
460 | pps_dec_valid(); | |
461 | ||
3c972c24 | 462 | if (!time_adjust) |
bd331268 | 463 | goto out; |
3c972c24 IM |
464 | |
465 | if (time_adjust > MAX_TICKADJ) { | |
466 | time_adjust -= MAX_TICKADJ; | |
467 | tick_length += MAX_TICKADJ_SCALED; | |
bd331268 | 468 | goto out; |
4c7ee8de | 469 | } |
3c972c24 IM |
470 | |
471 | if (time_adjust < -MAX_TICKADJ) { | |
472 | time_adjust += MAX_TICKADJ; | |
473 | tick_length -= MAX_TICKADJ_SCALED; | |
bd331268 | 474 | goto out; |
3c972c24 IM |
475 | } |
476 | ||
477 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) | |
478 | << NTP_SCALE_SHIFT; | |
479 | time_adjust = 0; | |
6b43ae8a | 480 | |
bd331268 | 481 | out: |
a6c0c943 | 482 | raw_spin_unlock_irqrestore(&ntp_lock, flags); |
6b43ae8a JS |
483 | |
484 | return leap; | |
4c7ee8de JS |
485 | } |
486 | ||
023f333a | 487 | #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) |
eb3f938f | 488 | static void sync_cmos_clock(struct work_struct *work); |
82644459 | 489 | |
eb3f938f | 490 | static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock); |
82644459 | 491 | |
eb3f938f | 492 | static void sync_cmos_clock(struct work_struct *work) |
82644459 TG |
493 | { |
494 | struct timespec now, next; | |
495 | int fail = 1; | |
496 | ||
497 | /* | |
498 | * If we have an externally synchronized Linux clock, then update | |
499 | * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | |
500 | * called as close as possible to 500 ms before the new second starts. | |
501 | * This code is run on a timer. If the clock is set, that timer | |
502 | * may not expire at the correct time. Thus, we adjust... | |
503 | */ | |
53bbfa9e | 504 | if (!ntp_synced()) { |
82644459 TG |
505 | /* |
506 | * Not synced, exit, do not restart a timer (if one is | |
507 | * running, let it run out). | |
508 | */ | |
509 | return; | |
53bbfa9e | 510 | } |
82644459 TG |
511 | |
512 | getnstimeofday(&now); | |
023f333a | 513 | if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) { |
84e345e4 PB |
514 | struct timespec adjust = now; |
515 | ||
023f333a | 516 | fail = -ENODEV; |
84e345e4 PB |
517 | if (persistent_clock_is_local) |
518 | adjust.tv_sec -= (sys_tz.tz_minuteswest * 60); | |
023f333a | 519 | #ifdef CONFIG_GENERIC_CMOS_UPDATE |
84e345e4 | 520 | fail = update_persistent_clock(adjust); |
023f333a JG |
521 | #endif |
522 | #ifdef CONFIG_RTC_SYSTOHC | |
523 | if (fail == -ENODEV) | |
84e345e4 | 524 | fail = rtc_set_ntp_time(adjust); |
023f333a JG |
525 | #endif |
526 | } | |
82644459 | 527 | |
4ff4b9e1 | 528 | next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2); |
82644459 TG |
529 | if (next.tv_nsec <= 0) |
530 | next.tv_nsec += NSEC_PER_SEC; | |
531 | ||
023f333a | 532 | if (!fail || fail == -ENODEV) |
82644459 TG |
533 | next.tv_sec = 659; |
534 | else | |
535 | next.tv_sec = 0; | |
536 | ||
537 | if (next.tv_nsec >= NSEC_PER_SEC) { | |
538 | next.tv_sec++; | |
539 | next.tv_nsec -= NSEC_PER_SEC; | |
540 | } | |
eb3f938f | 541 | schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next)); |
82644459 TG |
542 | } |
543 | ||
544 | static void notify_cmos_timer(void) | |
4c7ee8de | 545 | { |
335dd858 | 546 | schedule_delayed_work(&sync_cmos_work, 0); |
4c7ee8de JS |
547 | } |
548 | ||
82644459 TG |
549 | #else |
550 | static inline void notify_cmos_timer(void) { } | |
551 | #endif | |
552 | ||
80f22571 IM |
553 | |
554 | /* | |
555 | * Propagate a new txc->status value into the NTP state: | |
556 | */ | |
557 | static inline void process_adj_status(struct timex *txc, struct timespec *ts) | |
558 | { | |
80f22571 IM |
559 | if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { |
560 | time_state = TIME_OK; | |
561 | time_status = STA_UNSYNC; | |
025b40ab AG |
562 | /* restart PPS frequency calibration */ |
563 | pps_reset_freq_interval(); | |
80f22571 | 564 | } |
80f22571 IM |
565 | |
566 | /* | |
567 | * If we turn on PLL adjustments then reset the | |
568 | * reference time to current time. | |
569 | */ | |
570 | if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) | |
7e1b5847 | 571 | time_reftime = get_seconds(); |
80f22571 | 572 | |
a2a5ac86 JS |
573 | /* only set allowed bits */ |
574 | time_status &= STA_RONLY; | |
80f22571 | 575 | time_status |= txc->status & ~STA_RONLY; |
80f22571 | 576 | } |
cd5398be | 577 | |
80f22571 | 578 | /* |
cd5398be | 579 | * Called with ntp_lock held, so we can access and modify |
80f22571 IM |
580 | * all the global NTP state: |
581 | */ | |
582 | static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts) | |
583 | { | |
584 | if (txc->modes & ADJ_STATUS) | |
585 | process_adj_status(txc, ts); | |
586 | ||
587 | if (txc->modes & ADJ_NANO) | |
588 | time_status |= STA_NANO; | |
e9629165 | 589 | |
80f22571 IM |
590 | if (txc->modes & ADJ_MICRO) |
591 | time_status &= ~STA_NANO; | |
592 | ||
593 | if (txc->modes & ADJ_FREQUENCY) { | |
2b9d1496 | 594 | time_freq = txc->freq * PPM_SCALE; |
80f22571 IM |
595 | time_freq = min(time_freq, MAXFREQ_SCALED); |
596 | time_freq = max(time_freq, -MAXFREQ_SCALED); | |
025b40ab AG |
597 | /* update pps_freq */ |
598 | pps_set_freq(time_freq); | |
80f22571 IM |
599 | } |
600 | ||
601 | if (txc->modes & ADJ_MAXERROR) | |
602 | time_maxerror = txc->maxerror; | |
e9629165 | 603 | |
80f22571 IM |
604 | if (txc->modes & ADJ_ESTERROR) |
605 | time_esterror = txc->esterror; | |
606 | ||
607 | if (txc->modes & ADJ_TIMECONST) { | |
608 | time_constant = txc->constant; | |
609 | if (!(time_status & STA_NANO)) | |
610 | time_constant += 4; | |
611 | time_constant = min(time_constant, (long)MAXTC); | |
612 | time_constant = max(time_constant, 0l); | |
613 | } | |
614 | ||
615 | if (txc->modes & ADJ_TAI && txc->constant > 0) | |
616 | time_tai = txc->constant; | |
617 | ||
618 | if (txc->modes & ADJ_OFFSET) | |
619 | ntp_update_offset(txc->offset); | |
e9629165 | 620 | |
80f22571 IM |
621 | if (txc->modes & ADJ_TICK) |
622 | tick_usec = txc->tick; | |
623 | ||
624 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | |
625 | ntp_update_frequency(); | |
626 | } | |
627 | ||
53bbfa9e IM |
628 | /* |
629 | * adjtimex mainly allows reading (and writing, if superuser) of | |
4c7ee8de JS |
630 | * kernel time-keeping variables. used by xntpd. |
631 | */ | |
632 | int do_adjtimex(struct timex *txc) | |
633 | { | |
eea83d89 | 634 | struct timespec ts; |
4c7ee8de JS |
635 | int result; |
636 | ||
916c7a85 RZ |
637 | /* Validate the data before disabling interrupts */ |
638 | if (txc->modes & ADJ_ADJTIME) { | |
eea83d89 | 639 | /* singleshot must not be used with any other mode bits */ |
916c7a85 | 640 | if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) |
4c7ee8de | 641 | return -EINVAL; |
916c7a85 RZ |
642 | if (!(txc->modes & ADJ_OFFSET_READONLY) && |
643 | !capable(CAP_SYS_TIME)) | |
644 | return -EPERM; | |
645 | } else { | |
646 | /* In order to modify anything, you gotta be super-user! */ | |
647 | if (txc->modes && !capable(CAP_SYS_TIME)) | |
648 | return -EPERM; | |
649 | ||
53bbfa9e IM |
650 | /* |
651 | * if the quartz is off by more than 10% then | |
652 | * something is VERY wrong! | |
653 | */ | |
916c7a85 RZ |
654 | if (txc->modes & ADJ_TICK && |
655 | (txc->tick < 900000/USER_HZ || | |
656 | txc->tick > 1100000/USER_HZ)) | |
e9629165 | 657 | return -EINVAL; |
52bfb360 | 658 | } |
4c7ee8de | 659 | |
094aa188 RC |
660 | if (txc->modes & ADJ_SETOFFSET) { |
661 | struct timespec delta; | |
094aa188 RC |
662 | delta.tv_sec = txc->time.tv_sec; |
663 | delta.tv_nsec = txc->time.tv_usec; | |
4352d9d4 RC |
664 | if (!capable(CAP_SYS_TIME)) |
665 | return -EPERM; | |
094aa188 RC |
666 | if (!(txc->modes & ADJ_NANO)) |
667 | delta.tv_nsec *= 1000; | |
db1c1cce RC |
668 | result = timekeeping_inject_offset(&delta); |
669 | if (result) | |
670 | return result; | |
094aa188 RC |
671 | } |
672 | ||
7dffa3c6 RZ |
673 | getnstimeofday(&ts); |
674 | ||
a6c0c943 | 675 | raw_spin_lock_irq(&ntp_lock); |
4c7ee8de | 676 | |
916c7a85 RZ |
677 | if (txc->modes & ADJ_ADJTIME) { |
678 | long save_adjust = time_adjust; | |
679 | ||
680 | if (!(txc->modes & ADJ_OFFSET_READONLY)) { | |
681 | /* adjtime() is independent from ntp_adjtime() */ | |
682 | time_adjust = txc->offset; | |
683 | ntp_update_frequency(); | |
684 | } | |
685 | txc->offset = save_adjust; | |
e9629165 | 686 | } else { |
ee9851b2 | 687 | |
e9629165 IM |
688 | /* If there are input parameters, then process them: */ |
689 | if (txc->modes) | |
690 | process_adjtimex_modes(txc, &ts); | |
eea83d89 | 691 | |
e9629165 | 692 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, |
916c7a85 | 693 | NTP_SCALE_SHIFT); |
e9629165 IM |
694 | if (!(time_status & STA_NANO)) |
695 | txc->offset /= NSEC_PER_USEC; | |
696 | } | |
916c7a85 | 697 | |
eea83d89 | 698 | result = time_state; /* mostly `TIME_OK' */ |
025b40ab AG |
699 | /* check for errors */ |
700 | if (is_error_status(time_status)) | |
4c7ee8de JS |
701 | result = TIME_ERROR; |
702 | ||
d40e944c | 703 | txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * |
2b9d1496 | 704 | PPM_SCALE_INV, NTP_SCALE_SHIFT); |
4c7ee8de JS |
705 | txc->maxerror = time_maxerror; |
706 | txc->esterror = time_esterror; | |
707 | txc->status = time_status; | |
708 | txc->constant = time_constant; | |
70bc42f9 | 709 | txc->precision = 1; |
074b3b87 | 710 | txc->tolerance = MAXFREQ_SCALED / PPM_SCALE; |
4c7ee8de | 711 | txc->tick = tick_usec; |
153b5d05 | 712 | txc->tai = time_tai; |
4c7ee8de | 713 | |
025b40ab AG |
714 | /* fill PPS status fields */ |
715 | pps_fill_timex(txc); | |
e9629165 | 716 | |
a6c0c943 | 717 | raw_spin_unlock_irq(&ntp_lock); |
ee9851b2 | 718 | |
eea83d89 RZ |
719 | txc->time.tv_sec = ts.tv_sec; |
720 | txc->time.tv_usec = ts.tv_nsec; | |
721 | if (!(time_status & STA_NANO)) | |
722 | txc->time.tv_usec /= NSEC_PER_USEC; | |
ee9851b2 | 723 | |
82644459 | 724 | notify_cmos_timer(); |
ee9851b2 RZ |
725 | |
726 | return result; | |
4c7ee8de | 727 | } |
10a398d0 | 728 | |
025b40ab AG |
729 | #ifdef CONFIG_NTP_PPS |
730 | ||
731 | /* actually struct pps_normtime is good old struct timespec, but it is | |
732 | * semantically different (and it is the reason why it was invented): | |
733 | * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] | |
734 | * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */ | |
735 | struct pps_normtime { | |
736 | __kernel_time_t sec; /* seconds */ | |
737 | long nsec; /* nanoseconds */ | |
738 | }; | |
739 | ||
740 | /* normalize the timestamp so that nsec is in the | |
741 | ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */ | |
742 | static inline struct pps_normtime pps_normalize_ts(struct timespec ts) | |
743 | { | |
744 | struct pps_normtime norm = { | |
745 | .sec = ts.tv_sec, | |
746 | .nsec = ts.tv_nsec | |
747 | }; | |
748 | ||
749 | if (norm.nsec > (NSEC_PER_SEC >> 1)) { | |
750 | norm.nsec -= NSEC_PER_SEC; | |
751 | norm.sec++; | |
752 | } | |
753 | ||
754 | return norm; | |
755 | } | |
756 | ||
757 | /* get current phase correction and jitter */ | |
758 | static inline long pps_phase_filter_get(long *jitter) | |
759 | { | |
760 | *jitter = pps_tf[0] - pps_tf[1]; | |
761 | if (*jitter < 0) | |
762 | *jitter = -*jitter; | |
763 | ||
764 | /* TODO: test various filters */ | |
765 | return pps_tf[0]; | |
766 | } | |
767 | ||
768 | /* add the sample to the phase filter */ | |
769 | static inline void pps_phase_filter_add(long err) | |
770 | { | |
771 | pps_tf[2] = pps_tf[1]; | |
772 | pps_tf[1] = pps_tf[0]; | |
773 | pps_tf[0] = err; | |
774 | } | |
775 | ||
776 | /* decrease frequency calibration interval length. | |
777 | * It is halved after four consecutive unstable intervals. | |
778 | */ | |
779 | static inline void pps_dec_freq_interval(void) | |
780 | { | |
781 | if (--pps_intcnt <= -PPS_INTCOUNT) { | |
782 | pps_intcnt = -PPS_INTCOUNT; | |
783 | if (pps_shift > PPS_INTMIN) { | |
784 | pps_shift--; | |
785 | pps_intcnt = 0; | |
786 | } | |
787 | } | |
788 | } | |
789 | ||
790 | /* increase frequency calibration interval length. | |
791 | * It is doubled after four consecutive stable intervals. | |
792 | */ | |
793 | static inline void pps_inc_freq_interval(void) | |
794 | { | |
795 | if (++pps_intcnt >= PPS_INTCOUNT) { | |
796 | pps_intcnt = PPS_INTCOUNT; | |
797 | if (pps_shift < PPS_INTMAX) { | |
798 | pps_shift++; | |
799 | pps_intcnt = 0; | |
800 | } | |
801 | } | |
802 | } | |
803 | ||
804 | /* update clock frequency based on MONOTONIC_RAW clock PPS signal | |
805 | * timestamps | |
806 | * | |
807 | * At the end of the calibration interval the difference between the | |
808 | * first and last MONOTONIC_RAW clock timestamps divided by the length | |
809 | * of the interval becomes the frequency update. If the interval was | |
810 | * too long, the data are discarded. | |
811 | * Returns the difference between old and new frequency values. | |
812 | */ | |
813 | static long hardpps_update_freq(struct pps_normtime freq_norm) | |
814 | { | |
815 | long delta, delta_mod; | |
816 | s64 ftemp; | |
817 | ||
818 | /* check if the frequency interval was too long */ | |
819 | if (freq_norm.sec > (2 << pps_shift)) { | |
820 | time_status |= STA_PPSERROR; | |
821 | pps_errcnt++; | |
822 | pps_dec_freq_interval(); | |
823 | pr_err("hardpps: PPSERROR: interval too long - %ld s\n", | |
824 | freq_norm.sec); | |
825 | return 0; | |
826 | } | |
827 | ||
828 | /* here the raw frequency offset and wander (stability) is | |
829 | * calculated. If the wander is less than the wander threshold | |
830 | * the interval is increased; otherwise it is decreased. | |
831 | */ | |
832 | ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT, | |
833 | freq_norm.sec); | |
834 | delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT); | |
835 | pps_freq = ftemp; | |
836 | if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) { | |
837 | pr_warning("hardpps: PPSWANDER: change=%ld\n", delta); | |
838 | time_status |= STA_PPSWANDER; | |
839 | pps_stbcnt++; | |
840 | pps_dec_freq_interval(); | |
841 | } else { /* good sample */ | |
842 | pps_inc_freq_interval(); | |
843 | } | |
844 | ||
845 | /* the stability metric is calculated as the average of recent | |
846 | * frequency changes, but is used only for performance | |
847 | * monitoring | |
848 | */ | |
849 | delta_mod = delta; | |
850 | if (delta_mod < 0) | |
851 | delta_mod = -delta_mod; | |
852 | pps_stabil += (div_s64(((s64)delta_mod) << | |
853 | (NTP_SCALE_SHIFT - SHIFT_USEC), | |
854 | NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN; | |
855 | ||
856 | /* if enabled, the system clock frequency is updated */ | |
857 | if ((time_status & STA_PPSFREQ) != 0 && | |
858 | (time_status & STA_FREQHOLD) == 0) { | |
859 | time_freq = pps_freq; | |
860 | ntp_update_frequency(); | |
861 | } | |
862 | ||
863 | return delta; | |
864 | } | |
865 | ||
866 | /* correct REALTIME clock phase error against PPS signal */ | |
867 | static void hardpps_update_phase(long error) | |
868 | { | |
869 | long correction = -error; | |
870 | long jitter; | |
871 | ||
872 | /* add the sample to the median filter */ | |
873 | pps_phase_filter_add(correction); | |
874 | correction = pps_phase_filter_get(&jitter); | |
875 | ||
876 | /* Nominal jitter is due to PPS signal noise. If it exceeds the | |
877 | * threshold, the sample is discarded; otherwise, if so enabled, | |
878 | * the time offset is updated. | |
879 | */ | |
880 | if (jitter > (pps_jitter << PPS_POPCORN)) { | |
881 | pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n", | |
882 | jitter, (pps_jitter << PPS_POPCORN)); | |
883 | time_status |= STA_PPSJITTER; | |
884 | pps_jitcnt++; | |
885 | } else if (time_status & STA_PPSTIME) { | |
886 | /* correct the time using the phase offset */ | |
887 | time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT, | |
888 | NTP_INTERVAL_FREQ); | |
889 | /* cancel running adjtime() */ | |
890 | time_adjust = 0; | |
891 | } | |
892 | /* update jitter */ | |
893 | pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN; | |
894 | } | |
895 | ||
896 | /* | |
897 | * hardpps() - discipline CPU clock oscillator to external PPS signal | |
898 | * | |
899 | * This routine is called at each PPS signal arrival in order to | |
900 | * discipline the CPU clock oscillator to the PPS signal. It takes two | |
901 | * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former | |
902 | * is used to correct clock phase error and the latter is used to | |
903 | * correct the frequency. | |
904 | * | |
905 | * This code is based on David Mills's reference nanokernel | |
906 | * implementation. It was mostly rewritten but keeps the same idea. | |
907 | */ | |
908 | void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) | |
909 | { | |
910 | struct pps_normtime pts_norm, freq_norm; | |
911 | unsigned long flags; | |
912 | ||
913 | pts_norm = pps_normalize_ts(*phase_ts); | |
914 | ||
a6c0c943 | 915 | raw_spin_lock_irqsave(&ntp_lock, flags); |
025b40ab AG |
916 | |
917 | /* clear the error bits, they will be set again if needed */ | |
918 | time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); | |
919 | ||
920 | /* indicate signal presence */ | |
921 | time_status |= STA_PPSSIGNAL; | |
922 | pps_valid = PPS_VALID; | |
923 | ||
924 | /* when called for the first time, | |
925 | * just start the frequency interval */ | |
926 | if (unlikely(pps_fbase.tv_sec == 0)) { | |
927 | pps_fbase = *raw_ts; | |
a6c0c943 | 928 | raw_spin_unlock_irqrestore(&ntp_lock, flags); |
025b40ab AG |
929 | return; |
930 | } | |
931 | ||
932 | /* ok, now we have a base for frequency calculation */ | |
933 | freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase)); | |
934 | ||
935 | /* check that the signal is in the range | |
936 | * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */ | |
937 | if ((freq_norm.sec == 0) || | |
938 | (freq_norm.nsec > MAXFREQ * freq_norm.sec) || | |
939 | (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) { | |
940 | time_status |= STA_PPSJITTER; | |
941 | /* restart the frequency calibration interval */ | |
942 | pps_fbase = *raw_ts; | |
a6c0c943 | 943 | raw_spin_unlock_irqrestore(&ntp_lock, flags); |
025b40ab AG |
944 | pr_err("hardpps: PPSJITTER: bad pulse\n"); |
945 | return; | |
946 | } | |
947 | ||
948 | /* signal is ok */ | |
949 | ||
950 | /* check if the current frequency interval is finished */ | |
951 | if (freq_norm.sec >= (1 << pps_shift)) { | |
952 | pps_calcnt++; | |
953 | /* restart the frequency calibration interval */ | |
954 | pps_fbase = *raw_ts; | |
955 | hardpps_update_freq(freq_norm); | |
956 | } | |
957 | ||
958 | hardpps_update_phase(pts_norm.nsec); | |
959 | ||
a6c0c943 | 960 | raw_spin_unlock_irqrestore(&ntp_lock, flags); |
025b40ab AG |
961 | } |
962 | EXPORT_SYMBOL(hardpps); | |
963 | ||
964 | #endif /* CONFIG_NTP_PPS */ | |
965 | ||
10a398d0 RZ |
966 | static int __init ntp_tick_adj_setup(char *str) |
967 | { | |
968 | ntp_tick_adj = simple_strtol(str, NULL, 0); | |
069569e0 IM |
969 | ntp_tick_adj <<= NTP_SCALE_SHIFT; |
970 | ||
10a398d0 RZ |
971 | return 1; |
972 | } | |
973 | ||
974 | __setup("ntp_tick_adj=", ntp_tick_adj_setup); | |
7dffa3c6 RZ |
975 | |
976 | void __init ntp_init(void) | |
977 | { | |
978 | ntp_clear(); | |
7dffa3c6 | 979 | } |