]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/posix-cpu-timers.c
Merge tag 'pinctrl-v5.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-jammy-kernel.git] / kernel / time / posix-cpu-timers.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * Implement CPU time clocks for the POSIX clock interface.
4 */
5
3f07c014 6#include <linux/sched/signal.h>
32ef5517 7#include <linux/sched/cputime.h>
1da177e4 8#include <linux/posix-timers.h>
1da177e4 9#include <linux/errno.h>
f8bd2258 10#include <linux/math64.h>
7c0f6ba6 11#include <linux/uaccess.h>
bb34d92f 12#include <linux/kernel_stat.h>
3f0a525e 13#include <trace/events/timer.h>
a8572160
FW
14#include <linux/tick.h>
15#include <linux/workqueue.h>
edbeda46 16#include <linux/compat.h>
34be3930 17#include <linux/sched/deadline.h>
1da177e4 18
bab0aae9
TG
19#include "posix-timers.h"
20
f37fb0aa
TG
21static void posix_cpu_timer_rearm(struct k_itimer *timer);
22
3a245c0f
TG
23void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
24{
25 posix_cputimers_init(pct);
244d49e3 26 if (cpu_limit != RLIM_INFINITY) {
87dc6448 27 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
244d49e3
TG
28 pct->timers_active = true;
29 }
3a245c0f
TG
30}
31
f06febc9 32/*
f55db609 33 * Called after updating RLIMIT_CPU to run cpu timer and update
87dc6448
TG
34 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
35 * necessary. Needs siglock protection since other code may update the
3a245c0f 36 * expiration cache as well.
f06febc9 37 */
5ab46b34 38void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
f06febc9 39{
858cf3a8 40 u64 nsecs = rlim_new * NSEC_PER_SEC;
f06febc9 41
5ab46b34 42 spin_lock_irq(&task->sighand->siglock);
858cf3a8 43 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
5ab46b34 44 spin_unlock_irq(&task->sighand->siglock);
f06febc9
FM
45}
46
6ae40e3f
TG
47/*
48 * Functions for validating access to tasks.
49 */
96498773 50static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
1da177e4 51{
96498773
EB
52 const bool thread = !!CPUCLOCK_PERTHREAD(clock);
53 const pid_t upid = CPUCLOCK_PID(clock);
54 struct pid *pid;
55
56 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
57 return NULL;
1da177e4 58
77b4b542
TG
59 /*
60 * If the encoded PID is 0, then the timer is targeted at current
61 * or the process to which current belongs.
62 */
96498773
EB
63 if (upid == 0)
64 return thread ? task_pid(current) : task_tgid(current);
1da177e4 65
96498773
EB
66 pid = find_vpid(upid);
67 if (!pid)
68 return NULL;
77b4b542 69
96498773
EB
70 if (thread) {
71 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
72 return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
73 }
77b4b542 74
c7f51940 75 /*
96498773
EB
76 * For clock_gettime(PROCESS) allow finding the process by
77 * with the pid of the current task. The code needs the tgid
78 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
79 * used to find the process.
c7f51940 80 */
96498773
EB
81 if (gettime && (pid == task_pid(current)))
82 return task_tgid(current);
77b4b542
TG
83
84 /*
96498773 85 * For processes require that pid identifies a process.
77b4b542 86 */
96498773 87 return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
6ae40e3f
TG
88}
89
90static inline int validate_clock_permissions(const clockid_t clock)
91{
9bf7c324
EB
92 int ret;
93
94 rcu_read_lock();
96498773 95 ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
9bf7c324
EB
96 rcu_read_unlock();
97
98 return ret;
1da177e4
LT
99}
100
fece9826 101static inline enum pid_type clock_pid_type(const clockid_t clock)
55e8c8eb 102{
fece9826 103 return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
55e8c8eb
EB
104}
105
106static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
107{
fece9826 108 return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
55e8c8eb
EB
109}
110
1da177e4
LT
111/*
112 * Update expiry time from increment, and increase overrun count,
113 * given the current clock sample.
114 */
60bda037 115static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
1da177e4 116{
60bda037 117 u64 delta, incr, expires = timer->it.cpu.node.expires;
1da177e4
LT
118 int i;
119
16118794 120 if (!timer->it_interval)
60bda037 121 return expires;
1da177e4 122
60bda037
TG
123 if (now < expires)
124 return expires;
1da177e4 125
16118794 126 incr = timer->it_interval;
60bda037 127 delta = now + incr - expires;
1da177e4 128
55ccb616
FW
129 /* Don't use (incr*2 < delta), incr*2 might overflow. */
130 for (i = 0; incr < delta - incr; i++)
131 incr = incr << 1;
132
133 for (; i >= 0; incr >>= 1, i--) {
134 if (delta < incr)
135 continue;
136
60bda037 137 timer->it.cpu.node.expires += incr;
78c9c4df 138 timer->it_overrun += 1LL << i;
55ccb616 139 delta -= incr;
1da177e4 140 }
60bda037 141 return timer->it.cpu.node.expires;
1da177e4
LT
142}
143
2bbdbdae
TG
144/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
145static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
555347f6 146{
2bbdbdae
TG
147 return !(~pct->bases[CPUCLOCK_PROF].nextevt |
148 ~pct->bases[CPUCLOCK_VIRT].nextevt |
149 ~pct->bases[CPUCLOCK_SCHED].nextevt);
555347f6
FW
150}
151
bc2c8ea4 152static int
d2e3e0ca 153posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
1da177e4 154{
6ae40e3f
TG
155 int error = validate_clock_permissions(which_clock);
156
1da177e4
LT
157 if (!error) {
158 tp->tv_sec = 0;
159 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
160 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
161 /*
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
165 */
166 tp->tv_nsec = 1;
167 }
168 }
169 return error;
170}
171
bc2c8ea4 172static int
6ae40e3f 173posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
1da177e4 174{
6ae40e3f
TG
175 int error = validate_clock_permissions(clock);
176
1da177e4
LT
177 /*
178 * You can never reset a CPU clock, but we check for other errors
179 * in the call before failing with EPERM.
180 */
6ae40e3f 181 return error ? : -EPERM;
1da177e4
LT
182}
183
1da177e4 184/*
2092c1d4 185 * Sample a per-thread clock for the given task. clkid is validated.
1da177e4 186 */
8c2d74f0 187static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
1da177e4 188{
ab693c5a
TG
189 u64 utime, stime;
190
191 if (clkid == CPUCLOCK_SCHED)
192 return task_sched_runtime(p);
193
194 task_cputime(p, &utime, &stime);
195
2092c1d4 196 switch (clkid) {
1da177e4 197 case CPUCLOCK_PROF:
ab693c5a 198 return utime + stime;
1da177e4 199 case CPUCLOCK_VIRT:
ab693c5a 200 return utime;
2092c1d4
TG
201 default:
202 WARN_ON_ONCE(1);
1da177e4 203 }
8c2d74f0 204 return 0;
1da177e4
LT
205}
206
b0d524f7
TG
207static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
208{
209 samples[CPUCLOCK_PROF] = stime + utime;
210 samples[CPUCLOCK_VIRT] = utime;
211 samples[CPUCLOCK_SCHED] = rtime;
212}
213
214static void task_sample_cputime(struct task_struct *p, u64 *samples)
215{
216 u64 stime, utime;
217
218 task_cputime(p, &utime, &stime);
219 store_samples(samples, stime, utime, p->se.sum_exec_runtime);
220}
221
222static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
223 u64 *samples)
224{
225 u64 stime, utime, rtime;
226
227 utime = atomic64_read(&at->utime);
228 stime = atomic64_read(&at->stime);
229 rtime = atomic64_read(&at->sum_exec_runtime);
230 store_samples(samples, stime, utime, rtime);
231}
232
1018016c
JL
233/*
234 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
235 * to avoid race conditions with concurrent updates to cputime.
236 */
237static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
4da94d49 238{
1018016c
JL
239 u64 curr_cputime;
240retry:
241 curr_cputime = atomic64_read(cputime);
242 if (sum_cputime > curr_cputime) {
243 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
244 goto retry;
245 }
246}
4da94d49 247
b7be4ef1
TG
248static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
249 struct task_cputime *sum)
1018016c 250{
71107445
JL
251 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
252 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
253 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
1018016c 254}
4da94d49 255
19298fbf
TG
256/**
257 * thread_group_sample_cputime - Sample cputime for a given task
258 * @tsk: Task for which cputime needs to be started
7f2cbcbc 259 * @samples: Storage for time samples
19298fbf
TG
260 *
261 * Called from sys_getitimer() to calculate the expiry time of an active
262 * timer. That means group cputime accounting is already active. Called
263 * with task sighand lock held.
264 *
265 * Updates @times with an uptodate sample of the thread group cputimes.
266 */
b7be4ef1 267void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
19298fbf
TG
268{
269 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
244d49e3 270 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
19298fbf 271
244d49e3 272 WARN_ON_ONCE(!pct->timers_active);
19298fbf 273
b7be4ef1 274 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
19298fbf
TG
275}
276
c506bef4
TG
277/**
278 * thread_group_start_cputime - Start cputime and return a sample
279 * @tsk: Task for which cputime needs to be started
b7be4ef1 280 * @samples: Storage for time samples
c506bef4 281 *
4bf07f65 282 * The thread group cputime accounting is avoided when there are no posix
c506bef4
TG
283 * CPU timers armed. Before starting a timer it's required to check whether
284 * the time accounting is active. If not, a full update of the atomic
285 * accounting store needs to be done and the accounting enabled.
286 *
287 * Updates @times with an uptodate sample of the thread group cputimes.
288 */
b7be4ef1 289static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
4da94d49
PZ
290{
291 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
244d49e3 292 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
4da94d49 293
a5dec9f8
FW
294 lockdep_assert_task_sighand_held(tsk);
295
1018016c 296 /* Check if cputimer isn't running. This is accessed without locking. */
244d49e3 297 if (!READ_ONCE(pct->timers_active)) {
b7be4ef1
TG
298 struct task_cputime sum;
299
4da94d49
PZ
300 /*
301 * The POSIX timer interface allows for absolute time expiry
302 * values through the TIMER_ABSTIME flag, therefore we have
1018016c 303 * to synchronize the timer to the clock every time we start it.
4da94d49 304 */
ebd7e7fc 305 thread_group_cputime(tsk, &sum);
71107445 306 update_gt_cputime(&cputimer->cputime_atomic, &sum);
1018016c
JL
307
308 /*
244d49e3
TG
309 * We're setting timers_active without a lock. Ensure this
310 * only gets written to in one operation. We set it after
311 * update_gt_cputime() as a small optimization, but
312 * barriers are not required because update_gt_cputime()
1018016c
JL
313 * can handle concurrent updates.
314 */
244d49e3 315 WRITE_ONCE(pct->timers_active, true);
1018016c 316 }
b7be4ef1
TG
317 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
318}
319
320static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
321{
322 struct task_cputime ct;
323
324 thread_group_cputime(tsk, &ct);
325 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
4da94d49
PZ
326}
327
1da177e4 328/*
24ab7f5a
TG
329 * Sample a process (thread group) clock for the given task clkid. If the
330 * group's cputime accounting is already enabled, read the atomic
a2efdbf4 331 * store. Otherwise a full update is required. clkid is already validated.
1da177e4 332 */
8c2d74f0
TG
333static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
334 bool start)
1da177e4 335{
24ab7f5a 336 struct thread_group_cputimer *cputimer = &p->signal->cputimer;
244d49e3 337 struct posix_cputimers *pct = &p->signal->posix_cputimers;
b7be4ef1 338 u64 samples[CPUCLOCK_MAX];
f06febc9 339
244d49e3 340 if (!READ_ONCE(pct->timers_active)) {
24ab7f5a 341 if (start)
b7be4ef1 342 thread_group_start_cputime(p, samples);
24ab7f5a 343 else
b7be4ef1 344 __thread_group_cputime(p, samples);
24ab7f5a 345 } else {
b7be4ef1 346 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
24ab7f5a
TG
347 }
348
b7be4ef1 349 return samples[clkid];
1da177e4
LT
350}
351
bfcf3e92 352static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
33ab0fec 353{
bfcf3e92
TG
354 const clockid_t clkid = CPUCLOCK_WHICH(clock);
355 struct task_struct *tsk;
356 u64 t;
33ab0fec 357
9bf7c324 358 rcu_read_lock();
96498773 359 tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
9bf7c324
EB
360 if (!tsk) {
361 rcu_read_unlock();
bfcf3e92 362 return -EINVAL;
9bf7c324 363 }
1da177e4 364
bfcf3e92 365 if (CPUCLOCK_PERTHREAD(clock))
8c2d74f0 366 t = cpu_clock_sample(clkid, tsk);
bfcf3e92 367 else
8c2d74f0 368 t = cpu_clock_sample_group(clkid, tsk, false);
9bf7c324 369 rcu_read_unlock();
1da177e4 370
bfcf3e92
TG
371 *tp = ns_to_timespec64(t);
372 return 0;
1da177e4
LT
373}
374
1da177e4
LT
375/*
376 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
377 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
378 * new timer already all-zeros initialized.
1da177e4 379 */
bc2c8ea4 380static int posix_cpu_timer_create(struct k_itimer *new_timer)
1da177e4 381{
1fb497dd 382 static struct lock_class_key posix_cpu_timers_key;
96498773 383 struct pid *pid;
1da177e4 384
9bf7c324 385 rcu_read_lock();
96498773
EB
386 pid = pid_for_clock(new_timer->it_clock, false);
387 if (!pid) {
9bf7c324 388 rcu_read_unlock();
1da177e4 389 return -EINVAL;
9bf7c324 390 }
1da177e4 391
1fb497dd
TG
392 /*
393 * If posix timer expiry is handled in task work context then
394 * timer::it_lock can be taken without disabling interrupts as all
4bf07f65 395 * other locking happens in task context. This requires a separate
1fb497dd
TG
396 * lock class key otherwise regular posix timer expiry would record
397 * the lock class being taken in interrupt context and generate a
398 * false positive warning.
399 */
400 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
401 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
402
d97bb75d 403 new_timer->kclock = &clock_posix_cpu;
60bda037 404 timerqueue_init(&new_timer->it.cpu.node);
96498773 405 new_timer->it.cpu.pid = get_pid(pid);
9bf7c324 406 rcu_read_unlock();
e5a8b65b 407 return 0;
1da177e4
LT
408}
409
5c8f23e6
FW
410static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
411 struct task_struct *tsk)
412{
413 int clkidx = CPUCLOCK_WHICH(timer->it_clock);
414
415 if (CPUCLOCK_PERTHREAD(timer->it_clock))
416 return tsk->posix_cputimers.bases + clkidx;
417 else
418 return tsk->signal->posix_cputimers.bases + clkidx;
419}
420
ee375328
FW
421/*
422 * Force recalculating the base earliest expiration on the next tick.
423 * This will also re-evaluate the need to keep around the process wide
424 * cputime counter and tick dependency and eventually shut these down
425 * if necessary.
426 */
427static void trigger_base_recalc_expires(struct k_itimer *timer,
428 struct task_struct *tsk)
429{
430 struct posix_cputimer_base *base = timer_base(timer, tsk);
431
432 base->nextevt = 0;
433}
434
175cc3ab
FW
435/*
436 * Dequeue the timer and reset the base if it was its earliest expiration.
437 * It makes sure the next tick recalculates the base next expiration so we
438 * don't keep the costly process wide cputime counter around for a random
439 * amount of time, along with the tick dependency.
440 *
441 * If another timer gets queued between this and the next tick, its
442 * expiration will update the base next event if necessary on the next
443 * tick.
444 */
445static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
446{
447 struct cpu_timer *ctmr = &timer->it.cpu;
448 struct posix_cputimer_base *base;
175cc3ab
FW
449
450 if (!cpu_timer_dequeue(ctmr))
451 return;
452
5c8f23e6 453 base = timer_base(timer, p);
175cc3ab 454 if (cpu_timer_getexpires(ctmr) == base->nextevt)
ee375328 455 trigger_base_recalc_expires(timer, p);
175cc3ab
FW
456}
457
458
1da177e4
LT
459/*
460 * Clean up a CPU-clock timer that is about to be destroyed.
461 * This is called from timer deletion with the timer already locked.
462 * If we return TIMER_RETRY, it's necessary to release the timer's lock
463 * and try again. (This happens when the timer is in the middle of firing.)
464 */
bc2c8ea4 465static int posix_cpu_timer_del(struct k_itimer *timer)
1da177e4 466{
60bda037 467 struct cpu_timer *ctmr = &timer->it.cpu;
3d7a1427 468 struct sighand_struct *sighand;
55e8c8eb 469 struct task_struct *p;
60bda037
TG
470 unsigned long flags;
471 int ret = 0;
1da177e4 472
55e8c8eb
EB
473 rcu_read_lock();
474 p = cpu_timer_task_rcu(timer);
475 if (!p)
476 goto out;
108150ea 477
3d7a1427
FW
478 /*
479 * Protect against sighand release/switch in exit/exec and process/
480 * thread timer list entry concurrent read/writes.
481 */
482 sighand = lock_task_sighand(p, &flags);
483 if (unlikely(sighand == NULL)) {
a3222f88 484 /*
60bda037
TG
485 * This raced with the reaping of the task. The exit cleanup
486 * should have removed this timer from the timer queue.
a3222f88 487 */
60bda037 488 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
a3222f88 489 } else {
a3222f88
FW
490 if (timer->it.cpu.firing)
491 ret = TIMER_RETRY;
492 else
175cc3ab 493 disarm_timer(timer, p);
3d7a1427
FW
494
495 unlock_task_sighand(p, &flags);
1da177e4 496 }
a3222f88 497
55e8c8eb
EB
498out:
499 rcu_read_unlock();
a3222f88 500 if (!ret)
55e8c8eb 501 put_pid(ctmr->pid);
1da177e4 502
108150ea 503 return ret;
1da177e4
LT
504}
505
60bda037 506static void cleanup_timerqueue(struct timerqueue_head *head)
1a7fa510 507{
60bda037
TG
508 struct timerqueue_node *node;
509 struct cpu_timer *ctmr;
1a7fa510 510
60bda037
TG
511 while ((node = timerqueue_getnext(head))) {
512 timerqueue_del(head, node);
513 ctmr = container_of(node, struct cpu_timer, node);
514 ctmr->head = NULL;
515 }
1a7fa510
FW
516}
517
1da177e4 518/*
7cb9a94c
TG
519 * Clean out CPU timers which are still armed when a thread exits. The
520 * timers are only removed from the list. No other updates are done. The
521 * corresponding posix timers are still accessible, but cannot be rearmed.
522 *
1da177e4
LT
523 * This must be called with the siglock held.
524 */
2b69942f 525static void cleanup_timers(struct posix_cputimers *pct)
1da177e4 526{
60bda037
TG
527 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
528 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
529 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
1da177e4
LT
530}
531
532/*
533 * These are both called with the siglock held, when the current thread
534 * is being reaped. When the final (leader) thread in the group is reaped,
535 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
536 */
537void posix_cpu_timers_exit(struct task_struct *tsk)
538{
2b69942f 539 cleanup_timers(&tsk->posix_cputimers);
1da177e4
LT
540}
541void posix_cpu_timers_exit_group(struct task_struct *tsk)
542{
2b69942f 543 cleanup_timers(&tsk->signal->posix_cputimers);
1da177e4
LT
544}
545
1da177e4
LT
546/*
547 * Insert the timer on the appropriate list before any timers that
e73d84e3 548 * expire later. This must be called with the sighand lock held.
1da177e4 549 */
beb41d9c 550static void arm_timer(struct k_itimer *timer, struct task_struct *p)
1da177e4 551{
5c8f23e6 552 struct posix_cputimer_base *base = timer_base(timer, p);
60bda037
TG
553 struct cpu_timer *ctmr = &timer->it.cpu;
554 u64 newexp = cpu_timer_getexpires(ctmr);
1da177e4 555
60bda037 556 if (!cpu_timer_enqueue(&base->tqhead, ctmr))
3b495b22 557 return;
5eb9aa64 558
3b495b22
TG
559 /*
560 * We are the new earliest-expiring POSIX 1.b timer, hence
561 * need to update expiration cache. Take into account that
562 * for process timers we share expiration cache with itimers
563 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
564 */
2bbdbdae 565 if (newexp < base->nextevt)
87dc6448 566 base->nextevt = newexp;
1da177e4 567
3b495b22
TG
568 if (CPUCLOCK_PERTHREAD(timer->it_clock))
569 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
570 else
1e4ca26d 571 tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
572}
573
574/*
575 * The timer is locked, fire it and arrange for its reload.
576 */
577static void cpu_timer_fire(struct k_itimer *timer)
578{
60bda037
TG
579 struct cpu_timer *ctmr = &timer->it.cpu;
580
1f169f84
SG
581 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
582 /*
583 * User don't want any signal.
584 */
60bda037 585 cpu_timer_setexpires(ctmr, 0);
1f169f84 586 } else if (unlikely(timer->sigq == NULL)) {
1da177e4
LT
587 /*
588 * This a special case for clock_nanosleep,
589 * not a normal timer from sys_timer_create.
590 */
591 wake_up_process(timer->it_process);
60bda037 592 cpu_timer_setexpires(ctmr, 0);
16118794 593 } else if (!timer->it_interval) {
1da177e4
LT
594 /*
595 * One-shot timer. Clear it as soon as it's fired.
596 */
597 posix_timer_event(timer, 0);
60bda037 598 cpu_timer_setexpires(ctmr, 0);
1da177e4
LT
599 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
600 /*
601 * The signal did not get queued because the signal
602 * was ignored, so we won't get any callback to
603 * reload the timer. But we need to keep it
604 * ticking in case the signal is deliverable next time.
605 */
f37fb0aa 606 posix_cpu_timer_rearm(timer);
af888d67 607 ++timer->it_requeue_pending;
1da177e4
LT
608 }
609}
610
611/*
612 * Guts of sys_timer_settime for CPU timers.
613 * This is called with the timer locked and interrupts disabled.
614 * If we return TIMER_RETRY, it's necessary to release the timer's lock
615 * and try again. (This happens when the timer is in the middle of firing.)
616 */
e73d84e3 617static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
5f252b32 618 struct itimerspec64 *new, struct itimerspec64 *old)
1da177e4 619{
c7a37c6f 620 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
ebd7e7fc 621 u64 old_expires, new_expires, old_incr, val;
60bda037 622 struct cpu_timer *ctmr = &timer->it.cpu;
c7a37c6f 623 struct sighand_struct *sighand;
55e8c8eb 624 struct task_struct *p;
c7a37c6f 625 unsigned long flags;
60bda037 626 int ret = 0;
1da177e4 627
55e8c8eb
EB
628 rcu_read_lock();
629 p = cpu_timer_task_rcu(timer);
630 if (!p) {
631 /*
632 * If p has just been reaped, we can no
633 * longer get any information about it at all.
634 */
635 rcu_read_unlock();
636 return -ESRCH;
637 }
1da177e4 638
098b0e01
TG
639 /*
640 * Use the to_ktime conversion because that clamps the maximum
641 * value to KTIME_MAX and avoid multiplication overflows.
642 */
643 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
1da177e4 644
1da177e4 645 /*
e73d84e3
FW
646 * Protect against sighand release/switch in exit/exec and p->cpu_timers
647 * and p->signal->cpu_timers read/write in arm_timer()
648 */
649 sighand = lock_task_sighand(p, &flags);
650 /*
651 * If p has just been reaped, we can no
1da177e4
LT
652 * longer get any information about it at all.
653 */
55e8c8eb
EB
654 if (unlikely(sighand == NULL)) {
655 rcu_read_unlock();
1da177e4 656 return -ESRCH;
55e8c8eb 657 }
1da177e4
LT
658
659 /*
660 * Disarm any old timer after extracting its expiry time.
661 */
16118794 662 old_incr = timer->it_interval;
60bda037
TG
663 old_expires = cpu_timer_getexpires(ctmr);
664
a69ac4a7
ON
665 if (unlikely(timer->it.cpu.firing)) {
666 timer->it.cpu.firing = -1;
667 ret = TIMER_RETRY;
60bda037
TG
668 } else {
669 cpu_timer_dequeue(ctmr);
670 }
1da177e4
LT
671
672 /*
673 * We need to sample the current value to convert the new
674 * value from to relative and absolute, and to convert the
675 * old value from absolute to relative. To set a process
676 * timer, we need a sample to balance the thread expiry
677 * times (in arm_timer). With an absolute time, we must
678 * check if it's already passed. In short, we need a sample.
679 */
8c2d74f0
TG
680 if (CPUCLOCK_PERTHREAD(timer->it_clock))
681 val = cpu_clock_sample(clkid, p);
682 else
683 val = cpu_clock_sample_group(clkid, p, true);
1da177e4
LT
684
685 if (old) {
55ccb616 686 if (old_expires == 0) {
1da177e4
LT
687 old->it_value.tv_sec = 0;
688 old->it_value.tv_nsec = 0;
689 } else {
690 /*
60bda037
TG
691 * Update the timer in case it has overrun already.
692 * If it has, we'll report it as having overrun and
693 * with the next reloaded timer already ticking,
694 * though we are swallowing that pending
695 * notification here to install the new setting.
1da177e4 696 */
60bda037
TG
697 u64 exp = bump_cpu_timer(timer, val);
698
699 if (val < exp) {
700 old_expires = exp - val;
5f252b32 701 old->it_value = ns_to_timespec64(old_expires);
1da177e4
LT
702 } else {
703 old->it_value.tv_nsec = 1;
704 old->it_value.tv_sec = 0;
705 }
706 }
707 }
708
a69ac4a7 709 if (unlikely(ret)) {
1da177e4
LT
710 /*
711 * We are colliding with the timer actually firing.
712 * Punt after filling in the timer's old value, and
713 * disable this firing since we are already reporting
714 * it as an overrun (thanks to bump_cpu_timer above).
715 */
e73d84e3 716 unlock_task_sighand(p, &flags);
1da177e4
LT
717 goto out;
718 }
719
e73d84e3 720 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
55ccb616 721 new_expires += val;
1da177e4
LT
722 }
723
724 /*
725 * Install the new expiry time (or zero).
726 * For a timer with no notification action, we don't actually
727 * arm the timer (we'll just fake it for timer_gettime).
728 */
60bda037 729 cpu_timer_setexpires(ctmr, new_expires);
55ccb616 730 if (new_expires != 0 && val < new_expires) {
beb41d9c 731 arm_timer(timer, p);
1da177e4
LT
732 }
733
e73d84e3 734 unlock_task_sighand(p, &flags);
1da177e4
LT
735 /*
736 * Install the new reload setting, and
737 * set up the signal and overrun bookkeeping.
738 */
16118794 739 timer->it_interval = timespec64_to_ktime(new->it_interval);
1da177e4
LT
740
741 /*
742 * This acts as a modification timestamp for the timer,
743 * so any automatic reload attempt will punt on seeing
744 * that we have reset the timer manually.
745 */
746 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
747 ~REQUEUE_PENDING;
748 timer->it_overrun_last = 0;
749 timer->it_overrun = -1;
750
ee375328
FW
751 if (val >= new_expires) {
752 if (new_expires != 0) {
753 /*
754 * The designated time already passed, so we notify
755 * immediately, even if the thread never runs to
756 * accumulate more time on this clock.
757 */
758 cpu_timer_fire(timer);
759 }
760
1da177e4 761 /*
ee375328
FW
762 * Make sure we don't keep around the process wide cputime
763 * counter or the tick dependency if they are not necessary.
1da177e4 764 */
ee375328
FW
765 sighand = lock_task_sighand(p, &flags);
766 if (!sighand)
767 goto out;
768
769 if (!cpu_timer_queued(ctmr))
770 trigger_base_recalc_expires(timer, p);
771
772 unlock_task_sighand(p, &flags);
1da177e4 773 }
1da177e4 774 out:
55e8c8eb 775 rcu_read_unlock();
ebd7e7fc 776 if (old)
5f252b32 777 old->it_interval = ns_to_timespec64(old_incr);
b7878300 778
1da177e4
LT
779 return ret;
780}
781
5f252b32 782static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
1da177e4 783{
99093c5b 784 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
60bda037
TG
785 struct cpu_timer *ctmr = &timer->it.cpu;
786 u64 now, expires = cpu_timer_getexpires(ctmr);
55e8c8eb 787 struct task_struct *p;
1da177e4 788
55e8c8eb
EB
789 rcu_read_lock();
790 p = cpu_timer_task_rcu(timer);
791 if (!p)
792 goto out;
a3222f88 793
1da177e4
LT
794 /*
795 * Easy part: convert the reload time.
796 */
16118794 797 itp->it_interval = ktime_to_timespec64(timer->it_interval);
1da177e4 798
60bda037 799 if (!expires)
55e8c8eb 800 goto out;
1da177e4 801
1da177e4
LT
802 /*
803 * Sample the clock to take the difference with the expiry time.
804 */
60f2ceaa 805 if (CPUCLOCK_PERTHREAD(timer->it_clock))
8c2d74f0 806 now = cpu_clock_sample(clkid, p);
60f2ceaa
EB
807 else
808 now = cpu_clock_sample_group(clkid, p, false);
1da177e4 809
60bda037
TG
810 if (now < expires) {
811 itp->it_value = ns_to_timespec64(expires - now);
1da177e4
LT
812 } else {
813 /*
814 * The timer should have expired already, but the firing
815 * hasn't taken place yet. Say it's just about to expire.
816 */
817 itp->it_value.tv_nsec = 1;
818 itp->it_value.tv_sec = 0;
819 }
55e8c8eb
EB
820out:
821 rcu_read_unlock();
1da177e4
LT
822}
823
60bda037 824#define MAX_COLLECTED 20
2473f3e7 825
60bda037
TG
826static u64 collect_timerqueue(struct timerqueue_head *head,
827 struct list_head *firing, u64 now)
828{
829 struct timerqueue_node *next;
830 int i = 0;
831
832 while ((next = timerqueue_getnext(head))) {
833 struct cpu_timer *ctmr;
834 u64 expires;
835
836 ctmr = container_of(next, struct cpu_timer, node);
837 expires = cpu_timer_getexpires(ctmr);
838 /* Limit the number of timers to expire at once */
839 if (++i == MAX_COLLECTED || now < expires)
840 return expires;
841
842 ctmr->firing = 1;
843 cpu_timer_dequeue(ctmr);
844 list_add_tail(&ctmr->elist, firing);
2473f3e7
FW
845 }
846
2bbdbdae 847 return U64_MAX;
2473f3e7
FW
848}
849
60bda037
TG
850static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
851 struct list_head *firing)
1cd07c0b
TG
852{
853 struct posix_cputimer_base *base = pct->bases;
854 int i;
855
856 for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
60bda037
TG
857 base->nextevt = collect_timerqueue(&base->tqhead, firing,
858 samples[i]);
1cd07c0b
TG
859 }
860}
861
34be3930
JL
862static inline void check_dl_overrun(struct task_struct *tsk)
863{
864 if (tsk->dl.dl_overrun) {
865 tsk->dl.dl_overrun = 0;
866 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
867 }
868}
869
8991afe2
TG
870static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
871{
872 if (time < limit)
873 return false;
874
875 if (print_fatal_signals) {
876 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
877 rt ? "RT" : "CPU", hard ? "hard" : "soft",
878 current->comm, task_pid_nr(current));
879 }
880 __group_send_sig_info(signo, SEND_SIG_PRIV, current);
881 return true;
882}
883
1da177e4
LT
884/*
885 * Check for any per-thread CPU timers that have fired and move them off
886 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
887 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
888 */
889static void check_thread_timers(struct task_struct *tsk,
890 struct list_head *firing)
891{
1cd07c0b
TG
892 struct posix_cputimers *pct = &tsk->posix_cputimers;
893 u64 samples[CPUCLOCK_MAX];
d4bb5274 894 unsigned long soft;
1da177e4 895
34be3930
JL
896 if (dl_task(tsk))
897 check_dl_overrun(tsk);
898
1cd07c0b 899 if (expiry_cache_is_inactive(pct))
934715a1
JL
900 return;
901
1cd07c0b
TG
902 task_sample_cputime(tsk, samples);
903 collect_posix_cputimers(pct, samples, firing);
78f2c7db
PZ
904
905 /*
906 * Check for the special case thread timers.
907 */
3cf29496 908 soft = task_rlimit(tsk, RLIMIT_RTTIME);
d4bb5274 909 if (soft != RLIM_INFINITY) {
8ea1de90 910 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
8991afe2 911 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
3cf29496 912 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
78f2c7db 913
8991afe2
TG
914 /* At the hard limit, send SIGKILL. No further action. */
915 if (hard != RLIM_INFINITY &&
916 check_rlimit(rttime, hard, SIGKILL, true, true))
78f2c7db 917 return;
dd670224 918
8991afe2
TG
919 /* At the soft limit, send a SIGXCPU every second */
920 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
dd670224
TG
921 soft += USEC_PER_SEC;
922 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
78f2c7db
PZ
923 }
924 }
c02b078e 925
1cd07c0b 926 if (expiry_cache_is_inactive(pct))
b7878300 927 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
928}
929
1018016c 930static inline void stop_process_timers(struct signal_struct *sig)
3fccfd67 931{
244d49e3 932 struct posix_cputimers *pct = &sig->posix_cputimers;
3fccfd67 933
244d49e3
TG
934 /* Turn off the active flag. This is done without locking. */
935 WRITE_ONCE(pct->timers_active, false);
b7878300 936 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
3fccfd67
PZ
937}
938
42c4ab41 939static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
ebd7e7fc 940 u64 *expires, u64 cur_time, int signo)
42c4ab41 941{
64861634 942 if (!it->expires)
42c4ab41
SG
943 return;
944
858cf3a8
FW
945 if (cur_time >= it->expires) {
946 if (it->incr)
64861634 947 it->expires += it->incr;
858cf3a8 948 else
64861634 949 it->expires = 0;
42c4ab41 950
3f0a525e
XG
951 trace_itimer_expire(signo == SIGPROF ?
952 ITIMER_PROF : ITIMER_VIRTUAL,
6883f81a 953 task_tgid(tsk), cur_time);
42c4ab41
SG
954 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
955 }
956
2bbdbdae 957 if (it->expires && it->expires < *expires)
858cf3a8 958 *expires = it->expires;
42c4ab41
SG
959}
960
1da177e4
LT
961/*
962 * Check for any per-thread CPU timers that have fired and move them
963 * off the tsk->*_timers list onto the firing list. Per-thread timers
964 * have already been taken off.
965 */
966static void check_process_timers(struct task_struct *tsk,
967 struct list_head *firing)
968{
969 struct signal_struct *const sig = tsk->signal;
1cd07c0b
TG
970 struct posix_cputimers *pct = &sig->posix_cputimers;
971 u64 samples[CPUCLOCK_MAX];
d4bb5274 972 unsigned long soft;
1da177e4 973
934715a1 974 /*
244d49e3 975 * If there are no active process wide timers (POSIX 1.b, itimers,
a2ed4fd6
TG
976 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
977 * processing when there is already another task handling them.
934715a1 978 */
a2ed4fd6 979 if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
934715a1
JL
980 return;
981
a2ed4fd6 982 /*
c8d75aa4
JL
983 * Signify that a thread is checking for process timers.
984 * Write access to this field is protected by the sighand lock.
985 */
a2ed4fd6 986 pct->expiry_active = true;
c8d75aa4 987
1da177e4 988 /*
a324956f
TG
989 * Collect the current process totals. Group accounting is active
990 * so the sample can be taken directly.
1da177e4 991 */
b7be4ef1 992 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
1cd07c0b 993 collect_posix_cputimers(pct, samples, firing);
1da177e4
LT
994
995 /*
996 * Check for the special case process timers.
997 */
1cd07c0b
TG
998 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
999 &pct->bases[CPUCLOCK_PROF].nextevt,
b7be4ef1 1000 samples[CPUCLOCK_PROF], SIGPROF);
1cd07c0b
TG
1001 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
1002 &pct->bases[CPUCLOCK_VIRT].nextevt,
1003 samples[CPUCLOCK_VIRT], SIGVTALRM);
b7be4ef1 1004
3cf29496 1005 soft = task_rlimit(tsk, RLIMIT_CPU);
d4bb5274 1006 if (soft != RLIM_INFINITY) {
8ea1de90 1007 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
3cf29496 1008 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
8ea1de90
TG
1009 u64 ptime = samples[CPUCLOCK_PROF];
1010 u64 softns = (u64)soft * NSEC_PER_SEC;
1011 u64 hardns = (u64)hard * NSEC_PER_SEC;
b7be4ef1 1012
8991afe2
TG
1013 /* At the hard limit, send SIGKILL. No further action. */
1014 if (hard != RLIM_INFINITY &&
1015 check_rlimit(ptime, hardns, SIGKILL, false, true))
1da177e4 1016 return;
dd670224 1017
8991afe2
TG
1018 /* At the soft limit, send a SIGXCPU every second */
1019 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
dd670224
TG
1020 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
1021 softns += NSEC_PER_SEC;
1da177e4 1022 }
8ea1de90
TG
1023
1024 /* Update the expiry cache */
1cd07c0b
TG
1025 if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
1026 pct->bases[CPUCLOCK_PROF].nextevt = softns;
1da177e4
LT
1027 }
1028
1cd07c0b 1029 if (expiry_cache_is_inactive(pct))
29f87b79 1030 stop_process_timers(sig);
c8d75aa4 1031
244d49e3 1032 pct->expiry_active = false;
1da177e4
LT
1033}
1034
1035/*
96fe3b07 1036 * This is called from the signal code (via posixtimer_rearm)
1da177e4
LT
1037 * when the last timer signal was delivered and we have to reload the timer.
1038 */
f37fb0aa 1039static void posix_cpu_timer_rearm(struct k_itimer *timer)
1da177e4 1040{
da020ce4 1041 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
55e8c8eb 1042 struct task_struct *p;
e73d84e3
FW
1043 struct sighand_struct *sighand;
1044 unsigned long flags;
ebd7e7fc 1045 u64 now;
1da177e4 1046
55e8c8eb
EB
1047 rcu_read_lock();
1048 p = cpu_timer_task_rcu(timer);
1049 if (!p)
1050 goto out;
1da177e4 1051
1a3402d9
FW
1052 /* Protect timer list r/w in arm_timer() */
1053 sighand = lock_task_sighand(p, &flags);
1054 if (unlikely(sighand == NULL))
1055 goto out;
1056
1da177e4
LT
1057 /*
1058 * Fetch the current sample and update the timer's expiry time.
1059 */
60f2ceaa 1060 if (CPUCLOCK_PERTHREAD(timer->it_clock))
8c2d74f0 1061 now = cpu_clock_sample(clkid, p);
60f2ceaa 1062 else
8c2d74f0 1063 now = cpu_clock_sample_group(clkid, p, true);
60f2ceaa
EB
1064
1065 bump_cpu_timer(timer, now);
1066
1da177e4
LT
1067 /*
1068 * Now re-arm for the new expiry time.
1069 */
beb41d9c 1070 arm_timer(timer, p);
e73d84e3 1071 unlock_task_sighand(p, &flags);
55e8c8eb
EB
1072out:
1073 rcu_read_unlock();
1da177e4
LT
1074}
1075
f06febc9 1076/**
87dc6448 1077 * task_cputimers_expired - Check whether posix CPU timers are expired
f06febc9 1078 *
001f7971 1079 * @samples: Array of current samples for the CPUCLOCK clocks
87dc6448 1080 * @pct: Pointer to a posix_cputimers container
f06febc9 1081 *
87dc6448
TG
1082 * Returns true if any member of @samples is greater than the corresponding
1083 * member of @pct->bases[CLK].nextevt. False otherwise
f06febc9 1084 */
87dc6448 1085static inline bool
7f2cbcbc 1086task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
f06febc9 1087{
001f7971
TG
1088 int i;
1089
1090 for (i = 0; i < CPUCLOCK_MAX; i++) {
7f2cbcbc 1091 if (samples[i] >= pct->bases[i].nextevt)
001f7971
TG
1092 return true;
1093 }
1094 return false;
f06febc9
FM
1095}
1096
1097/**
1098 * fastpath_timer_check - POSIX CPU timers fast path.
1099 *
1100 * @tsk: The task (thread) being checked.
f06febc9 1101 *
bb34d92f
FM
1102 * Check the task and thread group timers. If both are zero (there are no
1103 * timers set) return false. Otherwise snapshot the task and thread group
1104 * timers and compare them with the corresponding expiration times. Return
1105 * true if a timer has expired, else return false.
f06febc9 1106 */
001f7971 1107static inline bool fastpath_timer_check(struct task_struct *tsk)
f06febc9 1108{
244d49e3 1109 struct posix_cputimers *pct = &tsk->posix_cputimers;
ad133ba3 1110 struct signal_struct *sig;
bb34d92f 1111
244d49e3 1112 if (!expiry_cache_is_inactive(pct)) {
001f7971 1113 u64 samples[CPUCLOCK_MAX];
bb34d92f 1114
001f7971 1115 task_sample_cputime(tsk, samples);
244d49e3 1116 if (task_cputimers_expired(samples, pct))
001f7971 1117 return true;
bb34d92f 1118 }
ad133ba3
ON
1119
1120 sig = tsk->signal;
244d49e3 1121 pct = &sig->posix_cputimers;
c8d75aa4 1122 /*
244d49e3
TG
1123 * Check if thread group timers expired when timers are active and
1124 * no other thread in the group is already handling expiry for
1125 * thread group cputimers. These fields are read without the
1126 * sighand lock. However, this is fine because this is meant to be
1127 * a fastpath heuristic to determine whether we should try to
1128 * acquire the sighand lock to handle timer expiry.
c8d75aa4 1129 *
244d49e3
TG
1130 * In the worst case scenario, if concurrently timers_active is set
1131 * or expiry_active is cleared, but the current thread doesn't see
1132 * the change yet, the timer checks are delayed until the next
1133 * thread in the group gets a scheduler interrupt to handle the
1134 * timer. This isn't an issue in practice because these types of
1135 * delays with signals actually getting sent are expected.
c8d75aa4 1136 */
244d49e3 1137 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
001f7971 1138 u64 samples[CPUCLOCK_MAX];
bb34d92f 1139
001f7971
TG
1140 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1141 samples);
8d1f431c 1142
244d49e3 1143 if (task_cputimers_expired(samples, pct))
001f7971 1144 return true;
bb34d92f 1145 }
37bebc70 1146
34be3930 1147 if (dl_task(tsk) && tsk->dl.dl_overrun)
001f7971 1148 return true;
34be3930 1149
001f7971 1150 return false;
f06febc9
FM
1151}
1152
1fb497dd
TG
1153static void handle_posix_cpu_timers(struct task_struct *tsk);
1154
1155#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1156static void posix_cpu_timers_work(struct callback_head *work)
1157{
1158 handle_posix_cpu_timers(current);
1159}
1160
1161/*
1162 * Initialize posix CPU timers task work in init task. Out of line to
1163 * keep the callback static and to avoid header recursion hell.
1164 */
1165void __init posix_cputimers_init_work(void)
1166{
1167 init_task_work(&current->posix_cputimers_work.work,
1168 posix_cpu_timers_work);
1169}
1170
1171/*
1172 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1173 * in hard interrupt context or in task context with interrupts
1174 * disabled. Aside of that the writer/reader interaction is always in the
1175 * context of the current task, which means they are strict per CPU.
1176 */
1177static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1178{
1179 return tsk->posix_cputimers_work.scheduled;
1180}
1181
1182static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1183{
1184 if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
1185 return;
1186
1187 /* Schedule task work to actually expire the timers */
1188 tsk->posix_cputimers_work.scheduled = true;
1189 task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
1190}
1191
1192static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1193 unsigned long start)
1194{
1195 bool ret = true;
1196
1197 /*
1198 * On !RT kernels interrupts are disabled while collecting expired
1199 * timers, so no tick can happen and the fast path check can be
1200 * reenabled without further checks.
1201 */
1202 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
1203 tsk->posix_cputimers_work.scheduled = false;
1204 return true;
1205 }
1206
1207 /*
1208 * On RT enabled kernels ticks can happen while the expired timers
1209 * are collected under sighand lock. But any tick which observes
1210 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1211 * checks. So reenabling the tick work has do be done carefully:
1212 *
1213 * Disable interrupts and run the fast path check if jiffies have
1214 * advanced since the collecting of expired timers started. If
1215 * jiffies have not advanced or the fast path check did not find
1216 * newly expired timers, reenable the fast path check in the timer
1217 * interrupt. If there are newly expired timers, return false and
1218 * let the collection loop repeat.
1219 */
1220 local_irq_disable();
1221 if (start != jiffies && fastpath_timer_check(tsk))
1222 ret = false;
1223 else
1224 tsk->posix_cputimers_work.scheduled = false;
1225 local_irq_enable();
1226
1227 return ret;
1228}
1229#else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1230static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1231{
1232 lockdep_posixtimer_enter();
1233 handle_posix_cpu_timers(tsk);
1234 lockdep_posixtimer_exit();
1235}
1236
1237static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1238{
1239 return false;
1240}
1241
1242static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1243 unsigned long start)
1244{
1245 return true;
1246}
1247#endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1248
1249static void handle_posix_cpu_timers(struct task_struct *tsk)
1da177e4 1250{
1da177e4 1251 struct k_itimer *timer, *next;
1fb497dd 1252 unsigned long flags, start;
dce3e8fd 1253 LIST_HEAD(firing);
1da177e4 1254
820903c7 1255 if (!lock_task_sighand(tsk, &flags))
f06febc9 1256 return;
5ce73a4a 1257
1fb497dd
TG
1258 do {
1259 /*
1260 * On RT locking sighand lock does not disable interrupts,
1261 * so this needs to be careful vs. ticks. Store the current
1262 * jiffies value.
1263 */
1264 start = READ_ONCE(jiffies);
1265 barrier();
934715a1 1266
1fb497dd
TG
1267 /*
1268 * Here we take off tsk->signal->cpu_timers[N] and
1269 * tsk->cpu_timers[N] all the timers that are firing, and
1270 * put them on the firing list.
1271 */
1272 check_thread_timers(tsk, &firing);
1273
1274 check_process_timers(tsk, &firing);
1275
1276 /*
4bf07f65 1277 * The above timer checks have updated the expiry cache and
1fb497dd
TG
1278 * because nothing can have queued or modified timers after
1279 * sighand lock was taken above it is guaranteed to be
1280 * consistent. So the next timer interrupt fastpath check
1281 * will find valid data.
1282 *
1283 * If timer expiry runs in the timer interrupt context then
1284 * the loop is not relevant as timers will be directly
1285 * expired in interrupt context. The stub function below
1286 * returns always true which allows the compiler to
1287 * optimize the loop out.
1288 *
1289 * If timer expiry is deferred to task work context then
1290 * the following rules apply:
1291 *
1292 * - On !RT kernels no tick can have happened on this CPU
1293 * after sighand lock was acquired because interrupts are
1294 * disabled. So reenabling task work before dropping
1295 * sighand lock and reenabling interrupts is race free.
1296 *
1297 * - On RT kernels ticks might have happened but the tick
1298 * work ignored posix CPU timer handling because the
1299 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1300 * must be done very carefully including a check whether
1301 * ticks have happened since the start of the timer
1302 * expiry checks. posix_cpu_timers_enable_work() takes
1303 * care of that and eventually lets the expiry checks
1304 * run again.
1305 */
1306 } while (!posix_cpu_timers_enable_work(tsk, start));
1da177e4 1307
bb34d92f 1308 /*
1fb497dd 1309 * We must release sighand lock before taking any timer's lock.
bb34d92f
FM
1310 * There is a potential race with timer deletion here, as the
1311 * siglock now protects our private firing list. We have set
1312 * the firing flag in each timer, so that a deletion attempt
1313 * that gets the timer lock before we do will give it up and
1314 * spin until we've taken care of that timer below.
1315 */
0bdd2ed4 1316 unlock_task_sighand(tsk, &flags);
1da177e4
LT
1317
1318 /*
1319 * Now that all the timers on our list have the firing flag,
25985edc 1320 * no one will touch their list entries but us. We'll take
1da177e4
LT
1321 * each timer's lock before clearing its firing flag, so no
1322 * timer call will interfere.
1323 */
60bda037 1324 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
6e85c5ba
HS
1325 int cpu_firing;
1326
1fb497dd
TG
1327 /*
1328 * spin_lock() is sufficient here even independent of the
1329 * expiry context. If expiry happens in hard interrupt
1330 * context it's obvious. For task work context it's safe
1331 * because all other operations on timer::it_lock happen in
1332 * task context (syscall or exit).
1333 */
1da177e4 1334 spin_lock(&timer->it_lock);
60bda037 1335 list_del_init(&timer->it.cpu.elist);
6e85c5ba 1336 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1337 timer->it.cpu.firing = 0;
1338 /*
1339 * The firing flag is -1 if we collided with a reset
1340 * of the timer, which already reported this
1341 * almost-firing as an overrun. So don't generate an event.
1342 */
6e85c5ba 1343 if (likely(cpu_firing >= 0))
1da177e4 1344 cpu_timer_fire(timer);
1da177e4
LT
1345 spin_unlock(&timer->it_lock);
1346 }
820903c7
TG
1347}
1348
1349/*
1350 * This is called from the timer interrupt handler. The irq handler has
1351 * already updated our counts. We need to check if any timers fire now.
1352 * Interrupts are disabled.
1353 */
1354void run_posix_cpu_timers(void)
1355{
1356 struct task_struct *tsk = current;
1357
1358 lockdep_assert_irqs_disabled();
1359
1fb497dd
TG
1360 /*
1361 * If the actual expiry is deferred to task work context and the
1362 * work is already scheduled there is no point to do anything here.
1363 */
1364 if (posix_cpu_timers_work_scheduled(tsk))
1365 return;
1366
820903c7
TG
1367 /*
1368 * The fast path checks that there are no expired thread or thread
1369 * group timers. If that's so, just return.
1370 */
1371 if (!fastpath_timer_check(tsk))
1372 return;
1373
820903c7 1374 __run_posix_cpu_timers(tsk);
1da177e4
LT
1375}
1376
1377/*
f55db609 1378 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1379 * The tsk->sighand->siglock must be held by the caller.
1da177e4 1380 */
1b0dd96d 1381void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
858cf3a8 1382 u64 *newval, u64 *oldval)
1da177e4 1383{
87dc6448 1384 u64 now, *nextevt;
1da177e4 1385
1b0dd96d 1386 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
692117c1
TG
1387 return;
1388
87dc6448 1389 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1b0dd96d 1390 now = cpu_clock_sample_group(clkid, tsk, true);
1da177e4 1391
5405d005 1392 if (oldval) {
f55db609
SG
1393 /*
1394 * We are setting itimer. The *oldval is absolute and we update
1395 * it to be relative, *newval argument is relative and we update
1396 * it to be absolute.
1397 */
64861634 1398 if (*oldval) {
858cf3a8 1399 if (*oldval <= now) {
1da177e4 1400 /* Just about to fire. */
858cf3a8 1401 *oldval = TICK_NSEC;
1da177e4 1402 } else {
858cf3a8 1403 *oldval -= now;
1da177e4
LT
1404 }
1405 }
1406
8cd9da85
FW
1407 if (*newval)
1408 *newval += now;
1da177e4
LT
1409 }
1410
1411 /*
1b0dd96d
TG
1412 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1413 * expiry cache is also used by RLIMIT_CPU!.
1da177e4 1414 */
2bbdbdae 1415 if (*newval < *nextevt)
87dc6448 1416 *nextevt = *newval;
b7878300 1417
1e4ca26d 1418 tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
1419}
1420
e4b76555 1421static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
343d8fc2 1422 const struct timespec64 *rqtp)
1da177e4 1423{
86a9c446 1424 struct itimerspec64 it;
343d8fc2
TG
1425 struct k_itimer timer;
1426 u64 expires;
1da177e4
LT
1427 int error;
1428
1da177e4
LT
1429 /*
1430 * Set up a temporary timer and then wait for it to go off.
1431 */
1432 memset(&timer, 0, sizeof timer);
1433 spin_lock_init(&timer.it_lock);
1434 timer.it_clock = which_clock;
1435 timer.it_overrun = -1;
1436 error = posix_cpu_timer_create(&timer);
1437 timer.it_process = current;
60bda037 1438
1da177e4 1439 if (!error) {
5f252b32 1440 static struct itimerspec64 zero_it;
edbeda46 1441 struct restart_block *restart;
e4b76555 1442
edbeda46 1443 memset(&it, 0, sizeof(it));
86a9c446 1444 it.it_value = *rqtp;
1da177e4
LT
1445
1446 spin_lock_irq(&timer.it_lock);
86a9c446 1447 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1da177e4
LT
1448 if (error) {
1449 spin_unlock_irq(&timer.it_lock);
1450 return error;
1451 }
1452
1453 while (!signal_pending(current)) {
60bda037 1454 if (!cpu_timer_getexpires(&timer.it.cpu)) {
1da177e4 1455 /*
e6c42c29
SG
1456 * Our timer fired and was reset, below
1457 * deletion can not fail.
1da177e4 1458 */
e6c42c29 1459 posix_cpu_timer_del(&timer);
1da177e4
LT
1460 spin_unlock_irq(&timer.it_lock);
1461 return 0;
1462 }
1463
1464 /*
1465 * Block until cpu_timer_fire (or a signal) wakes us.
1466 */
1467 __set_current_state(TASK_INTERRUPTIBLE);
1468 spin_unlock_irq(&timer.it_lock);
1469 schedule();
1470 spin_lock_irq(&timer.it_lock);
1471 }
1472
1473 /*
1474 * We were interrupted by a signal.
1475 */
60bda037 1476 expires = cpu_timer_getexpires(&timer.it.cpu);
86a9c446 1477 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
e6c42c29
SG
1478 if (!error) {
1479 /*
1480 * Timer is now unarmed, deletion can not fail.
1481 */
1482 posix_cpu_timer_del(&timer);
1483 }
1da177e4
LT
1484 spin_unlock_irq(&timer.it_lock);
1485
e6c42c29
SG
1486 while (error == TIMER_RETRY) {
1487 /*
1488 * We need to handle case when timer was or is in the
1489 * middle of firing. In other cases we already freed
1490 * resources.
1491 */
1492 spin_lock_irq(&timer.it_lock);
1493 error = posix_cpu_timer_del(&timer);
1494 spin_unlock_irq(&timer.it_lock);
1495 }
1496
86a9c446 1497 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1da177e4
LT
1498 /*
1499 * It actually did fire already.
1500 */
1501 return 0;
1502 }
1503
e4b76555 1504 error = -ERESTART_RESTARTBLOCK;
86a9c446
AV
1505 /*
1506 * Report back to the user the time still remaining.
1507 */
edbeda46 1508 restart = &current->restart_block;
343d8fc2 1509 restart->nanosleep.expires = expires;
c0edd7c9
DD
1510 if (restart->nanosleep.type != TT_NONE)
1511 error = nanosleep_copyout(restart, &it.it_value);
e4b76555
TA
1512 }
1513
1514 return error;
1515}
1516
bc2c8ea4
TG
1517static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1518
1519static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1520 const struct timespec64 *rqtp)
e4b76555 1521{
f56141e3 1522 struct restart_block *restart_block = &current->restart_block;
e4b76555
TA
1523 int error;
1524
1525 /*
1526 * Diagnose required errors first.
1527 */
1528 if (CPUCLOCK_PERTHREAD(which_clock) &&
1529 (CPUCLOCK_PID(which_clock) == 0 ||
01a21974 1530 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
e4b76555
TA
1531 return -EINVAL;
1532
86a9c446 1533 error = do_cpu_nanosleep(which_clock, flags, rqtp);
e4b76555
TA
1534
1535 if (error == -ERESTART_RESTARTBLOCK) {
1536
3751f9f2 1537 if (flags & TIMER_ABSTIME)
e4b76555 1538 return -ERESTARTNOHAND;
1da177e4 1539
ab8177bc 1540 restart_block->nanosleep.clockid = which_clock;
5abbe51a 1541 set_restart_fn(restart_block, posix_cpu_nsleep_restart);
1da177e4 1542 }
1da177e4
LT
1543 return error;
1544}
1545
bc2c8ea4 1546static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4 1547{
ab8177bc 1548 clockid_t which_clock = restart_block->nanosleep.clockid;
ad196384 1549 struct timespec64 t;
97735f25 1550
ad196384 1551 t = ns_to_timespec64(restart_block->nanosleep.expires);
97735f25 1552
86a9c446 1553 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1da177e4
LT
1554}
1555
29f1b2b0
ND
1556#define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1557#define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1da177e4 1558
a924b04d 1559static int process_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1560 struct timespec64 *tp)
1da177e4
LT
1561{
1562 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1563}
a924b04d 1564static int process_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1565 struct timespec64 *tp)
1da177e4
LT
1566{
1567 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1568}
1569static int process_cpu_timer_create(struct k_itimer *timer)
1570{
1571 timer->it_clock = PROCESS_CLOCK;
1572 return posix_cpu_timer_create(timer);
1573}
a924b04d 1574static int process_cpu_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1575 const struct timespec64 *rqtp)
1da177e4 1576{
99e6c0e6 1577 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1da177e4 1578}
a924b04d 1579static int thread_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1580 struct timespec64 *tp)
1da177e4
LT
1581{
1582 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1583}
a924b04d 1584static int thread_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1585 struct timespec64 *tp)
1da177e4
LT
1586{
1587 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1588}
1589static int thread_cpu_timer_create(struct k_itimer *timer)
1590{
1591 timer->it_clock = THREAD_CLOCK;
1592 return posix_cpu_timer_create(timer);
1593}
1da177e4 1594
d3ba5a9a 1595const struct k_clock clock_posix_cpu = {
819a95fe
AV
1596 .clock_getres = posix_cpu_clock_getres,
1597 .clock_set = posix_cpu_clock_set,
1598 .clock_get_timespec = posix_cpu_clock_get,
1599 .timer_create = posix_cpu_timer_create,
1600 .nsleep = posix_cpu_nsleep,
1601 .timer_set = posix_cpu_timer_set,
1602 .timer_del = posix_cpu_timer_del,
1603 .timer_get = posix_cpu_timer_get,
1604 .timer_rearm = posix_cpu_timer_rearm,
1976945e
TG
1605};
1606
d3ba5a9a 1607const struct k_clock clock_process = {
819a95fe
AV
1608 .clock_getres = process_cpu_clock_getres,
1609 .clock_get_timespec = process_cpu_clock_get,
1610 .timer_create = process_cpu_timer_create,
1611 .nsleep = process_cpu_nsleep,
d3ba5a9a 1612};
1da177e4 1613
d3ba5a9a 1614const struct k_clock clock_thread = {
819a95fe
AV
1615 .clock_getres = thread_cpu_clock_getres,
1616 .clock_get_timespec = thread_cpu_clock_get,
1617 .timer_create = thread_cpu_timer_create,
d3ba5a9a 1618};