]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/time/posix-cpu-timers.c
posix-timers: Correct sanity check in posix_cpu_nsleep
[mirror_ubuntu-hirsute-kernel.git] / kernel / time / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
3f07c014 5#include <linux/sched/signal.h>
32ef5517 6#include <linux/sched/cputime.h>
1da177e4 7#include <linux/posix-timers.h>
1da177e4 8#include <linux/errno.h>
f8bd2258 9#include <linux/math64.h>
7c0f6ba6 10#include <linux/uaccess.h>
bb34d92f 11#include <linux/kernel_stat.h>
3f0a525e 12#include <trace/events/timer.h>
a8572160
FW
13#include <linux/tick.h>
14#include <linux/workqueue.h>
1da177e4 15
f06febc9 16/*
f55db609
SG
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
20 * well.
f06febc9 21 */
5ab46b34 22void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
f06febc9 23{
858cf3a8 24 u64 nsecs = rlim_new * NSEC_PER_SEC;
f06febc9 25
5ab46b34 26 spin_lock_irq(&task->sighand->siglock);
858cf3a8 27 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
5ab46b34 28 spin_unlock_irq(&task->sighand->siglock);
f06febc9
FM
29}
30
a924b04d 31static int check_clock(const clockid_t which_clock)
1da177e4
LT
32{
33 int error = 0;
34 struct task_struct *p;
35 const pid_t pid = CPUCLOCK_PID(which_clock);
36
37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 return -EINVAL;
39
40 if (pid == 0)
41 return 0;
42
c0deae8c 43 rcu_read_lock();
8dc86af0 44 p = find_task_by_vpid(pid);
bac0abd6 45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
c0deae8c 46 same_thread_group(p, current) : has_group_leader_pid(p))) {
1da177e4
LT
47 error = -EINVAL;
48 }
c0deae8c 49 rcu_read_unlock();
1da177e4
LT
50
51 return error;
52}
53
1da177e4
LT
54/*
55 * Update expiry time from increment, and increase overrun count,
56 * given the current clock sample.
57 */
ebd7e7fc 58static void bump_cpu_timer(struct k_itimer *timer, u64 now)
1da177e4
LT
59{
60 int i;
ebd7e7fc 61 u64 delta, incr;
1da177e4 62
55ccb616 63 if (timer->it.cpu.incr == 0)
1da177e4
LT
64 return;
65
55ccb616
FW
66 if (now < timer->it.cpu.expires)
67 return;
1da177e4 68
55ccb616
FW
69 incr = timer->it.cpu.incr;
70 delta = now + incr - timer->it.cpu.expires;
1da177e4 71
55ccb616
FW
72 /* Don't use (incr*2 < delta), incr*2 might overflow. */
73 for (i = 0; incr < delta - incr; i++)
74 incr = incr << 1;
75
76 for (; i >= 0; incr >>= 1, i--) {
77 if (delta < incr)
78 continue;
79
80 timer->it.cpu.expires += incr;
81 timer->it_overrun += 1 << i;
82 delta -= incr;
1da177e4
LT
83 }
84}
85
555347f6
FW
86/**
87 * task_cputime_zero - Check a task_cputime struct for all zero fields.
88 *
89 * @cputime: The struct to compare.
90 *
91 * Checks @cputime to see if all fields are zero. Returns true if all fields
92 * are zero, false if any field is nonzero.
93 */
ebd7e7fc 94static inline int task_cputime_zero(const struct task_cputime *cputime)
555347f6
FW
95{
96 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
97 return 1;
98 return 0;
99}
100
ebd7e7fc 101static inline u64 prof_ticks(struct task_struct *p)
1da177e4 102{
ebd7e7fc 103 u64 utime, stime;
6fac4829 104
ebd7e7fc 105 task_cputime(p, &utime, &stime);
6fac4829 106
ebd7e7fc 107 return utime + stime;
1da177e4 108}
ebd7e7fc 109static inline u64 virt_ticks(struct task_struct *p)
1da177e4 110{
ebd7e7fc 111 u64 utime, stime;
6fac4829 112
ebd7e7fc 113 task_cputime(p, &utime, &stime);
6fac4829 114
ebd7e7fc 115 return utime;
1da177e4 116}
1da177e4 117
bc2c8ea4
TG
118static int
119posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
120{
121 int error = check_clock(which_clock);
122 if (!error) {
123 tp->tv_sec = 0;
124 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
125 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
126 /*
127 * If sched_clock is using a cycle counter, we
128 * don't have any idea of its true resolution
129 * exported, but it is much more than 1s/HZ.
130 */
131 tp->tv_nsec = 1;
132 }
133 }
134 return error;
135}
136
bc2c8ea4
TG
137static int
138posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
139{
140 /*
141 * You can never reset a CPU clock, but we check for other errors
142 * in the call before failing with EPERM.
143 */
144 int error = check_clock(which_clock);
145 if (error == 0) {
146 error = -EPERM;
147 }
148 return error;
149}
150
151
152/*
153 * Sample a per-thread clock for the given task.
154 */
ebd7e7fc
FW
155static int cpu_clock_sample(const clockid_t which_clock,
156 struct task_struct *p, u64 *sample)
1da177e4
LT
157{
158 switch (CPUCLOCK_WHICH(which_clock)) {
159 default:
160 return -EINVAL;
161 case CPUCLOCK_PROF:
55ccb616 162 *sample = prof_ticks(p);
1da177e4
LT
163 break;
164 case CPUCLOCK_VIRT:
55ccb616 165 *sample = virt_ticks(p);
1da177e4
LT
166 break;
167 case CPUCLOCK_SCHED:
55ccb616 168 *sample = task_sched_runtime(p);
1da177e4
LT
169 break;
170 }
171 return 0;
172}
173
1018016c
JL
174/*
175 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
176 * to avoid race conditions with concurrent updates to cputime.
177 */
178static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
4da94d49 179{
1018016c
JL
180 u64 curr_cputime;
181retry:
182 curr_cputime = atomic64_read(cputime);
183 if (sum_cputime > curr_cputime) {
184 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
185 goto retry;
186 }
187}
4da94d49 188
ebd7e7fc 189static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
1018016c 190{
71107445
JL
191 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
192 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
193 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
1018016c 194}
4da94d49 195
71107445 196/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
ebd7e7fc 197static inline void sample_cputime_atomic(struct task_cputime *times,
71107445 198 struct task_cputime_atomic *atomic_times)
1018016c 199{
71107445
JL
200 times->utime = atomic64_read(&atomic_times->utime);
201 times->stime = atomic64_read(&atomic_times->stime);
202 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
4da94d49
PZ
203}
204
ebd7e7fc 205void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
4da94d49
PZ
206{
207 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
ebd7e7fc 208 struct task_cputime sum;
4da94d49 209
1018016c
JL
210 /* Check if cputimer isn't running. This is accessed without locking. */
211 if (!READ_ONCE(cputimer->running)) {
4da94d49
PZ
212 /*
213 * The POSIX timer interface allows for absolute time expiry
214 * values through the TIMER_ABSTIME flag, therefore we have
1018016c 215 * to synchronize the timer to the clock every time we start it.
4da94d49 216 */
ebd7e7fc 217 thread_group_cputime(tsk, &sum);
71107445 218 update_gt_cputime(&cputimer->cputime_atomic, &sum);
1018016c
JL
219
220 /*
221 * We're setting cputimer->running without a lock. Ensure
222 * this only gets written to in one operation. We set
223 * running after update_gt_cputime() as a small optimization,
224 * but barriers are not required because update_gt_cputime()
225 * can handle concurrent updates.
226 */
d5c373eb 227 WRITE_ONCE(cputimer->running, true);
1018016c 228 }
71107445 229 sample_cputime_atomic(times, &cputimer->cputime_atomic);
4da94d49
PZ
230}
231
1da177e4
LT
232/*
233 * Sample a process (thread group) clock for the given group_leader task.
e73d84e3
FW
234 * Must be called with task sighand lock held for safe while_each_thread()
235 * traversal.
1da177e4 236 */
bb34d92f
FM
237static int cpu_clock_sample_group(const clockid_t which_clock,
238 struct task_struct *p,
ebd7e7fc 239 u64 *sample)
1da177e4 240{
ebd7e7fc 241 struct task_cputime cputime;
f06febc9 242
eccdaeaf 243 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
244 default:
245 return -EINVAL;
246 case CPUCLOCK_PROF:
ebd7e7fc
FW
247 thread_group_cputime(p, &cputime);
248 *sample = cputime.utime + cputime.stime;
1da177e4
LT
249 break;
250 case CPUCLOCK_VIRT:
ebd7e7fc
FW
251 thread_group_cputime(p, &cputime);
252 *sample = cputime.utime;
1da177e4
LT
253 break;
254 case CPUCLOCK_SCHED:
ebd7e7fc 255 thread_group_cputime(p, &cputime);
55ccb616 256 *sample = cputime.sum_exec_runtime;
1da177e4
LT
257 break;
258 }
259 return 0;
260}
261
33ab0fec
FW
262static int posix_cpu_clock_get_task(struct task_struct *tsk,
263 const clockid_t which_clock,
264 struct timespec *tp)
265{
266 int err = -EINVAL;
ebd7e7fc 267 u64 rtn;
33ab0fec
FW
268
269 if (CPUCLOCK_PERTHREAD(which_clock)) {
270 if (same_thread_group(tsk, current))
271 err = cpu_clock_sample(which_clock, tsk, &rtn);
272 } else {
50875788 273 if (tsk == current || thread_group_leader(tsk))
33ab0fec 274 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
33ab0fec
FW
275 }
276
277 if (!err)
ebd7e7fc 278 *tp = ns_to_timespec(rtn);
33ab0fec
FW
279
280 return err;
281}
282
1da177e4 283
bc2c8ea4 284static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
285{
286 const pid_t pid = CPUCLOCK_PID(which_clock);
33ab0fec 287 int err = -EINVAL;
1da177e4
LT
288
289 if (pid == 0) {
290 /*
291 * Special case constant value for our own clocks.
292 * We don't have to do any lookup to find ourselves.
293 */
33ab0fec 294 err = posix_cpu_clock_get_task(current, which_clock, tp);
1da177e4
LT
295 } else {
296 /*
297 * Find the given PID, and validate that the caller
298 * should be able to see it.
299 */
300 struct task_struct *p;
1f2ea083 301 rcu_read_lock();
8dc86af0 302 p = find_task_by_vpid(pid);
33ab0fec
FW
303 if (p)
304 err = posix_cpu_clock_get_task(p, which_clock, tp);
1f2ea083 305 rcu_read_unlock();
1da177e4
LT
306 }
307
33ab0fec 308 return err;
1da177e4
LT
309}
310
1da177e4
LT
311/*
312 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
313 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
314 * new timer already all-zeros initialized.
1da177e4 315 */
bc2c8ea4 316static int posix_cpu_timer_create(struct k_itimer *new_timer)
1da177e4
LT
317{
318 int ret = 0;
319 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
320 struct task_struct *p;
321
322 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
323 return -EINVAL;
324
325 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
1da177e4 326
c0deae8c 327 rcu_read_lock();
1da177e4
LT
328 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
329 if (pid == 0) {
330 p = current;
331 } else {
8dc86af0 332 p = find_task_by_vpid(pid);
bac0abd6 333 if (p && !same_thread_group(p, current))
1da177e4
LT
334 p = NULL;
335 }
336 } else {
337 if (pid == 0) {
338 p = current->group_leader;
339 } else {
8dc86af0 340 p = find_task_by_vpid(pid);
c0deae8c 341 if (p && !has_group_leader_pid(p))
1da177e4
LT
342 p = NULL;
343 }
344 }
345 new_timer->it.cpu.task = p;
346 if (p) {
347 get_task_struct(p);
348 } else {
349 ret = -EINVAL;
350 }
c0deae8c 351 rcu_read_unlock();
1da177e4
LT
352
353 return ret;
354}
355
356/*
357 * Clean up a CPU-clock timer that is about to be destroyed.
358 * This is called from timer deletion with the timer already locked.
359 * If we return TIMER_RETRY, it's necessary to release the timer's lock
360 * and try again. (This happens when the timer is in the middle of firing.)
361 */
bc2c8ea4 362static int posix_cpu_timer_del(struct k_itimer *timer)
1da177e4 363{
108150ea 364 int ret = 0;
3d7a1427
FW
365 unsigned long flags;
366 struct sighand_struct *sighand;
367 struct task_struct *p = timer->it.cpu.task;
1da177e4 368
a3222f88 369 WARN_ON_ONCE(p == NULL);
108150ea 370
3d7a1427
FW
371 /*
372 * Protect against sighand release/switch in exit/exec and process/
373 * thread timer list entry concurrent read/writes.
374 */
375 sighand = lock_task_sighand(p, &flags);
376 if (unlikely(sighand == NULL)) {
a3222f88
FW
377 /*
378 * We raced with the reaping of the task.
379 * The deletion should have cleared us off the list.
380 */
531f64fd 381 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
a3222f88 382 } else {
a3222f88
FW
383 if (timer->it.cpu.firing)
384 ret = TIMER_RETRY;
385 else
386 list_del(&timer->it.cpu.entry);
3d7a1427
FW
387
388 unlock_task_sighand(p, &flags);
1da177e4 389 }
a3222f88
FW
390
391 if (!ret)
392 put_task_struct(p);
1da177e4 393
108150ea 394 return ret;
1da177e4
LT
395}
396
af82eb3c 397static void cleanup_timers_list(struct list_head *head)
1a7fa510
FW
398{
399 struct cpu_timer_list *timer, *next;
400
a0b2062b 401 list_for_each_entry_safe(timer, next, head, entry)
1a7fa510 402 list_del_init(&timer->entry);
1a7fa510
FW
403}
404
1da177e4
LT
405/*
406 * Clean out CPU timers still ticking when a thread exited. The task
407 * pointer is cleared, and the expiry time is replaced with the residual
408 * time for later timer_gettime calls to return.
409 * This must be called with the siglock held.
410 */
af82eb3c 411static void cleanup_timers(struct list_head *head)
1da177e4 412{
af82eb3c
FW
413 cleanup_timers_list(head);
414 cleanup_timers_list(++head);
415 cleanup_timers_list(++head);
1da177e4
LT
416}
417
418/*
419 * These are both called with the siglock held, when the current thread
420 * is being reaped. When the final (leader) thread in the group is reaped,
421 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
422 */
423void posix_cpu_timers_exit(struct task_struct *tsk)
424{
af82eb3c 425 cleanup_timers(tsk->cpu_timers);
1da177e4
LT
426}
427void posix_cpu_timers_exit_group(struct task_struct *tsk)
428{
af82eb3c 429 cleanup_timers(tsk->signal->cpu_timers);
1da177e4
LT
430}
431
ebd7e7fc 432static inline int expires_gt(u64 expires, u64 new_exp)
d1e3b6d1 433{
64861634 434 return expires == 0 || expires > new_exp;
d1e3b6d1
SG
435}
436
1da177e4
LT
437/*
438 * Insert the timer on the appropriate list before any timers that
e73d84e3 439 * expire later. This must be called with the sighand lock held.
1da177e4 440 */
5eb9aa64 441static void arm_timer(struct k_itimer *timer)
1da177e4
LT
442{
443 struct task_struct *p = timer->it.cpu.task;
444 struct list_head *head, *listpos;
ebd7e7fc 445 struct task_cputime *cputime_expires;
1da177e4
LT
446 struct cpu_timer_list *const nt = &timer->it.cpu;
447 struct cpu_timer_list *next;
1da177e4 448
5eb9aa64
SG
449 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
450 head = p->cpu_timers;
451 cputime_expires = &p->cputime_expires;
452 } else {
453 head = p->signal->cpu_timers;
454 cputime_expires = &p->signal->cputime_expires;
455 }
1da177e4
LT
456 head += CPUCLOCK_WHICH(timer->it_clock);
457
1da177e4 458 listpos = head;
5eb9aa64 459 list_for_each_entry(next, head, entry) {
55ccb616 460 if (nt->expires < next->expires)
5eb9aa64
SG
461 break;
462 listpos = &next->entry;
1da177e4
LT
463 }
464 list_add(&nt->entry, listpos);
465
466 if (listpos == head) {
ebd7e7fc 467 u64 exp = nt->expires;
5eb9aa64 468
1da177e4 469 /*
5eb9aa64
SG
470 * We are the new earliest-expiring POSIX 1.b timer, hence
471 * need to update expiration cache. Take into account that
472 * for process timers we share expiration cache with itimers
473 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
1da177e4
LT
474 */
475
5eb9aa64
SG
476 switch (CPUCLOCK_WHICH(timer->it_clock)) {
477 case CPUCLOCK_PROF:
ebd7e7fc
FW
478 if (expires_gt(cputime_expires->prof_exp, exp))
479 cputime_expires->prof_exp = exp;
5eb9aa64
SG
480 break;
481 case CPUCLOCK_VIRT:
ebd7e7fc
FW
482 if (expires_gt(cputime_expires->virt_exp, exp))
483 cputime_expires->virt_exp = exp;
5eb9aa64
SG
484 break;
485 case CPUCLOCK_SCHED:
ebd7e7fc 486 if (expires_gt(cputime_expires->sched_exp, exp))
55ccb616 487 cputime_expires->sched_exp = exp;
5eb9aa64 488 break;
1da177e4 489 }
b7878300
FW
490 if (CPUCLOCK_PERTHREAD(timer->it_clock))
491 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
492 else
493 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4 494 }
1da177e4
LT
495}
496
497/*
498 * The timer is locked, fire it and arrange for its reload.
499 */
500static void cpu_timer_fire(struct k_itimer *timer)
501{
1f169f84
SG
502 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
503 /*
504 * User don't want any signal.
505 */
55ccb616 506 timer->it.cpu.expires = 0;
1f169f84 507 } else if (unlikely(timer->sigq == NULL)) {
1da177e4
LT
508 /*
509 * This a special case for clock_nanosleep,
510 * not a normal timer from sys_timer_create.
511 */
512 wake_up_process(timer->it_process);
55ccb616
FW
513 timer->it.cpu.expires = 0;
514 } else if (timer->it.cpu.incr == 0) {
1da177e4
LT
515 /*
516 * One-shot timer. Clear it as soon as it's fired.
517 */
518 posix_timer_event(timer, 0);
55ccb616 519 timer->it.cpu.expires = 0;
1da177e4
LT
520 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
521 /*
522 * The signal did not get queued because the signal
523 * was ignored, so we won't get any callback to
524 * reload the timer. But we need to keep it
525 * ticking in case the signal is deliverable next time.
526 */
527 posix_cpu_timer_schedule(timer);
528 }
529}
530
3997ad31
PZ
531/*
532 * Sample a process (thread group) timer for the given group_leader task.
e73d84e3
FW
533 * Must be called with task sighand lock held for safe while_each_thread()
534 * traversal.
3997ad31
PZ
535 */
536static int cpu_timer_sample_group(const clockid_t which_clock,
ebd7e7fc 537 struct task_struct *p, u64 *sample)
3997ad31 538{
ebd7e7fc 539 struct task_cputime cputime;
3997ad31
PZ
540
541 thread_group_cputimer(p, &cputime);
542 switch (CPUCLOCK_WHICH(which_clock)) {
543 default:
544 return -EINVAL;
545 case CPUCLOCK_PROF:
ebd7e7fc 546 *sample = cputime.utime + cputime.stime;
3997ad31
PZ
547 break;
548 case CPUCLOCK_VIRT:
ebd7e7fc 549 *sample = cputime.utime;
3997ad31
PZ
550 break;
551 case CPUCLOCK_SCHED:
23cfa361 552 *sample = cputime.sum_exec_runtime;
3997ad31
PZ
553 break;
554 }
555 return 0;
556}
557
1da177e4
LT
558/*
559 * Guts of sys_timer_settime for CPU timers.
560 * This is called with the timer locked and interrupts disabled.
561 * If we return TIMER_RETRY, it's necessary to release the timer's lock
562 * and try again. (This happens when the timer is in the middle of firing.)
563 */
e73d84e3 564static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
bc2c8ea4 565 struct itimerspec *new, struct itimerspec *old)
1da177e4 566{
e73d84e3
FW
567 unsigned long flags;
568 struct sighand_struct *sighand;
1da177e4 569 struct task_struct *p = timer->it.cpu.task;
ebd7e7fc 570 u64 old_expires, new_expires, old_incr, val;
1da177e4
LT
571 int ret;
572
a3222f88 573 WARN_ON_ONCE(p == NULL);
1da177e4 574
ebd7e7fc 575 new_expires = timespec_to_ns(&new->it_value);
1da177e4 576
1da177e4 577 /*
e73d84e3
FW
578 * Protect against sighand release/switch in exit/exec and p->cpu_timers
579 * and p->signal->cpu_timers read/write in arm_timer()
580 */
581 sighand = lock_task_sighand(p, &flags);
582 /*
583 * If p has just been reaped, we can no
1da177e4
LT
584 * longer get any information about it at all.
585 */
e73d84e3 586 if (unlikely(sighand == NULL)) {
1da177e4
LT
587 return -ESRCH;
588 }
589
590 /*
591 * Disarm any old timer after extracting its expiry time.
592 */
531f64fd 593 WARN_ON_ONCE(!irqs_disabled());
a69ac4a7
ON
594
595 ret = 0;
ae1a78ee 596 old_incr = timer->it.cpu.incr;
1da177e4 597 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
598 if (unlikely(timer->it.cpu.firing)) {
599 timer->it.cpu.firing = -1;
600 ret = TIMER_RETRY;
601 } else
602 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
603
604 /*
605 * We need to sample the current value to convert the new
606 * value from to relative and absolute, and to convert the
607 * old value from absolute to relative. To set a process
608 * timer, we need a sample to balance the thread expiry
609 * times (in arm_timer). With an absolute time, we must
610 * check if it's already passed. In short, we need a sample.
611 */
612 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
613 cpu_clock_sample(timer->it_clock, p, &val);
614 } else {
3997ad31 615 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
616 }
617
618 if (old) {
55ccb616 619 if (old_expires == 0) {
1da177e4
LT
620 old->it_value.tv_sec = 0;
621 old->it_value.tv_nsec = 0;
622 } else {
623 /*
624 * Update the timer in case it has
625 * overrun already. If it has,
626 * we'll report it as having overrun
627 * and with the next reloaded timer
628 * already ticking, though we are
629 * swallowing that pending
630 * notification here to install the
631 * new setting.
632 */
633 bump_cpu_timer(timer, val);
55ccb616
FW
634 if (val < timer->it.cpu.expires) {
635 old_expires = timer->it.cpu.expires - val;
ebd7e7fc 636 old->it_value = ns_to_timespec(old_expires);
1da177e4
LT
637 } else {
638 old->it_value.tv_nsec = 1;
639 old->it_value.tv_sec = 0;
640 }
641 }
642 }
643
a69ac4a7 644 if (unlikely(ret)) {
1da177e4
LT
645 /*
646 * We are colliding with the timer actually firing.
647 * Punt after filling in the timer's old value, and
648 * disable this firing since we are already reporting
649 * it as an overrun (thanks to bump_cpu_timer above).
650 */
e73d84e3 651 unlock_task_sighand(p, &flags);
1da177e4
LT
652 goto out;
653 }
654
e73d84e3 655 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
55ccb616 656 new_expires += val;
1da177e4
LT
657 }
658
659 /*
660 * Install the new expiry time (or zero).
661 * For a timer with no notification action, we don't actually
662 * arm the timer (we'll just fake it for timer_gettime).
663 */
664 timer->it.cpu.expires = new_expires;
55ccb616 665 if (new_expires != 0 && val < new_expires) {
5eb9aa64 666 arm_timer(timer);
1da177e4
LT
667 }
668
e73d84e3 669 unlock_task_sighand(p, &flags);
1da177e4
LT
670 /*
671 * Install the new reload setting, and
672 * set up the signal and overrun bookkeeping.
673 */
ebd7e7fc 674 timer->it.cpu.incr = timespec_to_ns(&new->it_interval);
1da177e4
LT
675
676 /*
677 * This acts as a modification timestamp for the timer,
678 * so any automatic reload attempt will punt on seeing
679 * that we have reset the timer manually.
680 */
681 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
682 ~REQUEUE_PENDING;
683 timer->it_overrun_last = 0;
684 timer->it_overrun = -1;
685
55ccb616 686 if (new_expires != 0 && !(val < new_expires)) {
1da177e4
LT
687 /*
688 * The designated time already passed, so we notify
689 * immediately, even if the thread never runs to
690 * accumulate more time on this clock.
691 */
692 cpu_timer_fire(timer);
693 }
694
695 ret = 0;
696 out:
ebd7e7fc
FW
697 if (old)
698 old->it_interval = ns_to_timespec(old_incr);
b7878300 699
1da177e4
LT
700 return ret;
701}
702
bc2c8ea4 703static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
1da177e4 704{
ebd7e7fc 705 u64 now;
1da177e4 706 struct task_struct *p = timer->it.cpu.task;
1da177e4 707
a3222f88
FW
708 WARN_ON_ONCE(p == NULL);
709
1da177e4
LT
710 /*
711 * Easy part: convert the reload time.
712 */
ebd7e7fc 713 itp->it_interval = ns_to_timespec(timer->it.cpu.incr);
1da177e4 714
55ccb616 715 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
1da177e4
LT
716 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
717 return;
718 }
719
1da177e4
LT
720 /*
721 * Sample the clock to take the difference with the expiry time.
722 */
723 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
724 cpu_clock_sample(timer->it_clock, p, &now);
1da177e4 725 } else {
e73d84e3
FW
726 struct sighand_struct *sighand;
727 unsigned long flags;
728
729 /*
730 * Protect against sighand release/switch in exit/exec and
731 * also make timer sampling safe if it ends up calling
ebd7e7fc 732 * thread_group_cputime().
e73d84e3
FW
733 */
734 sighand = lock_task_sighand(p, &flags);
735 if (unlikely(sighand == NULL)) {
1da177e4
LT
736 /*
737 * The process has been reaped.
738 * We can't even collect a sample any more.
739 * Call the timer disarmed, nothing else to do.
740 */
55ccb616 741 timer->it.cpu.expires = 0;
ebd7e7fc 742 itp->it_value = ns_to_timespec(timer->it.cpu.expires);
2c13ce8f 743 return;
1da177e4 744 } else {
3997ad31 745 cpu_timer_sample_group(timer->it_clock, p, &now);
e73d84e3 746 unlock_task_sighand(p, &flags);
1da177e4 747 }
1da177e4
LT
748 }
749
55ccb616 750 if (now < timer->it.cpu.expires) {
ebd7e7fc 751 itp->it_value = ns_to_timespec(timer->it.cpu.expires - now);
1da177e4
LT
752 } else {
753 /*
754 * The timer should have expired already, but the firing
755 * hasn't taken place yet. Say it's just about to expire.
756 */
757 itp->it_value.tv_nsec = 1;
758 itp->it_value.tv_sec = 0;
759 }
760}
761
2473f3e7
FW
762static unsigned long long
763check_timers_list(struct list_head *timers,
764 struct list_head *firing,
765 unsigned long long curr)
766{
767 int maxfire = 20;
768
769 while (!list_empty(timers)) {
770 struct cpu_timer_list *t;
771
772 t = list_first_entry(timers, struct cpu_timer_list, entry);
773
774 if (!--maxfire || curr < t->expires)
775 return t->expires;
776
777 t->firing = 1;
778 list_move_tail(&t->entry, firing);
779 }
780
781 return 0;
782}
783
1da177e4
LT
784/*
785 * Check for any per-thread CPU timers that have fired and move them off
786 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
787 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
788 */
789static void check_thread_timers(struct task_struct *tsk,
790 struct list_head *firing)
791{
792 struct list_head *timers = tsk->cpu_timers;
78f2c7db 793 struct signal_struct *const sig = tsk->signal;
ebd7e7fc
FW
794 struct task_cputime *tsk_expires = &tsk->cputime_expires;
795 u64 expires;
d4bb5274 796 unsigned long soft;
1da177e4 797
934715a1
JL
798 /*
799 * If cputime_expires is zero, then there are no active
800 * per thread CPU timers.
801 */
802 if (task_cputime_zero(&tsk->cputime_expires))
803 return;
804
2473f3e7 805 expires = check_timers_list(timers, firing, prof_ticks(tsk));
ebd7e7fc 806 tsk_expires->prof_exp = expires;
1da177e4 807
2473f3e7 808 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
ebd7e7fc 809 tsk_expires->virt_exp = expires;
1da177e4 810
2473f3e7
FW
811 tsk_expires->sched_exp = check_timers_list(++timers, firing,
812 tsk->se.sum_exec_runtime);
78f2c7db
PZ
813
814 /*
815 * Check for the special case thread timers.
816 */
316c1608 817 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
d4bb5274 818 if (soft != RLIM_INFINITY) {
78d7d407 819 unsigned long hard =
316c1608 820 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
78f2c7db 821
5a52dd50
PZ
822 if (hard != RLIM_INFINITY &&
823 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
824 /*
825 * At the hard limit, we just die.
826 * No need to calculate anything else now.
827 */
828 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
829 return;
830 }
d4bb5274 831 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
832 /*
833 * At the soft limit, send a SIGXCPU every second.
834 */
d4bb5274
JS
835 if (soft < hard) {
836 soft += USEC_PER_SEC;
837 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
78f2c7db 838 }
81d50bb2
HS
839 printk(KERN_INFO
840 "RT Watchdog Timeout: %s[%d]\n",
841 tsk->comm, task_pid_nr(tsk));
78f2c7db
PZ
842 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
843 }
844 }
b7878300
FW
845 if (task_cputime_zero(tsk_expires))
846 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
847}
848
1018016c 849static inline void stop_process_timers(struct signal_struct *sig)
3fccfd67 850{
15365c10 851 struct thread_group_cputimer *cputimer = &sig->cputimer;
3fccfd67 852
1018016c 853 /* Turn off cputimer->running. This is done without locking. */
d5c373eb 854 WRITE_ONCE(cputimer->running, false);
b7878300 855 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
3fccfd67
PZ
856}
857
42c4ab41 858static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
ebd7e7fc 859 u64 *expires, u64 cur_time, int signo)
42c4ab41 860{
64861634 861 if (!it->expires)
42c4ab41
SG
862 return;
863
858cf3a8
FW
864 if (cur_time >= it->expires) {
865 if (it->incr)
64861634 866 it->expires += it->incr;
858cf3a8 867 else
64861634 868 it->expires = 0;
42c4ab41 869
3f0a525e
XG
870 trace_itimer_expire(signo == SIGPROF ?
871 ITIMER_PROF : ITIMER_VIRTUAL,
872 tsk->signal->leader_pid, cur_time);
42c4ab41
SG
873 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
874 }
875
858cf3a8
FW
876 if (it->expires && (!*expires || it->expires < *expires))
877 *expires = it->expires;
42c4ab41
SG
878}
879
1da177e4
LT
880/*
881 * Check for any per-thread CPU timers that have fired and move them
882 * off the tsk->*_timers list onto the firing list. Per-thread timers
883 * have already been taken off.
884 */
885static void check_process_timers(struct task_struct *tsk,
886 struct list_head *firing)
887{
888 struct signal_struct *const sig = tsk->signal;
ebd7e7fc
FW
889 u64 utime, ptime, virt_expires, prof_expires;
890 u64 sum_sched_runtime, sched_expires;
1da177e4 891 struct list_head *timers = sig->cpu_timers;
ebd7e7fc 892 struct task_cputime cputime;
d4bb5274 893 unsigned long soft;
1da177e4 894
934715a1
JL
895 /*
896 * If cputimer is not running, then there are no active
897 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
898 */
899 if (!READ_ONCE(tsk->signal->cputimer.running))
900 return;
901
c8d75aa4
JL
902 /*
903 * Signify that a thread is checking for process timers.
904 * Write access to this field is protected by the sighand lock.
905 */
906 sig->cputimer.checking_timer = true;
907
1da177e4
LT
908 /*
909 * Collect the current process totals.
910 */
4cd4c1b4 911 thread_group_cputimer(tsk, &cputime);
ebd7e7fc
FW
912 utime = cputime.utime;
913 ptime = utime + cputime.stime;
f06febc9 914 sum_sched_runtime = cputime.sum_exec_runtime;
1da177e4 915
2473f3e7
FW
916 prof_expires = check_timers_list(timers, firing, ptime);
917 virt_expires = check_timers_list(++timers, firing, utime);
918 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
1da177e4
LT
919
920 /*
921 * Check for the special case process timers.
922 */
42c4ab41
SG
923 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
924 SIGPROF);
925 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
926 SIGVTALRM);
316c1608 927 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
d4bb5274 928 if (soft != RLIM_INFINITY) {
ebd7e7fc 929 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
78d7d407 930 unsigned long hard =
316c1608 931 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
ebd7e7fc 932 u64 x;
d4bb5274 933 if (psecs >= hard) {
1da177e4
LT
934 /*
935 * At the hard limit, we just die.
936 * No need to calculate anything else now.
937 */
938 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
939 return;
940 }
d4bb5274 941 if (psecs >= soft) {
1da177e4
LT
942 /*
943 * At the soft limit, send a SIGXCPU every second.
944 */
945 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
d4bb5274
JS
946 if (soft < hard) {
947 soft++;
948 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1da177e4
LT
949 }
950 }
ebd7e7fc
FW
951 x = soft * NSEC_PER_SEC;
952 if (!prof_expires || x < prof_expires)
1da177e4 953 prof_expires = x;
1da177e4
LT
954 }
955
ebd7e7fc
FW
956 sig->cputime_expires.prof_exp = prof_expires;
957 sig->cputime_expires.virt_exp = virt_expires;
29f87b79
SG
958 sig->cputime_expires.sched_exp = sched_expires;
959 if (task_cputime_zero(&sig->cputime_expires))
960 stop_process_timers(sig);
c8d75aa4
JL
961
962 sig->cputimer.checking_timer = false;
1da177e4
LT
963}
964
965/*
966 * This is called from the signal code (via do_schedule_next_timer)
967 * when the last timer signal was delivered and we have to reload the timer.
968 */
969void posix_cpu_timer_schedule(struct k_itimer *timer)
970{
e73d84e3
FW
971 struct sighand_struct *sighand;
972 unsigned long flags;
1da177e4 973 struct task_struct *p = timer->it.cpu.task;
ebd7e7fc 974 u64 now;
1da177e4 975
a3222f88 976 WARN_ON_ONCE(p == NULL);
1da177e4
LT
977
978 /*
979 * Fetch the current sample and update the timer's expiry time.
980 */
981 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
982 cpu_clock_sample(timer->it_clock, p, &now);
983 bump_cpu_timer(timer, now);
724a3713 984 if (unlikely(p->exit_state))
708f430d 985 goto out;
724a3713 986
e73d84e3
FW
987 /* Protect timer list r/w in arm_timer() */
988 sighand = lock_task_sighand(p, &flags);
989 if (!sighand)
990 goto out;
1da177e4 991 } else {
e73d84e3
FW
992 /*
993 * Protect arm_timer() and timer sampling in case of call to
ebd7e7fc 994 * thread_group_cputime().
e73d84e3
FW
995 */
996 sighand = lock_task_sighand(p, &flags);
997 if (unlikely(sighand == NULL)) {
1da177e4
LT
998 /*
999 * The process has been reaped.
1000 * We can't even collect a sample any more.
1001 */
55ccb616 1002 timer->it.cpu.expires = 0;
c925077c 1003 goto out;
1da177e4 1004 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
e73d84e3 1005 unlock_task_sighand(p, &flags);
d430b917 1006 /* Optimizations: if the process is dying, no need to rearm */
c925077c 1007 goto out;
1da177e4 1008 }
3997ad31 1009 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4 1010 bump_cpu_timer(timer, now);
e73d84e3 1011 /* Leave the sighand locked for the call below. */
1da177e4
LT
1012 }
1013
1014 /*
1015 * Now re-arm for the new expiry time.
1016 */
531f64fd 1017 WARN_ON_ONCE(!irqs_disabled());
5eb9aa64 1018 arm_timer(timer);
e73d84e3 1019 unlock_task_sighand(p, &flags);
708f430d
RM
1020
1021out:
1022 timer->it_overrun_last = timer->it_overrun;
1023 timer->it_overrun = -1;
1024 ++timer->it_requeue_pending;
1da177e4
LT
1025}
1026
f06febc9
FM
1027/**
1028 * task_cputime_expired - Compare two task_cputime entities.
1029 *
1030 * @sample: The task_cputime structure to be checked for expiration.
1031 * @expires: Expiration times, against which @sample will be checked.
1032 *
1033 * Checks @sample against @expires to see if any field of @sample has expired.
1034 * Returns true if any field of the former is greater than the corresponding
1035 * field of the latter if the latter field is set. Otherwise returns false.
1036 */
ebd7e7fc
FW
1037static inline int task_cputime_expired(const struct task_cputime *sample,
1038 const struct task_cputime *expires)
f06febc9 1039{
64861634 1040 if (expires->utime && sample->utime >= expires->utime)
f06febc9 1041 return 1;
64861634 1042 if (expires->stime && sample->utime + sample->stime >= expires->stime)
f06febc9
FM
1043 return 1;
1044 if (expires->sum_exec_runtime != 0 &&
1045 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1046 return 1;
1047 return 0;
1048}
1049
1050/**
1051 * fastpath_timer_check - POSIX CPU timers fast path.
1052 *
1053 * @tsk: The task (thread) being checked.
f06febc9 1054 *
bb34d92f
FM
1055 * Check the task and thread group timers. If both are zero (there are no
1056 * timers set) return false. Otherwise snapshot the task and thread group
1057 * timers and compare them with the corresponding expiration times. Return
1058 * true if a timer has expired, else return false.
f06febc9 1059 */
bb34d92f 1060static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1061{
ad133ba3 1062 struct signal_struct *sig;
bb34d92f 1063
bb34d92f 1064 if (!task_cputime_zero(&tsk->cputime_expires)) {
ebd7e7fc 1065 struct task_cputime task_sample;
bb34d92f 1066
ebd7e7fc 1067 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
7c177d99 1068 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
bb34d92f
FM
1069 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1070 return 1;
1071 }
ad133ba3
ON
1072
1073 sig = tsk->signal;
c8d75aa4
JL
1074 /*
1075 * Check if thread group timers expired when the cputimer is
1076 * running and no other thread in the group is already checking
1077 * for thread group cputimers. These fields are read without the
1078 * sighand lock. However, this is fine because this is meant to
1079 * be a fastpath heuristic to determine whether we should try to
1080 * acquire the sighand lock to check/handle timers.
1081 *
1082 * In the worst case scenario, if 'running' or 'checking_timer' gets
1083 * set but the current thread doesn't see the change yet, we'll wait
1084 * until the next thread in the group gets a scheduler interrupt to
1085 * handle the timer. This isn't an issue in practice because these
1086 * types of delays with signals actually getting sent are expected.
1087 */
1088 if (READ_ONCE(sig->cputimer.running) &&
1089 !READ_ONCE(sig->cputimer.checking_timer)) {
ebd7e7fc 1090 struct task_cputime group_sample;
bb34d92f 1091
71107445 1092 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
8d1f431c 1093
bb34d92f
FM
1094 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1095 return 1;
1096 }
37bebc70 1097
f55db609 1098 return 0;
f06febc9
FM
1099}
1100
1da177e4
LT
1101/*
1102 * This is called from the timer interrupt handler. The irq handler has
1103 * already updated our counts. We need to check if any timers fire now.
1104 * Interrupts are disabled.
1105 */
1106void run_posix_cpu_timers(struct task_struct *tsk)
1107{
1108 LIST_HEAD(firing);
1109 struct k_itimer *timer, *next;
0bdd2ed4 1110 unsigned long flags;
1da177e4 1111
531f64fd 1112 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1113
1da177e4 1114 /*
f06febc9 1115 * The fast path checks that there are no expired thread or thread
bb34d92f 1116 * group timers. If that's so, just return.
1da177e4 1117 */
bb34d92f 1118 if (!fastpath_timer_check(tsk))
f06febc9 1119 return;
5ce73a4a 1120
0bdd2ed4
ON
1121 if (!lock_task_sighand(tsk, &flags))
1122 return;
bb34d92f
FM
1123 /*
1124 * Here we take off tsk->signal->cpu_timers[N] and
1125 * tsk->cpu_timers[N] all the timers that are firing, and
1126 * put them on the firing list.
1127 */
1128 check_thread_timers(tsk, &firing);
934715a1
JL
1129
1130 check_process_timers(tsk, &firing);
1da177e4 1131
bb34d92f
FM
1132 /*
1133 * We must release these locks before taking any timer's lock.
1134 * There is a potential race with timer deletion here, as the
1135 * siglock now protects our private firing list. We have set
1136 * the firing flag in each timer, so that a deletion attempt
1137 * that gets the timer lock before we do will give it up and
1138 * spin until we've taken care of that timer below.
1139 */
0bdd2ed4 1140 unlock_task_sighand(tsk, &flags);
1da177e4
LT
1141
1142 /*
1143 * Now that all the timers on our list have the firing flag,
25985edc 1144 * no one will touch their list entries but us. We'll take
1da177e4
LT
1145 * each timer's lock before clearing its firing flag, so no
1146 * timer call will interfere.
1147 */
1148 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1149 int cpu_firing;
1150
1da177e4
LT
1151 spin_lock(&timer->it_lock);
1152 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1153 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1154 timer->it.cpu.firing = 0;
1155 /*
1156 * The firing flag is -1 if we collided with a reset
1157 * of the timer, which already reported this
1158 * almost-firing as an overrun. So don't generate an event.
1159 */
6e85c5ba 1160 if (likely(cpu_firing >= 0))
1da177e4 1161 cpu_timer_fire(timer);
1da177e4
LT
1162 spin_unlock(&timer->it_lock);
1163 }
1164}
1165
1166/*
f55db609 1167 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1168 * The tsk->sighand->siglock must be held by the caller.
1da177e4
LT
1169 */
1170void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
858cf3a8 1171 u64 *newval, u64 *oldval)
1da177e4 1172{
858cf3a8 1173 u64 now;
1da177e4 1174
531f64fd 1175 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1176 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1177
1178 if (oldval) {
f55db609
SG
1179 /*
1180 * We are setting itimer. The *oldval is absolute and we update
1181 * it to be relative, *newval argument is relative and we update
1182 * it to be absolute.
1183 */
64861634 1184 if (*oldval) {
858cf3a8 1185 if (*oldval <= now) {
1da177e4 1186 /* Just about to fire. */
858cf3a8 1187 *oldval = TICK_NSEC;
1da177e4 1188 } else {
858cf3a8 1189 *oldval -= now;
1da177e4
LT
1190 }
1191 }
1192
64861634 1193 if (!*newval)
b7878300 1194 return;
858cf3a8 1195 *newval += now;
1da177e4
LT
1196 }
1197
1198 /*
f55db609
SG
1199 * Update expiration cache if we are the earliest timer, or eventually
1200 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1da177e4 1201 */
f55db609
SG
1202 switch (clock_idx) {
1203 case CPUCLOCK_PROF:
858cf3a8
FW
1204 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1205 tsk->signal->cputime_expires.prof_exp = *newval;
f55db609
SG
1206 break;
1207 case CPUCLOCK_VIRT:
858cf3a8
FW
1208 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1209 tsk->signal->cputime_expires.virt_exp = *newval;
f55db609 1210 break;
1da177e4 1211 }
b7878300
FW
1212
1213 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
1214}
1215
e4b76555
TA
1216static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1217 struct timespec *rqtp, struct itimerspec *it)
1da177e4 1218{
1da177e4
LT
1219 struct k_itimer timer;
1220 int error;
1221
1da177e4
LT
1222 /*
1223 * Set up a temporary timer and then wait for it to go off.
1224 */
1225 memset(&timer, 0, sizeof timer);
1226 spin_lock_init(&timer.it_lock);
1227 timer.it_clock = which_clock;
1228 timer.it_overrun = -1;
1229 error = posix_cpu_timer_create(&timer);
1230 timer.it_process = current;
1231 if (!error) {
1da177e4 1232 static struct itimerspec zero_it;
e4b76555
TA
1233
1234 memset(it, 0, sizeof *it);
1235 it->it_value = *rqtp;
1da177e4
LT
1236
1237 spin_lock_irq(&timer.it_lock);
e4b76555 1238 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1da177e4
LT
1239 if (error) {
1240 spin_unlock_irq(&timer.it_lock);
1241 return error;
1242 }
1243
1244 while (!signal_pending(current)) {
55ccb616 1245 if (timer.it.cpu.expires == 0) {
1da177e4 1246 /*
e6c42c29
SG
1247 * Our timer fired and was reset, below
1248 * deletion can not fail.
1da177e4 1249 */
e6c42c29 1250 posix_cpu_timer_del(&timer);
1da177e4
LT
1251 spin_unlock_irq(&timer.it_lock);
1252 return 0;
1253 }
1254
1255 /*
1256 * Block until cpu_timer_fire (or a signal) wakes us.
1257 */
1258 __set_current_state(TASK_INTERRUPTIBLE);
1259 spin_unlock_irq(&timer.it_lock);
1260 schedule();
1261 spin_lock_irq(&timer.it_lock);
1262 }
1263
1264 /*
1265 * We were interrupted by a signal.
1266 */
ebd7e7fc 1267 *rqtp = ns_to_timespec(timer.it.cpu.expires);
e6c42c29
SG
1268 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1269 if (!error) {
1270 /*
1271 * Timer is now unarmed, deletion can not fail.
1272 */
1273 posix_cpu_timer_del(&timer);
1274 }
1da177e4
LT
1275 spin_unlock_irq(&timer.it_lock);
1276
e6c42c29
SG
1277 while (error == TIMER_RETRY) {
1278 /*
1279 * We need to handle case when timer was or is in the
1280 * middle of firing. In other cases we already freed
1281 * resources.
1282 */
1283 spin_lock_irq(&timer.it_lock);
1284 error = posix_cpu_timer_del(&timer);
1285 spin_unlock_irq(&timer.it_lock);
1286 }
1287
e4b76555 1288 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1da177e4
LT
1289 /*
1290 * It actually did fire already.
1291 */
1292 return 0;
1293 }
1294
e4b76555
TA
1295 error = -ERESTART_RESTARTBLOCK;
1296 }
1297
1298 return error;
1299}
1300
bc2c8ea4
TG
1301static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1302
1303static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1304 struct timespec *rqtp, struct timespec __user *rmtp)
e4b76555 1305{
f56141e3 1306 struct restart_block *restart_block = &current->restart_block;
e4b76555
TA
1307 struct itimerspec it;
1308 int error;
1309
1310 /*
1311 * Diagnose required errors first.
1312 */
1313 if (CPUCLOCK_PERTHREAD(which_clock) &&
1314 (CPUCLOCK_PID(which_clock) == 0 ||
01a21974 1315 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
e4b76555
TA
1316 return -EINVAL;
1317
1318 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1319
1320 if (error == -ERESTART_RESTARTBLOCK) {
1321
3751f9f2 1322 if (flags & TIMER_ABSTIME)
e4b76555 1323 return -ERESTARTNOHAND;
1da177e4 1324 /*
3751f9f2
TG
1325 * Report back to the user the time still remaining.
1326 */
1327 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1da177e4
LT
1328 return -EFAULT;
1329
1711ef38 1330 restart_block->fn = posix_cpu_nsleep_restart;
ab8177bc 1331 restart_block->nanosleep.clockid = which_clock;
3751f9f2
TG
1332 restart_block->nanosleep.rmtp = rmtp;
1333 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1da177e4 1334 }
1da177e4
LT
1335 return error;
1336}
1337
bc2c8ea4 1338static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4 1339{
ab8177bc 1340 clockid_t which_clock = restart_block->nanosleep.clockid;
97735f25 1341 struct timespec t;
e4b76555
TA
1342 struct itimerspec it;
1343 int error;
97735f25 1344
3751f9f2 1345 t = ns_to_timespec(restart_block->nanosleep.expires);
97735f25 1346
e4b76555
TA
1347 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1348
1349 if (error == -ERESTART_RESTARTBLOCK) {
3751f9f2 1350 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
e4b76555 1351 /*
3751f9f2
TG
1352 * Report back to the user the time still remaining.
1353 */
1354 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
e4b76555
TA
1355 return -EFAULT;
1356
3751f9f2 1357 restart_block->nanosleep.expires = timespec_to_ns(&t);
e4b76555
TA
1358 }
1359 return error;
1360
1da177e4
LT
1361}
1362
1da177e4
LT
1363#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1364#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1365
a924b04d
TG
1366static int process_cpu_clock_getres(const clockid_t which_clock,
1367 struct timespec *tp)
1da177e4
LT
1368{
1369 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1370}
a924b04d
TG
1371static int process_cpu_clock_get(const clockid_t which_clock,
1372 struct timespec *tp)
1da177e4
LT
1373{
1374 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1375}
1376static int process_cpu_timer_create(struct k_itimer *timer)
1377{
1378 timer->it_clock = PROCESS_CLOCK;
1379 return posix_cpu_timer_create(timer);
1380}
a924b04d 1381static int process_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25
TG
1382 struct timespec *rqtp,
1383 struct timespec __user *rmtp)
1da177e4 1384{
97735f25 1385 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1da177e4 1386}
1711ef38
TA
1387static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1388{
1389 return -EINVAL;
1390}
a924b04d
TG
1391static int thread_cpu_clock_getres(const clockid_t which_clock,
1392 struct timespec *tp)
1da177e4
LT
1393{
1394 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1395}
a924b04d
TG
1396static int thread_cpu_clock_get(const clockid_t which_clock,
1397 struct timespec *tp)
1da177e4
LT
1398{
1399 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1400}
1401static int thread_cpu_timer_create(struct k_itimer *timer)
1402{
1403 timer->it_clock = THREAD_CLOCK;
1404 return posix_cpu_timer_create(timer);
1405}
1da177e4 1406
1976945e
TG
1407struct k_clock clock_posix_cpu = {
1408 .clock_getres = posix_cpu_clock_getres,
1409 .clock_set = posix_cpu_clock_set,
1410 .clock_get = posix_cpu_clock_get,
1411 .timer_create = posix_cpu_timer_create,
1412 .nsleep = posix_cpu_nsleep,
1413 .nsleep_restart = posix_cpu_nsleep_restart,
1414 .timer_set = posix_cpu_timer_set,
1415 .timer_del = posix_cpu_timer_del,
1416 .timer_get = posix_cpu_timer_get,
1417};
1418
1da177e4
LT
1419static __init int init_posix_cpu_timers(void)
1420{
1421 struct k_clock process = {
2fd1f040
TG
1422 .clock_getres = process_cpu_clock_getres,
1423 .clock_get = process_cpu_clock_get,
2fd1f040
TG
1424 .timer_create = process_cpu_timer_create,
1425 .nsleep = process_cpu_nsleep,
1426 .nsleep_restart = process_cpu_nsleep_restart,
1da177e4
LT
1427 };
1428 struct k_clock thread = {
2fd1f040
TG
1429 .clock_getres = thread_cpu_clock_getres,
1430 .clock_get = thread_cpu_clock_get,
2fd1f040 1431 .timer_create = thread_cpu_timer_create,
1da177e4
LT
1432 };
1433
52708737
TG
1434 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1435 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1da177e4
LT
1436
1437 return 0;
1438}
1439__initcall(init_posix_cpu_timers);