]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/posix-cpu-timers.c
posix-timers: Store rmtp into restart_block in sys_clock_nanosleep()
[mirror_ubuntu-jammy-kernel.git] / kernel / time / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
3f07c014 5#include <linux/sched/signal.h>
32ef5517 6#include <linux/sched/cputime.h>
1da177e4 7#include <linux/posix-timers.h>
1da177e4 8#include <linux/errno.h>
f8bd2258 9#include <linux/math64.h>
7c0f6ba6 10#include <linux/uaccess.h>
bb34d92f 11#include <linux/kernel_stat.h>
3f0a525e 12#include <trace/events/timer.h>
a8572160
FW
13#include <linux/tick.h>
14#include <linux/workqueue.h>
1da177e4 15
bab0aae9
TG
16#include "posix-timers.h"
17
f37fb0aa
TG
18static void posix_cpu_timer_rearm(struct k_itimer *timer);
19
f06febc9 20/*
f55db609
SG
21 * Called after updating RLIMIT_CPU to run cpu timer and update
22 * tsk->signal->cputime_expires expiration cache if necessary. Needs
23 * siglock protection since other code may update expiration cache as
24 * well.
f06febc9 25 */
5ab46b34 26void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
f06febc9 27{
858cf3a8 28 u64 nsecs = rlim_new * NSEC_PER_SEC;
f06febc9 29
5ab46b34 30 spin_lock_irq(&task->sighand->siglock);
858cf3a8 31 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
5ab46b34 32 spin_unlock_irq(&task->sighand->siglock);
f06febc9
FM
33}
34
a924b04d 35static int check_clock(const clockid_t which_clock)
1da177e4
LT
36{
37 int error = 0;
38 struct task_struct *p;
39 const pid_t pid = CPUCLOCK_PID(which_clock);
40
41 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
42 return -EINVAL;
43
44 if (pid == 0)
45 return 0;
46
c0deae8c 47 rcu_read_lock();
8dc86af0 48 p = find_task_by_vpid(pid);
bac0abd6 49 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
c0deae8c 50 same_thread_group(p, current) : has_group_leader_pid(p))) {
1da177e4
LT
51 error = -EINVAL;
52 }
c0deae8c 53 rcu_read_unlock();
1da177e4
LT
54
55 return error;
56}
57
1da177e4
LT
58/*
59 * Update expiry time from increment, and increase overrun count,
60 * given the current clock sample.
61 */
ebd7e7fc 62static void bump_cpu_timer(struct k_itimer *timer, u64 now)
1da177e4
LT
63{
64 int i;
ebd7e7fc 65 u64 delta, incr;
1da177e4 66
55ccb616 67 if (timer->it.cpu.incr == 0)
1da177e4
LT
68 return;
69
55ccb616
FW
70 if (now < timer->it.cpu.expires)
71 return;
1da177e4 72
55ccb616
FW
73 incr = timer->it.cpu.incr;
74 delta = now + incr - timer->it.cpu.expires;
1da177e4 75
55ccb616
FW
76 /* Don't use (incr*2 < delta), incr*2 might overflow. */
77 for (i = 0; incr < delta - incr; i++)
78 incr = incr << 1;
79
80 for (; i >= 0; incr >>= 1, i--) {
81 if (delta < incr)
82 continue;
83
84 timer->it.cpu.expires += incr;
85 timer->it_overrun += 1 << i;
86 delta -= incr;
1da177e4
LT
87 }
88}
89
555347f6
FW
90/**
91 * task_cputime_zero - Check a task_cputime struct for all zero fields.
92 *
93 * @cputime: The struct to compare.
94 *
95 * Checks @cputime to see if all fields are zero. Returns true if all fields
96 * are zero, false if any field is nonzero.
97 */
ebd7e7fc 98static inline int task_cputime_zero(const struct task_cputime *cputime)
555347f6
FW
99{
100 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
101 return 1;
102 return 0;
103}
104
ebd7e7fc 105static inline u64 prof_ticks(struct task_struct *p)
1da177e4 106{
ebd7e7fc 107 u64 utime, stime;
6fac4829 108
ebd7e7fc 109 task_cputime(p, &utime, &stime);
6fac4829 110
ebd7e7fc 111 return utime + stime;
1da177e4 112}
ebd7e7fc 113static inline u64 virt_ticks(struct task_struct *p)
1da177e4 114{
ebd7e7fc 115 u64 utime, stime;
6fac4829 116
ebd7e7fc 117 task_cputime(p, &utime, &stime);
6fac4829 118
ebd7e7fc 119 return utime;
1da177e4 120}
1da177e4 121
bc2c8ea4 122static int
d2e3e0ca 123posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
1da177e4
LT
124{
125 int error = check_clock(which_clock);
126 if (!error) {
127 tp->tv_sec = 0;
128 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
129 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
130 /*
131 * If sched_clock is using a cycle counter, we
132 * don't have any idea of its true resolution
133 * exported, but it is much more than 1s/HZ.
134 */
135 tp->tv_nsec = 1;
136 }
137 }
138 return error;
139}
140
bc2c8ea4 141static int
0fe6afe3 142posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
1da177e4
LT
143{
144 /*
145 * You can never reset a CPU clock, but we check for other errors
146 * in the call before failing with EPERM.
147 */
148 int error = check_clock(which_clock);
149 if (error == 0) {
150 error = -EPERM;
151 }
152 return error;
153}
154
155
156/*
157 * Sample a per-thread clock for the given task.
158 */
ebd7e7fc
FW
159static int cpu_clock_sample(const clockid_t which_clock,
160 struct task_struct *p, u64 *sample)
1da177e4
LT
161{
162 switch (CPUCLOCK_WHICH(which_clock)) {
163 default:
164 return -EINVAL;
165 case CPUCLOCK_PROF:
55ccb616 166 *sample = prof_ticks(p);
1da177e4
LT
167 break;
168 case CPUCLOCK_VIRT:
55ccb616 169 *sample = virt_ticks(p);
1da177e4
LT
170 break;
171 case CPUCLOCK_SCHED:
55ccb616 172 *sample = task_sched_runtime(p);
1da177e4
LT
173 break;
174 }
175 return 0;
176}
177
1018016c
JL
178/*
179 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
180 * to avoid race conditions with concurrent updates to cputime.
181 */
182static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
4da94d49 183{
1018016c
JL
184 u64 curr_cputime;
185retry:
186 curr_cputime = atomic64_read(cputime);
187 if (sum_cputime > curr_cputime) {
188 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
189 goto retry;
190 }
191}
4da94d49 192
ebd7e7fc 193static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
1018016c 194{
71107445
JL
195 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
196 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
197 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
1018016c 198}
4da94d49 199
71107445 200/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
ebd7e7fc 201static inline void sample_cputime_atomic(struct task_cputime *times,
71107445 202 struct task_cputime_atomic *atomic_times)
1018016c 203{
71107445
JL
204 times->utime = atomic64_read(&atomic_times->utime);
205 times->stime = atomic64_read(&atomic_times->stime);
206 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
4da94d49
PZ
207}
208
ebd7e7fc 209void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
4da94d49
PZ
210{
211 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
ebd7e7fc 212 struct task_cputime sum;
4da94d49 213
1018016c
JL
214 /* Check if cputimer isn't running. This is accessed without locking. */
215 if (!READ_ONCE(cputimer->running)) {
4da94d49
PZ
216 /*
217 * The POSIX timer interface allows for absolute time expiry
218 * values through the TIMER_ABSTIME flag, therefore we have
1018016c 219 * to synchronize the timer to the clock every time we start it.
4da94d49 220 */
ebd7e7fc 221 thread_group_cputime(tsk, &sum);
71107445 222 update_gt_cputime(&cputimer->cputime_atomic, &sum);
1018016c
JL
223
224 /*
225 * We're setting cputimer->running without a lock. Ensure
226 * this only gets written to in one operation. We set
227 * running after update_gt_cputime() as a small optimization,
228 * but barriers are not required because update_gt_cputime()
229 * can handle concurrent updates.
230 */
d5c373eb 231 WRITE_ONCE(cputimer->running, true);
1018016c 232 }
71107445 233 sample_cputime_atomic(times, &cputimer->cputime_atomic);
4da94d49
PZ
234}
235
1da177e4
LT
236/*
237 * Sample a process (thread group) clock for the given group_leader task.
e73d84e3
FW
238 * Must be called with task sighand lock held for safe while_each_thread()
239 * traversal.
1da177e4 240 */
bb34d92f
FM
241static int cpu_clock_sample_group(const clockid_t which_clock,
242 struct task_struct *p,
ebd7e7fc 243 u64 *sample)
1da177e4 244{
ebd7e7fc 245 struct task_cputime cputime;
f06febc9 246
eccdaeaf 247 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
248 default:
249 return -EINVAL;
250 case CPUCLOCK_PROF:
ebd7e7fc
FW
251 thread_group_cputime(p, &cputime);
252 *sample = cputime.utime + cputime.stime;
1da177e4
LT
253 break;
254 case CPUCLOCK_VIRT:
ebd7e7fc
FW
255 thread_group_cputime(p, &cputime);
256 *sample = cputime.utime;
1da177e4
LT
257 break;
258 case CPUCLOCK_SCHED:
ebd7e7fc 259 thread_group_cputime(p, &cputime);
55ccb616 260 *sample = cputime.sum_exec_runtime;
1da177e4
LT
261 break;
262 }
263 return 0;
264}
265
33ab0fec
FW
266static int posix_cpu_clock_get_task(struct task_struct *tsk,
267 const clockid_t which_clock,
3c9c12f4 268 struct timespec64 *tp)
33ab0fec
FW
269{
270 int err = -EINVAL;
ebd7e7fc 271 u64 rtn;
33ab0fec
FW
272
273 if (CPUCLOCK_PERTHREAD(which_clock)) {
274 if (same_thread_group(tsk, current))
275 err = cpu_clock_sample(which_clock, tsk, &rtn);
276 } else {
50875788 277 if (tsk == current || thread_group_leader(tsk))
33ab0fec 278 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
33ab0fec
FW
279 }
280
281 if (!err)
3c9c12f4 282 *tp = ns_to_timespec64(rtn);
33ab0fec
FW
283
284 return err;
285}
286
1da177e4 287
3c9c12f4 288static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
1da177e4
LT
289{
290 const pid_t pid = CPUCLOCK_PID(which_clock);
33ab0fec 291 int err = -EINVAL;
1da177e4
LT
292
293 if (pid == 0) {
294 /*
295 * Special case constant value for our own clocks.
296 * We don't have to do any lookup to find ourselves.
297 */
33ab0fec 298 err = posix_cpu_clock_get_task(current, which_clock, tp);
1da177e4
LT
299 } else {
300 /*
301 * Find the given PID, and validate that the caller
302 * should be able to see it.
303 */
304 struct task_struct *p;
1f2ea083 305 rcu_read_lock();
8dc86af0 306 p = find_task_by_vpid(pid);
33ab0fec
FW
307 if (p)
308 err = posix_cpu_clock_get_task(p, which_clock, tp);
1f2ea083 309 rcu_read_unlock();
1da177e4
LT
310 }
311
33ab0fec 312 return err;
1da177e4
LT
313}
314
1da177e4
LT
315/*
316 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
317 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
318 * new timer already all-zeros initialized.
1da177e4 319 */
bc2c8ea4 320static int posix_cpu_timer_create(struct k_itimer *new_timer)
1da177e4
LT
321{
322 int ret = 0;
323 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
324 struct task_struct *p;
325
326 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
327 return -EINVAL;
328
d97bb75d
TG
329 new_timer->kclock = &clock_posix_cpu;
330
1da177e4 331 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
1da177e4 332
c0deae8c 333 rcu_read_lock();
1da177e4
LT
334 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
335 if (pid == 0) {
336 p = current;
337 } else {
8dc86af0 338 p = find_task_by_vpid(pid);
bac0abd6 339 if (p && !same_thread_group(p, current))
1da177e4
LT
340 p = NULL;
341 }
342 } else {
343 if (pid == 0) {
344 p = current->group_leader;
345 } else {
8dc86af0 346 p = find_task_by_vpid(pid);
c0deae8c 347 if (p && !has_group_leader_pid(p))
1da177e4
LT
348 p = NULL;
349 }
350 }
351 new_timer->it.cpu.task = p;
352 if (p) {
353 get_task_struct(p);
354 } else {
355 ret = -EINVAL;
356 }
c0deae8c 357 rcu_read_unlock();
1da177e4
LT
358
359 return ret;
360}
361
362/*
363 * Clean up a CPU-clock timer that is about to be destroyed.
364 * This is called from timer deletion with the timer already locked.
365 * If we return TIMER_RETRY, it's necessary to release the timer's lock
366 * and try again. (This happens when the timer is in the middle of firing.)
367 */
bc2c8ea4 368static int posix_cpu_timer_del(struct k_itimer *timer)
1da177e4 369{
108150ea 370 int ret = 0;
3d7a1427
FW
371 unsigned long flags;
372 struct sighand_struct *sighand;
373 struct task_struct *p = timer->it.cpu.task;
1da177e4 374
a3222f88 375 WARN_ON_ONCE(p == NULL);
108150ea 376
3d7a1427
FW
377 /*
378 * Protect against sighand release/switch in exit/exec and process/
379 * thread timer list entry concurrent read/writes.
380 */
381 sighand = lock_task_sighand(p, &flags);
382 if (unlikely(sighand == NULL)) {
a3222f88
FW
383 /*
384 * We raced with the reaping of the task.
385 * The deletion should have cleared us off the list.
386 */
531f64fd 387 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
a3222f88 388 } else {
a3222f88
FW
389 if (timer->it.cpu.firing)
390 ret = TIMER_RETRY;
391 else
392 list_del(&timer->it.cpu.entry);
3d7a1427
FW
393
394 unlock_task_sighand(p, &flags);
1da177e4 395 }
a3222f88
FW
396
397 if (!ret)
398 put_task_struct(p);
1da177e4 399
108150ea 400 return ret;
1da177e4
LT
401}
402
af82eb3c 403static void cleanup_timers_list(struct list_head *head)
1a7fa510
FW
404{
405 struct cpu_timer_list *timer, *next;
406
a0b2062b 407 list_for_each_entry_safe(timer, next, head, entry)
1a7fa510 408 list_del_init(&timer->entry);
1a7fa510
FW
409}
410
1da177e4
LT
411/*
412 * Clean out CPU timers still ticking when a thread exited. The task
413 * pointer is cleared, and the expiry time is replaced with the residual
414 * time for later timer_gettime calls to return.
415 * This must be called with the siglock held.
416 */
af82eb3c 417static void cleanup_timers(struct list_head *head)
1da177e4 418{
af82eb3c
FW
419 cleanup_timers_list(head);
420 cleanup_timers_list(++head);
421 cleanup_timers_list(++head);
1da177e4
LT
422}
423
424/*
425 * These are both called with the siglock held, when the current thread
426 * is being reaped. When the final (leader) thread in the group is reaped,
427 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
428 */
429void posix_cpu_timers_exit(struct task_struct *tsk)
430{
af82eb3c 431 cleanup_timers(tsk->cpu_timers);
1da177e4
LT
432}
433void posix_cpu_timers_exit_group(struct task_struct *tsk)
434{
af82eb3c 435 cleanup_timers(tsk->signal->cpu_timers);
1da177e4
LT
436}
437
ebd7e7fc 438static inline int expires_gt(u64 expires, u64 new_exp)
d1e3b6d1 439{
64861634 440 return expires == 0 || expires > new_exp;
d1e3b6d1
SG
441}
442
1da177e4
LT
443/*
444 * Insert the timer on the appropriate list before any timers that
e73d84e3 445 * expire later. This must be called with the sighand lock held.
1da177e4 446 */
5eb9aa64 447static void arm_timer(struct k_itimer *timer)
1da177e4
LT
448{
449 struct task_struct *p = timer->it.cpu.task;
450 struct list_head *head, *listpos;
ebd7e7fc 451 struct task_cputime *cputime_expires;
1da177e4
LT
452 struct cpu_timer_list *const nt = &timer->it.cpu;
453 struct cpu_timer_list *next;
1da177e4 454
5eb9aa64
SG
455 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
456 head = p->cpu_timers;
457 cputime_expires = &p->cputime_expires;
458 } else {
459 head = p->signal->cpu_timers;
460 cputime_expires = &p->signal->cputime_expires;
461 }
1da177e4
LT
462 head += CPUCLOCK_WHICH(timer->it_clock);
463
1da177e4 464 listpos = head;
5eb9aa64 465 list_for_each_entry(next, head, entry) {
55ccb616 466 if (nt->expires < next->expires)
5eb9aa64
SG
467 break;
468 listpos = &next->entry;
1da177e4
LT
469 }
470 list_add(&nt->entry, listpos);
471
472 if (listpos == head) {
ebd7e7fc 473 u64 exp = nt->expires;
5eb9aa64 474
1da177e4 475 /*
5eb9aa64
SG
476 * We are the new earliest-expiring POSIX 1.b timer, hence
477 * need to update expiration cache. Take into account that
478 * for process timers we share expiration cache with itimers
479 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
1da177e4
LT
480 */
481
5eb9aa64
SG
482 switch (CPUCLOCK_WHICH(timer->it_clock)) {
483 case CPUCLOCK_PROF:
ebd7e7fc
FW
484 if (expires_gt(cputime_expires->prof_exp, exp))
485 cputime_expires->prof_exp = exp;
5eb9aa64
SG
486 break;
487 case CPUCLOCK_VIRT:
ebd7e7fc
FW
488 if (expires_gt(cputime_expires->virt_exp, exp))
489 cputime_expires->virt_exp = exp;
5eb9aa64
SG
490 break;
491 case CPUCLOCK_SCHED:
ebd7e7fc 492 if (expires_gt(cputime_expires->sched_exp, exp))
55ccb616 493 cputime_expires->sched_exp = exp;
5eb9aa64 494 break;
1da177e4 495 }
b7878300
FW
496 if (CPUCLOCK_PERTHREAD(timer->it_clock))
497 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
498 else
499 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4 500 }
1da177e4
LT
501}
502
503/*
504 * The timer is locked, fire it and arrange for its reload.
505 */
506static void cpu_timer_fire(struct k_itimer *timer)
507{
1f169f84
SG
508 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
509 /*
510 * User don't want any signal.
511 */
55ccb616 512 timer->it.cpu.expires = 0;
1f169f84 513 } else if (unlikely(timer->sigq == NULL)) {
1da177e4
LT
514 /*
515 * This a special case for clock_nanosleep,
516 * not a normal timer from sys_timer_create.
517 */
518 wake_up_process(timer->it_process);
55ccb616
FW
519 timer->it.cpu.expires = 0;
520 } else if (timer->it.cpu.incr == 0) {
1da177e4
LT
521 /*
522 * One-shot timer. Clear it as soon as it's fired.
523 */
524 posix_timer_event(timer, 0);
55ccb616 525 timer->it.cpu.expires = 0;
1da177e4
LT
526 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
527 /*
528 * The signal did not get queued because the signal
529 * was ignored, so we won't get any callback to
530 * reload the timer. But we need to keep it
531 * ticking in case the signal is deliverable next time.
532 */
f37fb0aa 533 posix_cpu_timer_rearm(timer);
af888d67 534 ++timer->it_requeue_pending;
1da177e4
LT
535 }
536}
537
3997ad31
PZ
538/*
539 * Sample a process (thread group) timer for the given group_leader task.
e73d84e3
FW
540 * Must be called with task sighand lock held for safe while_each_thread()
541 * traversal.
3997ad31
PZ
542 */
543static int cpu_timer_sample_group(const clockid_t which_clock,
ebd7e7fc 544 struct task_struct *p, u64 *sample)
3997ad31 545{
ebd7e7fc 546 struct task_cputime cputime;
3997ad31
PZ
547
548 thread_group_cputimer(p, &cputime);
549 switch (CPUCLOCK_WHICH(which_clock)) {
550 default:
551 return -EINVAL;
552 case CPUCLOCK_PROF:
ebd7e7fc 553 *sample = cputime.utime + cputime.stime;
3997ad31
PZ
554 break;
555 case CPUCLOCK_VIRT:
ebd7e7fc 556 *sample = cputime.utime;
3997ad31
PZ
557 break;
558 case CPUCLOCK_SCHED:
23cfa361 559 *sample = cputime.sum_exec_runtime;
3997ad31
PZ
560 break;
561 }
562 return 0;
563}
564
1da177e4
LT
565/*
566 * Guts of sys_timer_settime for CPU timers.
567 * This is called with the timer locked and interrupts disabled.
568 * If we return TIMER_RETRY, it's necessary to release the timer's lock
569 * and try again. (This happens when the timer is in the middle of firing.)
570 */
e73d84e3 571static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
5f252b32 572 struct itimerspec64 *new, struct itimerspec64 *old)
1da177e4 573{
e73d84e3
FW
574 unsigned long flags;
575 struct sighand_struct *sighand;
1da177e4 576 struct task_struct *p = timer->it.cpu.task;
ebd7e7fc 577 u64 old_expires, new_expires, old_incr, val;
1da177e4
LT
578 int ret;
579
a3222f88 580 WARN_ON_ONCE(p == NULL);
1da177e4 581
5f252b32 582 new_expires = timespec64_to_ns(&new->it_value);
1da177e4 583
1da177e4 584 /*
e73d84e3
FW
585 * Protect against sighand release/switch in exit/exec and p->cpu_timers
586 * and p->signal->cpu_timers read/write in arm_timer()
587 */
588 sighand = lock_task_sighand(p, &flags);
589 /*
590 * If p has just been reaped, we can no
1da177e4
LT
591 * longer get any information about it at all.
592 */
e73d84e3 593 if (unlikely(sighand == NULL)) {
1da177e4
LT
594 return -ESRCH;
595 }
596
597 /*
598 * Disarm any old timer after extracting its expiry time.
599 */
531f64fd 600 WARN_ON_ONCE(!irqs_disabled());
a69ac4a7
ON
601
602 ret = 0;
ae1a78ee 603 old_incr = timer->it.cpu.incr;
1da177e4 604 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
605 if (unlikely(timer->it.cpu.firing)) {
606 timer->it.cpu.firing = -1;
607 ret = TIMER_RETRY;
608 } else
609 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
610
611 /*
612 * We need to sample the current value to convert the new
613 * value from to relative and absolute, and to convert the
614 * old value from absolute to relative. To set a process
615 * timer, we need a sample to balance the thread expiry
616 * times (in arm_timer). With an absolute time, we must
617 * check if it's already passed. In short, we need a sample.
618 */
619 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
620 cpu_clock_sample(timer->it_clock, p, &val);
621 } else {
3997ad31 622 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
623 }
624
625 if (old) {
55ccb616 626 if (old_expires == 0) {
1da177e4
LT
627 old->it_value.tv_sec = 0;
628 old->it_value.tv_nsec = 0;
629 } else {
630 /*
631 * Update the timer in case it has
632 * overrun already. If it has,
633 * we'll report it as having overrun
634 * and with the next reloaded timer
635 * already ticking, though we are
636 * swallowing that pending
637 * notification here to install the
638 * new setting.
639 */
640 bump_cpu_timer(timer, val);
55ccb616
FW
641 if (val < timer->it.cpu.expires) {
642 old_expires = timer->it.cpu.expires - val;
5f252b32 643 old->it_value = ns_to_timespec64(old_expires);
1da177e4
LT
644 } else {
645 old->it_value.tv_nsec = 1;
646 old->it_value.tv_sec = 0;
647 }
648 }
649 }
650
a69ac4a7 651 if (unlikely(ret)) {
1da177e4
LT
652 /*
653 * We are colliding with the timer actually firing.
654 * Punt after filling in the timer's old value, and
655 * disable this firing since we are already reporting
656 * it as an overrun (thanks to bump_cpu_timer above).
657 */
e73d84e3 658 unlock_task_sighand(p, &flags);
1da177e4
LT
659 goto out;
660 }
661
e73d84e3 662 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
55ccb616 663 new_expires += val;
1da177e4
LT
664 }
665
666 /*
667 * Install the new expiry time (or zero).
668 * For a timer with no notification action, we don't actually
669 * arm the timer (we'll just fake it for timer_gettime).
670 */
671 timer->it.cpu.expires = new_expires;
55ccb616 672 if (new_expires != 0 && val < new_expires) {
5eb9aa64 673 arm_timer(timer);
1da177e4
LT
674 }
675
e73d84e3 676 unlock_task_sighand(p, &flags);
1da177e4
LT
677 /*
678 * Install the new reload setting, and
679 * set up the signal and overrun bookkeeping.
680 */
5f252b32 681 timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
1da177e4
LT
682
683 /*
684 * This acts as a modification timestamp for the timer,
685 * so any automatic reload attempt will punt on seeing
686 * that we have reset the timer manually.
687 */
688 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
689 ~REQUEUE_PENDING;
690 timer->it_overrun_last = 0;
691 timer->it_overrun = -1;
692
55ccb616 693 if (new_expires != 0 && !(val < new_expires)) {
1da177e4
LT
694 /*
695 * The designated time already passed, so we notify
696 * immediately, even if the thread never runs to
697 * accumulate more time on this clock.
698 */
699 cpu_timer_fire(timer);
700 }
701
702 ret = 0;
703 out:
ebd7e7fc 704 if (old)
5f252b32 705 old->it_interval = ns_to_timespec64(old_incr);
b7878300 706
1da177e4
LT
707 return ret;
708}
709
5f252b32 710static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
1da177e4 711{
ebd7e7fc 712 u64 now;
1da177e4 713 struct task_struct *p = timer->it.cpu.task;
1da177e4 714
a3222f88
FW
715 WARN_ON_ONCE(p == NULL);
716
1da177e4
LT
717 /*
718 * Easy part: convert the reload time.
719 */
5f252b32 720 itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
1da177e4 721
eabdec04 722 if (!timer->it.cpu.expires)
1da177e4 723 return;
1da177e4 724
1da177e4
LT
725 /*
726 * Sample the clock to take the difference with the expiry time.
727 */
728 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
729 cpu_clock_sample(timer->it_clock, p, &now);
1da177e4 730 } else {
e73d84e3
FW
731 struct sighand_struct *sighand;
732 unsigned long flags;
733
734 /*
735 * Protect against sighand release/switch in exit/exec and
736 * also make timer sampling safe if it ends up calling
ebd7e7fc 737 * thread_group_cputime().
e73d84e3
FW
738 */
739 sighand = lock_task_sighand(p, &flags);
740 if (unlikely(sighand == NULL)) {
1da177e4
LT
741 /*
742 * The process has been reaped.
743 * We can't even collect a sample any more.
744 * Call the timer disarmed, nothing else to do.
745 */
55ccb616 746 timer->it.cpu.expires = 0;
2c13ce8f 747 return;
1da177e4 748 } else {
3997ad31 749 cpu_timer_sample_group(timer->it_clock, p, &now);
e73d84e3 750 unlock_task_sighand(p, &flags);
1da177e4 751 }
1da177e4
LT
752 }
753
55ccb616 754 if (now < timer->it.cpu.expires) {
5f252b32 755 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
1da177e4
LT
756 } else {
757 /*
758 * The timer should have expired already, but the firing
759 * hasn't taken place yet. Say it's just about to expire.
760 */
761 itp->it_value.tv_nsec = 1;
762 itp->it_value.tv_sec = 0;
763 }
764}
765
2473f3e7
FW
766static unsigned long long
767check_timers_list(struct list_head *timers,
768 struct list_head *firing,
769 unsigned long long curr)
770{
771 int maxfire = 20;
772
773 while (!list_empty(timers)) {
774 struct cpu_timer_list *t;
775
776 t = list_first_entry(timers, struct cpu_timer_list, entry);
777
778 if (!--maxfire || curr < t->expires)
779 return t->expires;
780
781 t->firing = 1;
782 list_move_tail(&t->entry, firing);
783 }
784
785 return 0;
786}
787
1da177e4
LT
788/*
789 * Check for any per-thread CPU timers that have fired and move them off
790 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
791 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
792 */
793static void check_thread_timers(struct task_struct *tsk,
794 struct list_head *firing)
795{
796 struct list_head *timers = tsk->cpu_timers;
78f2c7db 797 struct signal_struct *const sig = tsk->signal;
ebd7e7fc
FW
798 struct task_cputime *tsk_expires = &tsk->cputime_expires;
799 u64 expires;
d4bb5274 800 unsigned long soft;
1da177e4 801
934715a1
JL
802 /*
803 * If cputime_expires is zero, then there are no active
804 * per thread CPU timers.
805 */
806 if (task_cputime_zero(&tsk->cputime_expires))
807 return;
808
2473f3e7 809 expires = check_timers_list(timers, firing, prof_ticks(tsk));
ebd7e7fc 810 tsk_expires->prof_exp = expires;
1da177e4 811
2473f3e7 812 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
ebd7e7fc 813 tsk_expires->virt_exp = expires;
1da177e4 814
2473f3e7
FW
815 tsk_expires->sched_exp = check_timers_list(++timers, firing,
816 tsk->se.sum_exec_runtime);
78f2c7db
PZ
817
818 /*
819 * Check for the special case thread timers.
820 */
316c1608 821 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
d4bb5274 822 if (soft != RLIM_INFINITY) {
78d7d407 823 unsigned long hard =
316c1608 824 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
78f2c7db 825
5a52dd50
PZ
826 if (hard != RLIM_INFINITY &&
827 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
828 /*
829 * At the hard limit, we just die.
830 * No need to calculate anything else now.
831 */
43fe8b8e
TG
832 if (print_fatal_signals) {
833 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
834 tsk->comm, task_pid_nr(tsk));
835 }
78f2c7db
PZ
836 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
837 return;
838 }
d4bb5274 839 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
840 /*
841 * At the soft limit, send a SIGXCPU every second.
842 */
d4bb5274
JS
843 if (soft < hard) {
844 soft += USEC_PER_SEC;
845 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
78f2c7db 846 }
43fe8b8e
TG
847 if (print_fatal_signals) {
848 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
849 tsk->comm, task_pid_nr(tsk));
850 }
78f2c7db
PZ
851 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
852 }
853 }
b7878300
FW
854 if (task_cputime_zero(tsk_expires))
855 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
856}
857
1018016c 858static inline void stop_process_timers(struct signal_struct *sig)
3fccfd67 859{
15365c10 860 struct thread_group_cputimer *cputimer = &sig->cputimer;
3fccfd67 861
1018016c 862 /* Turn off cputimer->running. This is done without locking. */
d5c373eb 863 WRITE_ONCE(cputimer->running, false);
b7878300 864 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
3fccfd67
PZ
865}
866
42c4ab41 867static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
ebd7e7fc 868 u64 *expires, u64 cur_time, int signo)
42c4ab41 869{
64861634 870 if (!it->expires)
42c4ab41
SG
871 return;
872
858cf3a8
FW
873 if (cur_time >= it->expires) {
874 if (it->incr)
64861634 875 it->expires += it->incr;
858cf3a8 876 else
64861634 877 it->expires = 0;
42c4ab41 878
3f0a525e
XG
879 trace_itimer_expire(signo == SIGPROF ?
880 ITIMER_PROF : ITIMER_VIRTUAL,
881 tsk->signal->leader_pid, cur_time);
42c4ab41
SG
882 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
883 }
884
858cf3a8
FW
885 if (it->expires && (!*expires || it->expires < *expires))
886 *expires = it->expires;
42c4ab41
SG
887}
888
1da177e4
LT
889/*
890 * Check for any per-thread CPU timers that have fired and move them
891 * off the tsk->*_timers list onto the firing list. Per-thread timers
892 * have already been taken off.
893 */
894static void check_process_timers(struct task_struct *tsk,
895 struct list_head *firing)
896{
897 struct signal_struct *const sig = tsk->signal;
ebd7e7fc
FW
898 u64 utime, ptime, virt_expires, prof_expires;
899 u64 sum_sched_runtime, sched_expires;
1da177e4 900 struct list_head *timers = sig->cpu_timers;
ebd7e7fc 901 struct task_cputime cputime;
d4bb5274 902 unsigned long soft;
1da177e4 903
934715a1
JL
904 /*
905 * If cputimer is not running, then there are no active
906 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
907 */
908 if (!READ_ONCE(tsk->signal->cputimer.running))
909 return;
910
c8d75aa4
JL
911 /*
912 * Signify that a thread is checking for process timers.
913 * Write access to this field is protected by the sighand lock.
914 */
915 sig->cputimer.checking_timer = true;
916
1da177e4
LT
917 /*
918 * Collect the current process totals.
919 */
4cd4c1b4 920 thread_group_cputimer(tsk, &cputime);
ebd7e7fc
FW
921 utime = cputime.utime;
922 ptime = utime + cputime.stime;
f06febc9 923 sum_sched_runtime = cputime.sum_exec_runtime;
1da177e4 924
2473f3e7
FW
925 prof_expires = check_timers_list(timers, firing, ptime);
926 virt_expires = check_timers_list(++timers, firing, utime);
927 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
1da177e4
LT
928
929 /*
930 * Check for the special case process timers.
931 */
42c4ab41
SG
932 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
933 SIGPROF);
934 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
935 SIGVTALRM);
316c1608 936 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
d4bb5274 937 if (soft != RLIM_INFINITY) {
ebd7e7fc 938 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
78d7d407 939 unsigned long hard =
316c1608 940 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
ebd7e7fc 941 u64 x;
d4bb5274 942 if (psecs >= hard) {
1da177e4
LT
943 /*
944 * At the hard limit, we just die.
945 * No need to calculate anything else now.
946 */
43fe8b8e
TG
947 if (print_fatal_signals) {
948 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
949 tsk->comm, task_pid_nr(tsk));
950 }
1da177e4
LT
951 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
952 return;
953 }
d4bb5274 954 if (psecs >= soft) {
1da177e4
LT
955 /*
956 * At the soft limit, send a SIGXCPU every second.
957 */
43fe8b8e
TG
958 if (print_fatal_signals) {
959 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
960 tsk->comm, task_pid_nr(tsk));
961 }
1da177e4 962 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
d4bb5274
JS
963 if (soft < hard) {
964 soft++;
965 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1da177e4
LT
966 }
967 }
ebd7e7fc
FW
968 x = soft * NSEC_PER_SEC;
969 if (!prof_expires || x < prof_expires)
1da177e4 970 prof_expires = x;
1da177e4
LT
971 }
972
ebd7e7fc
FW
973 sig->cputime_expires.prof_exp = prof_expires;
974 sig->cputime_expires.virt_exp = virt_expires;
29f87b79
SG
975 sig->cputime_expires.sched_exp = sched_expires;
976 if (task_cputime_zero(&sig->cputime_expires))
977 stop_process_timers(sig);
c8d75aa4
JL
978
979 sig->cputimer.checking_timer = false;
1da177e4
LT
980}
981
982/*
96fe3b07 983 * This is called from the signal code (via posixtimer_rearm)
1da177e4
LT
984 * when the last timer signal was delivered and we have to reload the timer.
985 */
f37fb0aa 986static void posix_cpu_timer_rearm(struct k_itimer *timer)
1da177e4 987{
e73d84e3
FW
988 struct sighand_struct *sighand;
989 unsigned long flags;
1da177e4 990 struct task_struct *p = timer->it.cpu.task;
ebd7e7fc 991 u64 now;
1da177e4 992
a3222f88 993 WARN_ON_ONCE(p == NULL);
1da177e4
LT
994
995 /*
996 * Fetch the current sample and update the timer's expiry time.
997 */
998 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
999 cpu_clock_sample(timer->it_clock, p, &now);
1000 bump_cpu_timer(timer, now);
724a3713 1001 if (unlikely(p->exit_state))
af888d67 1002 return;
724a3713 1003
e73d84e3
FW
1004 /* Protect timer list r/w in arm_timer() */
1005 sighand = lock_task_sighand(p, &flags);
1006 if (!sighand)
af888d67 1007 return;
1da177e4 1008 } else {
e73d84e3
FW
1009 /*
1010 * Protect arm_timer() and timer sampling in case of call to
ebd7e7fc 1011 * thread_group_cputime().
e73d84e3
FW
1012 */
1013 sighand = lock_task_sighand(p, &flags);
1014 if (unlikely(sighand == NULL)) {
1da177e4
LT
1015 /*
1016 * The process has been reaped.
1017 * We can't even collect a sample any more.
1018 */
55ccb616 1019 timer->it.cpu.expires = 0;
af888d67 1020 return;
1da177e4 1021 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
af888d67
TG
1022 /* If the process is dying, no need to rearm */
1023 goto unlock;
1da177e4 1024 }
3997ad31 1025 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4 1026 bump_cpu_timer(timer, now);
e73d84e3 1027 /* Leave the sighand locked for the call below. */
1da177e4
LT
1028 }
1029
1030 /*
1031 * Now re-arm for the new expiry time.
1032 */
531f64fd 1033 WARN_ON_ONCE(!irqs_disabled());
5eb9aa64 1034 arm_timer(timer);
af888d67 1035unlock:
e73d84e3 1036 unlock_task_sighand(p, &flags);
1da177e4
LT
1037}
1038
f06febc9
FM
1039/**
1040 * task_cputime_expired - Compare two task_cputime entities.
1041 *
1042 * @sample: The task_cputime structure to be checked for expiration.
1043 * @expires: Expiration times, against which @sample will be checked.
1044 *
1045 * Checks @sample against @expires to see if any field of @sample has expired.
1046 * Returns true if any field of the former is greater than the corresponding
1047 * field of the latter if the latter field is set. Otherwise returns false.
1048 */
ebd7e7fc
FW
1049static inline int task_cputime_expired(const struct task_cputime *sample,
1050 const struct task_cputime *expires)
f06febc9 1051{
64861634 1052 if (expires->utime && sample->utime >= expires->utime)
f06febc9 1053 return 1;
64861634 1054 if (expires->stime && sample->utime + sample->stime >= expires->stime)
f06febc9
FM
1055 return 1;
1056 if (expires->sum_exec_runtime != 0 &&
1057 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1058 return 1;
1059 return 0;
1060}
1061
1062/**
1063 * fastpath_timer_check - POSIX CPU timers fast path.
1064 *
1065 * @tsk: The task (thread) being checked.
f06febc9 1066 *
bb34d92f
FM
1067 * Check the task and thread group timers. If both are zero (there are no
1068 * timers set) return false. Otherwise snapshot the task and thread group
1069 * timers and compare them with the corresponding expiration times. Return
1070 * true if a timer has expired, else return false.
f06febc9 1071 */
bb34d92f 1072static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1073{
ad133ba3 1074 struct signal_struct *sig;
bb34d92f 1075
bb34d92f 1076 if (!task_cputime_zero(&tsk->cputime_expires)) {
ebd7e7fc 1077 struct task_cputime task_sample;
bb34d92f 1078
ebd7e7fc 1079 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
7c177d99 1080 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
bb34d92f
FM
1081 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1082 return 1;
1083 }
ad133ba3
ON
1084
1085 sig = tsk->signal;
c8d75aa4
JL
1086 /*
1087 * Check if thread group timers expired when the cputimer is
1088 * running and no other thread in the group is already checking
1089 * for thread group cputimers. These fields are read without the
1090 * sighand lock. However, this is fine because this is meant to
1091 * be a fastpath heuristic to determine whether we should try to
1092 * acquire the sighand lock to check/handle timers.
1093 *
1094 * In the worst case scenario, if 'running' or 'checking_timer' gets
1095 * set but the current thread doesn't see the change yet, we'll wait
1096 * until the next thread in the group gets a scheduler interrupt to
1097 * handle the timer. This isn't an issue in practice because these
1098 * types of delays with signals actually getting sent are expected.
1099 */
1100 if (READ_ONCE(sig->cputimer.running) &&
1101 !READ_ONCE(sig->cputimer.checking_timer)) {
ebd7e7fc 1102 struct task_cputime group_sample;
bb34d92f 1103
71107445 1104 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
8d1f431c 1105
bb34d92f
FM
1106 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1107 return 1;
1108 }
37bebc70 1109
f55db609 1110 return 0;
f06febc9
FM
1111}
1112
1da177e4
LT
1113/*
1114 * This is called from the timer interrupt handler. The irq handler has
1115 * already updated our counts. We need to check if any timers fire now.
1116 * Interrupts are disabled.
1117 */
1118void run_posix_cpu_timers(struct task_struct *tsk)
1119{
1120 LIST_HEAD(firing);
1121 struct k_itimer *timer, *next;
0bdd2ed4 1122 unsigned long flags;
1da177e4 1123
531f64fd 1124 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1125
1da177e4 1126 /*
f06febc9 1127 * The fast path checks that there are no expired thread or thread
bb34d92f 1128 * group timers. If that's so, just return.
1da177e4 1129 */
bb34d92f 1130 if (!fastpath_timer_check(tsk))
f06febc9 1131 return;
5ce73a4a 1132
0bdd2ed4
ON
1133 if (!lock_task_sighand(tsk, &flags))
1134 return;
bb34d92f
FM
1135 /*
1136 * Here we take off tsk->signal->cpu_timers[N] and
1137 * tsk->cpu_timers[N] all the timers that are firing, and
1138 * put them on the firing list.
1139 */
1140 check_thread_timers(tsk, &firing);
934715a1
JL
1141
1142 check_process_timers(tsk, &firing);
1da177e4 1143
bb34d92f
FM
1144 /*
1145 * We must release these locks before taking any timer's lock.
1146 * There is a potential race with timer deletion here, as the
1147 * siglock now protects our private firing list. We have set
1148 * the firing flag in each timer, so that a deletion attempt
1149 * that gets the timer lock before we do will give it up and
1150 * spin until we've taken care of that timer below.
1151 */
0bdd2ed4 1152 unlock_task_sighand(tsk, &flags);
1da177e4
LT
1153
1154 /*
1155 * Now that all the timers on our list have the firing flag,
25985edc 1156 * no one will touch their list entries but us. We'll take
1da177e4
LT
1157 * each timer's lock before clearing its firing flag, so no
1158 * timer call will interfere.
1159 */
1160 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1161 int cpu_firing;
1162
1da177e4
LT
1163 spin_lock(&timer->it_lock);
1164 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1165 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1166 timer->it.cpu.firing = 0;
1167 /*
1168 * The firing flag is -1 if we collided with a reset
1169 * of the timer, which already reported this
1170 * almost-firing as an overrun. So don't generate an event.
1171 */
6e85c5ba 1172 if (likely(cpu_firing >= 0))
1da177e4 1173 cpu_timer_fire(timer);
1da177e4
LT
1174 spin_unlock(&timer->it_lock);
1175 }
1176}
1177
1178/*
f55db609 1179 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1180 * The tsk->sighand->siglock must be held by the caller.
1da177e4
LT
1181 */
1182void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
858cf3a8 1183 u64 *newval, u64 *oldval)
1da177e4 1184{
858cf3a8 1185 u64 now;
1da177e4 1186
531f64fd 1187 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1188 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1189
1190 if (oldval) {
f55db609
SG
1191 /*
1192 * We are setting itimer. The *oldval is absolute and we update
1193 * it to be relative, *newval argument is relative and we update
1194 * it to be absolute.
1195 */
64861634 1196 if (*oldval) {
858cf3a8 1197 if (*oldval <= now) {
1da177e4 1198 /* Just about to fire. */
858cf3a8 1199 *oldval = TICK_NSEC;
1da177e4 1200 } else {
858cf3a8 1201 *oldval -= now;
1da177e4
LT
1202 }
1203 }
1204
64861634 1205 if (!*newval)
b7878300 1206 return;
858cf3a8 1207 *newval += now;
1da177e4
LT
1208 }
1209
1210 /*
f55db609
SG
1211 * Update expiration cache if we are the earliest timer, or eventually
1212 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1da177e4 1213 */
f55db609
SG
1214 switch (clock_idx) {
1215 case CPUCLOCK_PROF:
858cf3a8
FW
1216 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1217 tsk->signal->cputime_expires.prof_exp = *newval;
f55db609
SG
1218 break;
1219 case CPUCLOCK_VIRT:
858cf3a8
FW
1220 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1221 tsk->signal->cputime_expires.virt_exp = *newval;
f55db609 1222 break;
1da177e4 1223 }
b7878300
FW
1224
1225 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
1226}
1227
e4b76555 1228static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
86a9c446 1229 struct timespec64 *rqtp)
1da177e4 1230{
1da177e4 1231 struct k_itimer timer;
86a9c446 1232 struct itimerspec64 it;
1da177e4
LT
1233 int error;
1234
1da177e4
LT
1235 /*
1236 * Set up a temporary timer and then wait for it to go off.
1237 */
1238 memset(&timer, 0, sizeof timer);
1239 spin_lock_init(&timer.it_lock);
1240 timer.it_clock = which_clock;
1241 timer.it_overrun = -1;
1242 error = posix_cpu_timer_create(&timer);
1243 timer.it_process = current;
1244 if (!error) {
5f252b32 1245 static struct itimerspec64 zero_it;
86a9c446
AV
1246 struct restart_block *restart = &current->restart_block;
1247 struct timespec __user *rmtp;
e4b76555 1248
86a9c446
AV
1249 memset(&it, 0, sizeof it);
1250 it.it_value = *rqtp;
1da177e4
LT
1251
1252 spin_lock_irq(&timer.it_lock);
86a9c446 1253 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1da177e4
LT
1254 if (error) {
1255 spin_unlock_irq(&timer.it_lock);
1256 return error;
1257 }
1258
1259 while (!signal_pending(current)) {
55ccb616 1260 if (timer.it.cpu.expires == 0) {
1da177e4 1261 /*
e6c42c29
SG
1262 * Our timer fired and was reset, below
1263 * deletion can not fail.
1da177e4 1264 */
e6c42c29 1265 posix_cpu_timer_del(&timer);
1da177e4
LT
1266 spin_unlock_irq(&timer.it_lock);
1267 return 0;
1268 }
1269
1270 /*
1271 * Block until cpu_timer_fire (or a signal) wakes us.
1272 */
1273 __set_current_state(TASK_INTERRUPTIBLE);
1274 spin_unlock_irq(&timer.it_lock);
1275 schedule();
1276 spin_lock_irq(&timer.it_lock);
1277 }
1278
1279 /*
1280 * We were interrupted by a signal.
1281 */
ad196384 1282 *rqtp = ns_to_timespec64(timer.it.cpu.expires);
86a9c446 1283 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
e6c42c29
SG
1284 if (!error) {
1285 /*
1286 * Timer is now unarmed, deletion can not fail.
1287 */
1288 posix_cpu_timer_del(&timer);
1289 }
1da177e4
LT
1290 spin_unlock_irq(&timer.it_lock);
1291
e6c42c29
SG
1292 while (error == TIMER_RETRY) {
1293 /*
1294 * We need to handle case when timer was or is in the
1295 * middle of firing. In other cases we already freed
1296 * resources.
1297 */
1298 spin_lock_irq(&timer.it_lock);
1299 error = posix_cpu_timer_del(&timer);
1300 spin_unlock_irq(&timer.it_lock);
1301 }
1302
86a9c446 1303 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1da177e4
LT
1304 /*
1305 * It actually did fire already.
1306 */
1307 return 0;
1308 }
1309
e4b76555 1310 error = -ERESTART_RESTARTBLOCK;
86a9c446
AV
1311 /*
1312 * Report back to the user the time still remaining.
1313 */
1314 rmtp = restart->nanosleep.rmtp;
1315 if (rmtp) {
1316 struct timespec ts;
1317
1318 ts = timespec64_to_timespec(it.it_value);
1319 if (copy_to_user(rmtp, &ts, sizeof(*rmtp)))
1320 return -EFAULT;
1321 }
1322 restart->nanosleep.expires = timespec64_to_ns(rqtp);
e4b76555
TA
1323 }
1324
1325 return error;
1326}
1327
bc2c8ea4
TG
1328static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1329
1330static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
99e6c0e6 1331 struct timespec64 *rqtp)
e4b76555 1332{
f56141e3 1333 struct restart_block *restart_block = &current->restart_block;
e4b76555
TA
1334 int error;
1335
1336 /*
1337 * Diagnose required errors first.
1338 */
1339 if (CPUCLOCK_PERTHREAD(which_clock) &&
1340 (CPUCLOCK_PID(which_clock) == 0 ||
01a21974 1341 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
e4b76555
TA
1342 return -EINVAL;
1343
86a9c446 1344 error = do_cpu_nanosleep(which_clock, flags, rqtp);
e4b76555
TA
1345
1346 if (error == -ERESTART_RESTARTBLOCK) {
1347
3751f9f2 1348 if (flags & TIMER_ABSTIME)
e4b76555 1349 return -ERESTARTNOHAND;
1da177e4 1350
1711ef38 1351 restart_block->fn = posix_cpu_nsleep_restart;
ab8177bc 1352 restart_block->nanosleep.clockid = which_clock;
1da177e4 1353 }
1da177e4
LT
1354 return error;
1355}
1356
bc2c8ea4 1357static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4 1358{
ab8177bc 1359 clockid_t which_clock = restart_block->nanosleep.clockid;
ad196384 1360 struct timespec64 t;
97735f25 1361
ad196384 1362 t = ns_to_timespec64(restart_block->nanosleep.expires);
97735f25 1363
86a9c446 1364 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1da177e4
LT
1365}
1366
1da177e4
LT
1367#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1368#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1369
a924b04d 1370static int process_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1371 struct timespec64 *tp)
1da177e4
LT
1372{
1373 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1374}
a924b04d 1375static int process_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1376 struct timespec64 *tp)
1da177e4
LT
1377{
1378 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1379}
1380static int process_cpu_timer_create(struct k_itimer *timer)
1381{
1382 timer->it_clock = PROCESS_CLOCK;
1383 return posix_cpu_timer_create(timer);
1384}
a924b04d 1385static int process_cpu_nsleep(const clockid_t which_clock, int flags,
99e6c0e6 1386 struct timespec64 *rqtp)
1da177e4 1387{
99e6c0e6 1388 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1da177e4 1389}
1711ef38
TA
1390static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1391{
1392 return -EINVAL;
1393}
a924b04d 1394static int thread_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1395 struct timespec64 *tp)
1da177e4
LT
1396{
1397 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1398}
a924b04d 1399static int thread_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1400 struct timespec64 *tp)
1da177e4
LT
1401{
1402 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1403}
1404static int thread_cpu_timer_create(struct k_itimer *timer)
1405{
1406 timer->it_clock = THREAD_CLOCK;
1407 return posix_cpu_timer_create(timer);
1408}
1da177e4 1409
d3ba5a9a 1410const struct k_clock clock_posix_cpu = {
1976945e
TG
1411 .clock_getres = posix_cpu_clock_getres,
1412 .clock_set = posix_cpu_clock_set,
1413 .clock_get = posix_cpu_clock_get,
1414 .timer_create = posix_cpu_timer_create,
1415 .nsleep = posix_cpu_nsleep,
1416 .nsleep_restart = posix_cpu_nsleep_restart,
1417 .timer_set = posix_cpu_timer_set,
1418 .timer_del = posix_cpu_timer_del,
1419 .timer_get = posix_cpu_timer_get,
f37fb0aa 1420 .timer_rearm = posix_cpu_timer_rearm,
1976945e
TG
1421};
1422
d3ba5a9a
CH
1423const struct k_clock clock_process = {
1424 .clock_getres = process_cpu_clock_getres,
1425 .clock_get = process_cpu_clock_get,
1426 .timer_create = process_cpu_timer_create,
1427 .nsleep = process_cpu_nsleep,
1428 .nsleep_restart = process_cpu_nsleep_restart,
1429};
1da177e4 1430
d3ba5a9a
CH
1431const struct k_clock clock_thread = {
1432 .clock_getres = thread_cpu_clock_getres,
1433 .clock_get = thread_cpu_clock_get,
1434 .timer_create = thread_cpu_timer_create,
1435};