]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/posix-cpu-timers.c
posix-cpu-timers: Assert task sighand is locked while starting cputime counter
[mirror_ubuntu-jammy-kernel.git] / kernel / time / posix-cpu-timers.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * Implement CPU time clocks for the POSIX clock interface.
4 */
5
3f07c014 6#include <linux/sched/signal.h>
32ef5517 7#include <linux/sched/cputime.h>
1da177e4 8#include <linux/posix-timers.h>
1da177e4 9#include <linux/errno.h>
f8bd2258 10#include <linux/math64.h>
7c0f6ba6 11#include <linux/uaccess.h>
bb34d92f 12#include <linux/kernel_stat.h>
3f0a525e 13#include <trace/events/timer.h>
a8572160
FW
14#include <linux/tick.h>
15#include <linux/workqueue.h>
edbeda46 16#include <linux/compat.h>
34be3930 17#include <linux/sched/deadline.h>
1da177e4 18
bab0aae9
TG
19#include "posix-timers.h"
20
f37fb0aa
TG
21static void posix_cpu_timer_rearm(struct k_itimer *timer);
22
3a245c0f
TG
23void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
24{
25 posix_cputimers_init(pct);
244d49e3 26 if (cpu_limit != RLIM_INFINITY) {
87dc6448 27 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
244d49e3
TG
28 pct->timers_active = true;
29 }
3a245c0f
TG
30}
31
f06febc9 32/*
f55db609 33 * Called after updating RLIMIT_CPU to run cpu timer and update
87dc6448
TG
34 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
35 * necessary. Needs siglock protection since other code may update the
3a245c0f 36 * expiration cache as well.
f06febc9 37 */
5ab46b34 38void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
f06febc9 39{
858cf3a8 40 u64 nsecs = rlim_new * NSEC_PER_SEC;
f06febc9 41
5ab46b34 42 spin_lock_irq(&task->sighand->siglock);
858cf3a8 43 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
5ab46b34 44 spin_unlock_irq(&task->sighand->siglock);
f06febc9
FM
45}
46
6ae40e3f
TG
47/*
48 * Functions for validating access to tasks.
49 */
96498773 50static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
1da177e4 51{
96498773
EB
52 const bool thread = !!CPUCLOCK_PERTHREAD(clock);
53 const pid_t upid = CPUCLOCK_PID(clock);
54 struct pid *pid;
55
56 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
57 return NULL;
1da177e4 58
77b4b542
TG
59 /*
60 * If the encoded PID is 0, then the timer is targeted at current
61 * or the process to which current belongs.
62 */
96498773
EB
63 if (upid == 0)
64 return thread ? task_pid(current) : task_tgid(current);
1da177e4 65
96498773
EB
66 pid = find_vpid(upid);
67 if (!pid)
68 return NULL;
77b4b542 69
96498773
EB
70 if (thread) {
71 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
72 return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
73 }
77b4b542 74
c7f51940 75 /*
96498773
EB
76 * For clock_gettime(PROCESS) allow finding the process by
77 * with the pid of the current task. The code needs the tgid
78 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
79 * used to find the process.
c7f51940 80 */
96498773
EB
81 if (gettime && (pid == task_pid(current)))
82 return task_tgid(current);
77b4b542
TG
83
84 /*
96498773 85 * For processes require that pid identifies a process.
77b4b542 86 */
96498773 87 return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
6ae40e3f
TG
88}
89
90static inline int validate_clock_permissions(const clockid_t clock)
91{
9bf7c324
EB
92 int ret;
93
94 rcu_read_lock();
96498773 95 ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
9bf7c324
EB
96 rcu_read_unlock();
97
98 return ret;
1da177e4
LT
99}
100
fece9826 101static inline enum pid_type clock_pid_type(const clockid_t clock)
55e8c8eb 102{
fece9826 103 return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
55e8c8eb
EB
104}
105
106static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
107{
fece9826 108 return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
55e8c8eb
EB
109}
110
1da177e4
LT
111/*
112 * Update expiry time from increment, and increase overrun count,
113 * given the current clock sample.
114 */
60bda037 115static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
1da177e4 116{
60bda037 117 u64 delta, incr, expires = timer->it.cpu.node.expires;
1da177e4
LT
118 int i;
119
16118794 120 if (!timer->it_interval)
60bda037 121 return expires;
1da177e4 122
60bda037
TG
123 if (now < expires)
124 return expires;
1da177e4 125
16118794 126 incr = timer->it_interval;
60bda037 127 delta = now + incr - expires;
1da177e4 128
55ccb616
FW
129 /* Don't use (incr*2 < delta), incr*2 might overflow. */
130 for (i = 0; incr < delta - incr; i++)
131 incr = incr << 1;
132
133 for (; i >= 0; incr >>= 1, i--) {
134 if (delta < incr)
135 continue;
136
60bda037 137 timer->it.cpu.node.expires += incr;
78c9c4df 138 timer->it_overrun += 1LL << i;
55ccb616 139 delta -= incr;
1da177e4 140 }
60bda037 141 return timer->it.cpu.node.expires;
1da177e4
LT
142}
143
2bbdbdae
TG
144/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
145static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
555347f6 146{
2bbdbdae
TG
147 return !(~pct->bases[CPUCLOCK_PROF].nextevt |
148 ~pct->bases[CPUCLOCK_VIRT].nextevt |
149 ~pct->bases[CPUCLOCK_SCHED].nextevt);
555347f6
FW
150}
151
bc2c8ea4 152static int
d2e3e0ca 153posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
1da177e4 154{
6ae40e3f
TG
155 int error = validate_clock_permissions(which_clock);
156
1da177e4
LT
157 if (!error) {
158 tp->tv_sec = 0;
159 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
160 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
161 /*
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
165 */
166 tp->tv_nsec = 1;
167 }
168 }
169 return error;
170}
171
bc2c8ea4 172static int
6ae40e3f 173posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
1da177e4 174{
6ae40e3f
TG
175 int error = validate_clock_permissions(clock);
176
1da177e4
LT
177 /*
178 * You can never reset a CPU clock, but we check for other errors
179 * in the call before failing with EPERM.
180 */
6ae40e3f 181 return error ? : -EPERM;
1da177e4
LT
182}
183
1da177e4 184/*
2092c1d4 185 * Sample a per-thread clock for the given task. clkid is validated.
1da177e4 186 */
8c2d74f0 187static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
1da177e4 188{
ab693c5a
TG
189 u64 utime, stime;
190
191 if (clkid == CPUCLOCK_SCHED)
192 return task_sched_runtime(p);
193
194 task_cputime(p, &utime, &stime);
195
2092c1d4 196 switch (clkid) {
1da177e4 197 case CPUCLOCK_PROF:
ab693c5a 198 return utime + stime;
1da177e4 199 case CPUCLOCK_VIRT:
ab693c5a 200 return utime;
2092c1d4
TG
201 default:
202 WARN_ON_ONCE(1);
1da177e4 203 }
8c2d74f0 204 return 0;
1da177e4
LT
205}
206
b0d524f7
TG
207static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
208{
209 samples[CPUCLOCK_PROF] = stime + utime;
210 samples[CPUCLOCK_VIRT] = utime;
211 samples[CPUCLOCK_SCHED] = rtime;
212}
213
214static void task_sample_cputime(struct task_struct *p, u64 *samples)
215{
216 u64 stime, utime;
217
218 task_cputime(p, &utime, &stime);
219 store_samples(samples, stime, utime, p->se.sum_exec_runtime);
220}
221
222static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
223 u64 *samples)
224{
225 u64 stime, utime, rtime;
226
227 utime = atomic64_read(&at->utime);
228 stime = atomic64_read(&at->stime);
229 rtime = atomic64_read(&at->sum_exec_runtime);
230 store_samples(samples, stime, utime, rtime);
231}
232
1018016c
JL
233/*
234 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
235 * to avoid race conditions with concurrent updates to cputime.
236 */
237static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
4da94d49 238{
1018016c
JL
239 u64 curr_cputime;
240retry:
241 curr_cputime = atomic64_read(cputime);
242 if (sum_cputime > curr_cputime) {
243 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
244 goto retry;
245 }
246}
4da94d49 247
b7be4ef1
TG
248static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
249 struct task_cputime *sum)
1018016c 250{
71107445
JL
251 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
252 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
253 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
1018016c 254}
4da94d49 255
19298fbf
TG
256/**
257 * thread_group_sample_cputime - Sample cputime for a given task
258 * @tsk: Task for which cputime needs to be started
7f2cbcbc 259 * @samples: Storage for time samples
19298fbf
TG
260 *
261 * Called from sys_getitimer() to calculate the expiry time of an active
262 * timer. That means group cputime accounting is already active. Called
263 * with task sighand lock held.
264 *
265 * Updates @times with an uptodate sample of the thread group cputimes.
266 */
b7be4ef1 267void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
19298fbf
TG
268{
269 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
244d49e3 270 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
19298fbf 271
244d49e3 272 WARN_ON_ONCE(!pct->timers_active);
19298fbf 273
b7be4ef1 274 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
19298fbf
TG
275}
276
c506bef4
TG
277/**
278 * thread_group_start_cputime - Start cputime and return a sample
279 * @tsk: Task for which cputime needs to be started
b7be4ef1 280 * @samples: Storage for time samples
c506bef4 281 *
4bf07f65 282 * The thread group cputime accounting is avoided when there are no posix
c506bef4
TG
283 * CPU timers armed. Before starting a timer it's required to check whether
284 * the time accounting is active. If not, a full update of the atomic
285 * accounting store needs to be done and the accounting enabled.
286 *
287 * Updates @times with an uptodate sample of the thread group cputimes.
288 */
b7be4ef1 289static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
4da94d49
PZ
290{
291 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
244d49e3 292 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
4da94d49 293
a5dec9f8
FW
294 lockdep_assert_task_sighand_held(tsk);
295
1018016c 296 /* Check if cputimer isn't running. This is accessed without locking. */
244d49e3 297 if (!READ_ONCE(pct->timers_active)) {
b7be4ef1
TG
298 struct task_cputime sum;
299
4da94d49
PZ
300 /*
301 * The POSIX timer interface allows for absolute time expiry
302 * values through the TIMER_ABSTIME flag, therefore we have
1018016c 303 * to synchronize the timer to the clock every time we start it.
4da94d49 304 */
ebd7e7fc 305 thread_group_cputime(tsk, &sum);
71107445 306 update_gt_cputime(&cputimer->cputime_atomic, &sum);
1018016c
JL
307
308 /*
244d49e3
TG
309 * We're setting timers_active without a lock. Ensure this
310 * only gets written to in one operation. We set it after
311 * update_gt_cputime() as a small optimization, but
312 * barriers are not required because update_gt_cputime()
1018016c
JL
313 * can handle concurrent updates.
314 */
244d49e3 315 WRITE_ONCE(pct->timers_active, true);
1018016c 316 }
b7be4ef1
TG
317 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
318}
319
320static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
321{
322 struct task_cputime ct;
323
324 thread_group_cputime(tsk, &ct);
325 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
4da94d49
PZ
326}
327
1da177e4 328/*
24ab7f5a
TG
329 * Sample a process (thread group) clock for the given task clkid. If the
330 * group's cputime accounting is already enabled, read the atomic
a2efdbf4 331 * store. Otherwise a full update is required. clkid is already validated.
1da177e4 332 */
8c2d74f0
TG
333static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
334 bool start)
1da177e4 335{
24ab7f5a 336 struct thread_group_cputimer *cputimer = &p->signal->cputimer;
244d49e3 337 struct posix_cputimers *pct = &p->signal->posix_cputimers;
b7be4ef1 338 u64 samples[CPUCLOCK_MAX];
f06febc9 339
244d49e3 340 if (!READ_ONCE(pct->timers_active)) {
24ab7f5a 341 if (start)
b7be4ef1 342 thread_group_start_cputime(p, samples);
24ab7f5a 343 else
b7be4ef1 344 __thread_group_cputime(p, samples);
24ab7f5a 345 } else {
b7be4ef1 346 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
24ab7f5a
TG
347 }
348
b7be4ef1 349 return samples[clkid];
1da177e4
LT
350}
351
bfcf3e92 352static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
33ab0fec 353{
bfcf3e92
TG
354 const clockid_t clkid = CPUCLOCK_WHICH(clock);
355 struct task_struct *tsk;
356 u64 t;
33ab0fec 357
9bf7c324 358 rcu_read_lock();
96498773 359 tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
9bf7c324
EB
360 if (!tsk) {
361 rcu_read_unlock();
bfcf3e92 362 return -EINVAL;
9bf7c324 363 }
1da177e4 364
bfcf3e92 365 if (CPUCLOCK_PERTHREAD(clock))
8c2d74f0 366 t = cpu_clock_sample(clkid, tsk);
bfcf3e92 367 else
8c2d74f0 368 t = cpu_clock_sample_group(clkid, tsk, false);
9bf7c324 369 rcu_read_unlock();
1da177e4 370
bfcf3e92
TG
371 *tp = ns_to_timespec64(t);
372 return 0;
1da177e4
LT
373}
374
1da177e4
LT
375/*
376 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
377 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
378 * new timer already all-zeros initialized.
1da177e4 379 */
bc2c8ea4 380static int posix_cpu_timer_create(struct k_itimer *new_timer)
1da177e4 381{
1fb497dd 382 static struct lock_class_key posix_cpu_timers_key;
96498773 383 struct pid *pid;
1da177e4 384
9bf7c324 385 rcu_read_lock();
96498773
EB
386 pid = pid_for_clock(new_timer->it_clock, false);
387 if (!pid) {
9bf7c324 388 rcu_read_unlock();
1da177e4 389 return -EINVAL;
9bf7c324 390 }
1da177e4 391
1fb497dd
TG
392 /*
393 * If posix timer expiry is handled in task work context then
394 * timer::it_lock can be taken without disabling interrupts as all
4bf07f65 395 * other locking happens in task context. This requires a separate
1fb497dd
TG
396 * lock class key otherwise regular posix timer expiry would record
397 * the lock class being taken in interrupt context and generate a
398 * false positive warning.
399 */
400 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
401 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
402
d97bb75d 403 new_timer->kclock = &clock_posix_cpu;
60bda037 404 timerqueue_init(&new_timer->it.cpu.node);
96498773 405 new_timer->it.cpu.pid = get_pid(pid);
9bf7c324 406 rcu_read_unlock();
e5a8b65b 407 return 0;
1da177e4
LT
408}
409
410/*
411 * Clean up a CPU-clock timer that is about to be destroyed.
412 * This is called from timer deletion with the timer already locked.
413 * If we return TIMER_RETRY, it's necessary to release the timer's lock
414 * and try again. (This happens when the timer is in the middle of firing.)
415 */
bc2c8ea4 416static int posix_cpu_timer_del(struct k_itimer *timer)
1da177e4 417{
60bda037 418 struct cpu_timer *ctmr = &timer->it.cpu;
3d7a1427 419 struct sighand_struct *sighand;
55e8c8eb 420 struct task_struct *p;
60bda037
TG
421 unsigned long flags;
422 int ret = 0;
1da177e4 423
55e8c8eb
EB
424 rcu_read_lock();
425 p = cpu_timer_task_rcu(timer);
426 if (!p)
427 goto out;
108150ea 428
3d7a1427
FW
429 /*
430 * Protect against sighand release/switch in exit/exec and process/
431 * thread timer list entry concurrent read/writes.
432 */
433 sighand = lock_task_sighand(p, &flags);
434 if (unlikely(sighand == NULL)) {
a3222f88 435 /*
60bda037
TG
436 * This raced with the reaping of the task. The exit cleanup
437 * should have removed this timer from the timer queue.
a3222f88 438 */
60bda037 439 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
a3222f88 440 } else {
a3222f88
FW
441 if (timer->it.cpu.firing)
442 ret = TIMER_RETRY;
443 else
60bda037 444 cpu_timer_dequeue(ctmr);
3d7a1427
FW
445
446 unlock_task_sighand(p, &flags);
1da177e4 447 }
a3222f88 448
55e8c8eb
EB
449out:
450 rcu_read_unlock();
a3222f88 451 if (!ret)
55e8c8eb 452 put_pid(ctmr->pid);
1da177e4 453
108150ea 454 return ret;
1da177e4
LT
455}
456
60bda037 457static void cleanup_timerqueue(struct timerqueue_head *head)
1a7fa510 458{
60bda037
TG
459 struct timerqueue_node *node;
460 struct cpu_timer *ctmr;
1a7fa510 461
60bda037
TG
462 while ((node = timerqueue_getnext(head))) {
463 timerqueue_del(head, node);
464 ctmr = container_of(node, struct cpu_timer, node);
465 ctmr->head = NULL;
466 }
1a7fa510
FW
467}
468
1da177e4 469/*
7cb9a94c
TG
470 * Clean out CPU timers which are still armed when a thread exits. The
471 * timers are only removed from the list. No other updates are done. The
472 * corresponding posix timers are still accessible, but cannot be rearmed.
473 *
1da177e4
LT
474 * This must be called with the siglock held.
475 */
2b69942f 476static void cleanup_timers(struct posix_cputimers *pct)
1da177e4 477{
60bda037
TG
478 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
479 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
480 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
1da177e4
LT
481}
482
483/*
484 * These are both called with the siglock held, when the current thread
485 * is being reaped. When the final (leader) thread in the group is reaped,
486 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
487 */
488void posix_cpu_timers_exit(struct task_struct *tsk)
489{
2b69942f 490 cleanup_timers(&tsk->posix_cputimers);
1da177e4
LT
491}
492void posix_cpu_timers_exit_group(struct task_struct *tsk)
493{
2b69942f 494 cleanup_timers(&tsk->signal->posix_cputimers);
1da177e4
LT
495}
496
1da177e4
LT
497/*
498 * Insert the timer on the appropriate list before any timers that
e73d84e3 499 * expire later. This must be called with the sighand lock held.
1da177e4 500 */
beb41d9c 501static void arm_timer(struct k_itimer *timer, struct task_struct *p)
1da177e4 502{
3b495b22 503 int clkidx = CPUCLOCK_WHICH(timer->it_clock);
60bda037
TG
504 struct cpu_timer *ctmr = &timer->it.cpu;
505 u64 newexp = cpu_timer_getexpires(ctmr);
87dc6448 506 struct posix_cputimer_base *base;
1da177e4 507
87dc6448
TG
508 if (CPUCLOCK_PERTHREAD(timer->it_clock))
509 base = p->posix_cputimers.bases + clkidx;
510 else
511 base = p->signal->posix_cputimers.bases + clkidx;
1da177e4 512
60bda037 513 if (!cpu_timer_enqueue(&base->tqhead, ctmr))
3b495b22 514 return;
5eb9aa64 515
3b495b22
TG
516 /*
517 * We are the new earliest-expiring POSIX 1.b timer, hence
518 * need to update expiration cache. Take into account that
519 * for process timers we share expiration cache with itimers
520 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
521 */
2bbdbdae 522 if (newexp < base->nextevt)
87dc6448 523 base->nextevt = newexp;
1da177e4 524
3b495b22
TG
525 if (CPUCLOCK_PERTHREAD(timer->it_clock))
526 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
527 else
1e4ca26d 528 tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
529}
530
531/*
532 * The timer is locked, fire it and arrange for its reload.
533 */
534static void cpu_timer_fire(struct k_itimer *timer)
535{
60bda037
TG
536 struct cpu_timer *ctmr = &timer->it.cpu;
537
1f169f84
SG
538 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
539 /*
540 * User don't want any signal.
541 */
60bda037 542 cpu_timer_setexpires(ctmr, 0);
1f169f84 543 } else if (unlikely(timer->sigq == NULL)) {
1da177e4
LT
544 /*
545 * This a special case for clock_nanosleep,
546 * not a normal timer from sys_timer_create.
547 */
548 wake_up_process(timer->it_process);
60bda037 549 cpu_timer_setexpires(ctmr, 0);
16118794 550 } else if (!timer->it_interval) {
1da177e4
LT
551 /*
552 * One-shot timer. Clear it as soon as it's fired.
553 */
554 posix_timer_event(timer, 0);
60bda037 555 cpu_timer_setexpires(ctmr, 0);
1da177e4
LT
556 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
557 /*
558 * The signal did not get queued because the signal
559 * was ignored, so we won't get any callback to
560 * reload the timer. But we need to keep it
561 * ticking in case the signal is deliverable next time.
562 */
f37fb0aa 563 posix_cpu_timer_rearm(timer);
af888d67 564 ++timer->it_requeue_pending;
1da177e4
LT
565 }
566}
567
568/*
569 * Guts of sys_timer_settime for CPU timers.
570 * This is called with the timer locked and interrupts disabled.
571 * If we return TIMER_RETRY, it's necessary to release the timer's lock
572 * and try again. (This happens when the timer is in the middle of firing.)
573 */
e73d84e3 574static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
5f252b32 575 struct itimerspec64 *new, struct itimerspec64 *old)
1da177e4 576{
c7a37c6f 577 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
ebd7e7fc 578 u64 old_expires, new_expires, old_incr, val;
60bda037 579 struct cpu_timer *ctmr = &timer->it.cpu;
c7a37c6f 580 struct sighand_struct *sighand;
55e8c8eb 581 struct task_struct *p;
c7a37c6f 582 unsigned long flags;
60bda037 583 int ret = 0;
1da177e4 584
55e8c8eb
EB
585 rcu_read_lock();
586 p = cpu_timer_task_rcu(timer);
587 if (!p) {
588 /*
589 * If p has just been reaped, we can no
590 * longer get any information about it at all.
591 */
592 rcu_read_unlock();
593 return -ESRCH;
594 }
1da177e4 595
098b0e01
TG
596 /*
597 * Use the to_ktime conversion because that clamps the maximum
598 * value to KTIME_MAX and avoid multiplication overflows.
599 */
600 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
1da177e4 601
1da177e4 602 /*
e73d84e3
FW
603 * Protect against sighand release/switch in exit/exec and p->cpu_timers
604 * and p->signal->cpu_timers read/write in arm_timer()
605 */
606 sighand = lock_task_sighand(p, &flags);
607 /*
608 * If p has just been reaped, we can no
1da177e4
LT
609 * longer get any information about it at all.
610 */
55e8c8eb
EB
611 if (unlikely(sighand == NULL)) {
612 rcu_read_unlock();
1da177e4 613 return -ESRCH;
55e8c8eb 614 }
1da177e4
LT
615
616 /*
617 * Disarm any old timer after extracting its expiry time.
618 */
16118794 619 old_incr = timer->it_interval;
60bda037
TG
620 old_expires = cpu_timer_getexpires(ctmr);
621
a69ac4a7
ON
622 if (unlikely(timer->it.cpu.firing)) {
623 timer->it.cpu.firing = -1;
624 ret = TIMER_RETRY;
60bda037
TG
625 } else {
626 cpu_timer_dequeue(ctmr);
627 }
1da177e4
LT
628
629 /*
630 * We need to sample the current value to convert the new
631 * value from to relative and absolute, and to convert the
632 * old value from absolute to relative. To set a process
633 * timer, we need a sample to balance the thread expiry
634 * times (in arm_timer). With an absolute time, we must
635 * check if it's already passed. In short, we need a sample.
636 */
8c2d74f0
TG
637 if (CPUCLOCK_PERTHREAD(timer->it_clock))
638 val = cpu_clock_sample(clkid, p);
639 else
640 val = cpu_clock_sample_group(clkid, p, true);
1da177e4
LT
641
642 if (old) {
55ccb616 643 if (old_expires == 0) {
1da177e4
LT
644 old->it_value.tv_sec = 0;
645 old->it_value.tv_nsec = 0;
646 } else {
647 /*
60bda037
TG
648 * Update the timer in case it has overrun already.
649 * If it has, we'll report it as having overrun and
650 * with the next reloaded timer already ticking,
651 * though we are swallowing that pending
652 * notification here to install the new setting.
1da177e4 653 */
60bda037
TG
654 u64 exp = bump_cpu_timer(timer, val);
655
656 if (val < exp) {
657 old_expires = exp - val;
5f252b32 658 old->it_value = ns_to_timespec64(old_expires);
1da177e4
LT
659 } else {
660 old->it_value.tv_nsec = 1;
661 old->it_value.tv_sec = 0;
662 }
663 }
664 }
665
a69ac4a7 666 if (unlikely(ret)) {
1da177e4
LT
667 /*
668 * We are colliding with the timer actually firing.
669 * Punt after filling in the timer's old value, and
670 * disable this firing since we are already reporting
671 * it as an overrun (thanks to bump_cpu_timer above).
672 */
e73d84e3 673 unlock_task_sighand(p, &flags);
1da177e4
LT
674 goto out;
675 }
676
e73d84e3 677 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
55ccb616 678 new_expires += val;
1da177e4
LT
679 }
680
681 /*
682 * Install the new expiry time (or zero).
683 * For a timer with no notification action, we don't actually
684 * arm the timer (we'll just fake it for timer_gettime).
685 */
60bda037 686 cpu_timer_setexpires(ctmr, new_expires);
55ccb616 687 if (new_expires != 0 && val < new_expires) {
beb41d9c 688 arm_timer(timer, p);
1da177e4
LT
689 }
690
e73d84e3 691 unlock_task_sighand(p, &flags);
1da177e4
LT
692 /*
693 * Install the new reload setting, and
694 * set up the signal and overrun bookkeeping.
695 */
16118794 696 timer->it_interval = timespec64_to_ktime(new->it_interval);
1da177e4
LT
697
698 /*
699 * This acts as a modification timestamp for the timer,
700 * so any automatic reload attempt will punt on seeing
701 * that we have reset the timer manually.
702 */
703 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
704 ~REQUEUE_PENDING;
705 timer->it_overrun_last = 0;
706 timer->it_overrun = -1;
707
55ccb616 708 if (new_expires != 0 && !(val < new_expires)) {
1da177e4
LT
709 /*
710 * The designated time already passed, so we notify
711 * immediately, even if the thread never runs to
712 * accumulate more time on this clock.
713 */
714 cpu_timer_fire(timer);
715 }
716
717 ret = 0;
718 out:
55e8c8eb 719 rcu_read_unlock();
ebd7e7fc 720 if (old)
5f252b32 721 old->it_interval = ns_to_timespec64(old_incr);
b7878300 722
1da177e4
LT
723 return ret;
724}
725
5f252b32 726static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
1da177e4 727{
99093c5b 728 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
60bda037
TG
729 struct cpu_timer *ctmr = &timer->it.cpu;
730 u64 now, expires = cpu_timer_getexpires(ctmr);
55e8c8eb 731 struct task_struct *p;
1da177e4 732
55e8c8eb
EB
733 rcu_read_lock();
734 p = cpu_timer_task_rcu(timer);
735 if (!p)
736 goto out;
a3222f88 737
1da177e4
LT
738 /*
739 * Easy part: convert the reload time.
740 */
16118794 741 itp->it_interval = ktime_to_timespec64(timer->it_interval);
1da177e4 742
60bda037 743 if (!expires)
55e8c8eb 744 goto out;
1da177e4 745
1da177e4
LT
746 /*
747 * Sample the clock to take the difference with the expiry time.
748 */
60f2ceaa 749 if (CPUCLOCK_PERTHREAD(timer->it_clock))
8c2d74f0 750 now = cpu_clock_sample(clkid, p);
60f2ceaa
EB
751 else
752 now = cpu_clock_sample_group(clkid, p, false);
1da177e4 753
60bda037
TG
754 if (now < expires) {
755 itp->it_value = ns_to_timespec64(expires - now);
1da177e4
LT
756 } else {
757 /*
758 * The timer should have expired already, but the firing
759 * hasn't taken place yet. Say it's just about to expire.
760 */
761 itp->it_value.tv_nsec = 1;
762 itp->it_value.tv_sec = 0;
763 }
55e8c8eb
EB
764out:
765 rcu_read_unlock();
1da177e4
LT
766}
767
60bda037 768#define MAX_COLLECTED 20
2473f3e7 769
60bda037
TG
770static u64 collect_timerqueue(struct timerqueue_head *head,
771 struct list_head *firing, u64 now)
772{
773 struct timerqueue_node *next;
774 int i = 0;
775
776 while ((next = timerqueue_getnext(head))) {
777 struct cpu_timer *ctmr;
778 u64 expires;
779
780 ctmr = container_of(next, struct cpu_timer, node);
781 expires = cpu_timer_getexpires(ctmr);
782 /* Limit the number of timers to expire at once */
783 if (++i == MAX_COLLECTED || now < expires)
784 return expires;
785
786 ctmr->firing = 1;
787 cpu_timer_dequeue(ctmr);
788 list_add_tail(&ctmr->elist, firing);
2473f3e7
FW
789 }
790
2bbdbdae 791 return U64_MAX;
2473f3e7
FW
792}
793
60bda037
TG
794static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
795 struct list_head *firing)
1cd07c0b
TG
796{
797 struct posix_cputimer_base *base = pct->bases;
798 int i;
799
800 for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
60bda037
TG
801 base->nextevt = collect_timerqueue(&base->tqhead, firing,
802 samples[i]);
1cd07c0b
TG
803 }
804}
805
34be3930
JL
806static inline void check_dl_overrun(struct task_struct *tsk)
807{
808 if (tsk->dl.dl_overrun) {
809 tsk->dl.dl_overrun = 0;
810 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
811 }
812}
813
8991afe2
TG
814static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
815{
816 if (time < limit)
817 return false;
818
819 if (print_fatal_signals) {
820 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
821 rt ? "RT" : "CPU", hard ? "hard" : "soft",
822 current->comm, task_pid_nr(current));
823 }
824 __group_send_sig_info(signo, SEND_SIG_PRIV, current);
825 return true;
826}
827
1da177e4
LT
828/*
829 * Check for any per-thread CPU timers that have fired and move them off
830 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
831 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
832 */
833static void check_thread_timers(struct task_struct *tsk,
834 struct list_head *firing)
835{
1cd07c0b
TG
836 struct posix_cputimers *pct = &tsk->posix_cputimers;
837 u64 samples[CPUCLOCK_MAX];
d4bb5274 838 unsigned long soft;
1da177e4 839
34be3930
JL
840 if (dl_task(tsk))
841 check_dl_overrun(tsk);
842
1cd07c0b 843 if (expiry_cache_is_inactive(pct))
934715a1
JL
844 return;
845
1cd07c0b
TG
846 task_sample_cputime(tsk, samples);
847 collect_posix_cputimers(pct, samples, firing);
78f2c7db
PZ
848
849 /*
850 * Check for the special case thread timers.
851 */
3cf29496 852 soft = task_rlimit(tsk, RLIMIT_RTTIME);
d4bb5274 853 if (soft != RLIM_INFINITY) {
8ea1de90 854 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
8991afe2 855 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
3cf29496 856 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
78f2c7db 857
8991afe2
TG
858 /* At the hard limit, send SIGKILL. No further action. */
859 if (hard != RLIM_INFINITY &&
860 check_rlimit(rttime, hard, SIGKILL, true, true))
78f2c7db 861 return;
dd670224 862
8991afe2
TG
863 /* At the soft limit, send a SIGXCPU every second */
864 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
dd670224
TG
865 soft += USEC_PER_SEC;
866 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
78f2c7db
PZ
867 }
868 }
c02b078e 869
1cd07c0b 870 if (expiry_cache_is_inactive(pct))
b7878300 871 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
872}
873
1018016c 874static inline void stop_process_timers(struct signal_struct *sig)
3fccfd67 875{
244d49e3 876 struct posix_cputimers *pct = &sig->posix_cputimers;
3fccfd67 877
244d49e3
TG
878 /* Turn off the active flag. This is done without locking. */
879 WRITE_ONCE(pct->timers_active, false);
b7878300 880 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
3fccfd67
PZ
881}
882
42c4ab41 883static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
ebd7e7fc 884 u64 *expires, u64 cur_time, int signo)
42c4ab41 885{
64861634 886 if (!it->expires)
42c4ab41
SG
887 return;
888
858cf3a8
FW
889 if (cur_time >= it->expires) {
890 if (it->incr)
64861634 891 it->expires += it->incr;
858cf3a8 892 else
64861634 893 it->expires = 0;
42c4ab41 894
3f0a525e
XG
895 trace_itimer_expire(signo == SIGPROF ?
896 ITIMER_PROF : ITIMER_VIRTUAL,
6883f81a 897 task_tgid(tsk), cur_time);
42c4ab41
SG
898 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
899 }
900
2bbdbdae 901 if (it->expires && it->expires < *expires)
858cf3a8 902 *expires = it->expires;
42c4ab41
SG
903}
904
1da177e4
LT
905/*
906 * Check for any per-thread CPU timers that have fired and move them
907 * off the tsk->*_timers list onto the firing list. Per-thread timers
908 * have already been taken off.
909 */
910static void check_process_timers(struct task_struct *tsk,
911 struct list_head *firing)
912{
913 struct signal_struct *const sig = tsk->signal;
1cd07c0b
TG
914 struct posix_cputimers *pct = &sig->posix_cputimers;
915 u64 samples[CPUCLOCK_MAX];
d4bb5274 916 unsigned long soft;
1da177e4 917
934715a1 918 /*
244d49e3 919 * If there are no active process wide timers (POSIX 1.b, itimers,
a2ed4fd6
TG
920 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
921 * processing when there is already another task handling them.
934715a1 922 */
a2ed4fd6 923 if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
934715a1
JL
924 return;
925
a2ed4fd6 926 /*
c8d75aa4
JL
927 * Signify that a thread is checking for process timers.
928 * Write access to this field is protected by the sighand lock.
929 */
a2ed4fd6 930 pct->expiry_active = true;
c8d75aa4 931
1da177e4 932 /*
a324956f
TG
933 * Collect the current process totals. Group accounting is active
934 * so the sample can be taken directly.
1da177e4 935 */
b7be4ef1 936 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
1cd07c0b 937 collect_posix_cputimers(pct, samples, firing);
1da177e4
LT
938
939 /*
940 * Check for the special case process timers.
941 */
1cd07c0b
TG
942 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
943 &pct->bases[CPUCLOCK_PROF].nextevt,
b7be4ef1 944 samples[CPUCLOCK_PROF], SIGPROF);
1cd07c0b
TG
945 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
946 &pct->bases[CPUCLOCK_VIRT].nextevt,
947 samples[CPUCLOCK_VIRT], SIGVTALRM);
b7be4ef1 948
3cf29496 949 soft = task_rlimit(tsk, RLIMIT_CPU);
d4bb5274 950 if (soft != RLIM_INFINITY) {
8ea1de90 951 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
3cf29496 952 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
8ea1de90
TG
953 u64 ptime = samples[CPUCLOCK_PROF];
954 u64 softns = (u64)soft * NSEC_PER_SEC;
955 u64 hardns = (u64)hard * NSEC_PER_SEC;
b7be4ef1 956
8991afe2
TG
957 /* At the hard limit, send SIGKILL. No further action. */
958 if (hard != RLIM_INFINITY &&
959 check_rlimit(ptime, hardns, SIGKILL, false, true))
1da177e4 960 return;
dd670224 961
8991afe2
TG
962 /* At the soft limit, send a SIGXCPU every second */
963 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
dd670224
TG
964 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
965 softns += NSEC_PER_SEC;
1da177e4 966 }
8ea1de90
TG
967
968 /* Update the expiry cache */
1cd07c0b
TG
969 if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
970 pct->bases[CPUCLOCK_PROF].nextevt = softns;
1da177e4
LT
971 }
972
1cd07c0b 973 if (expiry_cache_is_inactive(pct))
29f87b79 974 stop_process_timers(sig);
c8d75aa4 975
244d49e3 976 pct->expiry_active = false;
1da177e4
LT
977}
978
979/*
96fe3b07 980 * This is called from the signal code (via posixtimer_rearm)
1da177e4
LT
981 * when the last timer signal was delivered and we have to reload the timer.
982 */
f37fb0aa 983static void posix_cpu_timer_rearm(struct k_itimer *timer)
1da177e4 984{
da020ce4 985 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
55e8c8eb 986 struct task_struct *p;
e73d84e3
FW
987 struct sighand_struct *sighand;
988 unsigned long flags;
ebd7e7fc 989 u64 now;
1da177e4 990
55e8c8eb
EB
991 rcu_read_lock();
992 p = cpu_timer_task_rcu(timer);
993 if (!p)
994 goto out;
1da177e4 995
1a3402d9
FW
996 /* Protect timer list r/w in arm_timer() */
997 sighand = lock_task_sighand(p, &flags);
998 if (unlikely(sighand == NULL))
999 goto out;
1000
1da177e4
LT
1001 /*
1002 * Fetch the current sample and update the timer's expiry time.
1003 */
60f2ceaa 1004 if (CPUCLOCK_PERTHREAD(timer->it_clock))
8c2d74f0 1005 now = cpu_clock_sample(clkid, p);
60f2ceaa 1006 else
8c2d74f0 1007 now = cpu_clock_sample_group(clkid, p, true);
60f2ceaa
EB
1008
1009 bump_cpu_timer(timer, now);
1010
1da177e4
LT
1011 /*
1012 * Now re-arm for the new expiry time.
1013 */
beb41d9c 1014 arm_timer(timer, p);
e73d84e3 1015 unlock_task_sighand(p, &flags);
55e8c8eb
EB
1016out:
1017 rcu_read_unlock();
1da177e4
LT
1018}
1019
f06febc9 1020/**
87dc6448 1021 * task_cputimers_expired - Check whether posix CPU timers are expired
f06febc9 1022 *
001f7971 1023 * @samples: Array of current samples for the CPUCLOCK clocks
87dc6448 1024 * @pct: Pointer to a posix_cputimers container
f06febc9 1025 *
87dc6448
TG
1026 * Returns true if any member of @samples is greater than the corresponding
1027 * member of @pct->bases[CLK].nextevt. False otherwise
f06febc9 1028 */
87dc6448 1029static inline bool
7f2cbcbc 1030task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
f06febc9 1031{
001f7971
TG
1032 int i;
1033
1034 for (i = 0; i < CPUCLOCK_MAX; i++) {
7f2cbcbc 1035 if (samples[i] >= pct->bases[i].nextevt)
001f7971
TG
1036 return true;
1037 }
1038 return false;
f06febc9
FM
1039}
1040
1041/**
1042 * fastpath_timer_check - POSIX CPU timers fast path.
1043 *
1044 * @tsk: The task (thread) being checked.
f06febc9 1045 *
bb34d92f
FM
1046 * Check the task and thread group timers. If both are zero (there are no
1047 * timers set) return false. Otherwise snapshot the task and thread group
1048 * timers and compare them with the corresponding expiration times. Return
1049 * true if a timer has expired, else return false.
f06febc9 1050 */
001f7971 1051static inline bool fastpath_timer_check(struct task_struct *tsk)
f06febc9 1052{
244d49e3 1053 struct posix_cputimers *pct = &tsk->posix_cputimers;
ad133ba3 1054 struct signal_struct *sig;
bb34d92f 1055
244d49e3 1056 if (!expiry_cache_is_inactive(pct)) {
001f7971 1057 u64 samples[CPUCLOCK_MAX];
bb34d92f 1058
001f7971 1059 task_sample_cputime(tsk, samples);
244d49e3 1060 if (task_cputimers_expired(samples, pct))
001f7971 1061 return true;
bb34d92f 1062 }
ad133ba3
ON
1063
1064 sig = tsk->signal;
244d49e3 1065 pct = &sig->posix_cputimers;
c8d75aa4 1066 /*
244d49e3
TG
1067 * Check if thread group timers expired when timers are active and
1068 * no other thread in the group is already handling expiry for
1069 * thread group cputimers. These fields are read without the
1070 * sighand lock. However, this is fine because this is meant to be
1071 * a fastpath heuristic to determine whether we should try to
1072 * acquire the sighand lock to handle timer expiry.
c8d75aa4 1073 *
244d49e3
TG
1074 * In the worst case scenario, if concurrently timers_active is set
1075 * or expiry_active is cleared, but the current thread doesn't see
1076 * the change yet, the timer checks are delayed until the next
1077 * thread in the group gets a scheduler interrupt to handle the
1078 * timer. This isn't an issue in practice because these types of
1079 * delays with signals actually getting sent are expected.
c8d75aa4 1080 */
244d49e3 1081 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
001f7971 1082 u64 samples[CPUCLOCK_MAX];
bb34d92f 1083
001f7971
TG
1084 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1085 samples);
8d1f431c 1086
244d49e3 1087 if (task_cputimers_expired(samples, pct))
001f7971 1088 return true;
bb34d92f 1089 }
37bebc70 1090
34be3930 1091 if (dl_task(tsk) && tsk->dl.dl_overrun)
001f7971 1092 return true;
34be3930 1093
001f7971 1094 return false;
f06febc9
FM
1095}
1096
1fb497dd
TG
1097static void handle_posix_cpu_timers(struct task_struct *tsk);
1098
1099#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1100static void posix_cpu_timers_work(struct callback_head *work)
1101{
1102 handle_posix_cpu_timers(current);
1103}
1104
1105/*
1106 * Initialize posix CPU timers task work in init task. Out of line to
1107 * keep the callback static and to avoid header recursion hell.
1108 */
1109void __init posix_cputimers_init_work(void)
1110{
1111 init_task_work(&current->posix_cputimers_work.work,
1112 posix_cpu_timers_work);
1113}
1114
1115/*
1116 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1117 * in hard interrupt context or in task context with interrupts
1118 * disabled. Aside of that the writer/reader interaction is always in the
1119 * context of the current task, which means they are strict per CPU.
1120 */
1121static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1122{
1123 return tsk->posix_cputimers_work.scheduled;
1124}
1125
1126static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1127{
1128 if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
1129 return;
1130
1131 /* Schedule task work to actually expire the timers */
1132 tsk->posix_cputimers_work.scheduled = true;
1133 task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
1134}
1135
1136static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1137 unsigned long start)
1138{
1139 bool ret = true;
1140
1141 /*
1142 * On !RT kernels interrupts are disabled while collecting expired
1143 * timers, so no tick can happen and the fast path check can be
1144 * reenabled without further checks.
1145 */
1146 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
1147 tsk->posix_cputimers_work.scheduled = false;
1148 return true;
1149 }
1150
1151 /*
1152 * On RT enabled kernels ticks can happen while the expired timers
1153 * are collected under sighand lock. But any tick which observes
1154 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1155 * checks. So reenabling the tick work has do be done carefully:
1156 *
1157 * Disable interrupts and run the fast path check if jiffies have
1158 * advanced since the collecting of expired timers started. If
1159 * jiffies have not advanced or the fast path check did not find
1160 * newly expired timers, reenable the fast path check in the timer
1161 * interrupt. If there are newly expired timers, return false and
1162 * let the collection loop repeat.
1163 */
1164 local_irq_disable();
1165 if (start != jiffies && fastpath_timer_check(tsk))
1166 ret = false;
1167 else
1168 tsk->posix_cputimers_work.scheduled = false;
1169 local_irq_enable();
1170
1171 return ret;
1172}
1173#else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1174static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1175{
1176 lockdep_posixtimer_enter();
1177 handle_posix_cpu_timers(tsk);
1178 lockdep_posixtimer_exit();
1179}
1180
1181static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1182{
1183 return false;
1184}
1185
1186static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1187 unsigned long start)
1188{
1189 return true;
1190}
1191#endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1192
1193static void handle_posix_cpu_timers(struct task_struct *tsk)
1da177e4 1194{
1da177e4 1195 struct k_itimer *timer, *next;
1fb497dd 1196 unsigned long flags, start;
dce3e8fd 1197 LIST_HEAD(firing);
1da177e4 1198
820903c7 1199 if (!lock_task_sighand(tsk, &flags))
f06febc9 1200 return;
5ce73a4a 1201
1fb497dd
TG
1202 do {
1203 /*
1204 * On RT locking sighand lock does not disable interrupts,
1205 * so this needs to be careful vs. ticks. Store the current
1206 * jiffies value.
1207 */
1208 start = READ_ONCE(jiffies);
1209 barrier();
934715a1 1210
1fb497dd
TG
1211 /*
1212 * Here we take off tsk->signal->cpu_timers[N] and
1213 * tsk->cpu_timers[N] all the timers that are firing, and
1214 * put them on the firing list.
1215 */
1216 check_thread_timers(tsk, &firing);
1217
1218 check_process_timers(tsk, &firing);
1219
1220 /*
4bf07f65 1221 * The above timer checks have updated the expiry cache and
1fb497dd
TG
1222 * because nothing can have queued or modified timers after
1223 * sighand lock was taken above it is guaranteed to be
1224 * consistent. So the next timer interrupt fastpath check
1225 * will find valid data.
1226 *
1227 * If timer expiry runs in the timer interrupt context then
1228 * the loop is not relevant as timers will be directly
1229 * expired in interrupt context. The stub function below
1230 * returns always true which allows the compiler to
1231 * optimize the loop out.
1232 *
1233 * If timer expiry is deferred to task work context then
1234 * the following rules apply:
1235 *
1236 * - On !RT kernels no tick can have happened on this CPU
1237 * after sighand lock was acquired because interrupts are
1238 * disabled. So reenabling task work before dropping
1239 * sighand lock and reenabling interrupts is race free.
1240 *
1241 * - On RT kernels ticks might have happened but the tick
1242 * work ignored posix CPU timer handling because the
1243 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1244 * must be done very carefully including a check whether
1245 * ticks have happened since the start of the timer
1246 * expiry checks. posix_cpu_timers_enable_work() takes
1247 * care of that and eventually lets the expiry checks
1248 * run again.
1249 */
1250 } while (!posix_cpu_timers_enable_work(tsk, start));
1da177e4 1251
bb34d92f 1252 /*
1fb497dd 1253 * We must release sighand lock before taking any timer's lock.
bb34d92f
FM
1254 * There is a potential race with timer deletion here, as the
1255 * siglock now protects our private firing list. We have set
1256 * the firing flag in each timer, so that a deletion attempt
1257 * that gets the timer lock before we do will give it up and
1258 * spin until we've taken care of that timer below.
1259 */
0bdd2ed4 1260 unlock_task_sighand(tsk, &flags);
1da177e4
LT
1261
1262 /*
1263 * Now that all the timers on our list have the firing flag,
25985edc 1264 * no one will touch their list entries but us. We'll take
1da177e4
LT
1265 * each timer's lock before clearing its firing flag, so no
1266 * timer call will interfere.
1267 */
60bda037 1268 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
6e85c5ba
HS
1269 int cpu_firing;
1270
1fb497dd
TG
1271 /*
1272 * spin_lock() is sufficient here even independent of the
1273 * expiry context. If expiry happens in hard interrupt
1274 * context it's obvious. For task work context it's safe
1275 * because all other operations on timer::it_lock happen in
1276 * task context (syscall or exit).
1277 */
1da177e4 1278 spin_lock(&timer->it_lock);
60bda037 1279 list_del_init(&timer->it.cpu.elist);
6e85c5ba 1280 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1281 timer->it.cpu.firing = 0;
1282 /*
1283 * The firing flag is -1 if we collided with a reset
1284 * of the timer, which already reported this
1285 * almost-firing as an overrun. So don't generate an event.
1286 */
6e85c5ba 1287 if (likely(cpu_firing >= 0))
1da177e4 1288 cpu_timer_fire(timer);
1da177e4
LT
1289 spin_unlock(&timer->it_lock);
1290 }
820903c7
TG
1291}
1292
1293/*
1294 * This is called from the timer interrupt handler. The irq handler has
1295 * already updated our counts. We need to check if any timers fire now.
1296 * Interrupts are disabled.
1297 */
1298void run_posix_cpu_timers(void)
1299{
1300 struct task_struct *tsk = current;
1301
1302 lockdep_assert_irqs_disabled();
1303
1fb497dd
TG
1304 /*
1305 * If the actual expiry is deferred to task work context and the
1306 * work is already scheduled there is no point to do anything here.
1307 */
1308 if (posix_cpu_timers_work_scheduled(tsk))
1309 return;
1310
820903c7
TG
1311 /*
1312 * The fast path checks that there are no expired thread or thread
1313 * group timers. If that's so, just return.
1314 */
1315 if (!fastpath_timer_check(tsk))
1316 return;
1317
820903c7 1318 __run_posix_cpu_timers(tsk);
1da177e4
LT
1319}
1320
1321/*
f55db609 1322 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1323 * The tsk->sighand->siglock must be held by the caller.
1da177e4 1324 */
1b0dd96d 1325void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
858cf3a8 1326 u64 *newval, u64 *oldval)
1da177e4 1327{
87dc6448 1328 u64 now, *nextevt;
1da177e4 1329
1b0dd96d 1330 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
692117c1
TG
1331 return;
1332
87dc6448 1333 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1b0dd96d 1334 now = cpu_clock_sample_group(clkid, tsk, true);
1da177e4 1335
5405d005 1336 if (oldval) {
f55db609
SG
1337 /*
1338 * We are setting itimer. The *oldval is absolute and we update
1339 * it to be relative, *newval argument is relative and we update
1340 * it to be absolute.
1341 */
64861634 1342 if (*oldval) {
858cf3a8 1343 if (*oldval <= now) {
1da177e4 1344 /* Just about to fire. */
858cf3a8 1345 *oldval = TICK_NSEC;
1da177e4 1346 } else {
858cf3a8 1347 *oldval -= now;
1da177e4
LT
1348 }
1349 }
1350
64861634 1351 if (!*newval)
b7878300 1352 return;
858cf3a8 1353 *newval += now;
1da177e4
LT
1354 }
1355
1356 /*
1b0dd96d
TG
1357 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1358 * expiry cache is also used by RLIMIT_CPU!.
1da177e4 1359 */
2bbdbdae 1360 if (*newval < *nextevt)
87dc6448 1361 *nextevt = *newval;
b7878300 1362
1e4ca26d 1363 tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
1364}
1365
e4b76555 1366static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
343d8fc2 1367 const struct timespec64 *rqtp)
1da177e4 1368{
86a9c446 1369 struct itimerspec64 it;
343d8fc2
TG
1370 struct k_itimer timer;
1371 u64 expires;
1da177e4
LT
1372 int error;
1373
1da177e4
LT
1374 /*
1375 * Set up a temporary timer and then wait for it to go off.
1376 */
1377 memset(&timer, 0, sizeof timer);
1378 spin_lock_init(&timer.it_lock);
1379 timer.it_clock = which_clock;
1380 timer.it_overrun = -1;
1381 error = posix_cpu_timer_create(&timer);
1382 timer.it_process = current;
60bda037 1383
1da177e4 1384 if (!error) {
5f252b32 1385 static struct itimerspec64 zero_it;
edbeda46 1386 struct restart_block *restart;
e4b76555 1387
edbeda46 1388 memset(&it, 0, sizeof(it));
86a9c446 1389 it.it_value = *rqtp;
1da177e4
LT
1390
1391 spin_lock_irq(&timer.it_lock);
86a9c446 1392 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1da177e4
LT
1393 if (error) {
1394 spin_unlock_irq(&timer.it_lock);
1395 return error;
1396 }
1397
1398 while (!signal_pending(current)) {
60bda037 1399 if (!cpu_timer_getexpires(&timer.it.cpu)) {
1da177e4 1400 /*
e6c42c29
SG
1401 * Our timer fired and was reset, below
1402 * deletion can not fail.
1da177e4 1403 */
e6c42c29 1404 posix_cpu_timer_del(&timer);
1da177e4
LT
1405 spin_unlock_irq(&timer.it_lock);
1406 return 0;
1407 }
1408
1409 /*
1410 * Block until cpu_timer_fire (or a signal) wakes us.
1411 */
1412 __set_current_state(TASK_INTERRUPTIBLE);
1413 spin_unlock_irq(&timer.it_lock);
1414 schedule();
1415 spin_lock_irq(&timer.it_lock);
1416 }
1417
1418 /*
1419 * We were interrupted by a signal.
1420 */
60bda037 1421 expires = cpu_timer_getexpires(&timer.it.cpu);
86a9c446 1422 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
e6c42c29
SG
1423 if (!error) {
1424 /*
1425 * Timer is now unarmed, deletion can not fail.
1426 */
1427 posix_cpu_timer_del(&timer);
1428 }
1da177e4
LT
1429 spin_unlock_irq(&timer.it_lock);
1430
e6c42c29
SG
1431 while (error == TIMER_RETRY) {
1432 /*
1433 * We need to handle case when timer was or is in the
1434 * middle of firing. In other cases we already freed
1435 * resources.
1436 */
1437 spin_lock_irq(&timer.it_lock);
1438 error = posix_cpu_timer_del(&timer);
1439 spin_unlock_irq(&timer.it_lock);
1440 }
1441
86a9c446 1442 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1da177e4
LT
1443 /*
1444 * It actually did fire already.
1445 */
1446 return 0;
1447 }
1448
e4b76555 1449 error = -ERESTART_RESTARTBLOCK;
86a9c446
AV
1450 /*
1451 * Report back to the user the time still remaining.
1452 */
edbeda46 1453 restart = &current->restart_block;
343d8fc2 1454 restart->nanosleep.expires = expires;
c0edd7c9
DD
1455 if (restart->nanosleep.type != TT_NONE)
1456 error = nanosleep_copyout(restart, &it.it_value);
e4b76555
TA
1457 }
1458
1459 return error;
1460}
1461
bc2c8ea4
TG
1462static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1463
1464static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1465 const struct timespec64 *rqtp)
e4b76555 1466{
f56141e3 1467 struct restart_block *restart_block = &current->restart_block;
e4b76555
TA
1468 int error;
1469
1470 /*
1471 * Diagnose required errors first.
1472 */
1473 if (CPUCLOCK_PERTHREAD(which_clock) &&
1474 (CPUCLOCK_PID(which_clock) == 0 ||
01a21974 1475 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
e4b76555
TA
1476 return -EINVAL;
1477
86a9c446 1478 error = do_cpu_nanosleep(which_clock, flags, rqtp);
e4b76555
TA
1479
1480 if (error == -ERESTART_RESTARTBLOCK) {
1481
3751f9f2 1482 if (flags & TIMER_ABSTIME)
e4b76555 1483 return -ERESTARTNOHAND;
1da177e4 1484
ab8177bc 1485 restart_block->nanosleep.clockid = which_clock;
5abbe51a 1486 set_restart_fn(restart_block, posix_cpu_nsleep_restart);
1da177e4 1487 }
1da177e4
LT
1488 return error;
1489}
1490
bc2c8ea4 1491static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4 1492{
ab8177bc 1493 clockid_t which_clock = restart_block->nanosleep.clockid;
ad196384 1494 struct timespec64 t;
97735f25 1495
ad196384 1496 t = ns_to_timespec64(restart_block->nanosleep.expires);
97735f25 1497
86a9c446 1498 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1da177e4
LT
1499}
1500
29f1b2b0
ND
1501#define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1502#define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1da177e4 1503
a924b04d 1504static int process_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1505 struct timespec64 *tp)
1da177e4
LT
1506{
1507 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1508}
a924b04d 1509static int process_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1510 struct timespec64 *tp)
1da177e4
LT
1511{
1512 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1513}
1514static int process_cpu_timer_create(struct k_itimer *timer)
1515{
1516 timer->it_clock = PROCESS_CLOCK;
1517 return posix_cpu_timer_create(timer);
1518}
a924b04d 1519static int process_cpu_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1520 const struct timespec64 *rqtp)
1da177e4 1521{
99e6c0e6 1522 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1da177e4 1523}
a924b04d 1524static int thread_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1525 struct timespec64 *tp)
1da177e4
LT
1526{
1527 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1528}
a924b04d 1529static int thread_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1530 struct timespec64 *tp)
1da177e4
LT
1531{
1532 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1533}
1534static int thread_cpu_timer_create(struct k_itimer *timer)
1535{
1536 timer->it_clock = THREAD_CLOCK;
1537 return posix_cpu_timer_create(timer);
1538}
1da177e4 1539
d3ba5a9a 1540const struct k_clock clock_posix_cpu = {
819a95fe
AV
1541 .clock_getres = posix_cpu_clock_getres,
1542 .clock_set = posix_cpu_clock_set,
1543 .clock_get_timespec = posix_cpu_clock_get,
1544 .timer_create = posix_cpu_timer_create,
1545 .nsleep = posix_cpu_nsleep,
1546 .timer_set = posix_cpu_timer_set,
1547 .timer_del = posix_cpu_timer_del,
1548 .timer_get = posix_cpu_timer_get,
1549 .timer_rearm = posix_cpu_timer_rearm,
1976945e
TG
1550};
1551
d3ba5a9a 1552const struct k_clock clock_process = {
819a95fe
AV
1553 .clock_getres = process_cpu_clock_getres,
1554 .clock_get_timespec = process_cpu_clock_get,
1555 .timer_create = process_cpu_timer_create,
1556 .nsleep = process_cpu_nsleep,
d3ba5a9a 1557};
1da177e4 1558
d3ba5a9a 1559const struct k_clock clock_thread = {
819a95fe
AV
1560 .clock_getres = thread_cpu_clock_getres,
1561 .clock_get_timespec = thread_cpu_clock_get,
1562 .timer_create = thread_cpu_timer_create,
d3ba5a9a 1563};