]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/posix-cpu-timers.c
posix-timers: Move posix-timer internals to core
[mirror_ubuntu-jammy-kernel.git] / kernel / time / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
3f07c014 5#include <linux/sched/signal.h>
32ef5517 6#include <linux/sched/cputime.h>
1da177e4 7#include <linux/posix-timers.h>
1da177e4 8#include <linux/errno.h>
f8bd2258 9#include <linux/math64.h>
7c0f6ba6 10#include <linux/uaccess.h>
bb34d92f 11#include <linux/kernel_stat.h>
3f0a525e 12#include <trace/events/timer.h>
a8572160
FW
13#include <linux/tick.h>
14#include <linux/workqueue.h>
1da177e4 15
bab0aae9
TG
16#include "posix-timers.h"
17
f06febc9 18/*
f55db609
SG
19 * Called after updating RLIMIT_CPU to run cpu timer and update
20 * tsk->signal->cputime_expires expiration cache if necessary. Needs
21 * siglock protection since other code may update expiration cache as
22 * well.
f06febc9 23 */
5ab46b34 24void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
f06febc9 25{
858cf3a8 26 u64 nsecs = rlim_new * NSEC_PER_SEC;
f06febc9 27
5ab46b34 28 spin_lock_irq(&task->sighand->siglock);
858cf3a8 29 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
5ab46b34 30 spin_unlock_irq(&task->sighand->siglock);
f06febc9
FM
31}
32
a924b04d 33static int check_clock(const clockid_t which_clock)
1da177e4
LT
34{
35 int error = 0;
36 struct task_struct *p;
37 const pid_t pid = CPUCLOCK_PID(which_clock);
38
39 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
40 return -EINVAL;
41
42 if (pid == 0)
43 return 0;
44
c0deae8c 45 rcu_read_lock();
8dc86af0 46 p = find_task_by_vpid(pid);
bac0abd6 47 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
c0deae8c 48 same_thread_group(p, current) : has_group_leader_pid(p))) {
1da177e4
LT
49 error = -EINVAL;
50 }
c0deae8c 51 rcu_read_unlock();
1da177e4
LT
52
53 return error;
54}
55
1da177e4
LT
56/*
57 * Update expiry time from increment, and increase overrun count,
58 * given the current clock sample.
59 */
ebd7e7fc 60static void bump_cpu_timer(struct k_itimer *timer, u64 now)
1da177e4
LT
61{
62 int i;
ebd7e7fc 63 u64 delta, incr;
1da177e4 64
55ccb616 65 if (timer->it.cpu.incr == 0)
1da177e4
LT
66 return;
67
55ccb616
FW
68 if (now < timer->it.cpu.expires)
69 return;
1da177e4 70
55ccb616
FW
71 incr = timer->it.cpu.incr;
72 delta = now + incr - timer->it.cpu.expires;
1da177e4 73
55ccb616
FW
74 /* Don't use (incr*2 < delta), incr*2 might overflow. */
75 for (i = 0; incr < delta - incr; i++)
76 incr = incr << 1;
77
78 for (; i >= 0; incr >>= 1, i--) {
79 if (delta < incr)
80 continue;
81
82 timer->it.cpu.expires += incr;
83 timer->it_overrun += 1 << i;
84 delta -= incr;
1da177e4
LT
85 }
86}
87
555347f6
FW
88/**
89 * task_cputime_zero - Check a task_cputime struct for all zero fields.
90 *
91 * @cputime: The struct to compare.
92 *
93 * Checks @cputime to see if all fields are zero. Returns true if all fields
94 * are zero, false if any field is nonzero.
95 */
ebd7e7fc 96static inline int task_cputime_zero(const struct task_cputime *cputime)
555347f6
FW
97{
98 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
99 return 1;
100 return 0;
101}
102
ebd7e7fc 103static inline u64 prof_ticks(struct task_struct *p)
1da177e4 104{
ebd7e7fc 105 u64 utime, stime;
6fac4829 106
ebd7e7fc 107 task_cputime(p, &utime, &stime);
6fac4829 108
ebd7e7fc 109 return utime + stime;
1da177e4 110}
ebd7e7fc 111static inline u64 virt_ticks(struct task_struct *p)
1da177e4 112{
ebd7e7fc 113 u64 utime, stime;
6fac4829 114
ebd7e7fc 115 task_cputime(p, &utime, &stime);
6fac4829 116
ebd7e7fc 117 return utime;
1da177e4 118}
1da177e4 119
bc2c8ea4 120static int
d2e3e0ca 121posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
1da177e4
LT
122{
123 int error = check_clock(which_clock);
124 if (!error) {
125 tp->tv_sec = 0;
126 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
127 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
128 /*
129 * If sched_clock is using a cycle counter, we
130 * don't have any idea of its true resolution
131 * exported, but it is much more than 1s/HZ.
132 */
133 tp->tv_nsec = 1;
134 }
135 }
136 return error;
137}
138
bc2c8ea4 139static int
0fe6afe3 140posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
1da177e4
LT
141{
142 /*
143 * You can never reset a CPU clock, but we check for other errors
144 * in the call before failing with EPERM.
145 */
146 int error = check_clock(which_clock);
147 if (error == 0) {
148 error = -EPERM;
149 }
150 return error;
151}
152
153
154/*
155 * Sample a per-thread clock for the given task.
156 */
ebd7e7fc
FW
157static int cpu_clock_sample(const clockid_t which_clock,
158 struct task_struct *p, u64 *sample)
1da177e4
LT
159{
160 switch (CPUCLOCK_WHICH(which_clock)) {
161 default:
162 return -EINVAL;
163 case CPUCLOCK_PROF:
55ccb616 164 *sample = prof_ticks(p);
1da177e4
LT
165 break;
166 case CPUCLOCK_VIRT:
55ccb616 167 *sample = virt_ticks(p);
1da177e4
LT
168 break;
169 case CPUCLOCK_SCHED:
55ccb616 170 *sample = task_sched_runtime(p);
1da177e4
LT
171 break;
172 }
173 return 0;
174}
175
1018016c
JL
176/*
177 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
178 * to avoid race conditions with concurrent updates to cputime.
179 */
180static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
4da94d49 181{
1018016c
JL
182 u64 curr_cputime;
183retry:
184 curr_cputime = atomic64_read(cputime);
185 if (sum_cputime > curr_cputime) {
186 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
187 goto retry;
188 }
189}
4da94d49 190
ebd7e7fc 191static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
1018016c 192{
71107445
JL
193 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
194 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
195 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
1018016c 196}
4da94d49 197
71107445 198/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
ebd7e7fc 199static inline void sample_cputime_atomic(struct task_cputime *times,
71107445 200 struct task_cputime_atomic *atomic_times)
1018016c 201{
71107445
JL
202 times->utime = atomic64_read(&atomic_times->utime);
203 times->stime = atomic64_read(&atomic_times->stime);
204 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
4da94d49
PZ
205}
206
ebd7e7fc 207void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
4da94d49
PZ
208{
209 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
ebd7e7fc 210 struct task_cputime sum;
4da94d49 211
1018016c
JL
212 /* Check if cputimer isn't running. This is accessed without locking. */
213 if (!READ_ONCE(cputimer->running)) {
4da94d49
PZ
214 /*
215 * The POSIX timer interface allows for absolute time expiry
216 * values through the TIMER_ABSTIME flag, therefore we have
1018016c 217 * to synchronize the timer to the clock every time we start it.
4da94d49 218 */
ebd7e7fc 219 thread_group_cputime(tsk, &sum);
71107445 220 update_gt_cputime(&cputimer->cputime_atomic, &sum);
1018016c
JL
221
222 /*
223 * We're setting cputimer->running without a lock. Ensure
224 * this only gets written to in one operation. We set
225 * running after update_gt_cputime() as a small optimization,
226 * but barriers are not required because update_gt_cputime()
227 * can handle concurrent updates.
228 */
d5c373eb 229 WRITE_ONCE(cputimer->running, true);
1018016c 230 }
71107445 231 sample_cputime_atomic(times, &cputimer->cputime_atomic);
4da94d49
PZ
232}
233
1da177e4
LT
234/*
235 * Sample a process (thread group) clock for the given group_leader task.
e73d84e3
FW
236 * Must be called with task sighand lock held for safe while_each_thread()
237 * traversal.
1da177e4 238 */
bb34d92f
FM
239static int cpu_clock_sample_group(const clockid_t which_clock,
240 struct task_struct *p,
ebd7e7fc 241 u64 *sample)
1da177e4 242{
ebd7e7fc 243 struct task_cputime cputime;
f06febc9 244
eccdaeaf 245 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
246 default:
247 return -EINVAL;
248 case CPUCLOCK_PROF:
ebd7e7fc
FW
249 thread_group_cputime(p, &cputime);
250 *sample = cputime.utime + cputime.stime;
1da177e4
LT
251 break;
252 case CPUCLOCK_VIRT:
ebd7e7fc
FW
253 thread_group_cputime(p, &cputime);
254 *sample = cputime.utime;
1da177e4
LT
255 break;
256 case CPUCLOCK_SCHED:
ebd7e7fc 257 thread_group_cputime(p, &cputime);
55ccb616 258 *sample = cputime.sum_exec_runtime;
1da177e4
LT
259 break;
260 }
261 return 0;
262}
263
33ab0fec
FW
264static int posix_cpu_clock_get_task(struct task_struct *tsk,
265 const clockid_t which_clock,
3c9c12f4 266 struct timespec64 *tp)
33ab0fec
FW
267{
268 int err = -EINVAL;
ebd7e7fc 269 u64 rtn;
33ab0fec
FW
270
271 if (CPUCLOCK_PERTHREAD(which_clock)) {
272 if (same_thread_group(tsk, current))
273 err = cpu_clock_sample(which_clock, tsk, &rtn);
274 } else {
50875788 275 if (tsk == current || thread_group_leader(tsk))
33ab0fec 276 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
33ab0fec
FW
277 }
278
279 if (!err)
3c9c12f4 280 *tp = ns_to_timespec64(rtn);
33ab0fec
FW
281
282 return err;
283}
284
1da177e4 285
3c9c12f4 286static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
1da177e4
LT
287{
288 const pid_t pid = CPUCLOCK_PID(which_clock);
33ab0fec 289 int err = -EINVAL;
1da177e4
LT
290
291 if (pid == 0) {
292 /*
293 * Special case constant value for our own clocks.
294 * We don't have to do any lookup to find ourselves.
295 */
33ab0fec 296 err = posix_cpu_clock_get_task(current, which_clock, tp);
1da177e4
LT
297 } else {
298 /*
299 * Find the given PID, and validate that the caller
300 * should be able to see it.
301 */
302 struct task_struct *p;
1f2ea083 303 rcu_read_lock();
8dc86af0 304 p = find_task_by_vpid(pid);
33ab0fec
FW
305 if (p)
306 err = posix_cpu_clock_get_task(p, which_clock, tp);
1f2ea083 307 rcu_read_unlock();
1da177e4
LT
308 }
309
33ab0fec 310 return err;
1da177e4
LT
311}
312
1da177e4
LT
313/*
314 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
315 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
316 * new timer already all-zeros initialized.
1da177e4 317 */
bc2c8ea4 318static int posix_cpu_timer_create(struct k_itimer *new_timer)
1da177e4
LT
319{
320 int ret = 0;
321 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
322 struct task_struct *p;
323
324 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
325 return -EINVAL;
326
327 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
1da177e4 328
c0deae8c 329 rcu_read_lock();
1da177e4
LT
330 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
331 if (pid == 0) {
332 p = current;
333 } else {
8dc86af0 334 p = find_task_by_vpid(pid);
bac0abd6 335 if (p && !same_thread_group(p, current))
1da177e4
LT
336 p = NULL;
337 }
338 } else {
339 if (pid == 0) {
340 p = current->group_leader;
341 } else {
8dc86af0 342 p = find_task_by_vpid(pid);
c0deae8c 343 if (p && !has_group_leader_pid(p))
1da177e4
LT
344 p = NULL;
345 }
346 }
347 new_timer->it.cpu.task = p;
348 if (p) {
349 get_task_struct(p);
350 } else {
351 ret = -EINVAL;
352 }
c0deae8c 353 rcu_read_unlock();
1da177e4
LT
354
355 return ret;
356}
357
358/*
359 * Clean up a CPU-clock timer that is about to be destroyed.
360 * This is called from timer deletion with the timer already locked.
361 * If we return TIMER_RETRY, it's necessary to release the timer's lock
362 * and try again. (This happens when the timer is in the middle of firing.)
363 */
bc2c8ea4 364static int posix_cpu_timer_del(struct k_itimer *timer)
1da177e4 365{
108150ea 366 int ret = 0;
3d7a1427
FW
367 unsigned long flags;
368 struct sighand_struct *sighand;
369 struct task_struct *p = timer->it.cpu.task;
1da177e4 370
a3222f88 371 WARN_ON_ONCE(p == NULL);
108150ea 372
3d7a1427
FW
373 /*
374 * Protect against sighand release/switch in exit/exec and process/
375 * thread timer list entry concurrent read/writes.
376 */
377 sighand = lock_task_sighand(p, &flags);
378 if (unlikely(sighand == NULL)) {
a3222f88
FW
379 /*
380 * We raced with the reaping of the task.
381 * The deletion should have cleared us off the list.
382 */
531f64fd 383 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
a3222f88 384 } else {
a3222f88
FW
385 if (timer->it.cpu.firing)
386 ret = TIMER_RETRY;
387 else
388 list_del(&timer->it.cpu.entry);
3d7a1427
FW
389
390 unlock_task_sighand(p, &flags);
1da177e4 391 }
a3222f88
FW
392
393 if (!ret)
394 put_task_struct(p);
1da177e4 395
108150ea 396 return ret;
1da177e4
LT
397}
398
af82eb3c 399static void cleanup_timers_list(struct list_head *head)
1a7fa510
FW
400{
401 struct cpu_timer_list *timer, *next;
402
a0b2062b 403 list_for_each_entry_safe(timer, next, head, entry)
1a7fa510 404 list_del_init(&timer->entry);
1a7fa510
FW
405}
406
1da177e4
LT
407/*
408 * Clean out CPU timers still ticking when a thread exited. The task
409 * pointer is cleared, and the expiry time is replaced with the residual
410 * time for later timer_gettime calls to return.
411 * This must be called with the siglock held.
412 */
af82eb3c 413static void cleanup_timers(struct list_head *head)
1da177e4 414{
af82eb3c
FW
415 cleanup_timers_list(head);
416 cleanup_timers_list(++head);
417 cleanup_timers_list(++head);
1da177e4
LT
418}
419
420/*
421 * These are both called with the siglock held, when the current thread
422 * is being reaped. When the final (leader) thread in the group is reaped,
423 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
424 */
425void posix_cpu_timers_exit(struct task_struct *tsk)
426{
af82eb3c 427 cleanup_timers(tsk->cpu_timers);
1da177e4
LT
428}
429void posix_cpu_timers_exit_group(struct task_struct *tsk)
430{
af82eb3c 431 cleanup_timers(tsk->signal->cpu_timers);
1da177e4
LT
432}
433
ebd7e7fc 434static inline int expires_gt(u64 expires, u64 new_exp)
d1e3b6d1 435{
64861634 436 return expires == 0 || expires > new_exp;
d1e3b6d1
SG
437}
438
1da177e4
LT
439/*
440 * Insert the timer on the appropriate list before any timers that
e73d84e3 441 * expire later. This must be called with the sighand lock held.
1da177e4 442 */
5eb9aa64 443static void arm_timer(struct k_itimer *timer)
1da177e4
LT
444{
445 struct task_struct *p = timer->it.cpu.task;
446 struct list_head *head, *listpos;
ebd7e7fc 447 struct task_cputime *cputime_expires;
1da177e4
LT
448 struct cpu_timer_list *const nt = &timer->it.cpu;
449 struct cpu_timer_list *next;
1da177e4 450
5eb9aa64
SG
451 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
452 head = p->cpu_timers;
453 cputime_expires = &p->cputime_expires;
454 } else {
455 head = p->signal->cpu_timers;
456 cputime_expires = &p->signal->cputime_expires;
457 }
1da177e4
LT
458 head += CPUCLOCK_WHICH(timer->it_clock);
459
1da177e4 460 listpos = head;
5eb9aa64 461 list_for_each_entry(next, head, entry) {
55ccb616 462 if (nt->expires < next->expires)
5eb9aa64
SG
463 break;
464 listpos = &next->entry;
1da177e4
LT
465 }
466 list_add(&nt->entry, listpos);
467
468 if (listpos == head) {
ebd7e7fc 469 u64 exp = nt->expires;
5eb9aa64 470
1da177e4 471 /*
5eb9aa64
SG
472 * We are the new earliest-expiring POSIX 1.b timer, hence
473 * need to update expiration cache. Take into account that
474 * for process timers we share expiration cache with itimers
475 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
1da177e4
LT
476 */
477
5eb9aa64
SG
478 switch (CPUCLOCK_WHICH(timer->it_clock)) {
479 case CPUCLOCK_PROF:
ebd7e7fc
FW
480 if (expires_gt(cputime_expires->prof_exp, exp))
481 cputime_expires->prof_exp = exp;
5eb9aa64
SG
482 break;
483 case CPUCLOCK_VIRT:
ebd7e7fc
FW
484 if (expires_gt(cputime_expires->virt_exp, exp))
485 cputime_expires->virt_exp = exp;
5eb9aa64
SG
486 break;
487 case CPUCLOCK_SCHED:
ebd7e7fc 488 if (expires_gt(cputime_expires->sched_exp, exp))
55ccb616 489 cputime_expires->sched_exp = exp;
5eb9aa64 490 break;
1da177e4 491 }
b7878300
FW
492 if (CPUCLOCK_PERTHREAD(timer->it_clock))
493 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
494 else
495 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4 496 }
1da177e4
LT
497}
498
499/*
500 * The timer is locked, fire it and arrange for its reload.
501 */
502static void cpu_timer_fire(struct k_itimer *timer)
503{
1f169f84
SG
504 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
505 /*
506 * User don't want any signal.
507 */
55ccb616 508 timer->it.cpu.expires = 0;
1f169f84 509 } else if (unlikely(timer->sigq == NULL)) {
1da177e4
LT
510 /*
511 * This a special case for clock_nanosleep,
512 * not a normal timer from sys_timer_create.
513 */
514 wake_up_process(timer->it_process);
55ccb616
FW
515 timer->it.cpu.expires = 0;
516 } else if (timer->it.cpu.incr == 0) {
1da177e4
LT
517 /*
518 * One-shot timer. Clear it as soon as it's fired.
519 */
520 posix_timer_event(timer, 0);
55ccb616 521 timer->it.cpu.expires = 0;
1da177e4
LT
522 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
523 /*
524 * The signal did not get queued because the signal
525 * was ignored, so we won't get any callback to
526 * reload the timer. But we need to keep it
527 * ticking in case the signal is deliverable next time.
528 */
529 posix_cpu_timer_schedule(timer);
530 }
531}
532
3997ad31
PZ
533/*
534 * Sample a process (thread group) timer for the given group_leader task.
e73d84e3
FW
535 * Must be called with task sighand lock held for safe while_each_thread()
536 * traversal.
3997ad31
PZ
537 */
538static int cpu_timer_sample_group(const clockid_t which_clock,
ebd7e7fc 539 struct task_struct *p, u64 *sample)
3997ad31 540{
ebd7e7fc 541 struct task_cputime cputime;
3997ad31
PZ
542
543 thread_group_cputimer(p, &cputime);
544 switch (CPUCLOCK_WHICH(which_clock)) {
545 default:
546 return -EINVAL;
547 case CPUCLOCK_PROF:
ebd7e7fc 548 *sample = cputime.utime + cputime.stime;
3997ad31
PZ
549 break;
550 case CPUCLOCK_VIRT:
ebd7e7fc 551 *sample = cputime.utime;
3997ad31
PZ
552 break;
553 case CPUCLOCK_SCHED:
23cfa361 554 *sample = cputime.sum_exec_runtime;
3997ad31
PZ
555 break;
556 }
557 return 0;
558}
559
1da177e4
LT
560/*
561 * Guts of sys_timer_settime for CPU timers.
562 * This is called with the timer locked and interrupts disabled.
563 * If we return TIMER_RETRY, it's necessary to release the timer's lock
564 * and try again. (This happens when the timer is in the middle of firing.)
565 */
e73d84e3 566static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
5f252b32 567 struct itimerspec64 *new, struct itimerspec64 *old)
1da177e4 568{
e73d84e3
FW
569 unsigned long flags;
570 struct sighand_struct *sighand;
1da177e4 571 struct task_struct *p = timer->it.cpu.task;
ebd7e7fc 572 u64 old_expires, new_expires, old_incr, val;
1da177e4
LT
573 int ret;
574
a3222f88 575 WARN_ON_ONCE(p == NULL);
1da177e4 576
5f252b32 577 new_expires = timespec64_to_ns(&new->it_value);
1da177e4 578
1da177e4 579 /*
e73d84e3
FW
580 * Protect against sighand release/switch in exit/exec and p->cpu_timers
581 * and p->signal->cpu_timers read/write in arm_timer()
582 */
583 sighand = lock_task_sighand(p, &flags);
584 /*
585 * If p has just been reaped, we can no
1da177e4
LT
586 * longer get any information about it at all.
587 */
e73d84e3 588 if (unlikely(sighand == NULL)) {
1da177e4
LT
589 return -ESRCH;
590 }
591
592 /*
593 * Disarm any old timer after extracting its expiry time.
594 */
531f64fd 595 WARN_ON_ONCE(!irqs_disabled());
a69ac4a7
ON
596
597 ret = 0;
ae1a78ee 598 old_incr = timer->it.cpu.incr;
1da177e4 599 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
600 if (unlikely(timer->it.cpu.firing)) {
601 timer->it.cpu.firing = -1;
602 ret = TIMER_RETRY;
603 } else
604 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
605
606 /*
607 * We need to sample the current value to convert the new
608 * value from to relative and absolute, and to convert the
609 * old value from absolute to relative. To set a process
610 * timer, we need a sample to balance the thread expiry
611 * times (in arm_timer). With an absolute time, we must
612 * check if it's already passed. In short, we need a sample.
613 */
614 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
615 cpu_clock_sample(timer->it_clock, p, &val);
616 } else {
3997ad31 617 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
618 }
619
620 if (old) {
55ccb616 621 if (old_expires == 0) {
1da177e4
LT
622 old->it_value.tv_sec = 0;
623 old->it_value.tv_nsec = 0;
624 } else {
625 /*
626 * Update the timer in case it has
627 * overrun already. If it has,
628 * we'll report it as having overrun
629 * and with the next reloaded timer
630 * already ticking, though we are
631 * swallowing that pending
632 * notification here to install the
633 * new setting.
634 */
635 bump_cpu_timer(timer, val);
55ccb616
FW
636 if (val < timer->it.cpu.expires) {
637 old_expires = timer->it.cpu.expires - val;
5f252b32 638 old->it_value = ns_to_timespec64(old_expires);
1da177e4
LT
639 } else {
640 old->it_value.tv_nsec = 1;
641 old->it_value.tv_sec = 0;
642 }
643 }
644 }
645
a69ac4a7 646 if (unlikely(ret)) {
1da177e4
LT
647 /*
648 * We are colliding with the timer actually firing.
649 * Punt after filling in the timer's old value, and
650 * disable this firing since we are already reporting
651 * it as an overrun (thanks to bump_cpu_timer above).
652 */
e73d84e3 653 unlock_task_sighand(p, &flags);
1da177e4
LT
654 goto out;
655 }
656
e73d84e3 657 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
55ccb616 658 new_expires += val;
1da177e4
LT
659 }
660
661 /*
662 * Install the new expiry time (or zero).
663 * For a timer with no notification action, we don't actually
664 * arm the timer (we'll just fake it for timer_gettime).
665 */
666 timer->it.cpu.expires = new_expires;
55ccb616 667 if (new_expires != 0 && val < new_expires) {
5eb9aa64 668 arm_timer(timer);
1da177e4
LT
669 }
670
e73d84e3 671 unlock_task_sighand(p, &flags);
1da177e4
LT
672 /*
673 * Install the new reload setting, and
674 * set up the signal and overrun bookkeeping.
675 */
5f252b32 676 timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
1da177e4
LT
677
678 /*
679 * This acts as a modification timestamp for the timer,
680 * so any automatic reload attempt will punt on seeing
681 * that we have reset the timer manually.
682 */
683 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
684 ~REQUEUE_PENDING;
685 timer->it_overrun_last = 0;
686 timer->it_overrun = -1;
687
55ccb616 688 if (new_expires != 0 && !(val < new_expires)) {
1da177e4
LT
689 /*
690 * The designated time already passed, so we notify
691 * immediately, even if the thread never runs to
692 * accumulate more time on this clock.
693 */
694 cpu_timer_fire(timer);
695 }
696
697 ret = 0;
698 out:
ebd7e7fc 699 if (old)
5f252b32 700 old->it_interval = ns_to_timespec64(old_incr);
b7878300 701
1da177e4
LT
702 return ret;
703}
704
5f252b32 705static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
1da177e4 706{
ebd7e7fc 707 u64 now;
1da177e4 708 struct task_struct *p = timer->it.cpu.task;
1da177e4 709
a3222f88
FW
710 WARN_ON_ONCE(p == NULL);
711
1da177e4
LT
712 /*
713 * Easy part: convert the reload time.
714 */
5f252b32 715 itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
1da177e4 716
55ccb616 717 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
1da177e4
LT
718 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
719 return;
720 }
721
1da177e4
LT
722 /*
723 * Sample the clock to take the difference with the expiry time.
724 */
725 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
726 cpu_clock_sample(timer->it_clock, p, &now);
1da177e4 727 } else {
e73d84e3
FW
728 struct sighand_struct *sighand;
729 unsigned long flags;
730
731 /*
732 * Protect against sighand release/switch in exit/exec and
733 * also make timer sampling safe if it ends up calling
ebd7e7fc 734 * thread_group_cputime().
e73d84e3
FW
735 */
736 sighand = lock_task_sighand(p, &flags);
737 if (unlikely(sighand == NULL)) {
1da177e4
LT
738 /*
739 * The process has been reaped.
740 * We can't even collect a sample any more.
741 * Call the timer disarmed, nothing else to do.
742 */
55ccb616 743 timer->it.cpu.expires = 0;
5f252b32 744 itp->it_value = ns_to_timespec64(timer->it.cpu.expires);
2c13ce8f 745 return;
1da177e4 746 } else {
3997ad31 747 cpu_timer_sample_group(timer->it_clock, p, &now);
e73d84e3 748 unlock_task_sighand(p, &flags);
1da177e4 749 }
1da177e4
LT
750 }
751
55ccb616 752 if (now < timer->it.cpu.expires) {
5f252b32 753 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
1da177e4
LT
754 } else {
755 /*
756 * The timer should have expired already, but the firing
757 * hasn't taken place yet. Say it's just about to expire.
758 */
759 itp->it_value.tv_nsec = 1;
760 itp->it_value.tv_sec = 0;
761 }
762}
763
2473f3e7
FW
764static unsigned long long
765check_timers_list(struct list_head *timers,
766 struct list_head *firing,
767 unsigned long long curr)
768{
769 int maxfire = 20;
770
771 while (!list_empty(timers)) {
772 struct cpu_timer_list *t;
773
774 t = list_first_entry(timers, struct cpu_timer_list, entry);
775
776 if (!--maxfire || curr < t->expires)
777 return t->expires;
778
779 t->firing = 1;
780 list_move_tail(&t->entry, firing);
781 }
782
783 return 0;
784}
785
1da177e4
LT
786/*
787 * Check for any per-thread CPU timers that have fired and move them off
788 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
789 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
790 */
791static void check_thread_timers(struct task_struct *tsk,
792 struct list_head *firing)
793{
794 struct list_head *timers = tsk->cpu_timers;
78f2c7db 795 struct signal_struct *const sig = tsk->signal;
ebd7e7fc
FW
796 struct task_cputime *tsk_expires = &tsk->cputime_expires;
797 u64 expires;
d4bb5274 798 unsigned long soft;
1da177e4 799
934715a1
JL
800 /*
801 * If cputime_expires is zero, then there are no active
802 * per thread CPU timers.
803 */
804 if (task_cputime_zero(&tsk->cputime_expires))
805 return;
806
2473f3e7 807 expires = check_timers_list(timers, firing, prof_ticks(tsk));
ebd7e7fc 808 tsk_expires->prof_exp = expires;
1da177e4 809
2473f3e7 810 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
ebd7e7fc 811 tsk_expires->virt_exp = expires;
1da177e4 812
2473f3e7
FW
813 tsk_expires->sched_exp = check_timers_list(++timers, firing,
814 tsk->se.sum_exec_runtime);
78f2c7db
PZ
815
816 /*
817 * Check for the special case thread timers.
818 */
316c1608 819 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
d4bb5274 820 if (soft != RLIM_INFINITY) {
78d7d407 821 unsigned long hard =
316c1608 822 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
78f2c7db 823
5a52dd50
PZ
824 if (hard != RLIM_INFINITY &&
825 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
826 /*
827 * At the hard limit, we just die.
828 * No need to calculate anything else now.
829 */
43fe8b8e
TG
830 if (print_fatal_signals) {
831 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
832 tsk->comm, task_pid_nr(tsk));
833 }
78f2c7db
PZ
834 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
835 return;
836 }
d4bb5274 837 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
838 /*
839 * At the soft limit, send a SIGXCPU every second.
840 */
d4bb5274
JS
841 if (soft < hard) {
842 soft += USEC_PER_SEC;
843 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
78f2c7db 844 }
43fe8b8e
TG
845 if (print_fatal_signals) {
846 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
847 tsk->comm, task_pid_nr(tsk));
848 }
78f2c7db
PZ
849 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
850 }
851 }
b7878300
FW
852 if (task_cputime_zero(tsk_expires))
853 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
854}
855
1018016c 856static inline void stop_process_timers(struct signal_struct *sig)
3fccfd67 857{
15365c10 858 struct thread_group_cputimer *cputimer = &sig->cputimer;
3fccfd67 859
1018016c 860 /* Turn off cputimer->running. This is done without locking. */
d5c373eb 861 WRITE_ONCE(cputimer->running, false);
b7878300 862 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
3fccfd67
PZ
863}
864
42c4ab41 865static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
ebd7e7fc 866 u64 *expires, u64 cur_time, int signo)
42c4ab41 867{
64861634 868 if (!it->expires)
42c4ab41
SG
869 return;
870
858cf3a8
FW
871 if (cur_time >= it->expires) {
872 if (it->incr)
64861634 873 it->expires += it->incr;
858cf3a8 874 else
64861634 875 it->expires = 0;
42c4ab41 876
3f0a525e
XG
877 trace_itimer_expire(signo == SIGPROF ?
878 ITIMER_PROF : ITIMER_VIRTUAL,
879 tsk->signal->leader_pid, cur_time);
42c4ab41
SG
880 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
881 }
882
858cf3a8
FW
883 if (it->expires && (!*expires || it->expires < *expires))
884 *expires = it->expires;
42c4ab41
SG
885}
886
1da177e4
LT
887/*
888 * Check for any per-thread CPU timers that have fired and move them
889 * off the tsk->*_timers list onto the firing list. Per-thread timers
890 * have already been taken off.
891 */
892static void check_process_timers(struct task_struct *tsk,
893 struct list_head *firing)
894{
895 struct signal_struct *const sig = tsk->signal;
ebd7e7fc
FW
896 u64 utime, ptime, virt_expires, prof_expires;
897 u64 sum_sched_runtime, sched_expires;
1da177e4 898 struct list_head *timers = sig->cpu_timers;
ebd7e7fc 899 struct task_cputime cputime;
d4bb5274 900 unsigned long soft;
1da177e4 901
934715a1
JL
902 /*
903 * If cputimer is not running, then there are no active
904 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
905 */
906 if (!READ_ONCE(tsk->signal->cputimer.running))
907 return;
908
c8d75aa4
JL
909 /*
910 * Signify that a thread is checking for process timers.
911 * Write access to this field is protected by the sighand lock.
912 */
913 sig->cputimer.checking_timer = true;
914
1da177e4
LT
915 /*
916 * Collect the current process totals.
917 */
4cd4c1b4 918 thread_group_cputimer(tsk, &cputime);
ebd7e7fc
FW
919 utime = cputime.utime;
920 ptime = utime + cputime.stime;
f06febc9 921 sum_sched_runtime = cputime.sum_exec_runtime;
1da177e4 922
2473f3e7
FW
923 prof_expires = check_timers_list(timers, firing, ptime);
924 virt_expires = check_timers_list(++timers, firing, utime);
925 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
1da177e4
LT
926
927 /*
928 * Check for the special case process timers.
929 */
42c4ab41
SG
930 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
931 SIGPROF);
932 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
933 SIGVTALRM);
316c1608 934 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
d4bb5274 935 if (soft != RLIM_INFINITY) {
ebd7e7fc 936 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
78d7d407 937 unsigned long hard =
316c1608 938 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
ebd7e7fc 939 u64 x;
d4bb5274 940 if (psecs >= hard) {
1da177e4
LT
941 /*
942 * At the hard limit, we just die.
943 * No need to calculate anything else now.
944 */
43fe8b8e
TG
945 if (print_fatal_signals) {
946 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
947 tsk->comm, task_pid_nr(tsk));
948 }
1da177e4
LT
949 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
950 return;
951 }
d4bb5274 952 if (psecs >= soft) {
1da177e4
LT
953 /*
954 * At the soft limit, send a SIGXCPU every second.
955 */
43fe8b8e
TG
956 if (print_fatal_signals) {
957 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
958 tsk->comm, task_pid_nr(tsk));
959 }
1da177e4 960 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
d4bb5274
JS
961 if (soft < hard) {
962 soft++;
963 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1da177e4
LT
964 }
965 }
ebd7e7fc
FW
966 x = soft * NSEC_PER_SEC;
967 if (!prof_expires || x < prof_expires)
1da177e4 968 prof_expires = x;
1da177e4
LT
969 }
970
ebd7e7fc
FW
971 sig->cputime_expires.prof_exp = prof_expires;
972 sig->cputime_expires.virt_exp = virt_expires;
29f87b79
SG
973 sig->cputime_expires.sched_exp = sched_expires;
974 if (task_cputime_zero(&sig->cputime_expires))
975 stop_process_timers(sig);
c8d75aa4
JL
976
977 sig->cputimer.checking_timer = false;
1da177e4
LT
978}
979
980/*
981 * This is called from the signal code (via do_schedule_next_timer)
982 * when the last timer signal was delivered and we have to reload the timer.
983 */
984void posix_cpu_timer_schedule(struct k_itimer *timer)
985{
e73d84e3
FW
986 struct sighand_struct *sighand;
987 unsigned long flags;
1da177e4 988 struct task_struct *p = timer->it.cpu.task;
ebd7e7fc 989 u64 now;
1da177e4 990
a3222f88 991 WARN_ON_ONCE(p == NULL);
1da177e4
LT
992
993 /*
994 * Fetch the current sample and update the timer's expiry time.
995 */
996 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
997 cpu_clock_sample(timer->it_clock, p, &now);
998 bump_cpu_timer(timer, now);
724a3713 999 if (unlikely(p->exit_state))
708f430d 1000 goto out;
724a3713 1001
e73d84e3
FW
1002 /* Protect timer list r/w in arm_timer() */
1003 sighand = lock_task_sighand(p, &flags);
1004 if (!sighand)
1005 goto out;
1da177e4 1006 } else {
e73d84e3
FW
1007 /*
1008 * Protect arm_timer() and timer sampling in case of call to
ebd7e7fc 1009 * thread_group_cputime().
e73d84e3
FW
1010 */
1011 sighand = lock_task_sighand(p, &flags);
1012 if (unlikely(sighand == NULL)) {
1da177e4
LT
1013 /*
1014 * The process has been reaped.
1015 * We can't even collect a sample any more.
1016 */
55ccb616 1017 timer->it.cpu.expires = 0;
c925077c 1018 goto out;
1da177e4 1019 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
e73d84e3 1020 unlock_task_sighand(p, &flags);
d430b917 1021 /* Optimizations: if the process is dying, no need to rearm */
c925077c 1022 goto out;
1da177e4 1023 }
3997ad31 1024 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4 1025 bump_cpu_timer(timer, now);
e73d84e3 1026 /* Leave the sighand locked for the call below. */
1da177e4
LT
1027 }
1028
1029 /*
1030 * Now re-arm for the new expiry time.
1031 */
531f64fd 1032 WARN_ON_ONCE(!irqs_disabled());
5eb9aa64 1033 arm_timer(timer);
e73d84e3 1034 unlock_task_sighand(p, &flags);
708f430d
RM
1035
1036out:
1037 timer->it_overrun_last = timer->it_overrun;
1038 timer->it_overrun = -1;
1039 ++timer->it_requeue_pending;
1da177e4
LT
1040}
1041
f06febc9
FM
1042/**
1043 * task_cputime_expired - Compare two task_cputime entities.
1044 *
1045 * @sample: The task_cputime structure to be checked for expiration.
1046 * @expires: Expiration times, against which @sample will be checked.
1047 *
1048 * Checks @sample against @expires to see if any field of @sample has expired.
1049 * Returns true if any field of the former is greater than the corresponding
1050 * field of the latter if the latter field is set. Otherwise returns false.
1051 */
ebd7e7fc
FW
1052static inline int task_cputime_expired(const struct task_cputime *sample,
1053 const struct task_cputime *expires)
f06febc9 1054{
64861634 1055 if (expires->utime && sample->utime >= expires->utime)
f06febc9 1056 return 1;
64861634 1057 if (expires->stime && sample->utime + sample->stime >= expires->stime)
f06febc9
FM
1058 return 1;
1059 if (expires->sum_exec_runtime != 0 &&
1060 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1061 return 1;
1062 return 0;
1063}
1064
1065/**
1066 * fastpath_timer_check - POSIX CPU timers fast path.
1067 *
1068 * @tsk: The task (thread) being checked.
f06febc9 1069 *
bb34d92f
FM
1070 * Check the task and thread group timers. If both are zero (there are no
1071 * timers set) return false. Otherwise snapshot the task and thread group
1072 * timers and compare them with the corresponding expiration times. Return
1073 * true if a timer has expired, else return false.
f06febc9 1074 */
bb34d92f 1075static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1076{
ad133ba3 1077 struct signal_struct *sig;
bb34d92f 1078
bb34d92f 1079 if (!task_cputime_zero(&tsk->cputime_expires)) {
ebd7e7fc 1080 struct task_cputime task_sample;
bb34d92f 1081
ebd7e7fc 1082 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
7c177d99 1083 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
bb34d92f
FM
1084 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1085 return 1;
1086 }
ad133ba3
ON
1087
1088 sig = tsk->signal;
c8d75aa4
JL
1089 /*
1090 * Check if thread group timers expired when the cputimer is
1091 * running and no other thread in the group is already checking
1092 * for thread group cputimers. These fields are read without the
1093 * sighand lock. However, this is fine because this is meant to
1094 * be a fastpath heuristic to determine whether we should try to
1095 * acquire the sighand lock to check/handle timers.
1096 *
1097 * In the worst case scenario, if 'running' or 'checking_timer' gets
1098 * set but the current thread doesn't see the change yet, we'll wait
1099 * until the next thread in the group gets a scheduler interrupt to
1100 * handle the timer. This isn't an issue in practice because these
1101 * types of delays with signals actually getting sent are expected.
1102 */
1103 if (READ_ONCE(sig->cputimer.running) &&
1104 !READ_ONCE(sig->cputimer.checking_timer)) {
ebd7e7fc 1105 struct task_cputime group_sample;
bb34d92f 1106
71107445 1107 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
8d1f431c 1108
bb34d92f
FM
1109 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1110 return 1;
1111 }
37bebc70 1112
f55db609 1113 return 0;
f06febc9
FM
1114}
1115
1da177e4
LT
1116/*
1117 * This is called from the timer interrupt handler. The irq handler has
1118 * already updated our counts. We need to check if any timers fire now.
1119 * Interrupts are disabled.
1120 */
1121void run_posix_cpu_timers(struct task_struct *tsk)
1122{
1123 LIST_HEAD(firing);
1124 struct k_itimer *timer, *next;
0bdd2ed4 1125 unsigned long flags;
1da177e4 1126
531f64fd 1127 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1128
1da177e4 1129 /*
f06febc9 1130 * The fast path checks that there are no expired thread or thread
bb34d92f 1131 * group timers. If that's so, just return.
1da177e4 1132 */
bb34d92f 1133 if (!fastpath_timer_check(tsk))
f06febc9 1134 return;
5ce73a4a 1135
0bdd2ed4
ON
1136 if (!lock_task_sighand(tsk, &flags))
1137 return;
bb34d92f
FM
1138 /*
1139 * Here we take off tsk->signal->cpu_timers[N] and
1140 * tsk->cpu_timers[N] all the timers that are firing, and
1141 * put them on the firing list.
1142 */
1143 check_thread_timers(tsk, &firing);
934715a1
JL
1144
1145 check_process_timers(tsk, &firing);
1da177e4 1146
bb34d92f
FM
1147 /*
1148 * We must release these locks before taking any timer's lock.
1149 * There is a potential race with timer deletion here, as the
1150 * siglock now protects our private firing list. We have set
1151 * the firing flag in each timer, so that a deletion attempt
1152 * that gets the timer lock before we do will give it up and
1153 * spin until we've taken care of that timer below.
1154 */
0bdd2ed4 1155 unlock_task_sighand(tsk, &flags);
1da177e4
LT
1156
1157 /*
1158 * Now that all the timers on our list have the firing flag,
25985edc 1159 * no one will touch their list entries but us. We'll take
1da177e4
LT
1160 * each timer's lock before clearing its firing flag, so no
1161 * timer call will interfere.
1162 */
1163 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1164 int cpu_firing;
1165
1da177e4
LT
1166 spin_lock(&timer->it_lock);
1167 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1168 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1169 timer->it.cpu.firing = 0;
1170 /*
1171 * The firing flag is -1 if we collided with a reset
1172 * of the timer, which already reported this
1173 * almost-firing as an overrun. So don't generate an event.
1174 */
6e85c5ba 1175 if (likely(cpu_firing >= 0))
1da177e4 1176 cpu_timer_fire(timer);
1da177e4
LT
1177 spin_unlock(&timer->it_lock);
1178 }
1179}
1180
1181/*
f55db609 1182 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1183 * The tsk->sighand->siglock must be held by the caller.
1da177e4
LT
1184 */
1185void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
858cf3a8 1186 u64 *newval, u64 *oldval)
1da177e4 1187{
858cf3a8 1188 u64 now;
1da177e4 1189
531f64fd 1190 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1191 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1192
1193 if (oldval) {
f55db609
SG
1194 /*
1195 * We are setting itimer. The *oldval is absolute and we update
1196 * it to be relative, *newval argument is relative and we update
1197 * it to be absolute.
1198 */
64861634 1199 if (*oldval) {
858cf3a8 1200 if (*oldval <= now) {
1da177e4 1201 /* Just about to fire. */
858cf3a8 1202 *oldval = TICK_NSEC;
1da177e4 1203 } else {
858cf3a8 1204 *oldval -= now;
1da177e4
LT
1205 }
1206 }
1207
64861634 1208 if (!*newval)
b7878300 1209 return;
858cf3a8 1210 *newval += now;
1da177e4
LT
1211 }
1212
1213 /*
f55db609
SG
1214 * Update expiration cache if we are the earliest timer, or eventually
1215 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1da177e4 1216 */
f55db609
SG
1217 switch (clock_idx) {
1218 case CPUCLOCK_PROF:
858cf3a8
FW
1219 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1220 tsk->signal->cputime_expires.prof_exp = *newval;
f55db609
SG
1221 break;
1222 case CPUCLOCK_VIRT:
858cf3a8
FW
1223 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1224 tsk->signal->cputime_expires.virt_exp = *newval;
f55db609 1225 break;
1da177e4 1226 }
b7878300
FW
1227
1228 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
1229}
1230
e4b76555 1231static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
ad196384 1232 struct timespec64 *rqtp, struct itimerspec64 *it)
1da177e4 1233{
1da177e4
LT
1234 struct k_itimer timer;
1235 int error;
1236
1da177e4
LT
1237 /*
1238 * Set up a temporary timer and then wait for it to go off.
1239 */
1240 memset(&timer, 0, sizeof timer);
1241 spin_lock_init(&timer.it_lock);
1242 timer.it_clock = which_clock;
1243 timer.it_overrun = -1;
1244 error = posix_cpu_timer_create(&timer);
1245 timer.it_process = current;
1246 if (!error) {
5f252b32 1247 static struct itimerspec64 zero_it;
e4b76555
TA
1248
1249 memset(it, 0, sizeof *it);
1250 it->it_value = *rqtp;
1da177e4
LT
1251
1252 spin_lock_irq(&timer.it_lock);
ad196384 1253 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1da177e4
LT
1254 if (error) {
1255 spin_unlock_irq(&timer.it_lock);
1256 return error;
1257 }
1258
1259 while (!signal_pending(current)) {
55ccb616 1260 if (timer.it.cpu.expires == 0) {
1da177e4 1261 /*
e6c42c29
SG
1262 * Our timer fired and was reset, below
1263 * deletion can not fail.
1da177e4 1264 */
e6c42c29 1265 posix_cpu_timer_del(&timer);
1da177e4
LT
1266 spin_unlock_irq(&timer.it_lock);
1267 return 0;
1268 }
1269
1270 /*
1271 * Block until cpu_timer_fire (or a signal) wakes us.
1272 */
1273 __set_current_state(TASK_INTERRUPTIBLE);
1274 spin_unlock_irq(&timer.it_lock);
1275 schedule();
1276 spin_lock_irq(&timer.it_lock);
1277 }
1278
1279 /*
1280 * We were interrupted by a signal.
1281 */
ad196384
DD
1282 *rqtp = ns_to_timespec64(timer.it.cpu.expires);
1283 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
e6c42c29
SG
1284 if (!error) {
1285 /*
1286 * Timer is now unarmed, deletion can not fail.
1287 */
1288 posix_cpu_timer_del(&timer);
1289 }
1da177e4
LT
1290 spin_unlock_irq(&timer.it_lock);
1291
e6c42c29
SG
1292 while (error == TIMER_RETRY) {
1293 /*
1294 * We need to handle case when timer was or is in the
1295 * middle of firing. In other cases we already freed
1296 * resources.
1297 */
1298 spin_lock_irq(&timer.it_lock);
1299 error = posix_cpu_timer_del(&timer);
1300 spin_unlock_irq(&timer.it_lock);
1301 }
1302
e4b76555 1303 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1da177e4
LT
1304 /*
1305 * It actually did fire already.
1306 */
1307 return 0;
1308 }
1309
e4b76555
TA
1310 error = -ERESTART_RESTARTBLOCK;
1311 }
1312
1313 return error;
1314}
1315
bc2c8ea4
TG
1316static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1317
1318static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
ad196384 1319 struct timespec64 *rqtp, struct timespec __user *rmtp)
e4b76555 1320{
f56141e3 1321 struct restart_block *restart_block = &current->restart_block;
ad196384
DD
1322 struct itimerspec64 it;
1323 struct timespec ts;
e4b76555
TA
1324 int error;
1325
1326 /*
1327 * Diagnose required errors first.
1328 */
1329 if (CPUCLOCK_PERTHREAD(which_clock) &&
1330 (CPUCLOCK_PID(which_clock) == 0 ||
01a21974 1331 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
e4b76555
TA
1332 return -EINVAL;
1333
1334 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1335
1336 if (error == -ERESTART_RESTARTBLOCK) {
1337
3751f9f2 1338 if (flags & TIMER_ABSTIME)
e4b76555 1339 return -ERESTARTNOHAND;
1da177e4 1340 /*
3751f9f2
TG
1341 * Report back to the user the time still remaining.
1342 */
ad196384
DD
1343 ts = timespec64_to_timespec(it.it_value);
1344 if (rmtp && copy_to_user(rmtp, &ts, sizeof(*rmtp)))
1da177e4
LT
1345 return -EFAULT;
1346
1711ef38 1347 restart_block->fn = posix_cpu_nsleep_restart;
ab8177bc 1348 restart_block->nanosleep.clockid = which_clock;
3751f9f2 1349 restart_block->nanosleep.rmtp = rmtp;
ad196384 1350 restart_block->nanosleep.expires = timespec64_to_ns(rqtp);
1da177e4 1351 }
1da177e4
LT
1352 return error;
1353}
1354
bc2c8ea4 1355static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4 1356{
ab8177bc 1357 clockid_t which_clock = restart_block->nanosleep.clockid;
ad196384
DD
1358 struct itimerspec64 it;
1359 struct timespec64 t;
1360 struct timespec tmp;
e4b76555 1361 int error;
97735f25 1362
ad196384 1363 t = ns_to_timespec64(restart_block->nanosleep.expires);
97735f25 1364
e4b76555
TA
1365 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1366
1367 if (error == -ERESTART_RESTARTBLOCK) {
3751f9f2 1368 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
e4b76555 1369 /*
3751f9f2
TG
1370 * Report back to the user the time still remaining.
1371 */
ad196384
DD
1372 tmp = timespec64_to_timespec(it.it_value);
1373 if (rmtp && copy_to_user(rmtp, &tmp, sizeof(*rmtp)))
e4b76555
TA
1374 return -EFAULT;
1375
ad196384 1376 restart_block->nanosleep.expires = timespec64_to_ns(&t);
e4b76555
TA
1377 }
1378 return error;
1379
1da177e4
LT
1380}
1381
1da177e4
LT
1382#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1383#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1384
a924b04d 1385static int process_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1386 struct timespec64 *tp)
1da177e4
LT
1387{
1388 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1389}
a924b04d 1390static int process_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1391 struct timespec64 *tp)
1da177e4
LT
1392{
1393 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1394}
1395static int process_cpu_timer_create(struct k_itimer *timer)
1396{
1397 timer->it_clock = PROCESS_CLOCK;
1398 return posix_cpu_timer_create(timer);
1399}
a924b04d 1400static int process_cpu_nsleep(const clockid_t which_clock, int flags,
ad196384 1401 struct timespec64 *rqtp,
97735f25 1402 struct timespec __user *rmtp)
1da177e4 1403{
97735f25 1404 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1da177e4 1405}
1711ef38
TA
1406static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1407{
1408 return -EINVAL;
1409}
a924b04d 1410static int thread_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1411 struct timespec64 *tp)
1da177e4
LT
1412{
1413 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1414}
a924b04d 1415static int thread_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1416 struct timespec64 *tp)
1da177e4
LT
1417{
1418 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1419}
1420static int thread_cpu_timer_create(struct k_itimer *timer)
1421{
1422 timer->it_clock = THREAD_CLOCK;
1423 return posix_cpu_timer_create(timer);
1424}
1da177e4 1425
d3ba5a9a 1426const struct k_clock clock_posix_cpu = {
1976945e
TG
1427 .clock_getres = posix_cpu_clock_getres,
1428 .clock_set = posix_cpu_clock_set,
1429 .clock_get = posix_cpu_clock_get,
1430 .timer_create = posix_cpu_timer_create,
1431 .nsleep = posix_cpu_nsleep,
1432 .nsleep_restart = posix_cpu_nsleep_restart,
1433 .timer_set = posix_cpu_timer_set,
1434 .timer_del = posix_cpu_timer_del,
1435 .timer_get = posix_cpu_timer_get,
1436};
1437
d3ba5a9a
CH
1438const struct k_clock clock_process = {
1439 .clock_getres = process_cpu_clock_getres,
1440 .clock_get = process_cpu_clock_get,
1441 .timer_create = process_cpu_timer_create,
1442 .nsleep = process_cpu_nsleep,
1443 .nsleep_restart = process_cpu_nsleep_restart,
1444};
1da177e4 1445
d3ba5a9a
CH
1446const struct k_clock clock_thread = {
1447 .clock_getres = thread_cpu_clock_getres,
1448 .clock_get = thread_cpu_clock_get,
1449 .timer_create = thread_cpu_timer_create,
1450};