]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/posix-cpu-timers.c
posix-cpu-timers: Remove the odd field rename defines
[mirror_ubuntu-jammy-kernel.git] / kernel / time / posix-cpu-timers.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * Implement CPU time clocks for the POSIX clock interface.
4 */
5
3f07c014 6#include <linux/sched/signal.h>
32ef5517 7#include <linux/sched/cputime.h>
1da177e4 8#include <linux/posix-timers.h>
1da177e4 9#include <linux/errno.h>
f8bd2258 10#include <linux/math64.h>
7c0f6ba6 11#include <linux/uaccess.h>
bb34d92f 12#include <linux/kernel_stat.h>
3f0a525e 13#include <trace/events/timer.h>
a8572160
FW
14#include <linux/tick.h>
15#include <linux/workqueue.h>
edbeda46 16#include <linux/compat.h>
34be3930 17#include <linux/sched/deadline.h>
1da177e4 18
bab0aae9
TG
19#include "posix-timers.h"
20
11b8462f
TG
21static inline void temporary_check(void)
22{
23 BUILD_BUG_ON(offsetof(struct task_cputime, stime) !=
24 CPUCLOCK_PROF * sizeof(u64));
25 BUILD_BUG_ON(offsetof(struct task_cputime, utime) !=
26 CPUCLOCK_VIRT * sizeof(u64));
27 BUILD_BUG_ON(offsetof(struct task_cputime, sum_exec_runtime) !=
28 CPUCLOCK_SCHED * sizeof(u64));
29}
30
f37fb0aa
TG
31static void posix_cpu_timer_rearm(struct k_itimer *timer);
32
3a245c0f
TG
33void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
34{
35 posix_cputimers_init(pct);
36 if (cpu_limit != RLIM_INFINITY)
11b8462f 37 pct->expiries[CPUCLOCK_PROF] = cpu_limit * NSEC_PER_SEC;
3a245c0f
TG
38}
39
f06febc9 40/*
f55db609 41 * Called after updating RLIMIT_CPU to run cpu timer and update
3a245c0f
TG
42 * tsk->signal->posix_cputimers.cputime_expires expiration cache if
43 * necessary. Needs siglock protection since other code may update
44 * expiration cache as well.
f06febc9 45 */
5ab46b34 46void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
f06febc9 47{
858cf3a8 48 u64 nsecs = rlim_new * NSEC_PER_SEC;
f06febc9 49
5ab46b34 50 spin_lock_irq(&task->sighand->siglock);
858cf3a8 51 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
5ab46b34 52 spin_unlock_irq(&task->sighand->siglock);
f06febc9
FM
53}
54
6ae40e3f
TG
55/*
56 * Functions for validating access to tasks.
57 */
58static struct task_struct *lookup_task(const pid_t pid, bool thread)
1da177e4 59{
1da177e4 60 struct task_struct *p;
1da177e4 61
6ae40e3f
TG
62 if (!pid)
63 return thread ? current : current->group_leader;
1da177e4 64
6ae40e3f
TG
65 p = find_task_by_vpid(pid);
66 if (!p || p == current)
67 return p;
68 if (thread)
69 return same_thread_group(p, current) ? p : NULL;
70 if (p == current)
71 return p;
72 return has_group_leader_pid(p) ? p : NULL;
73}
74
75static struct task_struct *__get_task_for_clock(const clockid_t clock,
76 bool getref)
77{
78 const bool thread = !!CPUCLOCK_PERTHREAD(clock);
79 const pid_t pid = CPUCLOCK_PID(clock);
80 struct task_struct *p;
81
82 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
83 return NULL;
1da177e4 84
c0deae8c 85 rcu_read_lock();
6ae40e3f
TG
86 p = lookup_task(pid, thread);
87 if (p && getref)
88 get_task_struct(p);
c0deae8c 89 rcu_read_unlock();
6ae40e3f
TG
90 return p;
91}
1da177e4 92
6ae40e3f
TG
93static inline struct task_struct *get_task_for_clock(const clockid_t clock)
94{
95 return __get_task_for_clock(clock, true);
96}
97
98static inline int validate_clock_permissions(const clockid_t clock)
99{
100 return __get_task_for_clock(clock, false) ? 0 : -EINVAL;
1da177e4
LT
101}
102
1da177e4
LT
103/*
104 * Update expiry time from increment, and increase overrun count,
105 * given the current clock sample.
106 */
ebd7e7fc 107static void bump_cpu_timer(struct k_itimer *timer, u64 now)
1da177e4
LT
108{
109 int i;
ebd7e7fc 110 u64 delta, incr;
1da177e4 111
16118794 112 if (!timer->it_interval)
1da177e4
LT
113 return;
114
55ccb616
FW
115 if (now < timer->it.cpu.expires)
116 return;
1da177e4 117
16118794 118 incr = timer->it_interval;
55ccb616 119 delta = now + incr - timer->it.cpu.expires;
1da177e4 120
55ccb616
FW
121 /* Don't use (incr*2 < delta), incr*2 might overflow. */
122 for (i = 0; incr < delta - incr; i++)
123 incr = incr << 1;
124
125 for (; i >= 0; incr >>= 1, i--) {
126 if (delta < incr)
127 continue;
128
129 timer->it.cpu.expires += incr;
78c9c4df 130 timer->it_overrun += 1LL << i;
55ccb616 131 delta -= incr;
1da177e4
LT
132 }
133}
134
555347f6
FW
135/**
136 * task_cputime_zero - Check a task_cputime struct for all zero fields.
137 *
138 * @cputime: The struct to compare.
139 *
140 * Checks @cputime to see if all fields are zero. Returns true if all fields
141 * are zero, false if any field is nonzero.
142 */
ebd7e7fc 143static inline int task_cputime_zero(const struct task_cputime *cputime)
555347f6
FW
144{
145 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
146 return 1;
147 return 0;
148}
149
bc2c8ea4 150static int
d2e3e0ca 151posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
1da177e4 152{
6ae40e3f
TG
153 int error = validate_clock_permissions(which_clock);
154
1da177e4
LT
155 if (!error) {
156 tp->tv_sec = 0;
157 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
158 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
159 /*
160 * If sched_clock is using a cycle counter, we
161 * don't have any idea of its true resolution
162 * exported, but it is much more than 1s/HZ.
163 */
164 tp->tv_nsec = 1;
165 }
166 }
167 return error;
168}
169
bc2c8ea4 170static int
6ae40e3f 171posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
1da177e4 172{
6ae40e3f
TG
173 int error = validate_clock_permissions(clock);
174
1da177e4
LT
175 /*
176 * You can never reset a CPU clock, but we check for other errors
177 * in the call before failing with EPERM.
178 */
6ae40e3f 179 return error ? : -EPERM;
1da177e4
LT
180}
181
1da177e4 182/*
2092c1d4 183 * Sample a per-thread clock for the given task. clkid is validated.
1da177e4 184 */
8c2d74f0 185static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
1da177e4 186{
ab693c5a
TG
187 u64 utime, stime;
188
189 if (clkid == CPUCLOCK_SCHED)
190 return task_sched_runtime(p);
191
192 task_cputime(p, &utime, &stime);
193
2092c1d4 194 switch (clkid) {
1da177e4 195 case CPUCLOCK_PROF:
ab693c5a 196 return utime + stime;
1da177e4 197 case CPUCLOCK_VIRT:
ab693c5a 198 return utime;
2092c1d4
TG
199 default:
200 WARN_ON_ONCE(1);
1da177e4 201 }
8c2d74f0 202 return 0;
1da177e4
LT
203}
204
1018016c
JL
205/*
206 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
207 * to avoid race conditions with concurrent updates to cputime.
208 */
209static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
4da94d49 210{
1018016c
JL
211 u64 curr_cputime;
212retry:
213 curr_cputime = atomic64_read(cputime);
214 if (sum_cputime > curr_cputime) {
215 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
216 goto retry;
217 }
218}
4da94d49 219
ebd7e7fc 220static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
1018016c 221{
71107445
JL
222 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
223 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
224 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
1018016c 225}
4da94d49 226
71107445 227/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
ebd7e7fc 228static inline void sample_cputime_atomic(struct task_cputime *times,
71107445 229 struct task_cputime_atomic *atomic_times)
1018016c 230{
71107445
JL
231 times->utime = atomic64_read(&atomic_times->utime);
232 times->stime = atomic64_read(&atomic_times->stime);
233 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
4da94d49
PZ
234}
235
19298fbf
TG
236/**
237 * thread_group_sample_cputime - Sample cputime for a given task
238 * @tsk: Task for which cputime needs to be started
239 * @iimes: Storage for time samples
240 *
241 * Called from sys_getitimer() to calculate the expiry time of an active
242 * timer. That means group cputime accounting is already active. Called
243 * with task sighand lock held.
244 *
245 * Updates @times with an uptodate sample of the thread group cputimes.
246 */
247void thread_group_sample_cputime(struct task_struct *tsk,
248 struct task_cputime *times)
249{
250 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
251
252 WARN_ON_ONCE(!cputimer->running);
253
254 sample_cputime_atomic(times, &cputimer->cputime_atomic);
255}
256
c506bef4
TG
257/**
258 * thread_group_start_cputime - Start cputime and return a sample
259 * @tsk: Task for which cputime needs to be started
260 * @iimes: Storage for time samples
261 *
262 * The thread group cputime accouting is avoided when there are no posix
263 * CPU timers armed. Before starting a timer it's required to check whether
264 * the time accounting is active. If not, a full update of the atomic
265 * accounting store needs to be done and the accounting enabled.
266 *
267 * Updates @times with an uptodate sample of the thread group cputimes.
268 */
269static void
270thread_group_start_cputime(struct task_struct *tsk, struct task_cputime *times)
4da94d49
PZ
271{
272 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
ebd7e7fc 273 struct task_cputime sum;
4da94d49 274
1018016c
JL
275 /* Check if cputimer isn't running. This is accessed without locking. */
276 if (!READ_ONCE(cputimer->running)) {
4da94d49
PZ
277 /*
278 * The POSIX timer interface allows for absolute time expiry
279 * values through the TIMER_ABSTIME flag, therefore we have
1018016c 280 * to synchronize the timer to the clock every time we start it.
4da94d49 281 */
ebd7e7fc 282 thread_group_cputime(tsk, &sum);
71107445 283 update_gt_cputime(&cputimer->cputime_atomic, &sum);
1018016c
JL
284
285 /*
286 * We're setting cputimer->running without a lock. Ensure
287 * this only gets written to in one operation. We set
288 * running after update_gt_cputime() as a small optimization,
289 * but barriers are not required because update_gt_cputime()
290 * can handle concurrent updates.
291 */
d5c373eb 292 WRITE_ONCE(cputimer->running, true);
1018016c 293 }
71107445 294 sample_cputime_atomic(times, &cputimer->cputime_atomic);
4da94d49
PZ
295}
296
1da177e4 297/*
24ab7f5a
TG
298 * Sample a process (thread group) clock for the given task clkid. If the
299 * group's cputime accounting is already enabled, read the atomic
300 * store. Otherwise a full update is required. Task's sighand lock must be
2092c1d4
TG
301 * held to protect the task traversal on a full update. clkid is already
302 * validated.
1da177e4 303 */
8c2d74f0
TG
304static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
305 bool start)
1da177e4 306{
24ab7f5a 307 struct thread_group_cputimer *cputimer = &p->signal->cputimer;
ebd7e7fc 308 struct task_cputime cputime;
f06febc9 309
24ab7f5a
TG
310 if (!READ_ONCE(cputimer->running)) {
311 if (start)
312 thread_group_start_cputime(p, &cputime);
313 else
314 thread_group_cputime(p, &cputime);
315 } else {
316 sample_cputime_atomic(&cputime, &cputimer->cputime_atomic);
317 }
318
2092c1d4 319 switch (clkid) {
1da177e4 320 case CPUCLOCK_PROF:
8c2d74f0 321 return cputime.utime + cputime.stime;
1da177e4 322 case CPUCLOCK_VIRT:
8c2d74f0 323 return cputime.utime;
1da177e4 324 case CPUCLOCK_SCHED:
8c2d74f0 325 return cputime.sum_exec_runtime;
2092c1d4
TG
326 default:
327 WARN_ON_ONCE(1);
1da177e4 328 }
8c2d74f0 329 return 0;
1da177e4
LT
330}
331
bfcf3e92 332static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
33ab0fec 333{
bfcf3e92
TG
334 const clockid_t clkid = CPUCLOCK_WHICH(clock);
335 struct task_struct *tsk;
336 u64 t;
33ab0fec 337
bfcf3e92
TG
338 tsk = get_task_for_clock(clock);
339 if (!tsk)
340 return -EINVAL;
1da177e4 341
bfcf3e92 342 if (CPUCLOCK_PERTHREAD(clock))
8c2d74f0 343 t = cpu_clock_sample(clkid, tsk);
bfcf3e92 344 else
8c2d74f0 345 t = cpu_clock_sample_group(clkid, tsk, false);
bfcf3e92 346 put_task_struct(tsk);
1da177e4 347
bfcf3e92
TG
348 *tp = ns_to_timespec64(t);
349 return 0;
1da177e4
LT
350}
351
1da177e4
LT
352/*
353 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
354 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
355 * new timer already all-zeros initialized.
1da177e4 356 */
bc2c8ea4 357static int posix_cpu_timer_create(struct k_itimer *new_timer)
1da177e4 358{
e5a8b65b 359 struct task_struct *p = get_task_for_clock(new_timer->it_clock);
1da177e4 360
e5a8b65b 361 if (!p)
1da177e4
LT
362 return -EINVAL;
363
d97bb75d 364 new_timer->kclock = &clock_posix_cpu;
1da177e4 365 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
1da177e4 366 new_timer->it.cpu.task = p;
e5a8b65b 367 return 0;
1da177e4
LT
368}
369
370/*
371 * Clean up a CPU-clock timer that is about to be destroyed.
372 * This is called from timer deletion with the timer already locked.
373 * If we return TIMER_RETRY, it's necessary to release the timer's lock
374 * and try again. (This happens when the timer is in the middle of firing.)
375 */
bc2c8ea4 376static int posix_cpu_timer_del(struct k_itimer *timer)
1da177e4 377{
108150ea 378 int ret = 0;
3d7a1427
FW
379 unsigned long flags;
380 struct sighand_struct *sighand;
381 struct task_struct *p = timer->it.cpu.task;
1da177e4 382
692117c1
TG
383 if (WARN_ON_ONCE(!p))
384 return -EINVAL;
108150ea 385
3d7a1427
FW
386 /*
387 * Protect against sighand release/switch in exit/exec and process/
388 * thread timer list entry concurrent read/writes.
389 */
390 sighand = lock_task_sighand(p, &flags);
391 if (unlikely(sighand == NULL)) {
a3222f88
FW
392 /*
393 * We raced with the reaping of the task.
394 * The deletion should have cleared us off the list.
395 */
531f64fd 396 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
a3222f88 397 } else {
a3222f88
FW
398 if (timer->it.cpu.firing)
399 ret = TIMER_RETRY;
400 else
401 list_del(&timer->it.cpu.entry);
3d7a1427
FW
402
403 unlock_task_sighand(p, &flags);
1da177e4 404 }
a3222f88
FW
405
406 if (!ret)
407 put_task_struct(p);
1da177e4 408
108150ea 409 return ret;
1da177e4
LT
410}
411
af82eb3c 412static void cleanup_timers_list(struct list_head *head)
1a7fa510
FW
413{
414 struct cpu_timer_list *timer, *next;
415
a0b2062b 416 list_for_each_entry_safe(timer, next, head, entry)
1a7fa510 417 list_del_init(&timer->entry);
1a7fa510
FW
418}
419
1da177e4 420/*
7cb9a94c
TG
421 * Clean out CPU timers which are still armed when a thread exits. The
422 * timers are only removed from the list. No other updates are done. The
423 * corresponding posix timers are still accessible, but cannot be rearmed.
424 *
1da177e4
LT
425 * This must be called with the siglock held.
426 */
2b69942f 427static void cleanup_timers(struct posix_cputimers *pct)
1da177e4 428{
2b69942f
TG
429 cleanup_timers_list(&pct->cpu_timers[CPUCLOCK_PROF]);
430 cleanup_timers_list(&pct->cpu_timers[CPUCLOCK_VIRT]);
431 cleanup_timers_list(&pct->cpu_timers[CPUCLOCK_SCHED]);
1da177e4
LT
432}
433
434/*
435 * These are both called with the siglock held, when the current thread
436 * is being reaped. When the final (leader) thread in the group is reaped,
437 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
438 */
439void posix_cpu_timers_exit(struct task_struct *tsk)
440{
2b69942f 441 cleanup_timers(&tsk->posix_cputimers);
1da177e4
LT
442}
443void posix_cpu_timers_exit_group(struct task_struct *tsk)
444{
2b69942f 445 cleanup_timers(&tsk->signal->posix_cputimers);
1da177e4
LT
446}
447
ebd7e7fc 448static inline int expires_gt(u64 expires, u64 new_exp)
d1e3b6d1 449{
64861634 450 return expires == 0 || expires > new_exp;
d1e3b6d1
SG
451}
452
1da177e4
LT
453/*
454 * Insert the timer on the appropriate list before any timers that
e73d84e3 455 * expire later. This must be called with the sighand lock held.
1da177e4 456 */
5eb9aa64 457static void arm_timer(struct k_itimer *timer)
1da177e4 458{
3b495b22
TG
459 struct cpu_timer_list *const nt = &timer->it.cpu;
460 int clkidx = CPUCLOCK_WHICH(timer->it_clock);
461 u64 *cpuexp, newexp = timer->it.cpu.expires;
1da177e4
LT
462 struct task_struct *p = timer->it.cpu.task;
463 struct list_head *head, *listpos;
1da177e4 464 struct cpu_timer_list *next;
1da177e4 465
5eb9aa64 466 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
3b495b22
TG
467 head = p->posix_cputimers.cpu_timers + clkidx;
468 cpuexp = p->posix_cputimers.expiries + clkidx;
5eb9aa64 469 } else {
3b495b22
TG
470 head = p->signal->posix_cputimers.cpu_timers + clkidx;
471 cpuexp = p->signal->posix_cputimers.expiries + clkidx;
5eb9aa64 472 }
1da177e4 473
1da177e4 474 listpos = head;
5eb9aa64 475 list_for_each_entry(next, head, entry) {
55ccb616 476 if (nt->expires < next->expires)
5eb9aa64
SG
477 break;
478 listpos = &next->entry;
1da177e4
LT
479 }
480 list_add(&nt->entry, listpos);
481
3b495b22
TG
482 if (listpos != head)
483 return;
5eb9aa64 484
3b495b22
TG
485 /*
486 * We are the new earliest-expiring POSIX 1.b timer, hence
487 * need to update expiration cache. Take into account that
488 * for process timers we share expiration cache with itimers
489 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
490 */
491 if (expires_gt(*cpuexp, newexp))
492 *cpuexp = newexp;
1da177e4 493
3b495b22
TG
494 if (CPUCLOCK_PERTHREAD(timer->it_clock))
495 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
496 else
497 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
498}
499
500/*
501 * The timer is locked, fire it and arrange for its reload.
502 */
503static void cpu_timer_fire(struct k_itimer *timer)
504{
1f169f84
SG
505 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
506 /*
507 * User don't want any signal.
508 */
55ccb616 509 timer->it.cpu.expires = 0;
1f169f84 510 } else if (unlikely(timer->sigq == NULL)) {
1da177e4
LT
511 /*
512 * This a special case for clock_nanosleep,
513 * not a normal timer from sys_timer_create.
514 */
515 wake_up_process(timer->it_process);
55ccb616 516 timer->it.cpu.expires = 0;
16118794 517 } else if (!timer->it_interval) {
1da177e4
LT
518 /*
519 * One-shot timer. Clear it as soon as it's fired.
520 */
521 posix_timer_event(timer, 0);
55ccb616 522 timer->it.cpu.expires = 0;
1da177e4
LT
523 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
524 /*
525 * The signal did not get queued because the signal
526 * was ignored, so we won't get any callback to
527 * reload the timer. But we need to keep it
528 * ticking in case the signal is deliverable next time.
529 */
f37fb0aa 530 posix_cpu_timer_rearm(timer);
af888d67 531 ++timer->it_requeue_pending;
1da177e4
LT
532 }
533}
534
535/*
536 * Guts of sys_timer_settime for CPU timers.
537 * This is called with the timer locked and interrupts disabled.
538 * If we return TIMER_RETRY, it's necessary to release the timer's lock
539 * and try again. (This happens when the timer is in the middle of firing.)
540 */
e73d84e3 541static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
5f252b32 542 struct itimerspec64 *new, struct itimerspec64 *old)
1da177e4 543{
c7a37c6f 544 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
ebd7e7fc 545 u64 old_expires, new_expires, old_incr, val;
c7a37c6f
TG
546 struct task_struct *p = timer->it.cpu.task;
547 struct sighand_struct *sighand;
548 unsigned long flags;
1da177e4
LT
549 int ret;
550
692117c1
TG
551 if (WARN_ON_ONCE(!p))
552 return -EINVAL;
1da177e4 553
098b0e01
TG
554 /*
555 * Use the to_ktime conversion because that clamps the maximum
556 * value to KTIME_MAX and avoid multiplication overflows.
557 */
558 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
1da177e4 559
1da177e4 560 /*
e73d84e3
FW
561 * Protect against sighand release/switch in exit/exec and p->cpu_timers
562 * and p->signal->cpu_timers read/write in arm_timer()
563 */
564 sighand = lock_task_sighand(p, &flags);
565 /*
566 * If p has just been reaped, we can no
1da177e4
LT
567 * longer get any information about it at all.
568 */
e73d84e3 569 if (unlikely(sighand == NULL)) {
1da177e4
LT
570 return -ESRCH;
571 }
572
573 /*
574 * Disarm any old timer after extracting its expiry time.
575 */
a69ac4a7
ON
576
577 ret = 0;
16118794 578 old_incr = timer->it_interval;
1da177e4 579 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
580 if (unlikely(timer->it.cpu.firing)) {
581 timer->it.cpu.firing = -1;
582 ret = TIMER_RETRY;
583 } else
584 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
585
586 /*
587 * We need to sample the current value to convert the new
588 * value from to relative and absolute, and to convert the
589 * old value from absolute to relative. To set a process
590 * timer, we need a sample to balance the thread expiry
591 * times (in arm_timer). With an absolute time, we must
592 * check if it's already passed. In short, we need a sample.
593 */
8c2d74f0
TG
594 if (CPUCLOCK_PERTHREAD(timer->it_clock))
595 val = cpu_clock_sample(clkid, p);
596 else
597 val = cpu_clock_sample_group(clkid, p, true);
1da177e4
LT
598
599 if (old) {
55ccb616 600 if (old_expires == 0) {
1da177e4
LT
601 old->it_value.tv_sec = 0;
602 old->it_value.tv_nsec = 0;
603 } else {
604 /*
605 * Update the timer in case it has
606 * overrun already. If it has,
607 * we'll report it as having overrun
608 * and with the next reloaded timer
609 * already ticking, though we are
610 * swallowing that pending
611 * notification here to install the
612 * new setting.
613 */
614 bump_cpu_timer(timer, val);
55ccb616
FW
615 if (val < timer->it.cpu.expires) {
616 old_expires = timer->it.cpu.expires - val;
5f252b32 617 old->it_value = ns_to_timespec64(old_expires);
1da177e4
LT
618 } else {
619 old->it_value.tv_nsec = 1;
620 old->it_value.tv_sec = 0;
621 }
622 }
623 }
624
a69ac4a7 625 if (unlikely(ret)) {
1da177e4
LT
626 /*
627 * We are colliding with the timer actually firing.
628 * Punt after filling in the timer's old value, and
629 * disable this firing since we are already reporting
630 * it as an overrun (thanks to bump_cpu_timer above).
631 */
e73d84e3 632 unlock_task_sighand(p, &flags);
1da177e4
LT
633 goto out;
634 }
635
e73d84e3 636 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
55ccb616 637 new_expires += val;
1da177e4
LT
638 }
639
640 /*
641 * Install the new expiry time (or zero).
642 * For a timer with no notification action, we don't actually
643 * arm the timer (we'll just fake it for timer_gettime).
644 */
645 timer->it.cpu.expires = new_expires;
55ccb616 646 if (new_expires != 0 && val < new_expires) {
5eb9aa64 647 arm_timer(timer);
1da177e4
LT
648 }
649
e73d84e3 650 unlock_task_sighand(p, &flags);
1da177e4
LT
651 /*
652 * Install the new reload setting, and
653 * set up the signal and overrun bookkeeping.
654 */
16118794 655 timer->it_interval = timespec64_to_ktime(new->it_interval);
1da177e4
LT
656
657 /*
658 * This acts as a modification timestamp for the timer,
659 * so any automatic reload attempt will punt on seeing
660 * that we have reset the timer manually.
661 */
662 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
663 ~REQUEUE_PENDING;
664 timer->it_overrun_last = 0;
665 timer->it_overrun = -1;
666
55ccb616 667 if (new_expires != 0 && !(val < new_expires)) {
1da177e4
LT
668 /*
669 * The designated time already passed, so we notify
670 * immediately, even if the thread never runs to
671 * accumulate more time on this clock.
672 */
673 cpu_timer_fire(timer);
674 }
675
676 ret = 0;
677 out:
ebd7e7fc 678 if (old)
5f252b32 679 old->it_interval = ns_to_timespec64(old_incr);
b7878300 680
1da177e4
LT
681 return ret;
682}
683
5f252b32 684static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
1da177e4 685{
99093c5b 686 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
1da177e4 687 struct task_struct *p = timer->it.cpu.task;
692117c1 688 u64 now;
1da177e4 689
692117c1
TG
690 if (WARN_ON_ONCE(!p))
691 return;
a3222f88 692
1da177e4
LT
693 /*
694 * Easy part: convert the reload time.
695 */
16118794 696 itp->it_interval = ktime_to_timespec64(timer->it_interval);
1da177e4 697
eabdec04 698 if (!timer->it.cpu.expires)
1da177e4 699 return;
1da177e4 700
1da177e4
LT
701 /*
702 * Sample the clock to take the difference with the expiry time.
703 */
704 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
8c2d74f0 705 now = cpu_clock_sample(clkid, p);
1da177e4 706 } else {
e73d84e3
FW
707 struct sighand_struct *sighand;
708 unsigned long flags;
709
710 /*
711 * Protect against sighand release/switch in exit/exec and
712 * also make timer sampling safe if it ends up calling
ebd7e7fc 713 * thread_group_cputime().
e73d84e3
FW
714 */
715 sighand = lock_task_sighand(p, &flags);
716 if (unlikely(sighand == NULL)) {
1da177e4
LT
717 /*
718 * The process has been reaped.
719 * We can't even collect a sample any more.
720 * Call the timer disarmed, nothing else to do.
721 */
55ccb616 722 timer->it.cpu.expires = 0;
2c13ce8f 723 return;
1da177e4 724 } else {
8c2d74f0 725 now = cpu_clock_sample_group(clkid, p, false);
e73d84e3 726 unlock_task_sighand(p, &flags);
1da177e4 727 }
1da177e4
LT
728 }
729
55ccb616 730 if (now < timer->it.cpu.expires) {
5f252b32 731 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
1da177e4
LT
732 } else {
733 /*
734 * The timer should have expired already, but the firing
735 * hasn't taken place yet. Say it's just about to expire.
736 */
737 itp->it_value.tv_nsec = 1;
738 itp->it_value.tv_sec = 0;
739 }
740}
741
2473f3e7
FW
742static unsigned long long
743check_timers_list(struct list_head *timers,
744 struct list_head *firing,
745 unsigned long long curr)
746{
747 int maxfire = 20;
748
749 while (!list_empty(timers)) {
750 struct cpu_timer_list *t;
751
752 t = list_first_entry(timers, struct cpu_timer_list, entry);
753
754 if (!--maxfire || curr < t->expires)
755 return t->expires;
756
757 t->firing = 1;
758 list_move_tail(&t->entry, firing);
759 }
760
761 return 0;
762}
763
34be3930
JL
764static inline void check_dl_overrun(struct task_struct *tsk)
765{
766 if (tsk->dl.dl_overrun) {
767 tsk->dl.dl_overrun = 0;
768 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
769 }
770}
771
1da177e4
LT
772/*
773 * Check for any per-thread CPU timers that have fired and move them off
774 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
775 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
776 */
777static void check_thread_timers(struct task_struct *tsk,
778 struct list_head *firing)
779{
2b69942f 780 struct list_head *timers = tsk->posix_cputimers.cpu_timers;
c02b078e 781 u64 stime, utime, *expires = tsk->posix_cputimers.expiries;
d4bb5274 782 unsigned long soft;
1da177e4 783
34be3930
JL
784 if (dl_task(tsk))
785 check_dl_overrun(tsk);
786
934715a1
JL
787 /*
788 * If cputime_expires is zero, then there are no active
789 * per thread CPU timers.
790 */
c02b078e 791 if (task_cputime_zero(&tsk->posix_cputimers.cputime_expires))
934715a1
JL
792 return;
793
0476ff2c
TG
794 task_cputime(tsk, &utime, &stime);
795
c02b078e
TG
796 *expires++ = check_timers_list(timers, firing, utime + stime);
797 *expires++ = check_timers_list(++timers, firing, utime);
798 *expires = check_timers_list(++timers, firing, tsk->se.sum_exec_runtime);
78f2c7db
PZ
799
800 /*
801 * Check for the special case thread timers.
802 */
3cf29496 803 soft = task_rlimit(tsk, RLIMIT_RTTIME);
d4bb5274 804 if (soft != RLIM_INFINITY) {
3cf29496 805 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
78f2c7db 806
5a52dd50
PZ
807 if (hard != RLIM_INFINITY &&
808 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
809 /*
810 * At the hard limit, we just die.
811 * No need to calculate anything else now.
812 */
43fe8b8e
TG
813 if (print_fatal_signals) {
814 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
815 tsk->comm, task_pid_nr(tsk));
816 }
78f2c7db
PZ
817 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
818 return;
819 }
d4bb5274 820 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
821 /*
822 * At the soft limit, send a SIGXCPU every second.
823 */
d4bb5274
JS
824 if (soft < hard) {
825 soft += USEC_PER_SEC;
3cf29496
KO
826 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
827 soft;
78f2c7db 828 }
43fe8b8e
TG
829 if (print_fatal_signals) {
830 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
831 tsk->comm, task_pid_nr(tsk));
832 }
78f2c7db
PZ
833 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
834 }
835 }
c02b078e
TG
836
837 if (task_cputime_zero(&tsk->posix_cputimers.cputime_expires))
b7878300 838 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
839}
840
1018016c 841static inline void stop_process_timers(struct signal_struct *sig)
3fccfd67 842{
15365c10 843 struct thread_group_cputimer *cputimer = &sig->cputimer;
3fccfd67 844
1018016c 845 /* Turn off cputimer->running. This is done without locking. */
d5c373eb 846 WRITE_ONCE(cputimer->running, false);
b7878300 847 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
3fccfd67
PZ
848}
849
42c4ab41 850static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
ebd7e7fc 851 u64 *expires, u64 cur_time, int signo)
42c4ab41 852{
64861634 853 if (!it->expires)
42c4ab41
SG
854 return;
855
858cf3a8
FW
856 if (cur_time >= it->expires) {
857 if (it->incr)
64861634 858 it->expires += it->incr;
858cf3a8 859 else
64861634 860 it->expires = 0;
42c4ab41 861
3f0a525e
XG
862 trace_itimer_expire(signo == SIGPROF ?
863 ITIMER_PROF : ITIMER_VIRTUAL,
6883f81a 864 task_tgid(tsk), cur_time);
42c4ab41
SG
865 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
866 }
867
858cf3a8
FW
868 if (it->expires && (!*expires || it->expires < *expires))
869 *expires = it->expires;
42c4ab41
SG
870}
871
1da177e4
LT
872/*
873 * Check for any per-thread CPU timers that have fired and move them
874 * off the tsk->*_timers list onto the firing list. Per-thread timers
875 * have already been taken off.
876 */
877static void check_process_timers(struct task_struct *tsk,
878 struct list_head *firing)
879{
880 struct signal_struct *const sig = tsk->signal;
2b69942f 881 struct list_head *timers = sig->posix_cputimers.cpu_timers;
ebd7e7fc
FW
882 u64 utime, ptime, virt_expires, prof_expires;
883 u64 sum_sched_runtime, sched_expires;
ebd7e7fc 884 struct task_cputime cputime;
d4bb5274 885 unsigned long soft;
1da177e4 886
934715a1
JL
887 /*
888 * If cputimer is not running, then there are no active
889 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
890 */
891 if (!READ_ONCE(tsk->signal->cputimer.running))
892 return;
893
a324956f 894 /*
c8d75aa4
JL
895 * Signify that a thread is checking for process timers.
896 * Write access to this field is protected by the sighand lock.
897 */
898 sig->cputimer.checking_timer = true;
899
1da177e4 900 /*
a324956f
TG
901 * Collect the current process totals. Group accounting is active
902 * so the sample can be taken directly.
1da177e4 903 */
a324956f 904 sample_cputime_atomic(&cputime, &sig->cputimer.cputime_atomic);
ebd7e7fc
FW
905 utime = cputime.utime;
906 ptime = utime + cputime.stime;
f06febc9 907 sum_sched_runtime = cputime.sum_exec_runtime;
1da177e4 908
2473f3e7
FW
909 prof_expires = check_timers_list(timers, firing, ptime);
910 virt_expires = check_timers_list(++timers, firing, utime);
911 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
1da177e4
LT
912
913 /*
914 * Check for the special case process timers.
915 */
42c4ab41
SG
916 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
917 SIGPROF);
918 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
919 SIGVTALRM);
3cf29496 920 soft = task_rlimit(tsk, RLIMIT_CPU);
d4bb5274 921 if (soft != RLIM_INFINITY) {
ebd7e7fc 922 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
3cf29496 923 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
ebd7e7fc 924 u64 x;
d4bb5274 925 if (psecs >= hard) {
1da177e4
LT
926 /*
927 * At the hard limit, we just die.
928 * No need to calculate anything else now.
929 */
43fe8b8e
TG
930 if (print_fatal_signals) {
931 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
932 tsk->comm, task_pid_nr(tsk));
933 }
1da177e4
LT
934 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
935 return;
936 }
d4bb5274 937 if (psecs >= soft) {
1da177e4
LT
938 /*
939 * At the soft limit, send a SIGXCPU every second.
940 */
43fe8b8e
TG
941 if (print_fatal_signals) {
942 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
943 tsk->comm, task_pid_nr(tsk));
944 }
1da177e4 945 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
d4bb5274
JS
946 if (soft < hard) {
947 soft++;
948 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1da177e4
LT
949 }
950 }
ebd7e7fc
FW
951 x = soft * NSEC_PER_SEC;
952 if (!prof_expires || x < prof_expires)
1da177e4 953 prof_expires = x;
1da177e4
LT
954 }
955
c02b078e
TG
956 sig->posix_cputimers.expiries[CPUCLOCK_PROF] = prof_expires;
957 sig->posix_cputimers.expiries[CPUCLOCK_VIRT] = virt_expires;
958 sig->posix_cputimers.expiries[CPUCLOCK_SCHED] = sched_expires;
959
3a245c0f 960 if (task_cputime_zero(&sig->posix_cputimers.cputime_expires))
29f87b79 961 stop_process_timers(sig);
c8d75aa4
JL
962
963 sig->cputimer.checking_timer = false;
1da177e4
LT
964}
965
966/*
96fe3b07 967 * This is called from the signal code (via posixtimer_rearm)
1da177e4
LT
968 * when the last timer signal was delivered and we have to reload the timer.
969 */
f37fb0aa 970static void posix_cpu_timer_rearm(struct k_itimer *timer)
1da177e4 971{
da020ce4 972 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
692117c1 973 struct task_struct *p = timer->it.cpu.task;
e73d84e3
FW
974 struct sighand_struct *sighand;
975 unsigned long flags;
ebd7e7fc 976 u64 now;
1da177e4 977
692117c1
TG
978 if (WARN_ON_ONCE(!p))
979 return;
1da177e4
LT
980
981 /*
982 * Fetch the current sample and update the timer's expiry time.
983 */
984 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
8c2d74f0 985 now = cpu_clock_sample(clkid, p);
1da177e4 986 bump_cpu_timer(timer, now);
724a3713 987 if (unlikely(p->exit_state))
af888d67 988 return;
724a3713 989
e73d84e3
FW
990 /* Protect timer list r/w in arm_timer() */
991 sighand = lock_task_sighand(p, &flags);
992 if (!sighand)
af888d67 993 return;
1da177e4 994 } else {
e73d84e3
FW
995 /*
996 * Protect arm_timer() and timer sampling in case of call to
ebd7e7fc 997 * thread_group_cputime().
e73d84e3
FW
998 */
999 sighand = lock_task_sighand(p, &flags);
1000 if (unlikely(sighand == NULL)) {
1da177e4
LT
1001 /*
1002 * The process has been reaped.
1003 * We can't even collect a sample any more.
1004 */
55ccb616 1005 timer->it.cpu.expires = 0;
af888d67 1006 return;
1da177e4 1007 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
af888d67
TG
1008 /* If the process is dying, no need to rearm */
1009 goto unlock;
1da177e4 1010 }
8c2d74f0 1011 now = cpu_clock_sample_group(clkid, p, true);
1da177e4 1012 bump_cpu_timer(timer, now);
e73d84e3 1013 /* Leave the sighand locked for the call below. */
1da177e4
LT
1014 }
1015
1016 /*
1017 * Now re-arm for the new expiry time.
1018 */
5eb9aa64 1019 arm_timer(timer);
af888d67 1020unlock:
e73d84e3 1021 unlock_task_sighand(p, &flags);
1da177e4
LT
1022}
1023
f06febc9
FM
1024/**
1025 * task_cputime_expired - Compare two task_cputime entities.
1026 *
1027 * @sample: The task_cputime structure to be checked for expiration.
1028 * @expires: Expiration times, against which @sample will be checked.
1029 *
1030 * Checks @sample against @expires to see if any field of @sample has expired.
1031 * Returns true if any field of the former is greater than the corresponding
1032 * field of the latter if the latter field is set. Otherwise returns false.
1033 */
ebd7e7fc
FW
1034static inline int task_cputime_expired(const struct task_cputime *sample,
1035 const struct task_cputime *expires)
f06febc9 1036{
64861634 1037 if (expires->utime && sample->utime >= expires->utime)
f06febc9 1038 return 1;
64861634 1039 if (expires->stime && sample->utime + sample->stime >= expires->stime)
f06febc9
FM
1040 return 1;
1041 if (expires->sum_exec_runtime != 0 &&
1042 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1043 return 1;
1044 return 0;
1045}
1046
1047/**
1048 * fastpath_timer_check - POSIX CPU timers fast path.
1049 *
1050 * @tsk: The task (thread) being checked.
f06febc9 1051 *
bb34d92f
FM
1052 * Check the task and thread group timers. If both are zero (there are no
1053 * timers set) return false. Otherwise snapshot the task and thread group
1054 * timers and compare them with the corresponding expiration times. Return
1055 * true if a timer has expired, else return false.
f06febc9 1056 */
bb34d92f 1057static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1058{
ad133ba3 1059 struct signal_struct *sig;
bb34d92f 1060
3a245c0f 1061 if (!task_cputime_zero(&tsk->posix_cputimers.cputime_expires)) {
ebd7e7fc 1062 struct task_cputime task_sample;
bb34d92f 1063
ebd7e7fc 1064 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
7c177d99 1065 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
3a245c0f
TG
1066 if (task_cputime_expired(&task_sample,
1067 &tsk->posix_cputimers.cputime_expires))
bb34d92f
FM
1068 return 1;
1069 }
ad133ba3
ON
1070
1071 sig = tsk->signal;
c8d75aa4
JL
1072 /*
1073 * Check if thread group timers expired when the cputimer is
1074 * running and no other thread in the group is already checking
1075 * for thread group cputimers. These fields are read without the
1076 * sighand lock. However, this is fine because this is meant to
1077 * be a fastpath heuristic to determine whether we should try to
1078 * acquire the sighand lock to check/handle timers.
1079 *
1080 * In the worst case scenario, if 'running' or 'checking_timer' gets
1081 * set but the current thread doesn't see the change yet, we'll wait
1082 * until the next thread in the group gets a scheduler interrupt to
1083 * handle the timer. This isn't an issue in practice because these
1084 * types of delays with signals actually getting sent are expected.
1085 */
1086 if (READ_ONCE(sig->cputimer.running) &&
1087 !READ_ONCE(sig->cputimer.checking_timer)) {
ebd7e7fc 1088 struct task_cputime group_sample;
bb34d92f 1089
71107445 1090 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
8d1f431c 1091
3a245c0f
TG
1092 if (task_cputime_expired(&group_sample,
1093 &sig->posix_cputimers.cputime_expires))
bb34d92f
FM
1094 return 1;
1095 }
37bebc70 1096
34be3930
JL
1097 if (dl_task(tsk) && tsk->dl.dl_overrun)
1098 return 1;
1099
f55db609 1100 return 0;
f06febc9
FM
1101}
1102
1da177e4
LT
1103/*
1104 * This is called from the timer interrupt handler. The irq handler has
1105 * already updated our counts. We need to check if any timers fire now.
1106 * Interrupts are disabled.
1107 */
dce3e8fd 1108void run_posix_cpu_timers(void)
1da177e4 1109{
dce3e8fd 1110 struct task_struct *tsk = current;
1da177e4 1111 struct k_itimer *timer, *next;
0bdd2ed4 1112 unsigned long flags;
dce3e8fd 1113 LIST_HEAD(firing);
1da177e4 1114
a6968220 1115 lockdep_assert_irqs_disabled();
1da177e4 1116
1da177e4 1117 /*
f06febc9 1118 * The fast path checks that there are no expired thread or thread
bb34d92f 1119 * group timers. If that's so, just return.
1da177e4 1120 */
bb34d92f 1121 if (!fastpath_timer_check(tsk))
f06febc9 1122 return;
5ce73a4a 1123
0bdd2ed4
ON
1124 if (!lock_task_sighand(tsk, &flags))
1125 return;
bb34d92f
FM
1126 /*
1127 * Here we take off tsk->signal->cpu_timers[N] and
1128 * tsk->cpu_timers[N] all the timers that are firing, and
1129 * put them on the firing list.
1130 */
1131 check_thread_timers(tsk, &firing);
934715a1
JL
1132
1133 check_process_timers(tsk, &firing);
1da177e4 1134
bb34d92f
FM
1135 /*
1136 * We must release these locks before taking any timer's lock.
1137 * There is a potential race with timer deletion here, as the
1138 * siglock now protects our private firing list. We have set
1139 * the firing flag in each timer, so that a deletion attempt
1140 * that gets the timer lock before we do will give it up and
1141 * spin until we've taken care of that timer below.
1142 */
0bdd2ed4 1143 unlock_task_sighand(tsk, &flags);
1da177e4
LT
1144
1145 /*
1146 * Now that all the timers on our list have the firing flag,
25985edc 1147 * no one will touch their list entries but us. We'll take
1da177e4
LT
1148 * each timer's lock before clearing its firing flag, so no
1149 * timer call will interfere.
1150 */
1151 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1152 int cpu_firing;
1153
1da177e4
LT
1154 spin_lock(&timer->it_lock);
1155 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1156 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1157 timer->it.cpu.firing = 0;
1158 /*
1159 * The firing flag is -1 if we collided with a reset
1160 * of the timer, which already reported this
1161 * almost-firing as an overrun. So don't generate an event.
1162 */
6e85c5ba 1163 if (likely(cpu_firing >= 0))
1da177e4 1164 cpu_timer_fire(timer);
1da177e4
LT
1165 spin_unlock(&timer->it_lock);
1166 }
1167}
1168
1169/*
f55db609 1170 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1171 * The tsk->sighand->siglock must be held by the caller.
1da177e4 1172 */
1b0dd96d 1173void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
858cf3a8 1174 u64 *newval, u64 *oldval)
1da177e4 1175{
1b0dd96d 1176 u64 now, *expiry = tsk->signal->posix_cputimers.expiries + clkid;
1da177e4 1177
1b0dd96d 1178 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
692117c1
TG
1179 return;
1180
1b0dd96d 1181 now = cpu_clock_sample_group(clkid, tsk, true);
1da177e4 1182
5405d005 1183 if (oldval) {
f55db609
SG
1184 /*
1185 * We are setting itimer. The *oldval is absolute and we update
1186 * it to be relative, *newval argument is relative and we update
1187 * it to be absolute.
1188 */
64861634 1189 if (*oldval) {
858cf3a8 1190 if (*oldval <= now) {
1da177e4 1191 /* Just about to fire. */
858cf3a8 1192 *oldval = TICK_NSEC;
1da177e4 1193 } else {
858cf3a8 1194 *oldval -= now;
1da177e4
LT
1195 }
1196 }
1197
64861634 1198 if (!*newval)
b7878300 1199 return;
858cf3a8 1200 *newval += now;
1da177e4
LT
1201 }
1202
1203 /*
1b0dd96d
TG
1204 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1205 * expiry cache is also used by RLIMIT_CPU!.
1da177e4 1206 */
1b0dd96d
TG
1207 if (expires_gt(*expiry, *newval))
1208 *expiry = *newval;
b7878300
FW
1209
1210 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
1211}
1212
e4b76555 1213static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
343d8fc2 1214 const struct timespec64 *rqtp)
1da177e4 1215{
86a9c446 1216 struct itimerspec64 it;
343d8fc2
TG
1217 struct k_itimer timer;
1218 u64 expires;
1da177e4
LT
1219 int error;
1220
1da177e4
LT
1221 /*
1222 * Set up a temporary timer and then wait for it to go off.
1223 */
1224 memset(&timer, 0, sizeof timer);
1225 spin_lock_init(&timer.it_lock);
1226 timer.it_clock = which_clock;
1227 timer.it_overrun = -1;
1228 error = posix_cpu_timer_create(&timer);
1229 timer.it_process = current;
1230 if (!error) {
5f252b32 1231 static struct itimerspec64 zero_it;
edbeda46 1232 struct restart_block *restart;
e4b76555 1233
edbeda46 1234 memset(&it, 0, sizeof(it));
86a9c446 1235 it.it_value = *rqtp;
1da177e4
LT
1236
1237 spin_lock_irq(&timer.it_lock);
86a9c446 1238 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1da177e4
LT
1239 if (error) {
1240 spin_unlock_irq(&timer.it_lock);
1241 return error;
1242 }
1243
1244 while (!signal_pending(current)) {
55ccb616 1245 if (timer.it.cpu.expires == 0) {
1da177e4 1246 /*
e6c42c29
SG
1247 * Our timer fired and was reset, below
1248 * deletion can not fail.
1da177e4 1249 */
e6c42c29 1250 posix_cpu_timer_del(&timer);
1da177e4
LT
1251 spin_unlock_irq(&timer.it_lock);
1252 return 0;
1253 }
1254
1255 /*
1256 * Block until cpu_timer_fire (or a signal) wakes us.
1257 */
1258 __set_current_state(TASK_INTERRUPTIBLE);
1259 spin_unlock_irq(&timer.it_lock);
1260 schedule();
1261 spin_lock_irq(&timer.it_lock);
1262 }
1263
1264 /*
1265 * We were interrupted by a signal.
1266 */
343d8fc2 1267 expires = timer.it.cpu.expires;
86a9c446 1268 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
e6c42c29
SG
1269 if (!error) {
1270 /*
1271 * Timer is now unarmed, deletion can not fail.
1272 */
1273 posix_cpu_timer_del(&timer);
1274 }
1da177e4
LT
1275 spin_unlock_irq(&timer.it_lock);
1276
e6c42c29
SG
1277 while (error == TIMER_RETRY) {
1278 /*
1279 * We need to handle case when timer was or is in the
1280 * middle of firing. In other cases we already freed
1281 * resources.
1282 */
1283 spin_lock_irq(&timer.it_lock);
1284 error = posix_cpu_timer_del(&timer);
1285 spin_unlock_irq(&timer.it_lock);
1286 }
1287
86a9c446 1288 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1da177e4
LT
1289 /*
1290 * It actually did fire already.
1291 */
1292 return 0;
1293 }
1294
e4b76555 1295 error = -ERESTART_RESTARTBLOCK;
86a9c446
AV
1296 /*
1297 * Report back to the user the time still remaining.
1298 */
edbeda46 1299 restart = &current->restart_block;
343d8fc2 1300 restart->nanosleep.expires = expires;
c0edd7c9
DD
1301 if (restart->nanosleep.type != TT_NONE)
1302 error = nanosleep_copyout(restart, &it.it_value);
e4b76555
TA
1303 }
1304
1305 return error;
1306}
1307
bc2c8ea4
TG
1308static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1309
1310static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1311 const struct timespec64 *rqtp)
e4b76555 1312{
f56141e3 1313 struct restart_block *restart_block = &current->restart_block;
e4b76555
TA
1314 int error;
1315
1316 /*
1317 * Diagnose required errors first.
1318 */
1319 if (CPUCLOCK_PERTHREAD(which_clock) &&
1320 (CPUCLOCK_PID(which_clock) == 0 ||
01a21974 1321 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
e4b76555
TA
1322 return -EINVAL;
1323
86a9c446 1324 error = do_cpu_nanosleep(which_clock, flags, rqtp);
e4b76555
TA
1325
1326 if (error == -ERESTART_RESTARTBLOCK) {
1327
3751f9f2 1328 if (flags & TIMER_ABSTIME)
e4b76555 1329 return -ERESTARTNOHAND;
1da177e4 1330
1711ef38 1331 restart_block->fn = posix_cpu_nsleep_restart;
ab8177bc 1332 restart_block->nanosleep.clockid = which_clock;
1da177e4 1333 }
1da177e4
LT
1334 return error;
1335}
1336
bc2c8ea4 1337static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4 1338{
ab8177bc 1339 clockid_t which_clock = restart_block->nanosleep.clockid;
ad196384 1340 struct timespec64 t;
97735f25 1341
ad196384 1342 t = ns_to_timespec64(restart_block->nanosleep.expires);
97735f25 1343
86a9c446 1344 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1da177e4
LT
1345}
1346
29f1b2b0
ND
1347#define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1348#define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1da177e4 1349
a924b04d 1350static int process_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1351 struct timespec64 *tp)
1da177e4
LT
1352{
1353 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1354}
a924b04d 1355static int process_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1356 struct timespec64 *tp)
1da177e4
LT
1357{
1358 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1359}
1360static int process_cpu_timer_create(struct k_itimer *timer)
1361{
1362 timer->it_clock = PROCESS_CLOCK;
1363 return posix_cpu_timer_create(timer);
1364}
a924b04d 1365static int process_cpu_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1366 const struct timespec64 *rqtp)
1da177e4 1367{
99e6c0e6 1368 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1da177e4 1369}
a924b04d 1370static int thread_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1371 struct timespec64 *tp)
1da177e4
LT
1372{
1373 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1374}
a924b04d 1375static int thread_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1376 struct timespec64 *tp)
1da177e4
LT
1377{
1378 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1379}
1380static int thread_cpu_timer_create(struct k_itimer *timer)
1381{
1382 timer->it_clock = THREAD_CLOCK;
1383 return posix_cpu_timer_create(timer);
1384}
1da177e4 1385
d3ba5a9a 1386const struct k_clock clock_posix_cpu = {
1976945e
TG
1387 .clock_getres = posix_cpu_clock_getres,
1388 .clock_set = posix_cpu_clock_set,
1389 .clock_get = posix_cpu_clock_get,
1390 .timer_create = posix_cpu_timer_create,
1391 .nsleep = posix_cpu_nsleep,
1976945e
TG
1392 .timer_set = posix_cpu_timer_set,
1393 .timer_del = posix_cpu_timer_del,
1394 .timer_get = posix_cpu_timer_get,
f37fb0aa 1395 .timer_rearm = posix_cpu_timer_rearm,
1976945e
TG
1396};
1397
d3ba5a9a
CH
1398const struct k_clock clock_process = {
1399 .clock_getres = process_cpu_clock_getres,
1400 .clock_get = process_cpu_clock_get,
1401 .timer_create = process_cpu_timer_create,
1402 .nsleep = process_cpu_nsleep,
d3ba5a9a 1403};
1da177e4 1404
d3ba5a9a
CH
1405const struct k_clock clock_thread = {
1406 .clock_getres = thread_cpu_clock_getres,
1407 .clock_get = thread_cpu_clock_get,
1408 .timer_create = thread_cpu_timer_create,
1409};