]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * Implement CPU time clocks for the POSIX clock interface. | |
4 | */ | |
5 | ||
3f07c014 | 6 | #include <linux/sched/signal.h> |
32ef5517 | 7 | #include <linux/sched/cputime.h> |
1da177e4 | 8 | #include <linux/posix-timers.h> |
1da177e4 | 9 | #include <linux/errno.h> |
f8bd2258 | 10 | #include <linux/math64.h> |
7c0f6ba6 | 11 | #include <linux/uaccess.h> |
bb34d92f | 12 | #include <linux/kernel_stat.h> |
3f0a525e | 13 | #include <trace/events/timer.h> |
a8572160 FW |
14 | #include <linux/tick.h> |
15 | #include <linux/workqueue.h> | |
edbeda46 | 16 | #include <linux/compat.h> |
34be3930 | 17 | #include <linux/sched/deadline.h> |
1da177e4 | 18 | |
bab0aae9 TG |
19 | #include "posix-timers.h" |
20 | ||
11b8462f TG |
21 | static inline void temporary_check(void) |
22 | { | |
23 | BUILD_BUG_ON(offsetof(struct task_cputime, stime) != | |
24 | CPUCLOCK_PROF * sizeof(u64)); | |
25 | BUILD_BUG_ON(offsetof(struct task_cputime, utime) != | |
26 | CPUCLOCK_VIRT * sizeof(u64)); | |
27 | BUILD_BUG_ON(offsetof(struct task_cputime, sum_exec_runtime) != | |
28 | CPUCLOCK_SCHED * sizeof(u64)); | |
29 | } | |
30 | ||
f37fb0aa TG |
31 | static void posix_cpu_timer_rearm(struct k_itimer *timer); |
32 | ||
3a245c0f TG |
33 | void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) |
34 | { | |
35 | posix_cputimers_init(pct); | |
36 | if (cpu_limit != RLIM_INFINITY) | |
11b8462f | 37 | pct->expiries[CPUCLOCK_PROF] = cpu_limit * NSEC_PER_SEC; |
3a245c0f TG |
38 | } |
39 | ||
f06febc9 | 40 | /* |
f55db609 | 41 | * Called after updating RLIMIT_CPU to run cpu timer and update |
3a245c0f TG |
42 | * tsk->signal->posix_cputimers.cputime_expires expiration cache if |
43 | * necessary. Needs siglock protection since other code may update | |
44 | * expiration cache as well. | |
f06febc9 | 45 | */ |
5ab46b34 | 46 | void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) |
f06febc9 | 47 | { |
858cf3a8 | 48 | u64 nsecs = rlim_new * NSEC_PER_SEC; |
f06febc9 | 49 | |
5ab46b34 | 50 | spin_lock_irq(&task->sighand->siglock); |
858cf3a8 | 51 | set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); |
5ab46b34 | 52 | spin_unlock_irq(&task->sighand->siglock); |
f06febc9 FM |
53 | } |
54 | ||
6ae40e3f TG |
55 | /* |
56 | * Functions for validating access to tasks. | |
57 | */ | |
58 | static struct task_struct *lookup_task(const pid_t pid, bool thread) | |
1da177e4 | 59 | { |
1da177e4 | 60 | struct task_struct *p; |
1da177e4 | 61 | |
6ae40e3f TG |
62 | if (!pid) |
63 | return thread ? current : current->group_leader; | |
1da177e4 | 64 | |
6ae40e3f TG |
65 | p = find_task_by_vpid(pid); |
66 | if (!p || p == current) | |
67 | return p; | |
68 | if (thread) | |
69 | return same_thread_group(p, current) ? p : NULL; | |
70 | if (p == current) | |
71 | return p; | |
72 | return has_group_leader_pid(p) ? p : NULL; | |
73 | } | |
74 | ||
75 | static struct task_struct *__get_task_for_clock(const clockid_t clock, | |
76 | bool getref) | |
77 | { | |
78 | const bool thread = !!CPUCLOCK_PERTHREAD(clock); | |
79 | const pid_t pid = CPUCLOCK_PID(clock); | |
80 | struct task_struct *p; | |
81 | ||
82 | if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX) | |
83 | return NULL; | |
1da177e4 | 84 | |
c0deae8c | 85 | rcu_read_lock(); |
6ae40e3f TG |
86 | p = lookup_task(pid, thread); |
87 | if (p && getref) | |
88 | get_task_struct(p); | |
c0deae8c | 89 | rcu_read_unlock(); |
6ae40e3f TG |
90 | return p; |
91 | } | |
1da177e4 | 92 | |
6ae40e3f TG |
93 | static inline struct task_struct *get_task_for_clock(const clockid_t clock) |
94 | { | |
95 | return __get_task_for_clock(clock, true); | |
96 | } | |
97 | ||
98 | static inline int validate_clock_permissions(const clockid_t clock) | |
99 | { | |
100 | return __get_task_for_clock(clock, false) ? 0 : -EINVAL; | |
1da177e4 LT |
101 | } |
102 | ||
1da177e4 LT |
103 | /* |
104 | * Update expiry time from increment, and increase overrun count, | |
105 | * given the current clock sample. | |
106 | */ | |
ebd7e7fc | 107 | static void bump_cpu_timer(struct k_itimer *timer, u64 now) |
1da177e4 LT |
108 | { |
109 | int i; | |
ebd7e7fc | 110 | u64 delta, incr; |
1da177e4 | 111 | |
16118794 | 112 | if (!timer->it_interval) |
1da177e4 LT |
113 | return; |
114 | ||
55ccb616 FW |
115 | if (now < timer->it.cpu.expires) |
116 | return; | |
1da177e4 | 117 | |
16118794 | 118 | incr = timer->it_interval; |
55ccb616 | 119 | delta = now + incr - timer->it.cpu.expires; |
1da177e4 | 120 | |
55ccb616 FW |
121 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ |
122 | for (i = 0; incr < delta - incr; i++) | |
123 | incr = incr << 1; | |
124 | ||
125 | for (; i >= 0; incr >>= 1, i--) { | |
126 | if (delta < incr) | |
127 | continue; | |
128 | ||
129 | timer->it.cpu.expires += incr; | |
78c9c4df | 130 | timer->it_overrun += 1LL << i; |
55ccb616 | 131 | delta -= incr; |
1da177e4 LT |
132 | } |
133 | } | |
134 | ||
555347f6 FW |
135 | /** |
136 | * task_cputime_zero - Check a task_cputime struct for all zero fields. | |
137 | * | |
138 | * @cputime: The struct to compare. | |
139 | * | |
140 | * Checks @cputime to see if all fields are zero. Returns true if all fields | |
141 | * are zero, false if any field is nonzero. | |
142 | */ | |
ebd7e7fc | 143 | static inline int task_cputime_zero(const struct task_cputime *cputime) |
555347f6 FW |
144 | { |
145 | if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) | |
146 | return 1; | |
147 | return 0; | |
148 | } | |
149 | ||
bc2c8ea4 | 150 | static int |
d2e3e0ca | 151 | posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) |
1da177e4 | 152 | { |
6ae40e3f TG |
153 | int error = validate_clock_permissions(which_clock); |
154 | ||
1da177e4 LT |
155 | if (!error) { |
156 | tp->tv_sec = 0; | |
157 | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); | |
158 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
159 | /* | |
160 | * If sched_clock is using a cycle counter, we | |
161 | * don't have any idea of its true resolution | |
162 | * exported, but it is much more than 1s/HZ. | |
163 | */ | |
164 | tp->tv_nsec = 1; | |
165 | } | |
166 | } | |
167 | return error; | |
168 | } | |
169 | ||
bc2c8ea4 | 170 | static int |
6ae40e3f | 171 | posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp) |
1da177e4 | 172 | { |
6ae40e3f TG |
173 | int error = validate_clock_permissions(clock); |
174 | ||
1da177e4 LT |
175 | /* |
176 | * You can never reset a CPU clock, but we check for other errors | |
177 | * in the call before failing with EPERM. | |
178 | */ | |
6ae40e3f | 179 | return error ? : -EPERM; |
1da177e4 LT |
180 | } |
181 | ||
1da177e4 | 182 | /* |
2092c1d4 | 183 | * Sample a per-thread clock for the given task. clkid is validated. |
1da177e4 | 184 | */ |
8c2d74f0 | 185 | static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p) |
1da177e4 | 186 | { |
ab693c5a TG |
187 | u64 utime, stime; |
188 | ||
189 | if (clkid == CPUCLOCK_SCHED) | |
190 | return task_sched_runtime(p); | |
191 | ||
192 | task_cputime(p, &utime, &stime); | |
193 | ||
2092c1d4 | 194 | switch (clkid) { |
1da177e4 | 195 | case CPUCLOCK_PROF: |
ab693c5a | 196 | return utime + stime; |
1da177e4 | 197 | case CPUCLOCK_VIRT: |
ab693c5a | 198 | return utime; |
2092c1d4 TG |
199 | default: |
200 | WARN_ON_ONCE(1); | |
1da177e4 | 201 | } |
8c2d74f0 | 202 | return 0; |
1da177e4 LT |
203 | } |
204 | ||
1018016c JL |
205 | /* |
206 | * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg | |
207 | * to avoid race conditions with concurrent updates to cputime. | |
208 | */ | |
209 | static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) | |
4da94d49 | 210 | { |
1018016c JL |
211 | u64 curr_cputime; |
212 | retry: | |
213 | curr_cputime = atomic64_read(cputime); | |
214 | if (sum_cputime > curr_cputime) { | |
215 | if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) | |
216 | goto retry; | |
217 | } | |
218 | } | |
4da94d49 | 219 | |
ebd7e7fc | 220 | static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) |
1018016c | 221 | { |
71107445 JL |
222 | __update_gt_cputime(&cputime_atomic->utime, sum->utime); |
223 | __update_gt_cputime(&cputime_atomic->stime, sum->stime); | |
224 | __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); | |
1018016c | 225 | } |
4da94d49 | 226 | |
71107445 | 227 | /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ |
ebd7e7fc | 228 | static inline void sample_cputime_atomic(struct task_cputime *times, |
71107445 | 229 | struct task_cputime_atomic *atomic_times) |
1018016c | 230 | { |
71107445 JL |
231 | times->utime = atomic64_read(&atomic_times->utime); |
232 | times->stime = atomic64_read(&atomic_times->stime); | |
233 | times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); | |
4da94d49 PZ |
234 | } |
235 | ||
19298fbf TG |
236 | /** |
237 | * thread_group_sample_cputime - Sample cputime for a given task | |
238 | * @tsk: Task for which cputime needs to be started | |
239 | * @iimes: Storage for time samples | |
240 | * | |
241 | * Called from sys_getitimer() to calculate the expiry time of an active | |
242 | * timer. That means group cputime accounting is already active. Called | |
243 | * with task sighand lock held. | |
244 | * | |
245 | * Updates @times with an uptodate sample of the thread group cputimes. | |
246 | */ | |
247 | void thread_group_sample_cputime(struct task_struct *tsk, | |
248 | struct task_cputime *times) | |
249 | { | |
250 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; | |
251 | ||
252 | WARN_ON_ONCE(!cputimer->running); | |
253 | ||
254 | sample_cputime_atomic(times, &cputimer->cputime_atomic); | |
255 | } | |
256 | ||
c506bef4 TG |
257 | /** |
258 | * thread_group_start_cputime - Start cputime and return a sample | |
259 | * @tsk: Task for which cputime needs to be started | |
260 | * @iimes: Storage for time samples | |
261 | * | |
262 | * The thread group cputime accouting is avoided when there are no posix | |
263 | * CPU timers armed. Before starting a timer it's required to check whether | |
264 | * the time accounting is active. If not, a full update of the atomic | |
265 | * accounting store needs to be done and the accounting enabled. | |
266 | * | |
267 | * Updates @times with an uptodate sample of the thread group cputimes. | |
268 | */ | |
269 | static void | |
270 | thread_group_start_cputime(struct task_struct *tsk, struct task_cputime *times) | |
4da94d49 PZ |
271 | { |
272 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; | |
ebd7e7fc | 273 | struct task_cputime sum; |
4da94d49 | 274 | |
1018016c JL |
275 | /* Check if cputimer isn't running. This is accessed without locking. */ |
276 | if (!READ_ONCE(cputimer->running)) { | |
4da94d49 PZ |
277 | /* |
278 | * The POSIX timer interface allows for absolute time expiry | |
279 | * values through the TIMER_ABSTIME flag, therefore we have | |
1018016c | 280 | * to synchronize the timer to the clock every time we start it. |
4da94d49 | 281 | */ |
ebd7e7fc | 282 | thread_group_cputime(tsk, &sum); |
71107445 | 283 | update_gt_cputime(&cputimer->cputime_atomic, &sum); |
1018016c JL |
284 | |
285 | /* | |
286 | * We're setting cputimer->running without a lock. Ensure | |
287 | * this only gets written to in one operation. We set | |
288 | * running after update_gt_cputime() as a small optimization, | |
289 | * but barriers are not required because update_gt_cputime() | |
290 | * can handle concurrent updates. | |
291 | */ | |
d5c373eb | 292 | WRITE_ONCE(cputimer->running, true); |
1018016c | 293 | } |
71107445 | 294 | sample_cputime_atomic(times, &cputimer->cputime_atomic); |
4da94d49 PZ |
295 | } |
296 | ||
1da177e4 | 297 | /* |
24ab7f5a TG |
298 | * Sample a process (thread group) clock for the given task clkid. If the |
299 | * group's cputime accounting is already enabled, read the atomic | |
300 | * store. Otherwise a full update is required. Task's sighand lock must be | |
2092c1d4 TG |
301 | * held to protect the task traversal on a full update. clkid is already |
302 | * validated. | |
1da177e4 | 303 | */ |
8c2d74f0 TG |
304 | static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p, |
305 | bool start) | |
1da177e4 | 306 | { |
24ab7f5a | 307 | struct thread_group_cputimer *cputimer = &p->signal->cputimer; |
ebd7e7fc | 308 | struct task_cputime cputime; |
f06febc9 | 309 | |
24ab7f5a TG |
310 | if (!READ_ONCE(cputimer->running)) { |
311 | if (start) | |
312 | thread_group_start_cputime(p, &cputime); | |
313 | else | |
314 | thread_group_cputime(p, &cputime); | |
315 | } else { | |
316 | sample_cputime_atomic(&cputime, &cputimer->cputime_atomic); | |
317 | } | |
318 | ||
2092c1d4 | 319 | switch (clkid) { |
1da177e4 | 320 | case CPUCLOCK_PROF: |
8c2d74f0 | 321 | return cputime.utime + cputime.stime; |
1da177e4 | 322 | case CPUCLOCK_VIRT: |
8c2d74f0 | 323 | return cputime.utime; |
1da177e4 | 324 | case CPUCLOCK_SCHED: |
8c2d74f0 | 325 | return cputime.sum_exec_runtime; |
2092c1d4 TG |
326 | default: |
327 | WARN_ON_ONCE(1); | |
1da177e4 | 328 | } |
8c2d74f0 | 329 | return 0; |
1da177e4 LT |
330 | } |
331 | ||
bfcf3e92 | 332 | static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp) |
33ab0fec | 333 | { |
bfcf3e92 TG |
334 | const clockid_t clkid = CPUCLOCK_WHICH(clock); |
335 | struct task_struct *tsk; | |
336 | u64 t; | |
33ab0fec | 337 | |
bfcf3e92 TG |
338 | tsk = get_task_for_clock(clock); |
339 | if (!tsk) | |
340 | return -EINVAL; | |
1da177e4 | 341 | |
bfcf3e92 | 342 | if (CPUCLOCK_PERTHREAD(clock)) |
8c2d74f0 | 343 | t = cpu_clock_sample(clkid, tsk); |
bfcf3e92 | 344 | else |
8c2d74f0 | 345 | t = cpu_clock_sample_group(clkid, tsk, false); |
bfcf3e92 | 346 | put_task_struct(tsk); |
1da177e4 | 347 | |
bfcf3e92 TG |
348 | *tp = ns_to_timespec64(t); |
349 | return 0; | |
1da177e4 LT |
350 | } |
351 | ||
1da177e4 LT |
352 | /* |
353 | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. | |
ba5ea951 SG |
354 | * This is called from sys_timer_create() and do_cpu_nanosleep() with the |
355 | * new timer already all-zeros initialized. | |
1da177e4 | 356 | */ |
bc2c8ea4 | 357 | static int posix_cpu_timer_create(struct k_itimer *new_timer) |
1da177e4 | 358 | { |
e5a8b65b | 359 | struct task_struct *p = get_task_for_clock(new_timer->it_clock); |
1da177e4 | 360 | |
e5a8b65b | 361 | if (!p) |
1da177e4 LT |
362 | return -EINVAL; |
363 | ||
d97bb75d | 364 | new_timer->kclock = &clock_posix_cpu; |
1da177e4 | 365 | INIT_LIST_HEAD(&new_timer->it.cpu.entry); |
1da177e4 | 366 | new_timer->it.cpu.task = p; |
e5a8b65b | 367 | return 0; |
1da177e4 LT |
368 | } |
369 | ||
370 | /* | |
371 | * Clean up a CPU-clock timer that is about to be destroyed. | |
372 | * This is called from timer deletion with the timer already locked. | |
373 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | |
374 | * and try again. (This happens when the timer is in the middle of firing.) | |
375 | */ | |
bc2c8ea4 | 376 | static int posix_cpu_timer_del(struct k_itimer *timer) |
1da177e4 | 377 | { |
108150ea | 378 | int ret = 0; |
3d7a1427 FW |
379 | unsigned long flags; |
380 | struct sighand_struct *sighand; | |
381 | struct task_struct *p = timer->it.cpu.task; | |
1da177e4 | 382 | |
692117c1 TG |
383 | if (WARN_ON_ONCE(!p)) |
384 | return -EINVAL; | |
108150ea | 385 | |
3d7a1427 FW |
386 | /* |
387 | * Protect against sighand release/switch in exit/exec and process/ | |
388 | * thread timer list entry concurrent read/writes. | |
389 | */ | |
390 | sighand = lock_task_sighand(p, &flags); | |
391 | if (unlikely(sighand == NULL)) { | |
a3222f88 FW |
392 | /* |
393 | * We raced with the reaping of the task. | |
394 | * The deletion should have cleared us off the list. | |
395 | */ | |
531f64fd | 396 | WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); |
a3222f88 | 397 | } else { |
a3222f88 FW |
398 | if (timer->it.cpu.firing) |
399 | ret = TIMER_RETRY; | |
400 | else | |
401 | list_del(&timer->it.cpu.entry); | |
3d7a1427 FW |
402 | |
403 | unlock_task_sighand(p, &flags); | |
1da177e4 | 404 | } |
a3222f88 FW |
405 | |
406 | if (!ret) | |
407 | put_task_struct(p); | |
1da177e4 | 408 | |
108150ea | 409 | return ret; |
1da177e4 LT |
410 | } |
411 | ||
af82eb3c | 412 | static void cleanup_timers_list(struct list_head *head) |
1a7fa510 FW |
413 | { |
414 | struct cpu_timer_list *timer, *next; | |
415 | ||
a0b2062b | 416 | list_for_each_entry_safe(timer, next, head, entry) |
1a7fa510 | 417 | list_del_init(&timer->entry); |
1a7fa510 FW |
418 | } |
419 | ||
1da177e4 | 420 | /* |
7cb9a94c TG |
421 | * Clean out CPU timers which are still armed when a thread exits. The |
422 | * timers are only removed from the list. No other updates are done. The | |
423 | * corresponding posix timers are still accessible, but cannot be rearmed. | |
424 | * | |
1da177e4 LT |
425 | * This must be called with the siglock held. |
426 | */ | |
2b69942f | 427 | static void cleanup_timers(struct posix_cputimers *pct) |
1da177e4 | 428 | { |
2b69942f TG |
429 | cleanup_timers_list(&pct->cpu_timers[CPUCLOCK_PROF]); |
430 | cleanup_timers_list(&pct->cpu_timers[CPUCLOCK_VIRT]); | |
431 | cleanup_timers_list(&pct->cpu_timers[CPUCLOCK_SCHED]); | |
1da177e4 LT |
432 | } |
433 | ||
434 | /* | |
435 | * These are both called with the siglock held, when the current thread | |
436 | * is being reaped. When the final (leader) thread in the group is reaped, | |
437 | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. | |
438 | */ | |
439 | void posix_cpu_timers_exit(struct task_struct *tsk) | |
440 | { | |
2b69942f | 441 | cleanup_timers(&tsk->posix_cputimers); |
1da177e4 LT |
442 | } |
443 | void posix_cpu_timers_exit_group(struct task_struct *tsk) | |
444 | { | |
2b69942f | 445 | cleanup_timers(&tsk->signal->posix_cputimers); |
1da177e4 LT |
446 | } |
447 | ||
ebd7e7fc | 448 | static inline int expires_gt(u64 expires, u64 new_exp) |
d1e3b6d1 | 449 | { |
64861634 | 450 | return expires == 0 || expires > new_exp; |
d1e3b6d1 SG |
451 | } |
452 | ||
1da177e4 LT |
453 | /* |
454 | * Insert the timer on the appropriate list before any timers that | |
e73d84e3 | 455 | * expire later. This must be called with the sighand lock held. |
1da177e4 | 456 | */ |
5eb9aa64 | 457 | static void arm_timer(struct k_itimer *timer) |
1da177e4 | 458 | { |
3b495b22 TG |
459 | struct cpu_timer_list *const nt = &timer->it.cpu; |
460 | int clkidx = CPUCLOCK_WHICH(timer->it_clock); | |
461 | u64 *cpuexp, newexp = timer->it.cpu.expires; | |
1da177e4 LT |
462 | struct task_struct *p = timer->it.cpu.task; |
463 | struct list_head *head, *listpos; | |
1da177e4 | 464 | struct cpu_timer_list *next; |
1da177e4 | 465 | |
5eb9aa64 | 466 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
3b495b22 TG |
467 | head = p->posix_cputimers.cpu_timers + clkidx; |
468 | cpuexp = p->posix_cputimers.expiries + clkidx; | |
5eb9aa64 | 469 | } else { |
3b495b22 TG |
470 | head = p->signal->posix_cputimers.cpu_timers + clkidx; |
471 | cpuexp = p->signal->posix_cputimers.expiries + clkidx; | |
5eb9aa64 | 472 | } |
1da177e4 | 473 | |
1da177e4 | 474 | listpos = head; |
5eb9aa64 | 475 | list_for_each_entry(next, head, entry) { |
55ccb616 | 476 | if (nt->expires < next->expires) |
5eb9aa64 SG |
477 | break; |
478 | listpos = &next->entry; | |
1da177e4 LT |
479 | } |
480 | list_add(&nt->entry, listpos); | |
481 | ||
3b495b22 TG |
482 | if (listpos != head) |
483 | return; | |
5eb9aa64 | 484 | |
3b495b22 TG |
485 | /* |
486 | * We are the new earliest-expiring POSIX 1.b timer, hence | |
487 | * need to update expiration cache. Take into account that | |
488 | * for process timers we share expiration cache with itimers | |
489 | * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. | |
490 | */ | |
491 | if (expires_gt(*cpuexp, newexp)) | |
492 | *cpuexp = newexp; | |
1da177e4 | 493 | |
3b495b22 TG |
494 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) |
495 | tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); | |
496 | else | |
497 | tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER); | |
1da177e4 LT |
498 | } |
499 | ||
500 | /* | |
501 | * The timer is locked, fire it and arrange for its reload. | |
502 | */ | |
503 | static void cpu_timer_fire(struct k_itimer *timer) | |
504 | { | |
1f169f84 SG |
505 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { |
506 | /* | |
507 | * User don't want any signal. | |
508 | */ | |
55ccb616 | 509 | timer->it.cpu.expires = 0; |
1f169f84 | 510 | } else if (unlikely(timer->sigq == NULL)) { |
1da177e4 LT |
511 | /* |
512 | * This a special case for clock_nanosleep, | |
513 | * not a normal timer from sys_timer_create. | |
514 | */ | |
515 | wake_up_process(timer->it_process); | |
55ccb616 | 516 | timer->it.cpu.expires = 0; |
16118794 | 517 | } else if (!timer->it_interval) { |
1da177e4 LT |
518 | /* |
519 | * One-shot timer. Clear it as soon as it's fired. | |
520 | */ | |
521 | posix_timer_event(timer, 0); | |
55ccb616 | 522 | timer->it.cpu.expires = 0; |
1da177e4 LT |
523 | } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { |
524 | /* | |
525 | * The signal did not get queued because the signal | |
526 | * was ignored, so we won't get any callback to | |
527 | * reload the timer. But we need to keep it | |
528 | * ticking in case the signal is deliverable next time. | |
529 | */ | |
f37fb0aa | 530 | posix_cpu_timer_rearm(timer); |
af888d67 | 531 | ++timer->it_requeue_pending; |
1da177e4 LT |
532 | } |
533 | } | |
534 | ||
535 | /* | |
536 | * Guts of sys_timer_settime for CPU timers. | |
537 | * This is called with the timer locked and interrupts disabled. | |
538 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | |
539 | * and try again. (This happens when the timer is in the middle of firing.) | |
540 | */ | |
e73d84e3 | 541 | static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, |
5f252b32 | 542 | struct itimerspec64 *new, struct itimerspec64 *old) |
1da177e4 | 543 | { |
c7a37c6f | 544 | clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); |
ebd7e7fc | 545 | u64 old_expires, new_expires, old_incr, val; |
c7a37c6f TG |
546 | struct task_struct *p = timer->it.cpu.task; |
547 | struct sighand_struct *sighand; | |
548 | unsigned long flags; | |
1da177e4 LT |
549 | int ret; |
550 | ||
692117c1 TG |
551 | if (WARN_ON_ONCE(!p)) |
552 | return -EINVAL; | |
1da177e4 | 553 | |
098b0e01 TG |
554 | /* |
555 | * Use the to_ktime conversion because that clamps the maximum | |
556 | * value to KTIME_MAX and avoid multiplication overflows. | |
557 | */ | |
558 | new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value)); | |
1da177e4 | 559 | |
1da177e4 | 560 | /* |
e73d84e3 FW |
561 | * Protect against sighand release/switch in exit/exec and p->cpu_timers |
562 | * and p->signal->cpu_timers read/write in arm_timer() | |
563 | */ | |
564 | sighand = lock_task_sighand(p, &flags); | |
565 | /* | |
566 | * If p has just been reaped, we can no | |
1da177e4 LT |
567 | * longer get any information about it at all. |
568 | */ | |
e73d84e3 | 569 | if (unlikely(sighand == NULL)) { |
1da177e4 LT |
570 | return -ESRCH; |
571 | } | |
572 | ||
573 | /* | |
574 | * Disarm any old timer after extracting its expiry time. | |
575 | */ | |
a69ac4a7 ON |
576 | |
577 | ret = 0; | |
16118794 | 578 | old_incr = timer->it_interval; |
1da177e4 | 579 | old_expires = timer->it.cpu.expires; |
a69ac4a7 ON |
580 | if (unlikely(timer->it.cpu.firing)) { |
581 | timer->it.cpu.firing = -1; | |
582 | ret = TIMER_RETRY; | |
583 | } else | |
584 | list_del_init(&timer->it.cpu.entry); | |
1da177e4 LT |
585 | |
586 | /* | |
587 | * We need to sample the current value to convert the new | |
588 | * value from to relative and absolute, and to convert the | |
589 | * old value from absolute to relative. To set a process | |
590 | * timer, we need a sample to balance the thread expiry | |
591 | * times (in arm_timer). With an absolute time, we must | |
592 | * check if it's already passed. In short, we need a sample. | |
593 | */ | |
8c2d74f0 TG |
594 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) |
595 | val = cpu_clock_sample(clkid, p); | |
596 | else | |
597 | val = cpu_clock_sample_group(clkid, p, true); | |
1da177e4 LT |
598 | |
599 | if (old) { | |
55ccb616 | 600 | if (old_expires == 0) { |
1da177e4 LT |
601 | old->it_value.tv_sec = 0; |
602 | old->it_value.tv_nsec = 0; | |
603 | } else { | |
604 | /* | |
605 | * Update the timer in case it has | |
606 | * overrun already. If it has, | |
607 | * we'll report it as having overrun | |
608 | * and with the next reloaded timer | |
609 | * already ticking, though we are | |
610 | * swallowing that pending | |
611 | * notification here to install the | |
612 | * new setting. | |
613 | */ | |
614 | bump_cpu_timer(timer, val); | |
55ccb616 FW |
615 | if (val < timer->it.cpu.expires) { |
616 | old_expires = timer->it.cpu.expires - val; | |
5f252b32 | 617 | old->it_value = ns_to_timespec64(old_expires); |
1da177e4 LT |
618 | } else { |
619 | old->it_value.tv_nsec = 1; | |
620 | old->it_value.tv_sec = 0; | |
621 | } | |
622 | } | |
623 | } | |
624 | ||
a69ac4a7 | 625 | if (unlikely(ret)) { |
1da177e4 LT |
626 | /* |
627 | * We are colliding with the timer actually firing. | |
628 | * Punt after filling in the timer's old value, and | |
629 | * disable this firing since we are already reporting | |
630 | * it as an overrun (thanks to bump_cpu_timer above). | |
631 | */ | |
e73d84e3 | 632 | unlock_task_sighand(p, &flags); |
1da177e4 LT |
633 | goto out; |
634 | } | |
635 | ||
e73d84e3 | 636 | if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { |
55ccb616 | 637 | new_expires += val; |
1da177e4 LT |
638 | } |
639 | ||
640 | /* | |
641 | * Install the new expiry time (or zero). | |
642 | * For a timer with no notification action, we don't actually | |
643 | * arm the timer (we'll just fake it for timer_gettime). | |
644 | */ | |
645 | timer->it.cpu.expires = new_expires; | |
55ccb616 | 646 | if (new_expires != 0 && val < new_expires) { |
5eb9aa64 | 647 | arm_timer(timer); |
1da177e4 LT |
648 | } |
649 | ||
e73d84e3 | 650 | unlock_task_sighand(p, &flags); |
1da177e4 LT |
651 | /* |
652 | * Install the new reload setting, and | |
653 | * set up the signal and overrun bookkeeping. | |
654 | */ | |
16118794 | 655 | timer->it_interval = timespec64_to_ktime(new->it_interval); |
1da177e4 LT |
656 | |
657 | /* | |
658 | * This acts as a modification timestamp for the timer, | |
659 | * so any automatic reload attempt will punt on seeing | |
660 | * that we have reset the timer manually. | |
661 | */ | |
662 | timer->it_requeue_pending = (timer->it_requeue_pending + 2) & | |
663 | ~REQUEUE_PENDING; | |
664 | timer->it_overrun_last = 0; | |
665 | timer->it_overrun = -1; | |
666 | ||
55ccb616 | 667 | if (new_expires != 0 && !(val < new_expires)) { |
1da177e4 LT |
668 | /* |
669 | * The designated time already passed, so we notify | |
670 | * immediately, even if the thread never runs to | |
671 | * accumulate more time on this clock. | |
672 | */ | |
673 | cpu_timer_fire(timer); | |
674 | } | |
675 | ||
676 | ret = 0; | |
677 | out: | |
ebd7e7fc | 678 | if (old) |
5f252b32 | 679 | old->it_interval = ns_to_timespec64(old_incr); |
b7878300 | 680 | |
1da177e4 LT |
681 | return ret; |
682 | } | |
683 | ||
5f252b32 | 684 | static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) |
1da177e4 | 685 | { |
99093c5b | 686 | clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); |
1da177e4 | 687 | struct task_struct *p = timer->it.cpu.task; |
692117c1 | 688 | u64 now; |
1da177e4 | 689 | |
692117c1 TG |
690 | if (WARN_ON_ONCE(!p)) |
691 | return; | |
a3222f88 | 692 | |
1da177e4 LT |
693 | /* |
694 | * Easy part: convert the reload time. | |
695 | */ | |
16118794 | 696 | itp->it_interval = ktime_to_timespec64(timer->it_interval); |
1da177e4 | 697 | |
eabdec04 | 698 | if (!timer->it.cpu.expires) |
1da177e4 | 699 | return; |
1da177e4 | 700 | |
1da177e4 LT |
701 | /* |
702 | * Sample the clock to take the difference with the expiry time. | |
703 | */ | |
704 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
8c2d74f0 | 705 | now = cpu_clock_sample(clkid, p); |
1da177e4 | 706 | } else { |
e73d84e3 FW |
707 | struct sighand_struct *sighand; |
708 | unsigned long flags; | |
709 | ||
710 | /* | |
711 | * Protect against sighand release/switch in exit/exec and | |
712 | * also make timer sampling safe if it ends up calling | |
ebd7e7fc | 713 | * thread_group_cputime(). |
e73d84e3 FW |
714 | */ |
715 | sighand = lock_task_sighand(p, &flags); | |
716 | if (unlikely(sighand == NULL)) { | |
1da177e4 LT |
717 | /* |
718 | * The process has been reaped. | |
719 | * We can't even collect a sample any more. | |
720 | * Call the timer disarmed, nothing else to do. | |
721 | */ | |
55ccb616 | 722 | timer->it.cpu.expires = 0; |
2c13ce8f | 723 | return; |
1da177e4 | 724 | } else { |
8c2d74f0 | 725 | now = cpu_clock_sample_group(clkid, p, false); |
e73d84e3 | 726 | unlock_task_sighand(p, &flags); |
1da177e4 | 727 | } |
1da177e4 LT |
728 | } |
729 | ||
55ccb616 | 730 | if (now < timer->it.cpu.expires) { |
5f252b32 | 731 | itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now); |
1da177e4 LT |
732 | } else { |
733 | /* | |
734 | * The timer should have expired already, but the firing | |
735 | * hasn't taken place yet. Say it's just about to expire. | |
736 | */ | |
737 | itp->it_value.tv_nsec = 1; | |
738 | itp->it_value.tv_sec = 0; | |
739 | } | |
740 | } | |
741 | ||
2473f3e7 FW |
742 | static unsigned long long |
743 | check_timers_list(struct list_head *timers, | |
744 | struct list_head *firing, | |
745 | unsigned long long curr) | |
746 | { | |
747 | int maxfire = 20; | |
748 | ||
749 | while (!list_empty(timers)) { | |
750 | struct cpu_timer_list *t; | |
751 | ||
752 | t = list_first_entry(timers, struct cpu_timer_list, entry); | |
753 | ||
754 | if (!--maxfire || curr < t->expires) | |
755 | return t->expires; | |
756 | ||
757 | t->firing = 1; | |
758 | list_move_tail(&t->entry, firing); | |
759 | } | |
760 | ||
761 | return 0; | |
762 | } | |
763 | ||
34be3930 JL |
764 | static inline void check_dl_overrun(struct task_struct *tsk) |
765 | { | |
766 | if (tsk->dl.dl_overrun) { | |
767 | tsk->dl.dl_overrun = 0; | |
768 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | |
769 | } | |
770 | } | |
771 | ||
1da177e4 LT |
772 | /* |
773 | * Check for any per-thread CPU timers that have fired and move them off | |
774 | * the tsk->cpu_timers[N] list onto the firing list. Here we update the | |
775 | * tsk->it_*_expires values to reflect the remaining thread CPU timers. | |
776 | */ | |
777 | static void check_thread_timers(struct task_struct *tsk, | |
778 | struct list_head *firing) | |
779 | { | |
2b69942f | 780 | struct list_head *timers = tsk->posix_cputimers.cpu_timers; |
c02b078e | 781 | u64 stime, utime, *expires = tsk->posix_cputimers.expiries; |
d4bb5274 | 782 | unsigned long soft; |
1da177e4 | 783 | |
34be3930 JL |
784 | if (dl_task(tsk)) |
785 | check_dl_overrun(tsk); | |
786 | ||
934715a1 JL |
787 | /* |
788 | * If cputime_expires is zero, then there are no active | |
789 | * per thread CPU timers. | |
790 | */ | |
c02b078e | 791 | if (task_cputime_zero(&tsk->posix_cputimers.cputime_expires)) |
934715a1 JL |
792 | return; |
793 | ||
0476ff2c TG |
794 | task_cputime(tsk, &utime, &stime); |
795 | ||
c02b078e TG |
796 | *expires++ = check_timers_list(timers, firing, utime + stime); |
797 | *expires++ = check_timers_list(++timers, firing, utime); | |
798 | *expires = check_timers_list(++timers, firing, tsk->se.sum_exec_runtime); | |
78f2c7db PZ |
799 | |
800 | /* | |
801 | * Check for the special case thread timers. | |
802 | */ | |
3cf29496 | 803 | soft = task_rlimit(tsk, RLIMIT_RTTIME); |
d4bb5274 | 804 | if (soft != RLIM_INFINITY) { |
3cf29496 | 805 | unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); |
78f2c7db | 806 | |
5a52dd50 PZ |
807 | if (hard != RLIM_INFINITY && |
808 | tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { | |
78f2c7db PZ |
809 | /* |
810 | * At the hard limit, we just die. | |
811 | * No need to calculate anything else now. | |
812 | */ | |
43fe8b8e TG |
813 | if (print_fatal_signals) { |
814 | pr_info("CPU Watchdog Timeout (hard): %s[%d]\n", | |
815 | tsk->comm, task_pid_nr(tsk)); | |
816 | } | |
78f2c7db PZ |
817 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); |
818 | return; | |
819 | } | |
d4bb5274 | 820 | if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { |
78f2c7db PZ |
821 | /* |
822 | * At the soft limit, send a SIGXCPU every second. | |
823 | */ | |
d4bb5274 JS |
824 | if (soft < hard) { |
825 | soft += USEC_PER_SEC; | |
3cf29496 KO |
826 | tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = |
827 | soft; | |
78f2c7db | 828 | } |
43fe8b8e TG |
829 | if (print_fatal_signals) { |
830 | pr_info("RT Watchdog Timeout (soft): %s[%d]\n", | |
831 | tsk->comm, task_pid_nr(tsk)); | |
832 | } | |
78f2c7db PZ |
833 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
834 | } | |
835 | } | |
c02b078e TG |
836 | |
837 | if (task_cputime_zero(&tsk->posix_cputimers.cputime_expires)) | |
b7878300 | 838 | tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); |
1da177e4 LT |
839 | } |
840 | ||
1018016c | 841 | static inline void stop_process_timers(struct signal_struct *sig) |
3fccfd67 | 842 | { |
15365c10 | 843 | struct thread_group_cputimer *cputimer = &sig->cputimer; |
3fccfd67 | 844 | |
1018016c | 845 | /* Turn off cputimer->running. This is done without locking. */ |
d5c373eb | 846 | WRITE_ONCE(cputimer->running, false); |
b7878300 | 847 | tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); |
3fccfd67 PZ |
848 | } |
849 | ||
42c4ab41 | 850 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, |
ebd7e7fc | 851 | u64 *expires, u64 cur_time, int signo) |
42c4ab41 | 852 | { |
64861634 | 853 | if (!it->expires) |
42c4ab41 SG |
854 | return; |
855 | ||
858cf3a8 FW |
856 | if (cur_time >= it->expires) { |
857 | if (it->incr) | |
64861634 | 858 | it->expires += it->incr; |
858cf3a8 | 859 | else |
64861634 | 860 | it->expires = 0; |
42c4ab41 | 861 | |
3f0a525e XG |
862 | trace_itimer_expire(signo == SIGPROF ? |
863 | ITIMER_PROF : ITIMER_VIRTUAL, | |
6883f81a | 864 | task_tgid(tsk), cur_time); |
42c4ab41 SG |
865 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); |
866 | } | |
867 | ||
858cf3a8 FW |
868 | if (it->expires && (!*expires || it->expires < *expires)) |
869 | *expires = it->expires; | |
42c4ab41 SG |
870 | } |
871 | ||
1da177e4 LT |
872 | /* |
873 | * Check for any per-thread CPU timers that have fired and move them | |
874 | * off the tsk->*_timers list onto the firing list. Per-thread timers | |
875 | * have already been taken off. | |
876 | */ | |
877 | static void check_process_timers(struct task_struct *tsk, | |
878 | struct list_head *firing) | |
879 | { | |
880 | struct signal_struct *const sig = tsk->signal; | |
2b69942f | 881 | struct list_head *timers = sig->posix_cputimers.cpu_timers; |
ebd7e7fc FW |
882 | u64 utime, ptime, virt_expires, prof_expires; |
883 | u64 sum_sched_runtime, sched_expires; | |
ebd7e7fc | 884 | struct task_cputime cputime; |
d4bb5274 | 885 | unsigned long soft; |
1da177e4 | 886 | |
934715a1 JL |
887 | /* |
888 | * If cputimer is not running, then there are no active | |
889 | * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). | |
890 | */ | |
891 | if (!READ_ONCE(tsk->signal->cputimer.running)) | |
892 | return; | |
893 | ||
a324956f | 894 | /* |
c8d75aa4 JL |
895 | * Signify that a thread is checking for process timers. |
896 | * Write access to this field is protected by the sighand lock. | |
897 | */ | |
898 | sig->cputimer.checking_timer = true; | |
899 | ||
1da177e4 | 900 | /* |
a324956f TG |
901 | * Collect the current process totals. Group accounting is active |
902 | * so the sample can be taken directly. | |
1da177e4 | 903 | */ |
a324956f | 904 | sample_cputime_atomic(&cputime, &sig->cputimer.cputime_atomic); |
ebd7e7fc FW |
905 | utime = cputime.utime; |
906 | ptime = utime + cputime.stime; | |
f06febc9 | 907 | sum_sched_runtime = cputime.sum_exec_runtime; |
1da177e4 | 908 | |
2473f3e7 FW |
909 | prof_expires = check_timers_list(timers, firing, ptime); |
910 | virt_expires = check_timers_list(++timers, firing, utime); | |
911 | sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); | |
1da177e4 LT |
912 | |
913 | /* | |
914 | * Check for the special case process timers. | |
915 | */ | |
42c4ab41 SG |
916 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, |
917 | SIGPROF); | |
918 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, | |
919 | SIGVTALRM); | |
3cf29496 | 920 | soft = task_rlimit(tsk, RLIMIT_CPU); |
d4bb5274 | 921 | if (soft != RLIM_INFINITY) { |
ebd7e7fc | 922 | unsigned long psecs = div_u64(ptime, NSEC_PER_SEC); |
3cf29496 | 923 | unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); |
ebd7e7fc | 924 | u64 x; |
d4bb5274 | 925 | if (psecs >= hard) { |
1da177e4 LT |
926 | /* |
927 | * At the hard limit, we just die. | |
928 | * No need to calculate anything else now. | |
929 | */ | |
43fe8b8e TG |
930 | if (print_fatal_signals) { |
931 | pr_info("RT Watchdog Timeout (hard): %s[%d]\n", | |
932 | tsk->comm, task_pid_nr(tsk)); | |
933 | } | |
1da177e4 LT |
934 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); |
935 | return; | |
936 | } | |
d4bb5274 | 937 | if (psecs >= soft) { |
1da177e4 LT |
938 | /* |
939 | * At the soft limit, send a SIGXCPU every second. | |
940 | */ | |
43fe8b8e TG |
941 | if (print_fatal_signals) { |
942 | pr_info("CPU Watchdog Timeout (soft): %s[%d]\n", | |
943 | tsk->comm, task_pid_nr(tsk)); | |
944 | } | |
1da177e4 | 945 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
d4bb5274 JS |
946 | if (soft < hard) { |
947 | soft++; | |
948 | sig->rlim[RLIMIT_CPU].rlim_cur = soft; | |
1da177e4 LT |
949 | } |
950 | } | |
ebd7e7fc FW |
951 | x = soft * NSEC_PER_SEC; |
952 | if (!prof_expires || x < prof_expires) | |
1da177e4 | 953 | prof_expires = x; |
1da177e4 LT |
954 | } |
955 | ||
c02b078e TG |
956 | sig->posix_cputimers.expiries[CPUCLOCK_PROF] = prof_expires; |
957 | sig->posix_cputimers.expiries[CPUCLOCK_VIRT] = virt_expires; | |
958 | sig->posix_cputimers.expiries[CPUCLOCK_SCHED] = sched_expires; | |
959 | ||
3a245c0f | 960 | if (task_cputime_zero(&sig->posix_cputimers.cputime_expires)) |
29f87b79 | 961 | stop_process_timers(sig); |
c8d75aa4 JL |
962 | |
963 | sig->cputimer.checking_timer = false; | |
1da177e4 LT |
964 | } |
965 | ||
966 | /* | |
96fe3b07 | 967 | * This is called from the signal code (via posixtimer_rearm) |
1da177e4 LT |
968 | * when the last timer signal was delivered and we have to reload the timer. |
969 | */ | |
f37fb0aa | 970 | static void posix_cpu_timer_rearm(struct k_itimer *timer) |
1da177e4 | 971 | { |
da020ce4 | 972 | clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); |
692117c1 | 973 | struct task_struct *p = timer->it.cpu.task; |
e73d84e3 FW |
974 | struct sighand_struct *sighand; |
975 | unsigned long flags; | |
ebd7e7fc | 976 | u64 now; |
1da177e4 | 977 | |
692117c1 TG |
978 | if (WARN_ON_ONCE(!p)) |
979 | return; | |
1da177e4 LT |
980 | |
981 | /* | |
982 | * Fetch the current sample and update the timer's expiry time. | |
983 | */ | |
984 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
8c2d74f0 | 985 | now = cpu_clock_sample(clkid, p); |
1da177e4 | 986 | bump_cpu_timer(timer, now); |
724a3713 | 987 | if (unlikely(p->exit_state)) |
af888d67 | 988 | return; |
724a3713 | 989 | |
e73d84e3 FW |
990 | /* Protect timer list r/w in arm_timer() */ |
991 | sighand = lock_task_sighand(p, &flags); | |
992 | if (!sighand) | |
af888d67 | 993 | return; |
1da177e4 | 994 | } else { |
e73d84e3 FW |
995 | /* |
996 | * Protect arm_timer() and timer sampling in case of call to | |
ebd7e7fc | 997 | * thread_group_cputime(). |
e73d84e3 FW |
998 | */ |
999 | sighand = lock_task_sighand(p, &flags); | |
1000 | if (unlikely(sighand == NULL)) { | |
1da177e4 LT |
1001 | /* |
1002 | * The process has been reaped. | |
1003 | * We can't even collect a sample any more. | |
1004 | */ | |
55ccb616 | 1005 | timer->it.cpu.expires = 0; |
af888d67 | 1006 | return; |
1da177e4 | 1007 | } else if (unlikely(p->exit_state) && thread_group_empty(p)) { |
af888d67 TG |
1008 | /* If the process is dying, no need to rearm */ |
1009 | goto unlock; | |
1da177e4 | 1010 | } |
8c2d74f0 | 1011 | now = cpu_clock_sample_group(clkid, p, true); |
1da177e4 | 1012 | bump_cpu_timer(timer, now); |
e73d84e3 | 1013 | /* Leave the sighand locked for the call below. */ |
1da177e4 LT |
1014 | } |
1015 | ||
1016 | /* | |
1017 | * Now re-arm for the new expiry time. | |
1018 | */ | |
5eb9aa64 | 1019 | arm_timer(timer); |
af888d67 | 1020 | unlock: |
e73d84e3 | 1021 | unlock_task_sighand(p, &flags); |
1da177e4 LT |
1022 | } |
1023 | ||
f06febc9 FM |
1024 | /** |
1025 | * task_cputime_expired - Compare two task_cputime entities. | |
1026 | * | |
1027 | * @sample: The task_cputime structure to be checked for expiration. | |
1028 | * @expires: Expiration times, against which @sample will be checked. | |
1029 | * | |
1030 | * Checks @sample against @expires to see if any field of @sample has expired. | |
1031 | * Returns true if any field of the former is greater than the corresponding | |
1032 | * field of the latter if the latter field is set. Otherwise returns false. | |
1033 | */ | |
ebd7e7fc FW |
1034 | static inline int task_cputime_expired(const struct task_cputime *sample, |
1035 | const struct task_cputime *expires) | |
f06febc9 | 1036 | { |
64861634 | 1037 | if (expires->utime && sample->utime >= expires->utime) |
f06febc9 | 1038 | return 1; |
64861634 | 1039 | if (expires->stime && sample->utime + sample->stime >= expires->stime) |
f06febc9 FM |
1040 | return 1; |
1041 | if (expires->sum_exec_runtime != 0 && | |
1042 | sample->sum_exec_runtime >= expires->sum_exec_runtime) | |
1043 | return 1; | |
1044 | return 0; | |
1045 | } | |
1046 | ||
1047 | /** | |
1048 | * fastpath_timer_check - POSIX CPU timers fast path. | |
1049 | * | |
1050 | * @tsk: The task (thread) being checked. | |
f06febc9 | 1051 | * |
bb34d92f FM |
1052 | * Check the task and thread group timers. If both are zero (there are no |
1053 | * timers set) return false. Otherwise snapshot the task and thread group | |
1054 | * timers and compare them with the corresponding expiration times. Return | |
1055 | * true if a timer has expired, else return false. | |
f06febc9 | 1056 | */ |
bb34d92f | 1057 | static inline int fastpath_timer_check(struct task_struct *tsk) |
f06febc9 | 1058 | { |
ad133ba3 | 1059 | struct signal_struct *sig; |
bb34d92f | 1060 | |
3a245c0f | 1061 | if (!task_cputime_zero(&tsk->posix_cputimers.cputime_expires)) { |
ebd7e7fc | 1062 | struct task_cputime task_sample; |
bb34d92f | 1063 | |
ebd7e7fc | 1064 | task_cputime(tsk, &task_sample.utime, &task_sample.stime); |
7c177d99 | 1065 | task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; |
3a245c0f TG |
1066 | if (task_cputime_expired(&task_sample, |
1067 | &tsk->posix_cputimers.cputime_expires)) | |
bb34d92f FM |
1068 | return 1; |
1069 | } | |
ad133ba3 ON |
1070 | |
1071 | sig = tsk->signal; | |
c8d75aa4 JL |
1072 | /* |
1073 | * Check if thread group timers expired when the cputimer is | |
1074 | * running and no other thread in the group is already checking | |
1075 | * for thread group cputimers. These fields are read without the | |
1076 | * sighand lock. However, this is fine because this is meant to | |
1077 | * be a fastpath heuristic to determine whether we should try to | |
1078 | * acquire the sighand lock to check/handle timers. | |
1079 | * | |
1080 | * In the worst case scenario, if 'running' or 'checking_timer' gets | |
1081 | * set but the current thread doesn't see the change yet, we'll wait | |
1082 | * until the next thread in the group gets a scheduler interrupt to | |
1083 | * handle the timer. This isn't an issue in practice because these | |
1084 | * types of delays with signals actually getting sent are expected. | |
1085 | */ | |
1086 | if (READ_ONCE(sig->cputimer.running) && | |
1087 | !READ_ONCE(sig->cputimer.checking_timer)) { | |
ebd7e7fc | 1088 | struct task_cputime group_sample; |
bb34d92f | 1089 | |
71107445 | 1090 | sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); |
8d1f431c | 1091 | |
3a245c0f TG |
1092 | if (task_cputime_expired(&group_sample, |
1093 | &sig->posix_cputimers.cputime_expires)) | |
bb34d92f FM |
1094 | return 1; |
1095 | } | |
37bebc70 | 1096 | |
34be3930 JL |
1097 | if (dl_task(tsk) && tsk->dl.dl_overrun) |
1098 | return 1; | |
1099 | ||
f55db609 | 1100 | return 0; |
f06febc9 FM |
1101 | } |
1102 | ||
1da177e4 LT |
1103 | /* |
1104 | * This is called from the timer interrupt handler. The irq handler has | |
1105 | * already updated our counts. We need to check if any timers fire now. | |
1106 | * Interrupts are disabled. | |
1107 | */ | |
dce3e8fd | 1108 | void run_posix_cpu_timers(void) |
1da177e4 | 1109 | { |
dce3e8fd | 1110 | struct task_struct *tsk = current; |
1da177e4 | 1111 | struct k_itimer *timer, *next; |
0bdd2ed4 | 1112 | unsigned long flags; |
dce3e8fd | 1113 | LIST_HEAD(firing); |
1da177e4 | 1114 | |
a6968220 | 1115 | lockdep_assert_irqs_disabled(); |
1da177e4 | 1116 | |
1da177e4 | 1117 | /* |
f06febc9 | 1118 | * The fast path checks that there are no expired thread or thread |
bb34d92f | 1119 | * group timers. If that's so, just return. |
1da177e4 | 1120 | */ |
bb34d92f | 1121 | if (!fastpath_timer_check(tsk)) |
f06febc9 | 1122 | return; |
5ce73a4a | 1123 | |
0bdd2ed4 ON |
1124 | if (!lock_task_sighand(tsk, &flags)) |
1125 | return; | |
bb34d92f FM |
1126 | /* |
1127 | * Here we take off tsk->signal->cpu_timers[N] and | |
1128 | * tsk->cpu_timers[N] all the timers that are firing, and | |
1129 | * put them on the firing list. | |
1130 | */ | |
1131 | check_thread_timers(tsk, &firing); | |
934715a1 JL |
1132 | |
1133 | check_process_timers(tsk, &firing); | |
1da177e4 | 1134 | |
bb34d92f FM |
1135 | /* |
1136 | * We must release these locks before taking any timer's lock. | |
1137 | * There is a potential race with timer deletion here, as the | |
1138 | * siglock now protects our private firing list. We have set | |
1139 | * the firing flag in each timer, so that a deletion attempt | |
1140 | * that gets the timer lock before we do will give it up and | |
1141 | * spin until we've taken care of that timer below. | |
1142 | */ | |
0bdd2ed4 | 1143 | unlock_task_sighand(tsk, &flags); |
1da177e4 LT |
1144 | |
1145 | /* | |
1146 | * Now that all the timers on our list have the firing flag, | |
25985edc | 1147 | * no one will touch their list entries but us. We'll take |
1da177e4 LT |
1148 | * each timer's lock before clearing its firing flag, so no |
1149 | * timer call will interfere. | |
1150 | */ | |
1151 | list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { | |
6e85c5ba HS |
1152 | int cpu_firing; |
1153 | ||
1da177e4 LT |
1154 | spin_lock(&timer->it_lock); |
1155 | list_del_init(&timer->it.cpu.entry); | |
6e85c5ba | 1156 | cpu_firing = timer->it.cpu.firing; |
1da177e4 LT |
1157 | timer->it.cpu.firing = 0; |
1158 | /* | |
1159 | * The firing flag is -1 if we collided with a reset | |
1160 | * of the timer, which already reported this | |
1161 | * almost-firing as an overrun. So don't generate an event. | |
1162 | */ | |
6e85c5ba | 1163 | if (likely(cpu_firing >= 0)) |
1da177e4 | 1164 | cpu_timer_fire(timer); |
1da177e4 LT |
1165 | spin_unlock(&timer->it_lock); |
1166 | } | |
1167 | } | |
1168 | ||
1169 | /* | |
f55db609 | 1170 | * Set one of the process-wide special case CPU timers or RLIMIT_CPU. |
f06febc9 | 1171 | * The tsk->sighand->siglock must be held by the caller. |
1da177e4 | 1172 | */ |
1b0dd96d | 1173 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid, |
858cf3a8 | 1174 | u64 *newval, u64 *oldval) |
1da177e4 | 1175 | { |
1b0dd96d | 1176 | u64 now, *expiry = tsk->signal->posix_cputimers.expiries + clkid; |
1da177e4 | 1177 | |
1b0dd96d | 1178 | if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED)) |
692117c1 TG |
1179 | return; |
1180 | ||
1b0dd96d | 1181 | now = cpu_clock_sample_group(clkid, tsk, true); |
1da177e4 | 1182 | |
5405d005 | 1183 | if (oldval) { |
f55db609 SG |
1184 | /* |
1185 | * We are setting itimer. The *oldval is absolute and we update | |
1186 | * it to be relative, *newval argument is relative and we update | |
1187 | * it to be absolute. | |
1188 | */ | |
64861634 | 1189 | if (*oldval) { |
858cf3a8 | 1190 | if (*oldval <= now) { |
1da177e4 | 1191 | /* Just about to fire. */ |
858cf3a8 | 1192 | *oldval = TICK_NSEC; |
1da177e4 | 1193 | } else { |
858cf3a8 | 1194 | *oldval -= now; |
1da177e4 LT |
1195 | } |
1196 | } | |
1197 | ||
64861634 | 1198 | if (!*newval) |
b7878300 | 1199 | return; |
858cf3a8 | 1200 | *newval += now; |
1da177e4 LT |
1201 | } |
1202 | ||
1203 | /* | |
1b0dd96d TG |
1204 | * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF |
1205 | * expiry cache is also used by RLIMIT_CPU!. | |
1da177e4 | 1206 | */ |
1b0dd96d TG |
1207 | if (expires_gt(*expiry, *newval)) |
1208 | *expiry = *newval; | |
b7878300 FW |
1209 | |
1210 | tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER); | |
1da177e4 LT |
1211 | } |
1212 | ||
e4b76555 | 1213 | static int do_cpu_nanosleep(const clockid_t which_clock, int flags, |
343d8fc2 | 1214 | const struct timespec64 *rqtp) |
1da177e4 | 1215 | { |
86a9c446 | 1216 | struct itimerspec64 it; |
343d8fc2 TG |
1217 | struct k_itimer timer; |
1218 | u64 expires; | |
1da177e4 LT |
1219 | int error; |
1220 | ||
1da177e4 LT |
1221 | /* |
1222 | * Set up a temporary timer and then wait for it to go off. | |
1223 | */ | |
1224 | memset(&timer, 0, sizeof timer); | |
1225 | spin_lock_init(&timer.it_lock); | |
1226 | timer.it_clock = which_clock; | |
1227 | timer.it_overrun = -1; | |
1228 | error = posix_cpu_timer_create(&timer); | |
1229 | timer.it_process = current; | |
1230 | if (!error) { | |
5f252b32 | 1231 | static struct itimerspec64 zero_it; |
edbeda46 | 1232 | struct restart_block *restart; |
e4b76555 | 1233 | |
edbeda46 | 1234 | memset(&it, 0, sizeof(it)); |
86a9c446 | 1235 | it.it_value = *rqtp; |
1da177e4 LT |
1236 | |
1237 | spin_lock_irq(&timer.it_lock); | |
86a9c446 | 1238 | error = posix_cpu_timer_set(&timer, flags, &it, NULL); |
1da177e4 LT |
1239 | if (error) { |
1240 | spin_unlock_irq(&timer.it_lock); | |
1241 | return error; | |
1242 | } | |
1243 | ||
1244 | while (!signal_pending(current)) { | |
55ccb616 | 1245 | if (timer.it.cpu.expires == 0) { |
1da177e4 | 1246 | /* |
e6c42c29 SG |
1247 | * Our timer fired and was reset, below |
1248 | * deletion can not fail. | |
1da177e4 | 1249 | */ |
e6c42c29 | 1250 | posix_cpu_timer_del(&timer); |
1da177e4 LT |
1251 | spin_unlock_irq(&timer.it_lock); |
1252 | return 0; | |
1253 | } | |
1254 | ||
1255 | /* | |
1256 | * Block until cpu_timer_fire (or a signal) wakes us. | |
1257 | */ | |
1258 | __set_current_state(TASK_INTERRUPTIBLE); | |
1259 | spin_unlock_irq(&timer.it_lock); | |
1260 | schedule(); | |
1261 | spin_lock_irq(&timer.it_lock); | |
1262 | } | |
1263 | ||
1264 | /* | |
1265 | * We were interrupted by a signal. | |
1266 | */ | |
343d8fc2 | 1267 | expires = timer.it.cpu.expires; |
86a9c446 | 1268 | error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); |
e6c42c29 SG |
1269 | if (!error) { |
1270 | /* | |
1271 | * Timer is now unarmed, deletion can not fail. | |
1272 | */ | |
1273 | posix_cpu_timer_del(&timer); | |
1274 | } | |
1da177e4 LT |
1275 | spin_unlock_irq(&timer.it_lock); |
1276 | ||
e6c42c29 SG |
1277 | while (error == TIMER_RETRY) { |
1278 | /* | |
1279 | * We need to handle case when timer was or is in the | |
1280 | * middle of firing. In other cases we already freed | |
1281 | * resources. | |
1282 | */ | |
1283 | spin_lock_irq(&timer.it_lock); | |
1284 | error = posix_cpu_timer_del(&timer); | |
1285 | spin_unlock_irq(&timer.it_lock); | |
1286 | } | |
1287 | ||
86a9c446 | 1288 | if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { |
1da177e4 LT |
1289 | /* |
1290 | * It actually did fire already. | |
1291 | */ | |
1292 | return 0; | |
1293 | } | |
1294 | ||
e4b76555 | 1295 | error = -ERESTART_RESTARTBLOCK; |
86a9c446 AV |
1296 | /* |
1297 | * Report back to the user the time still remaining. | |
1298 | */ | |
edbeda46 | 1299 | restart = ¤t->restart_block; |
343d8fc2 | 1300 | restart->nanosleep.expires = expires; |
c0edd7c9 DD |
1301 | if (restart->nanosleep.type != TT_NONE) |
1302 | error = nanosleep_copyout(restart, &it.it_value); | |
e4b76555 TA |
1303 | } |
1304 | ||
1305 | return error; | |
1306 | } | |
1307 | ||
bc2c8ea4 TG |
1308 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block); |
1309 | ||
1310 | static int posix_cpu_nsleep(const clockid_t which_clock, int flags, | |
938e7cf2 | 1311 | const struct timespec64 *rqtp) |
e4b76555 | 1312 | { |
f56141e3 | 1313 | struct restart_block *restart_block = ¤t->restart_block; |
e4b76555 TA |
1314 | int error; |
1315 | ||
1316 | /* | |
1317 | * Diagnose required errors first. | |
1318 | */ | |
1319 | if (CPUCLOCK_PERTHREAD(which_clock) && | |
1320 | (CPUCLOCK_PID(which_clock) == 0 || | |
01a21974 | 1321 | CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) |
e4b76555 TA |
1322 | return -EINVAL; |
1323 | ||
86a9c446 | 1324 | error = do_cpu_nanosleep(which_clock, flags, rqtp); |
e4b76555 TA |
1325 | |
1326 | if (error == -ERESTART_RESTARTBLOCK) { | |
1327 | ||
3751f9f2 | 1328 | if (flags & TIMER_ABSTIME) |
e4b76555 | 1329 | return -ERESTARTNOHAND; |
1da177e4 | 1330 | |
1711ef38 | 1331 | restart_block->fn = posix_cpu_nsleep_restart; |
ab8177bc | 1332 | restart_block->nanosleep.clockid = which_clock; |
1da177e4 | 1333 | } |
1da177e4 LT |
1334 | return error; |
1335 | } | |
1336 | ||
bc2c8ea4 | 1337 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block) |
1da177e4 | 1338 | { |
ab8177bc | 1339 | clockid_t which_clock = restart_block->nanosleep.clockid; |
ad196384 | 1340 | struct timespec64 t; |
97735f25 | 1341 | |
ad196384 | 1342 | t = ns_to_timespec64(restart_block->nanosleep.expires); |
97735f25 | 1343 | |
86a9c446 | 1344 | return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t); |
1da177e4 LT |
1345 | } |
1346 | ||
29f1b2b0 ND |
1347 | #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED) |
1348 | #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED) | |
1da177e4 | 1349 | |
a924b04d | 1350 | static int process_cpu_clock_getres(const clockid_t which_clock, |
d2e3e0ca | 1351 | struct timespec64 *tp) |
1da177e4 LT |
1352 | { |
1353 | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); | |
1354 | } | |
a924b04d | 1355 | static int process_cpu_clock_get(const clockid_t which_clock, |
3c9c12f4 | 1356 | struct timespec64 *tp) |
1da177e4 LT |
1357 | { |
1358 | return posix_cpu_clock_get(PROCESS_CLOCK, tp); | |
1359 | } | |
1360 | static int process_cpu_timer_create(struct k_itimer *timer) | |
1361 | { | |
1362 | timer->it_clock = PROCESS_CLOCK; | |
1363 | return posix_cpu_timer_create(timer); | |
1364 | } | |
a924b04d | 1365 | static int process_cpu_nsleep(const clockid_t which_clock, int flags, |
938e7cf2 | 1366 | const struct timespec64 *rqtp) |
1da177e4 | 1367 | { |
99e6c0e6 | 1368 | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); |
1da177e4 | 1369 | } |
a924b04d | 1370 | static int thread_cpu_clock_getres(const clockid_t which_clock, |
d2e3e0ca | 1371 | struct timespec64 *tp) |
1da177e4 LT |
1372 | { |
1373 | return posix_cpu_clock_getres(THREAD_CLOCK, tp); | |
1374 | } | |
a924b04d | 1375 | static int thread_cpu_clock_get(const clockid_t which_clock, |
3c9c12f4 | 1376 | struct timespec64 *tp) |
1da177e4 LT |
1377 | { |
1378 | return posix_cpu_clock_get(THREAD_CLOCK, tp); | |
1379 | } | |
1380 | static int thread_cpu_timer_create(struct k_itimer *timer) | |
1381 | { | |
1382 | timer->it_clock = THREAD_CLOCK; | |
1383 | return posix_cpu_timer_create(timer); | |
1384 | } | |
1da177e4 | 1385 | |
d3ba5a9a | 1386 | const struct k_clock clock_posix_cpu = { |
1976945e TG |
1387 | .clock_getres = posix_cpu_clock_getres, |
1388 | .clock_set = posix_cpu_clock_set, | |
1389 | .clock_get = posix_cpu_clock_get, | |
1390 | .timer_create = posix_cpu_timer_create, | |
1391 | .nsleep = posix_cpu_nsleep, | |
1976945e TG |
1392 | .timer_set = posix_cpu_timer_set, |
1393 | .timer_del = posix_cpu_timer_del, | |
1394 | .timer_get = posix_cpu_timer_get, | |
f37fb0aa | 1395 | .timer_rearm = posix_cpu_timer_rearm, |
1976945e TG |
1396 | }; |
1397 | ||
d3ba5a9a CH |
1398 | const struct k_clock clock_process = { |
1399 | .clock_getres = process_cpu_clock_getres, | |
1400 | .clock_get = process_cpu_clock_get, | |
1401 | .timer_create = process_cpu_timer_create, | |
1402 | .nsleep = process_cpu_nsleep, | |
d3ba5a9a | 1403 | }; |
1da177e4 | 1404 | |
d3ba5a9a CH |
1405 | const struct k_clock clock_thread = { |
1406 | .clock_getres = thread_cpu_clock_getres, | |
1407 | .clock_get = thread_cpu_clock_get, | |
1408 | .timer_create = thread_cpu_timer_create, | |
1409 | }; |