]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/posix-timers.c
powerpc/rfi-flush: Always enable fallback flush on pseries
[mirror_ubuntu-artful-kernel.git] / kernel / time / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
61855b6b 38#include <linux/sched/task.h>
1da177e4 39
7c0f6ba6 40#include <linux/uaccess.h>
1da177e4
LT
41#include <linux/list.h>
42#include <linux/init.h>
43#include <linux/compiler.h>
5ed67f05 44#include <linux/hash.h>
0606f422 45#include <linux/posix-clock.h>
1da177e4
LT
46#include <linux/posix-timers.h>
47#include <linux/syscalls.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
9984de1a 50#include <linux/export.h>
5ed67f05 51#include <linux/hashtable.h>
edbeda46 52#include <linux/compat.h>
1da177e4 53
8b094cd0 54#include "timekeeping.h"
bab0aae9 55#include "posix-timers.h"
8b094cd0 56
1da177e4 57/*
5ed67f05
PE
58 * Management arrays for POSIX timers. Timers are now kept in static hash table
59 * with 512 entries.
60 * Timer ids are allocated by local routine, which selects proper hash head by
61 * key, constructed from current->signal address and per signal struct counter.
62 * This keeps timer ids unique per process, but now they can intersect between
63 * processes.
1da177e4
LT
64 */
65
66/*
67 * Lets keep our timers in a slab cache :-)
68 */
e18b890b 69static struct kmem_cache *posix_timers_cache;
5ed67f05
PE
70
71static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
72static DEFINE_SPINLOCK(hash_lock);
1da177e4 73
6631fa12
TG
74static const struct k_clock * const posix_clocks[];
75static const struct k_clock *clockid_to_kclock(const clockid_t id);
67edab48 76static const struct k_clock clock_realtime, clock_monotonic;
6631fa12 77
1da177e4
LT
78/*
79 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
80 * SIGEV values. Here we put out an error if this assumption fails.
81 */
82#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
83 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
84#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
85#endif
86
65da528d
TG
87/*
88 * parisc wants ENOTSUP instead of EOPNOTSUPP
89 */
90#ifndef ENOTSUP
91# define ENANOSLEEP_NOTSUP EOPNOTSUPP
92#else
93# define ENANOSLEEP_NOTSUP ENOTSUP
94#endif
1da177e4
LT
95
96/*
97 * The timer ID is turned into a timer address by idr_find().
98 * Verifying a valid ID consists of:
99 *
100 * a) checking that idr_find() returns other than -1.
101 * b) checking that the timer id matches the one in the timer itself.
102 * c) that the timer owner is in the callers thread group.
103 */
104
105/*
106 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
107 * to implement others. This structure defines the various
0061748d 108 * clocks.
1da177e4
LT
109 *
110 * RESOLUTION: Clock resolution is used to round up timer and interval
111 * times, NOT to report clock times, which are reported with as
112 * much resolution as the system can muster. In some cases this
113 * resolution may depend on the underlying clock hardware and
114 * may not be quantifiable until run time, and only then is the
115 * necessary code is written. The standard says we should say
116 * something about this issue in the documentation...
117 *
0061748d
RC
118 * FUNCTIONS: The CLOCKs structure defines possible functions to
119 * handle various clock functions.
1da177e4 120 *
0061748d
RC
121 * The standard POSIX timer management code assumes the
122 * following: 1.) The k_itimer struct (sched.h) is used for
123 * the timer. 2.) The list, it_lock, it_clock, it_id and
124 * it_pid fields are not modified by timer code.
1da177e4
LT
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
20f33a03
NK
133static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
134
135#define lock_timer(tid, flags) \
136({ struct k_itimer *__timr; \
137 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
138 __timr; \
139})
1da177e4 140
5ed67f05
PE
141static int hash(struct signal_struct *sig, unsigned int nr)
142{
143 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
144}
145
146static struct k_itimer *__posix_timers_find(struct hlist_head *head,
147 struct signal_struct *sig,
148 timer_t id)
149{
5ed67f05
PE
150 struct k_itimer *timer;
151
152 hlist_for_each_entry_rcu(timer, head, t_hash) {
153 if ((timer->it_signal == sig) && (timer->it_id == id))
154 return timer;
155 }
156 return NULL;
157}
158
159static struct k_itimer *posix_timer_by_id(timer_t id)
160{
161 struct signal_struct *sig = current->signal;
162 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
163
164 return __posix_timers_find(head, sig, id);
165}
166
167static int posix_timer_add(struct k_itimer *timer)
168{
169 struct signal_struct *sig = current->signal;
170 int first_free_id = sig->posix_timer_id;
171 struct hlist_head *head;
172 int ret = -ENOENT;
173
174 do {
175 spin_lock(&hash_lock);
176 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
177 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
178 hlist_add_head_rcu(&timer->t_hash, head);
179 ret = sig->posix_timer_id;
180 }
181 if (++sig->posix_timer_id < 0)
182 sig->posix_timer_id = 0;
183 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
184 /* Loop over all possible ids completed */
185 ret = -EAGAIN;
186 spin_unlock(&hash_lock);
187 } while (ret == -ENOENT);
188 return ret;
189}
190
1da177e4
LT
191static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
192{
193 spin_unlock_irqrestore(&timr->it_lock, flags);
194}
195
42285777 196/* Get clock_realtime */
3c9c12f4 197static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
42285777 198{
3c9c12f4 199 ktime_get_real_ts64(tp);
42285777
TG
200 return 0;
201}
202
26f9a479
TG
203/* Set clock_realtime */
204static int posix_clock_realtime_set(const clockid_t which_clock,
0fe6afe3 205 const struct timespec64 *tp)
26f9a479 206{
0fe6afe3 207 return do_sys_settimeofday64(tp, NULL);
26f9a479
TG
208}
209
f1f1d5eb
RC
210static int posix_clock_realtime_adj(const clockid_t which_clock,
211 struct timex *t)
212{
213 return do_adjtimex(t);
214}
215
becf8b5d
TG
216/*
217 * Get monotonic time for posix timers
218 */
3c9c12f4 219static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
becf8b5d 220{
3c9c12f4 221 ktime_get_ts64(tp);
becf8b5d
TG
222 return 0;
223}
1da177e4 224
2d42244a 225/*
7fdd7f89 226 * Get monotonic-raw time for posix timers
2d42244a 227 */
3c9c12f4 228static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
2d42244a 229{
3c9c12f4 230 getrawmonotonic64(tp);
2d42244a
JS
231 return 0;
232}
233
da15cfda 234
3c9c12f4 235static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
da15cfda 236{
3c9c12f4 237 *tp = current_kernel_time64();
da15cfda
JS
238 return 0;
239}
240
241static int posix_get_monotonic_coarse(clockid_t which_clock,
3c9c12f4 242 struct timespec64 *tp)
da15cfda 243{
3c9c12f4 244 *tp = get_monotonic_coarse64();
da15cfda
JS
245 return 0;
246}
247
d2e3e0ca 248static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
da15cfda 249{
d2e3e0ca 250 *tp = ktime_to_timespec64(KTIME_LOW_RES);
da15cfda
JS
251 return 0;
252}
7fdd7f89 253
3c9c12f4 254static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
7fdd7f89 255{
3c9c12f4 256 get_monotonic_boottime64(tp);
7fdd7f89
JS
257 return 0;
258}
259
3c9c12f4 260static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
1ff3c967 261{
3c9c12f4 262 timekeeping_clocktai64(tp);
1ff3c967
JS
263 return 0;
264}
7fdd7f89 265
d2e3e0ca 266static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
056a3cac
TG
267{
268 tp->tv_sec = 0;
269 tp->tv_nsec = hrtimer_resolution;
270 return 0;
271}
272
1da177e4
LT
273/*
274 * Initialize everything, well, just everything in Posix clocks/timers ;)
275 */
276static __init int init_posix_timers(void)
277{
1da177e4 278 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
279 sizeof (struct k_itimer), 0, SLAB_PANIC,
280 NULL);
1da177e4
LT
281 return 0;
282}
1da177e4
LT
283__initcall(init_posix_timers);
284
f37fb0aa 285static void common_hrtimer_rearm(struct k_itimer *timr)
1da177e4 286{
44f21475
RZ
287 struct hrtimer *timer = &timr->it.real.timer;
288
80105cd0 289 if (!timr->it_interval)
1da177e4
LT
290 return;
291
4d672e7a
DL
292 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
293 timer->base->get_time(),
80105cd0 294 timr->it_interval);
44f21475 295 hrtimer_restart(timer);
1da177e4
LT
296}
297
298/*
299 * This function is exported for use by the signal deliver code. It is
300 * called just prior to the info block being released and passes that
301 * block to us. It's function is to update the overrun entry AND to
302 * restart the timer. It should only be called if the timer is to be
303 * restarted (i.e. we have flagged this in the sys_private entry of the
304 * info block).
305 *
25985edc 306 * To protect against the timer going away while the interrupt is queued,
1da177e4
LT
307 * we require that the it_requeue_pending flag be set.
308 */
96fe3b07 309void posixtimer_rearm(struct siginfo *info)
1da177e4
LT
310{
311 struct k_itimer *timr;
312 unsigned long flags;
313
314 timr = lock_timer(info->si_tid, &flags);
af888d67
TG
315 if (!timr)
316 return;
1da177e4 317
af888d67 318 if (timr->it_requeue_pending == info->si_sys_private) {
f37fb0aa 319 timr->kclock->timer_rearm(timr);
1da177e4 320
21e55c1f 321 timr->it_active = 1;
af888d67
TG
322 timr->it_overrun_last = timr->it_overrun;
323 timr->it_overrun = -1;
324 ++timr->it_requeue_pending;
325
54da1174 326 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
327 }
328
af888d67 329 unlock_timer(timr, flags);
1da177e4
LT
330}
331
ba661292 332int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 333{
27af4245
ON
334 struct task_struct *task;
335 int shared, ret = -1;
ba661292
ON
336 /*
337 * FIXME: if ->sigq is queued we can race with
96fe3b07 338 * dequeue_signal()->posixtimer_rearm().
ba661292
ON
339 *
340 * If dequeue_signal() sees the "right" value of
96fe3b07 341 * si_sys_private it calls posixtimer_rearm().
ba661292 342 * We re-queue ->sigq and drop ->it_lock().
96fe3b07 343 * posixtimer_rearm() locks the timer
ba661292
ON
344 * and re-schedules it while ->sigq is pending.
345 * Not really bad, but not that we want.
346 */
1da177e4 347 timr->sigq->info.si_sys_private = si_private;
1da177e4 348
27af4245
ON
349 rcu_read_lock();
350 task = pid_task(timr->it_pid, PIDTYPE_PID);
351 if (task) {
352 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
353 ret = send_sigqueue(timr->sigq, task, shared);
354 }
355 rcu_read_unlock();
4aa73611
ON
356 /* If we failed to send the signal the timer stops. */
357 return ret > 0;
1da177e4 358}
1da177e4
LT
359
360/*
361 * This function gets called when a POSIX.1b interval timer expires. It
362 * is used as a callback from the kernel internal timer. The
363 * run_timer_list code ALWAYS calls with interrupts on.
364
365 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
366 */
c9cb2e3d 367static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 368{
05cfb614 369 struct k_itimer *timr;
1da177e4 370 unsigned long flags;
becf8b5d 371 int si_private = 0;
c9cb2e3d 372 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 373
05cfb614 374 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 375 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 376
21e55c1f 377 timr->it_active = 0;
80105cd0 378 if (timr->it_interval != 0)
becf8b5d 379 si_private = ++timr->it_requeue_pending;
1da177e4 380
becf8b5d
TG
381 if (posix_timer_event(timr, si_private)) {
382 /*
383 * signal was not sent because of sig_ignor
384 * we will not get a call back to restart it AND
385 * it should be restarted.
386 */
80105cd0 387 if (timr->it_interval != 0) {
58229a18
TG
388 ktime_t now = hrtimer_cb_get_time(timer);
389
390 /*
391 * FIXME: What we really want, is to stop this
392 * timer completely and restart it in case the
393 * SIG_IGN is removed. This is a non trivial
394 * change which involves sighand locking
395 * (sigh !), which we don't want to do late in
396 * the release cycle.
397 *
398 * For now we just let timers with an interval
399 * less than a jiffie expire every jiffie to
400 * avoid softirq starvation in case of SIG_IGN
401 * and a very small interval, which would put
402 * the timer right back on the softirq pending
403 * list. By moving now ahead of time we trick
404 * hrtimer_forward() to expire the timer
405 * later, while we still maintain the overrun
406 * accuracy, but have some inconsistency in
407 * the timer_gettime() case. This is at least
408 * better than a starved softirq. A more
409 * complex fix which solves also another related
410 * inconsistency is already in the pipeline.
411 */
412#ifdef CONFIG_HIGH_RES_TIMERS
413 {
8b0e1953 414 ktime_t kj = NSEC_PER_SEC / HZ;
58229a18 415
80105cd0 416 if (timr->it_interval < kj)
58229a18
TG
417 now = ktime_add(now, kj);
418 }
419#endif
4d672e7a 420 timr->it_overrun += (unsigned int)
58229a18 421 hrtimer_forward(timer, now,
80105cd0 422 timr->it_interval);
becf8b5d 423 ret = HRTIMER_RESTART;
a0a0c28c 424 ++timr->it_requeue_pending;
21e55c1f 425 timr->it_active = 1;
1da177e4 426 }
1da177e4 427 }
1da177e4 428
becf8b5d
TG
429 unlock_timer(timr, flags);
430 return ret;
431}
1da177e4 432
27af4245 433static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
434{
435 struct task_struct *rtn = current->group_leader;
436
437 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 438 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 439 !same_thread_group(rtn, current) ||
1da177e4
LT
440 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
441 return NULL;
442
443 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
444 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
445 return NULL;
446
27af4245 447 return task_pid(rtn);
1da177e4
LT
448}
449
1da177e4
LT
450static struct k_itimer * alloc_posix_timer(void)
451{
452 struct k_itimer *tmr;
c3762229 453 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
454 if (!tmr)
455 return tmr;
1da177e4
LT
456 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
457 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 458 return NULL;
1da177e4 459 }
ba661292 460 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
461 return tmr;
462}
463
8af08871
ED
464static void k_itimer_rcu_free(struct rcu_head *head)
465{
466 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
467
468 kmem_cache_free(posix_timers_cache, tmr);
469}
470
1da177e4
LT
471#define IT_ID_SET 1
472#define IT_ID_NOT_SET 0
473static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
474{
475 if (it_id_set) {
476 unsigned long flags;
5ed67f05
PE
477 spin_lock_irqsave(&hash_lock, flags);
478 hlist_del_rcu(&tmr->t_hash);
479 spin_unlock_irqrestore(&hash_lock, flags);
1da177e4 480 }
89992102 481 put_pid(tmr->it_pid);
1da177e4 482 sigqueue_free(tmr->sigq);
8af08871 483 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
1da177e4
LT
484}
485
838394fb
TG
486static int common_timer_create(struct k_itimer *new_timer)
487{
488 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
489 return 0;
490}
491
1da177e4 492/* Create a POSIX.1b interval timer. */
2482097c
AV
493static int do_timer_create(clockid_t which_clock, struct sigevent *event,
494 timer_t __user *created_timer_id)
1da177e4 495{
d3ba5a9a 496 const struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 497 struct k_itimer *new_timer;
ef864c95 498 int error, new_timer_id;
1da177e4
LT
499 int it_id_set = IT_ID_NOT_SET;
500
838394fb 501 if (!kc)
1da177e4 502 return -EINVAL;
838394fb
TG
503 if (!kc->timer_create)
504 return -EOPNOTSUPP;
1da177e4
LT
505
506 new_timer = alloc_posix_timer();
507 if (unlikely(!new_timer))
508 return -EAGAIN;
509
510 spin_lock_init(&new_timer->it_lock);
5ed67f05
PE
511 new_timer_id = posix_timer_add(new_timer);
512 if (new_timer_id < 0) {
513 error = new_timer_id;
1da177e4
LT
514 goto out;
515 }
516
517 it_id_set = IT_ID_SET;
518 new_timer->it_id = (timer_t) new_timer_id;
519 new_timer->it_clock = which_clock;
d97bb75d 520 new_timer->kclock = kc;
1da177e4 521 new_timer->it_overrun = -1;
1da177e4 522
2482097c 523 if (event) {
36b2f046 524 rcu_read_lock();
2482097c 525 new_timer->it_pid = get_pid(good_sigevent(event));
36b2f046 526 rcu_read_unlock();
89992102 527 if (!new_timer->it_pid) {
1da177e4
LT
528 error = -EINVAL;
529 goto out;
530 }
2482097c
AV
531 new_timer->it_sigev_notify = event->sigev_notify;
532 new_timer->sigq->info.si_signo = event->sigev_signo;
533 new_timer->sigq->info.si_value = event->sigev_value;
1da177e4 534 } else {
2482097c
AV
535 new_timer->it_sigev_notify = SIGEV_SIGNAL;
536 new_timer->sigq->info.si_signo = SIGALRM;
537 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
538 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
89992102 539 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
540 }
541
717835d9 542 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 543 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 544
2b08de00
AV
545 if (copy_to_user(created_timer_id,
546 &new_timer_id, sizeof (new_timer_id))) {
547 error = -EFAULT;
548 goto out;
549 }
550
838394fb 551 error = kc->timer_create(new_timer);
45e0fffc
AV
552 if (error)
553 goto out;
554
36b2f046 555 spin_lock_irq(&current->sighand->siglock);
27af4245 556 new_timer->it_signal = current->signal;
36b2f046
ON
557 list_add(&new_timer->list, &current->signal->posix_timers);
558 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
559
560 return 0;
838394fb 561 /*
1da177e4
LT
562 * In the case of the timer belonging to another task, after
563 * the task is unlocked, the timer is owned by the other task
564 * and may cease to exist at any time. Don't use or modify
565 * new_timer after the unlock call.
566 */
1da177e4 567out:
ef864c95 568 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
569 return error;
570}
571
2482097c
AV
572SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
573 struct sigevent __user *, timer_event_spec,
574 timer_t __user *, created_timer_id)
575{
576 if (timer_event_spec) {
577 sigevent_t event;
578
579 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
580 return -EFAULT;
581 return do_timer_create(which_clock, &event, created_timer_id);
582 }
583 return do_timer_create(which_clock, NULL, created_timer_id);
584}
585
586#ifdef CONFIG_COMPAT
587COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
588 struct compat_sigevent __user *, timer_event_spec,
589 timer_t __user *, created_timer_id)
590{
591 if (timer_event_spec) {
592 sigevent_t event;
593
594 if (get_compat_sigevent(&event, timer_event_spec))
595 return -EFAULT;
596 return do_timer_create(which_clock, &event, created_timer_id);
597 }
598 return do_timer_create(which_clock, NULL, created_timer_id);
599}
600#endif
601
1da177e4
LT
602/*
603 * Locking issues: We need to protect the result of the id look up until
604 * we get the timer locked down so it is not deleted under us. The
605 * removal is done under the idr spinlock so we use that here to bridge
606 * the find to the timer lock. To avoid a dead lock, the timer id MUST
607 * be release with out holding the timer lock.
608 */
20f33a03 609static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
610{
611 struct k_itimer *timr;
8af08871 612
e182bb38
TH
613 /*
614 * timer_t could be any type >= int and we want to make sure any
615 * @timer_id outside positive int range fails lookup.
616 */
617 if ((unsigned long long)timer_id > INT_MAX)
618 return NULL;
619
8af08871 620 rcu_read_lock();
5ed67f05 621 timr = posix_timer_by_id(timer_id);
1da177e4 622 if (timr) {
8af08871 623 spin_lock_irqsave(&timr->it_lock, *flags);
89992102 624 if (timr->it_signal == current->signal) {
8af08871 625 rcu_read_unlock();
31d92845
ON
626 return timr;
627 }
8af08871 628 spin_unlock_irqrestore(&timr->it_lock, *flags);
31d92845 629 }
8af08871 630 rcu_read_unlock();
1da177e4 631
31d92845 632 return NULL;
1da177e4
LT
633}
634
91d57bae
TG
635static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
636{
637 struct hrtimer *timer = &timr->it.real.timer;
638
639 return __hrtimer_expires_remaining_adjusted(timer, now);
640}
641
642static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
643{
644 struct hrtimer *timer = &timr->it.real.timer;
645
646 return (int)hrtimer_forward(timer, now, timr->it_interval);
647}
648
1da177e4
LT
649/*
650 * Get the time remaining on a POSIX.1b interval timer. This function
651 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
652 * mess with irq.
653 *
654 * We have a couple of messes to clean up here. First there is the case
655 * of a timer that has a requeue pending. These timers should appear to
656 * be in the timer list with an expiry as if we were to requeue them
657 * now.
658 *
659 * The second issue is the SIGEV_NONE timer which may be active but is
660 * not really ever put in the timer list (to save system resources).
661 * This timer may be expired, and if so, we will do it here. Otherwise
662 * it is the same as a requeue pending timer WRT to what we should
663 * report.
664 */
f2c45807 665void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
1da177e4 666{
91d57bae 667 const struct k_clock *kc = timr->kclock;
3b98a532 668 ktime_t now, remaining, iv;
91d57bae
TG
669 struct timespec64 ts64;
670 bool sig_none;
1da177e4 671
c6503be5 672 sig_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE;
80105cd0 673 iv = timr->it_interval;
3b98a532 674
becf8b5d 675 /* interval timer ? */
91d57bae 676 if (iv) {
5f252b32 677 cur_setting->it_interval = ktime_to_timespec64(iv);
91d57bae
TG
678 } else if (!timr->it_active) {
679 /*
680 * SIGEV_NONE oneshot timers are never queued. Check them
681 * below.
682 */
683 if (!sig_none)
684 return;
685 }
3b98a532 686
91d57bae
TG
687 /*
688 * The timespec64 based conversion is suboptimal, but it's not
689 * worth to implement yet another callback.
690 */
691 kc->clock_get(timr->it_clock, &ts64);
692 now = timespec64_to_ktime(ts64);
3b98a532 693
becf8b5d 694 /*
91d57bae
TG
695 * When a requeue is pending or this is a SIGEV_NONE timer move the
696 * expiry time forward by intervals, so expiry is > now.
becf8b5d 697 */
91d57bae
TG
698 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
699 timr->it_overrun += kc->timer_forward(timr, now);
3b98a532 700
91d57bae 701 remaining = kc->timer_remaining(timr, now);
becf8b5d 702 /* Return 0 only, when the timer is expired and not pending */
2456e855 703 if (remaining <= 0) {
3b98a532
RZ
704 /*
705 * A single shot SIGEV_NONE timer must return 0, when
706 * it is expired !
707 */
91d57bae 708 if (!sig_none)
3b98a532 709 cur_setting->it_value.tv_nsec = 1;
91d57bae 710 } else {
5f252b32 711 cur_setting->it_value = ktime_to_timespec64(remaining);
91d57bae 712 }
1da177e4
LT
713}
714
715/* Get the time remaining on a POSIX.1b interval timer. */
b0dc1242 716static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
1da177e4 717{
a7319fa2 718 struct k_itimer *timr;
d3ba5a9a 719 const struct k_clock *kc;
1da177e4 720 unsigned long flags;
a7319fa2 721 int ret = 0;
1da177e4
LT
722
723 timr = lock_timer(timer_id, &flags);
724 if (!timr)
725 return -EINVAL;
726
b0dc1242 727 memset(setting, 0, sizeof(*setting));
d97bb75d 728 kc = timr->kclock;
a7319fa2
TG
729 if (WARN_ON_ONCE(!kc || !kc->timer_get))
730 ret = -EINVAL;
731 else
b0dc1242 732 kc->timer_get(timr, setting);
1da177e4
LT
733
734 unlock_timer(timr, flags);
b0dc1242
AV
735 return ret;
736}
1da177e4 737
b0dc1242
AV
738/* Get the time remaining on a POSIX.1b interval timer. */
739SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
740 struct itimerspec __user *, setting)
741{
725816e8 742 struct itimerspec64 cur_setting;
1da177e4 743
725816e8 744 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 745 if (!ret) {
725816e8 746 if (put_itimerspec64(&cur_setting, setting))
b0dc1242
AV
747 ret = -EFAULT;
748 }
a7319fa2 749 return ret;
1da177e4 750}
becf8b5d 751
b0dc1242
AV
752#ifdef CONFIG_COMPAT
753COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
754 struct compat_itimerspec __user *, setting)
755{
725816e8 756 struct itimerspec64 cur_setting;
b0dc1242 757
725816e8 758 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 759 if (!ret) {
725816e8 760 if (put_compat_itimerspec64(&cur_setting, setting))
b0dc1242
AV
761 ret = -EFAULT;
762 }
763 return ret;
764}
765#endif
766
1da177e4
LT
767/*
768 * Get the number of overruns of a POSIX.1b interval timer. This is to
769 * be the overrun of the timer last delivered. At the same time we are
770 * accumulating overruns on the next timer. The overrun is frozen when
771 * the signal is delivered, either at the notify time (if the info block
772 * is not queued) or at the actual delivery time (as we are informed by
96fe3b07 773 * the call back to posixtimer_rearm(). So all we need to do is
1da177e4
LT
774 * to pick up the frozen overrun.
775 */
362e9c07 776SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
777{
778 struct k_itimer *timr;
779 int overrun;
5ba25331 780 unsigned long flags;
1da177e4
LT
781
782 timr = lock_timer(timer_id, &flags);
783 if (!timr)
784 return -EINVAL;
785
786 overrun = timr->it_overrun_last;
787 unlock_timer(timr, flags);
788
789 return overrun;
790}
1da177e4 791
eae1c4ae
TG
792static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
793 bool absolute, bool sigev_none)
794{
795 struct hrtimer *timer = &timr->it.real.timer;
796 enum hrtimer_mode mode;
797
798 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
67edab48
TG
799 /*
800 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
801 * clock modifications, so they become CLOCK_MONOTONIC based under the
802 * hood. See hrtimer_init(). Update timr->kclock, so the generic
803 * functions which use timr->kclock->clock_get() work.
804 *
805 * Note: it_clock stays unmodified, because the next timer_set() might
806 * use ABSTIME, so it needs to switch back.
807 */
808 if (timr->it_clock == CLOCK_REALTIME)
809 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
810
eae1c4ae
TG
811 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
812 timr->it.real.timer.function = posix_timer_fn;
813
814 if (!absolute)
815 expires = ktime_add_safe(expires, timer->base->get_time());
816 hrtimer_set_expires(timer, expires);
817
818 if (!sigev_none)
819 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
820}
821
822static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
823{
824 return hrtimer_try_to_cancel(&timr->it.real.timer);
825}
826
1da177e4 827/* Set a POSIX.1b interval timer. */
f2c45807
TG
828int common_timer_set(struct k_itimer *timr, int flags,
829 struct itimerspec64 *new_setting,
830 struct itimerspec64 *old_setting)
1da177e4 831{
eae1c4ae
TG
832 const struct k_clock *kc = timr->kclock;
833 bool sigev_none;
834 ktime_t expires;
1da177e4
LT
835
836 if (old_setting)
837 common_timer_get(timr, old_setting);
838
eae1c4ae 839 /* Prevent rearming by clearing the interval */
80105cd0 840 timr->it_interval = 0;
1da177e4 841 /*
eae1c4ae
TG
842 * Careful here. On SMP systems the timer expiry function could be
843 * active and spinning on timr->it_lock.
1da177e4 844 */
eae1c4ae 845 if (kc->timer_try_to_cancel(timr) < 0)
1da177e4 846 return TIMER_RETRY;
1da177e4 847
21e55c1f
TG
848 timr->it_active = 0;
849 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
1da177e4
LT
850 ~REQUEUE_PENDING;
851 timr->it_overrun_last = 0;
1da177e4 852
eae1c4ae 853 /* Switch off the timer when it_value is zero */
becf8b5d
TG
854 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
855 return 0;
1da177e4 856
80105cd0 857 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
eae1c4ae
TG
858 expires = timespec64_to_ktime(new_setting->it_value);
859 sigev_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE;
becf8b5d 860
eae1c4ae
TG
861 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
862 timr->it_active = !sigev_none;
1da177e4
LT
863 return 0;
864}
865
1acbe770
AV
866static int do_timer_settime(timer_t timer_id, int flags,
867 struct itimerspec64 *new_spec64,
868 struct itimerspec64 *old_spec64)
1da177e4 869{
1acbe770 870 const struct k_clock *kc;
5f252b32 871 struct k_itimer *timr;
5ba25331 872 unsigned long flag;
5f252b32 873 int error = 0;
1da177e4 874
1acbe770
AV
875 if (!timespec64_valid(&new_spec64->it_interval) ||
876 !timespec64_valid(&new_spec64->it_value))
1da177e4
LT
877 return -EINVAL;
878
1acbe770
AV
879 if (old_spec64)
880 memset(old_spec64, 0, sizeof(*old_spec64));
1da177e4
LT
881retry:
882 timr = lock_timer(timer_id, &flag);
883 if (!timr)
884 return -EINVAL;
885
d97bb75d 886 kc = timr->kclock;
27722df1
TG
887 if (WARN_ON_ONCE(!kc || !kc->timer_set))
888 error = -EINVAL;
889 else
1acbe770 890 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
1da177e4
LT
891
892 unlock_timer(timr, flag);
893 if (error == TIMER_RETRY) {
1acbe770 894 old_spec64 = NULL; // We already got the old time...
1da177e4
LT
895 goto retry;
896 }
897
1acbe770
AV
898 return error;
899}
1da177e4 900
1acbe770
AV
901/* Set a POSIX.1b interval timer */
902SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
903 const struct itimerspec __user *, new_setting,
904 struct itimerspec __user *, old_setting)
905{
725816e8
DD
906 struct itimerspec64 new_spec, old_spec;
907 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
1acbe770
AV
908 int error = 0;
909
910 if (!new_setting)
911 return -EINVAL;
912
725816e8 913 if (get_itimerspec64(&new_spec, new_setting))
1acbe770 914 return -EFAULT;
1acbe770 915
725816e8 916 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 917 if (!error && old_setting) {
725816e8 918 if (put_itimerspec64(&old_spec, old_setting))
1acbe770
AV
919 error = -EFAULT;
920 }
921 return error;
922}
923
924#ifdef CONFIG_COMPAT
925COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
926 struct compat_itimerspec __user *, new,
927 struct compat_itimerspec __user *, old)
928{
725816e8
DD
929 struct itimerspec64 new_spec, old_spec;
930 struct itimerspec64 *rtn = old ? &old_spec : NULL;
1acbe770
AV
931 int error = 0;
932
933 if (!new)
934 return -EINVAL;
725816e8 935 if (get_compat_itimerspec64(&new_spec, new))
1acbe770
AV
936 return -EFAULT;
937
725816e8 938 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 939 if (!error && old) {
725816e8 940 if (put_compat_itimerspec64(&old_spec, old))
1acbe770
AV
941 error = -EFAULT;
942 }
1da177e4
LT
943 return error;
944}
1acbe770 945#endif
1da177e4 946
f2c45807 947int common_timer_del(struct k_itimer *timer)
1da177e4 948{
eae1c4ae 949 const struct k_clock *kc = timer->kclock;
f972be33 950
eae1c4ae
TG
951 timer->it_interval = 0;
952 if (kc->timer_try_to_cancel(timer) < 0)
1da177e4 953 return TIMER_RETRY;
21e55c1f 954 timer->it_active = 0;
1da177e4
LT
955 return 0;
956}
957
958static inline int timer_delete_hook(struct k_itimer *timer)
959{
d97bb75d 960 const struct k_clock *kc = timer->kclock;
6761c670
TG
961
962 if (WARN_ON_ONCE(!kc || !kc->timer_del))
963 return -EINVAL;
964 return kc->timer_del(timer);
1da177e4
LT
965}
966
967/* Delete a POSIX.1b interval timer. */
362e9c07 968SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
969{
970 struct k_itimer *timer;
5ba25331 971 unsigned long flags;
1da177e4 972
1da177e4 973retry_delete:
1da177e4
LT
974 timer = lock_timer(timer_id, &flags);
975 if (!timer)
976 return -EINVAL;
977
becf8b5d 978 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
979 unlock_timer(timer, flags);
980 goto retry_delete;
981 }
becf8b5d 982
1da177e4
LT
983 spin_lock(&current->sighand->siglock);
984 list_del(&timer->list);
985 spin_unlock(&current->sighand->siglock);
986 /*
987 * This keeps any tasks waiting on the spin lock from thinking
988 * they got something (see the lock code above).
989 */
89992102 990 timer->it_signal = NULL;
4b7a1304 991
1da177e4
LT
992 unlock_timer(timer, flags);
993 release_posix_timer(timer, IT_ID_SET);
994 return 0;
995}
becf8b5d 996
1da177e4
LT
997/*
998 * return timer owned by the process, used by exit_itimers
999 */
858119e1 1000static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
1001{
1002 unsigned long flags;
1003
1da177e4 1004retry_delete:
1da177e4
LT
1005 spin_lock_irqsave(&timer->it_lock, flags);
1006
becf8b5d 1007 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
1008 unlock_timer(timer, flags);
1009 goto retry_delete;
1010 }
1da177e4
LT
1011 list_del(&timer->list);
1012 /*
1013 * This keeps any tasks waiting on the spin lock from thinking
1014 * they got something (see the lock code above).
1015 */
89992102 1016 timer->it_signal = NULL;
4b7a1304 1017
1da177e4
LT
1018 unlock_timer(timer, flags);
1019 release_posix_timer(timer, IT_ID_SET);
1020}
1021
1022/*
25f407f0 1023 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
1024 * references to the shared signal_struct.
1025 */
1026void exit_itimers(struct signal_struct *sig)
1027{
1028 struct k_itimer *tmr;
1029
1030 while (!list_empty(&sig->posix_timers)) {
1031 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1032 itimer_delete(tmr);
1033 }
1034}
1035
362e9c07
HC
1036SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1037 const struct timespec __user *, tp)
1da177e4 1038{
d3ba5a9a 1039 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1040 struct timespec64 new_tp;
1da177e4 1041
26f9a479 1042 if (!kc || !kc->clock_set)
1da177e4 1043 return -EINVAL;
26f9a479 1044
5c499410 1045 if (get_timespec64(&new_tp, tp))
1da177e4
LT
1046 return -EFAULT;
1047
5c499410 1048 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
1049}
1050
362e9c07
HC
1051SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1052 struct timespec __user *,tp)
1da177e4 1053{
d3ba5a9a 1054 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1055 struct timespec64 kernel_tp;
1da177e4
LT
1056 int error;
1057
42285777 1058 if (!kc)
1da177e4 1059 return -EINVAL;
42285777 1060
5c499410 1061 error = kc->clock_get(which_clock, &kernel_tp);
42285777 1062
5c499410 1063 if (!error && put_timespec64(&kernel_tp, tp))
1da177e4
LT
1064 error = -EFAULT;
1065
1066 return error;
1da177e4
LT
1067}
1068
f1f1d5eb
RC
1069SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1070 struct timex __user *, utx)
1071{
d3ba5a9a 1072 const struct k_clock *kc = clockid_to_kclock(which_clock);
f1f1d5eb
RC
1073 struct timex ktx;
1074 int err;
1075
1076 if (!kc)
1077 return -EINVAL;
1078 if (!kc->clock_adj)
1079 return -EOPNOTSUPP;
1080
1081 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1082 return -EFAULT;
1083
1084 err = kc->clock_adj(which_clock, &ktx);
1085
f0dbe81f 1086 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
f1f1d5eb
RC
1087 return -EFAULT;
1088
1089 return err;
1090}
1091
d822cdcc
AV
1092SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1093 struct timespec __user *, tp)
1094{
1095 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1096 struct timespec64 rtn_tp;
d822cdcc
AV
1097 int error;
1098
1099 if (!kc)
1100 return -EINVAL;
1101
5c499410 1102 error = kc->clock_getres(which_clock, &rtn_tp);
d822cdcc 1103
5c499410 1104 if (!error && tp && put_timespec64(&rtn_tp, tp))
d822cdcc
AV
1105 error = -EFAULT;
1106
1107 return error;
1108}
1109
3a4d44b6
AV
1110#ifdef CONFIG_COMPAT
1111
d822cdcc
AV
1112COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1113 struct compat_timespec __user *, tp)
1114{
1115 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1116 struct timespec64 ts;
d822cdcc
AV
1117
1118 if (!kc || !kc->clock_set)
1119 return -EINVAL;
1120
5c499410 1121 if (compat_get_timespec64(&ts, tp))
d822cdcc
AV
1122 return -EFAULT;
1123
5c499410 1124 return kc->clock_set(which_clock, &ts);
d822cdcc
AV
1125}
1126
1127COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1128 struct compat_timespec __user *, tp)
1129{
1130 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1131 struct timespec64 ts;
1132 int err;
d822cdcc
AV
1133
1134 if (!kc)
1135 return -EINVAL;
1136
5c499410 1137 err = kc->clock_get(which_clock, &ts);
d822cdcc 1138
5c499410
DD
1139 if (!err && compat_put_timespec64(&ts, tp))
1140 err = -EFAULT;
d822cdcc 1141
5c499410 1142 return err;
d822cdcc
AV
1143}
1144
3a4d44b6
AV
1145COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1146 struct compat_timex __user *, utp)
1147{
1148 const struct k_clock *kc = clockid_to_kclock(which_clock);
1149 struct timex ktx;
1150 int err;
1151
1152 if (!kc)
1153 return -EINVAL;
1154 if (!kc->clock_adj)
1155 return -EOPNOTSUPP;
1156
1157 err = compat_get_timex(&ktx, utp);
1158 if (err)
1159 return err;
1160
1161 err = kc->clock_adj(which_clock, &ktx);
1162
1163 if (err >= 0)
1164 err = compat_put_timex(utp, &ktx);
1165
1166 return err;
1167}
3a4d44b6 1168
d822cdcc
AV
1169COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1170 struct compat_timespec __user *, tp)
1da177e4 1171{
d3ba5a9a 1172 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1173 struct timespec64 ts;
1174 int err;
1da177e4 1175
e5e542ee 1176 if (!kc)
1da177e4
LT
1177 return -EINVAL;
1178
5c499410
DD
1179 err = kc->clock_getres(which_clock, &ts);
1180 if (!err && tp && compat_put_timespec64(&ts, tp))
1181 return -EFAULT;
1da177e4 1182
5c499410 1183 return err;
1da177e4 1184}
5c499410 1185
d822cdcc 1186#endif
1da177e4 1187
97735f25
TG
1188/*
1189 * nanosleep for monotonic and realtime clocks
1190 */
1191static int common_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1192 const struct timespec64 *rqtp)
97735f25 1193{
938e7cf2 1194 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
080344b9
ON
1195 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1196 which_clock);
97735f25 1197}
1da177e4 1198
362e9c07
HC
1199SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1200 const struct timespec __user *, rqtp,
1201 struct timespec __user *, rmtp)
1da177e4 1202{
d3ba5a9a 1203 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1204 struct timespec64 t;
1da177e4 1205
a5cd2880 1206 if (!kc)
1da177e4 1207 return -EINVAL;
a5cd2880
TG
1208 if (!kc->nsleep)
1209 return -ENANOSLEEP_NOTSUP;
1da177e4 1210
c0edd7c9 1211 if (get_timespec64(&t, rqtp))
1da177e4
LT
1212 return -EFAULT;
1213
c0edd7c9 1214 if (!timespec64_valid(&t))
1da177e4 1215 return -EINVAL;
99e6c0e6
AV
1216 if (flags & TIMER_ABSTIME)
1217 rmtp = NULL;
edbeda46 1218 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
99e6c0e6 1219 current->restart_block.nanosleep.rmtp = rmtp;
1da177e4 1220
c0edd7c9 1221 return kc->nsleep(which_clock, flags, &t);
1da177e4 1222}
1711ef38 1223
edbeda46
AV
1224#ifdef CONFIG_COMPAT
1225COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1226 struct compat_timespec __user *, rqtp,
1227 struct compat_timespec __user *, rmtp)
1711ef38 1228{
d3ba5a9a 1229 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1230 struct timespec64 t;
59bd5bc2 1231
edbeda46 1232 if (!kc)
59bd5bc2 1233 return -EINVAL;
edbeda46
AV
1234 if (!kc->nsleep)
1235 return -ENANOSLEEP_NOTSUP;
1236
c0edd7c9 1237 if (compat_get_timespec64(&t, rqtp))
edbeda46 1238 return -EFAULT;
1711ef38 1239
c0edd7c9 1240 if (!timespec64_valid(&t))
edbeda46
AV
1241 return -EINVAL;
1242 if (flags & TIMER_ABSTIME)
1243 rmtp = NULL;
1244 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1245 current->restart_block.nanosleep.compat_rmtp = rmtp;
1246
c0edd7c9 1247 return kc->nsleep(which_clock, flags, &t);
1711ef38 1248}
edbeda46 1249#endif
6631fa12
TG
1250
1251static const struct k_clock clock_realtime = {
eae1c4ae
TG
1252 .clock_getres = posix_get_hrtimer_res,
1253 .clock_get = posix_clock_realtime_get,
1254 .clock_set = posix_clock_realtime_set,
1255 .clock_adj = posix_clock_realtime_adj,
1256 .nsleep = common_nsleep,
eae1c4ae
TG
1257 .timer_create = common_timer_create,
1258 .timer_set = common_timer_set,
1259 .timer_get = common_timer_get,
1260 .timer_del = common_timer_del,
1261 .timer_rearm = common_hrtimer_rearm,
1262 .timer_forward = common_hrtimer_forward,
1263 .timer_remaining = common_hrtimer_remaining,
1264 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1265 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1266};
1267
1268static const struct k_clock clock_monotonic = {
eae1c4ae
TG
1269 .clock_getres = posix_get_hrtimer_res,
1270 .clock_get = posix_ktime_get_ts,
1271 .nsleep = common_nsleep,
eae1c4ae
TG
1272 .timer_create = common_timer_create,
1273 .timer_set = common_timer_set,
1274 .timer_get = common_timer_get,
1275 .timer_del = common_timer_del,
1276 .timer_rearm = common_hrtimer_rearm,
1277 .timer_forward = common_hrtimer_forward,
1278 .timer_remaining = common_hrtimer_remaining,
1279 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1280 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1281};
1282
1283static const struct k_clock clock_monotonic_raw = {
eae1c4ae
TG
1284 .clock_getres = posix_get_hrtimer_res,
1285 .clock_get = posix_get_monotonic_raw,
6631fa12
TG
1286};
1287
1288static const struct k_clock clock_realtime_coarse = {
eae1c4ae
TG
1289 .clock_getres = posix_get_coarse_res,
1290 .clock_get = posix_get_realtime_coarse,
6631fa12
TG
1291};
1292
1293static const struct k_clock clock_monotonic_coarse = {
eae1c4ae
TG
1294 .clock_getres = posix_get_coarse_res,
1295 .clock_get = posix_get_monotonic_coarse,
6631fa12
TG
1296};
1297
1298static const struct k_clock clock_tai = {
eae1c4ae
TG
1299 .clock_getres = posix_get_hrtimer_res,
1300 .clock_get = posix_get_tai,
1301 .nsleep = common_nsleep,
eae1c4ae
TG
1302 .timer_create = common_timer_create,
1303 .timer_set = common_timer_set,
1304 .timer_get = common_timer_get,
1305 .timer_del = common_timer_del,
1306 .timer_rearm = common_hrtimer_rearm,
1307 .timer_forward = common_hrtimer_forward,
1308 .timer_remaining = common_hrtimer_remaining,
1309 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1310 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1311};
1312
1313static const struct k_clock clock_boottime = {
eae1c4ae
TG
1314 .clock_getres = posix_get_hrtimer_res,
1315 .clock_get = posix_get_boottime,
1316 .nsleep = common_nsleep,
eae1c4ae
TG
1317 .timer_create = common_timer_create,
1318 .timer_set = common_timer_set,
1319 .timer_get = common_timer_get,
1320 .timer_del = common_timer_del,
1321 .timer_rearm = common_hrtimer_rearm,
1322 .timer_forward = common_hrtimer_forward,
1323 .timer_remaining = common_hrtimer_remaining,
1324 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1325 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1326};
1327
1328static const struct k_clock * const posix_clocks[] = {
1329 [CLOCK_REALTIME] = &clock_realtime,
1330 [CLOCK_MONOTONIC] = &clock_monotonic,
1331 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1332 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1333 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1334 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1335 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1336 [CLOCK_BOOTTIME] = &clock_boottime,
1337 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1338 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1339 [CLOCK_TAI] = &clock_tai,
1340};
1341
1342static const struct k_clock *clockid_to_kclock(const clockid_t id)
1343{
1344 if (id < 0)
1345 return (id & CLOCKFD_MASK) == CLOCKFD ?
1346 &clock_posix_dynamic : &clock_posix_cpu;
1347
1348 if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id])
1349 return NULL;
1350 return posix_clocks[id];
1351}