]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/time/posix-timers.c
x86/speculation/mds: Conditionally clear CPU buffers on idle entry
[mirror_ubuntu-bionic-kernel.git] / kernel / time / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
61855b6b 38#include <linux/sched/task.h>
1da177e4 39
7c0f6ba6 40#include <linux/uaccess.h>
1da177e4
LT
41#include <linux/list.h>
42#include <linux/init.h>
43#include <linux/compiler.h>
5ed67f05 44#include <linux/hash.h>
0606f422 45#include <linux/posix-clock.h>
1da177e4
LT
46#include <linux/posix-timers.h>
47#include <linux/syscalls.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
9984de1a 50#include <linux/export.h>
5ed67f05 51#include <linux/hashtable.h>
edbeda46 52#include <linux/compat.h>
2565de67 53#include <linux/nospec.h>
1da177e4 54
8b094cd0 55#include "timekeeping.h"
bab0aae9 56#include "posix-timers.h"
8b094cd0 57
1da177e4 58/*
5ed67f05
PE
59 * Management arrays for POSIX timers. Timers are now kept in static hash table
60 * with 512 entries.
61 * Timer ids are allocated by local routine, which selects proper hash head by
62 * key, constructed from current->signal address and per signal struct counter.
63 * This keeps timer ids unique per process, but now they can intersect between
64 * processes.
1da177e4
LT
65 */
66
67/*
68 * Lets keep our timers in a slab cache :-)
69 */
e18b890b 70static struct kmem_cache *posix_timers_cache;
5ed67f05
PE
71
72static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73static DEFINE_SPINLOCK(hash_lock);
1da177e4 74
6631fa12
TG
75static const struct k_clock * const posix_clocks[];
76static const struct k_clock *clockid_to_kclock(const clockid_t id);
67edab48 77static const struct k_clock clock_realtime, clock_monotonic;
6631fa12 78
1da177e4
LT
79/*
80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81 * SIGEV values. Here we put out an error if this assumption fails.
82 */
83#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86#endif
87
65da528d
TG
88/*
89 * parisc wants ENOTSUP instead of EOPNOTSUPP
90 */
91#ifndef ENOTSUP
92# define ENANOSLEEP_NOTSUP EOPNOTSUPP
93#else
94# define ENANOSLEEP_NOTSUP ENOTSUP
95#endif
1da177e4
LT
96
97/*
98 * The timer ID is turned into a timer address by idr_find().
99 * Verifying a valid ID consists of:
100 *
101 * a) checking that idr_find() returns other than -1.
102 * b) checking that the timer id matches the one in the timer itself.
103 * c) that the timer owner is in the callers thread group.
104 */
105
106/*
107 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
108 * to implement others. This structure defines the various
0061748d 109 * clocks.
1da177e4
LT
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
0061748d
RC
119 * FUNCTIONS: The CLOCKs structure defines possible functions to
120 * handle various clock functions.
1da177e4 121 *
0061748d
RC
122 * The standard POSIX timer management code assumes the
123 * following: 1.) The k_itimer struct (sched.h) is used for
124 * the timer. 2.) The list, it_lock, it_clock, it_id and
125 * it_pid fields are not modified by timer code.
1da177e4
LT
126 *
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
133 */
20f33a03
NK
134static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
135
136#define lock_timer(tid, flags) \
137({ struct k_itimer *__timr; \
138 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
139 __timr; \
140})
1da177e4 141
5ed67f05
PE
142static int hash(struct signal_struct *sig, unsigned int nr)
143{
144 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
145}
146
147static struct k_itimer *__posix_timers_find(struct hlist_head *head,
148 struct signal_struct *sig,
149 timer_t id)
150{
5ed67f05
PE
151 struct k_itimer *timer;
152
153 hlist_for_each_entry_rcu(timer, head, t_hash) {
154 if ((timer->it_signal == sig) && (timer->it_id == id))
155 return timer;
156 }
157 return NULL;
158}
159
160static struct k_itimer *posix_timer_by_id(timer_t id)
161{
162 struct signal_struct *sig = current->signal;
163 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
164
165 return __posix_timers_find(head, sig, id);
166}
167
168static int posix_timer_add(struct k_itimer *timer)
169{
170 struct signal_struct *sig = current->signal;
171 int first_free_id = sig->posix_timer_id;
172 struct hlist_head *head;
173 int ret = -ENOENT;
174
175 do {
176 spin_lock(&hash_lock);
177 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
178 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
179 hlist_add_head_rcu(&timer->t_hash, head);
180 ret = sig->posix_timer_id;
181 }
182 if (++sig->posix_timer_id < 0)
183 sig->posix_timer_id = 0;
184 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
185 /* Loop over all possible ids completed */
186 ret = -EAGAIN;
187 spin_unlock(&hash_lock);
188 } while (ret == -ENOENT);
189 return ret;
190}
191
1da177e4
LT
192static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
193{
194 spin_unlock_irqrestore(&timr->it_lock, flags);
195}
196
42285777 197/* Get clock_realtime */
3c9c12f4 198static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
42285777 199{
3c9c12f4 200 ktime_get_real_ts64(tp);
42285777
TG
201 return 0;
202}
203
26f9a479
TG
204/* Set clock_realtime */
205static int posix_clock_realtime_set(const clockid_t which_clock,
0fe6afe3 206 const struct timespec64 *tp)
26f9a479 207{
0fe6afe3 208 return do_sys_settimeofday64(tp, NULL);
26f9a479
TG
209}
210
f1f1d5eb
RC
211static int posix_clock_realtime_adj(const clockid_t which_clock,
212 struct timex *t)
213{
214 return do_adjtimex(t);
215}
216
becf8b5d
TG
217/*
218 * Get monotonic time for posix timers
219 */
3c9c12f4 220static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
becf8b5d 221{
3c9c12f4 222 ktime_get_ts64(tp);
becf8b5d
TG
223 return 0;
224}
1da177e4 225
2d42244a 226/*
7fdd7f89 227 * Get monotonic-raw time for posix timers
2d42244a 228 */
3c9c12f4 229static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
2d42244a 230{
3c9c12f4 231 getrawmonotonic64(tp);
2d42244a
JS
232 return 0;
233}
234
da15cfda 235
3c9c12f4 236static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
da15cfda 237{
3c9c12f4 238 *tp = current_kernel_time64();
da15cfda
JS
239 return 0;
240}
241
242static int posix_get_monotonic_coarse(clockid_t which_clock,
3c9c12f4 243 struct timespec64 *tp)
da15cfda 244{
3c9c12f4 245 *tp = get_monotonic_coarse64();
da15cfda
JS
246 return 0;
247}
248
d2e3e0ca 249static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
da15cfda 250{
d2e3e0ca 251 *tp = ktime_to_timespec64(KTIME_LOW_RES);
da15cfda
JS
252 return 0;
253}
7fdd7f89 254
3c9c12f4 255static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
7fdd7f89 256{
3c9c12f4 257 get_monotonic_boottime64(tp);
7fdd7f89
JS
258 return 0;
259}
260
3c9c12f4 261static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
1ff3c967 262{
3c9c12f4 263 timekeeping_clocktai64(tp);
1ff3c967
JS
264 return 0;
265}
7fdd7f89 266
d2e3e0ca 267static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
056a3cac
TG
268{
269 tp->tv_sec = 0;
270 tp->tv_nsec = hrtimer_resolution;
271 return 0;
272}
273
1da177e4
LT
274/*
275 * Initialize everything, well, just everything in Posix clocks/timers ;)
276 */
277static __init int init_posix_timers(void)
278{
1da177e4 279 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
280 sizeof (struct k_itimer), 0, SLAB_PANIC,
281 NULL);
1da177e4
LT
282 return 0;
283}
1da177e4
LT
284__initcall(init_posix_timers);
285
4729028b
TG
286/*
287 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
288 * are of type int. Clamp the overrun value to INT_MAX
289 */
290static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
291{
292 s64 sum = timr->it_overrun_last + (s64)baseval;
293
294 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
295}
296
f37fb0aa 297static void common_hrtimer_rearm(struct k_itimer *timr)
1da177e4 298{
44f21475
RZ
299 struct hrtimer *timer = &timr->it.real.timer;
300
80105cd0 301 if (!timr->it_interval)
1da177e4
LT
302 return;
303
4729028b
TG
304 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
305 timr->it_interval);
44f21475 306 hrtimer_restart(timer);
1da177e4
LT
307}
308
309/*
310 * This function is exported for use by the signal deliver code. It is
311 * called just prior to the info block being released and passes that
312 * block to us. It's function is to update the overrun entry AND to
313 * restart the timer. It should only be called if the timer is to be
314 * restarted (i.e. we have flagged this in the sys_private entry of the
315 * info block).
316 *
25985edc 317 * To protect against the timer going away while the interrupt is queued,
1da177e4
LT
318 * we require that the it_requeue_pending flag be set.
319 */
96fe3b07 320void posixtimer_rearm(struct siginfo *info)
1da177e4
LT
321{
322 struct k_itimer *timr;
323 unsigned long flags;
324
325 timr = lock_timer(info->si_tid, &flags);
af888d67
TG
326 if (!timr)
327 return;
1da177e4 328
af888d67 329 if (timr->it_requeue_pending == info->si_sys_private) {
f37fb0aa 330 timr->kclock->timer_rearm(timr);
1da177e4 331
21e55c1f 332 timr->it_active = 1;
af888d67 333 timr->it_overrun_last = timr->it_overrun;
4729028b 334 timr->it_overrun = -1LL;
af888d67
TG
335 ++timr->it_requeue_pending;
336
4729028b 337 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
becf8b5d
TG
338 }
339
af888d67 340 unlock_timer(timr, flags);
1da177e4
LT
341}
342
ba661292 343int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 344{
27af4245
ON
345 struct task_struct *task;
346 int shared, ret = -1;
ba661292
ON
347 /*
348 * FIXME: if ->sigq is queued we can race with
96fe3b07 349 * dequeue_signal()->posixtimer_rearm().
ba661292
ON
350 *
351 * If dequeue_signal() sees the "right" value of
96fe3b07 352 * si_sys_private it calls posixtimer_rearm().
ba661292 353 * We re-queue ->sigq and drop ->it_lock().
96fe3b07 354 * posixtimer_rearm() locks the timer
ba661292
ON
355 * and re-schedules it while ->sigq is pending.
356 * Not really bad, but not that we want.
357 */
1da177e4 358 timr->sigq->info.si_sys_private = si_private;
1da177e4 359
27af4245
ON
360 rcu_read_lock();
361 task = pid_task(timr->it_pid, PIDTYPE_PID);
362 if (task) {
363 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
364 ret = send_sigqueue(timr->sigq, task, shared);
365 }
366 rcu_read_unlock();
4aa73611
ON
367 /* If we failed to send the signal the timer stops. */
368 return ret > 0;
1da177e4 369}
1da177e4
LT
370
371/*
372 * This function gets called when a POSIX.1b interval timer expires. It
373 * is used as a callback from the kernel internal timer. The
374 * run_timer_list code ALWAYS calls with interrupts on.
375
376 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
377 */
c9cb2e3d 378static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 379{
05cfb614 380 struct k_itimer *timr;
1da177e4 381 unsigned long flags;
becf8b5d 382 int si_private = 0;
c9cb2e3d 383 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 384
05cfb614 385 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 386 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 387
21e55c1f 388 timr->it_active = 0;
80105cd0 389 if (timr->it_interval != 0)
becf8b5d 390 si_private = ++timr->it_requeue_pending;
1da177e4 391
becf8b5d
TG
392 if (posix_timer_event(timr, si_private)) {
393 /*
394 * signal was not sent because of sig_ignor
395 * we will not get a call back to restart it AND
396 * it should be restarted.
397 */
80105cd0 398 if (timr->it_interval != 0) {
58229a18
TG
399 ktime_t now = hrtimer_cb_get_time(timer);
400
401 /*
402 * FIXME: What we really want, is to stop this
403 * timer completely and restart it in case the
404 * SIG_IGN is removed. This is a non trivial
405 * change which involves sighand locking
406 * (sigh !), which we don't want to do late in
407 * the release cycle.
408 *
409 * For now we just let timers with an interval
410 * less than a jiffie expire every jiffie to
411 * avoid softirq starvation in case of SIG_IGN
412 * and a very small interval, which would put
413 * the timer right back on the softirq pending
414 * list. By moving now ahead of time we trick
415 * hrtimer_forward() to expire the timer
416 * later, while we still maintain the overrun
417 * accuracy, but have some inconsistency in
418 * the timer_gettime() case. This is at least
419 * better than a starved softirq. A more
420 * complex fix which solves also another related
421 * inconsistency is already in the pipeline.
422 */
423#ifdef CONFIG_HIGH_RES_TIMERS
424 {
8b0e1953 425 ktime_t kj = NSEC_PER_SEC / HZ;
58229a18 426
80105cd0 427 if (timr->it_interval < kj)
58229a18
TG
428 now = ktime_add(now, kj);
429 }
430#endif
4729028b
TG
431 timr->it_overrun += hrtimer_forward(timer, now,
432 timr->it_interval);
becf8b5d 433 ret = HRTIMER_RESTART;
a0a0c28c 434 ++timr->it_requeue_pending;
21e55c1f 435 timr->it_active = 1;
1da177e4 436 }
1da177e4 437 }
1da177e4 438
becf8b5d
TG
439 unlock_timer(timr, flags);
440 return ret;
441}
1da177e4 442
27af4245 443static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
444{
445 struct task_struct *rtn = current->group_leader;
446
cef31d9a
TG
447 switch (event->sigev_notify) {
448 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
449 rtn = find_task_by_vpid(event->sigev_notify_thread_id);
450 if (!rtn || !same_thread_group(rtn, current))
451 return NULL;
452 /* FALLTHRU */
453 case SIGEV_SIGNAL:
454 case SIGEV_THREAD:
455 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
456 return NULL;
457 /* FALLTHRU */
458 case SIGEV_NONE:
459 return task_pid(rtn);
460 default:
1da177e4 461 return NULL;
cef31d9a 462 }
1da177e4
LT
463}
464
1da177e4
LT
465static struct k_itimer * alloc_posix_timer(void)
466{
467 struct k_itimer *tmr;
c3762229 468 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
469 if (!tmr)
470 return tmr;
1da177e4
LT
471 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
472 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 473 return NULL;
1da177e4 474 }
ba661292 475 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
476 return tmr;
477}
478
8af08871
ED
479static void k_itimer_rcu_free(struct rcu_head *head)
480{
481 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
482
483 kmem_cache_free(posix_timers_cache, tmr);
484}
485
1da177e4
LT
486#define IT_ID_SET 1
487#define IT_ID_NOT_SET 0
488static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
489{
490 if (it_id_set) {
491 unsigned long flags;
5ed67f05
PE
492 spin_lock_irqsave(&hash_lock, flags);
493 hlist_del_rcu(&tmr->t_hash);
494 spin_unlock_irqrestore(&hash_lock, flags);
1da177e4 495 }
89992102 496 put_pid(tmr->it_pid);
1da177e4 497 sigqueue_free(tmr->sigq);
8af08871 498 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
1da177e4
LT
499}
500
838394fb
TG
501static int common_timer_create(struct k_itimer *new_timer)
502{
503 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
504 return 0;
505}
506
1da177e4 507/* Create a POSIX.1b interval timer. */
2482097c
AV
508static int do_timer_create(clockid_t which_clock, struct sigevent *event,
509 timer_t __user *created_timer_id)
1da177e4 510{
d3ba5a9a 511 const struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 512 struct k_itimer *new_timer;
ef864c95 513 int error, new_timer_id;
1da177e4
LT
514 int it_id_set = IT_ID_NOT_SET;
515
838394fb 516 if (!kc)
1da177e4 517 return -EINVAL;
838394fb
TG
518 if (!kc->timer_create)
519 return -EOPNOTSUPP;
1da177e4
LT
520
521 new_timer = alloc_posix_timer();
522 if (unlikely(!new_timer))
523 return -EAGAIN;
524
525 spin_lock_init(&new_timer->it_lock);
5ed67f05
PE
526 new_timer_id = posix_timer_add(new_timer);
527 if (new_timer_id < 0) {
528 error = new_timer_id;
1da177e4
LT
529 goto out;
530 }
531
532 it_id_set = IT_ID_SET;
533 new_timer->it_id = (timer_t) new_timer_id;
534 new_timer->it_clock = which_clock;
d97bb75d 535 new_timer->kclock = kc;
4729028b 536 new_timer->it_overrun = -1LL;
1da177e4 537
2482097c 538 if (event) {
36b2f046 539 rcu_read_lock();
2482097c 540 new_timer->it_pid = get_pid(good_sigevent(event));
36b2f046 541 rcu_read_unlock();
89992102 542 if (!new_timer->it_pid) {
1da177e4
LT
543 error = -EINVAL;
544 goto out;
545 }
2482097c
AV
546 new_timer->it_sigev_notify = event->sigev_notify;
547 new_timer->sigq->info.si_signo = event->sigev_signo;
548 new_timer->sigq->info.si_value = event->sigev_value;
1da177e4 549 } else {
2482097c
AV
550 new_timer->it_sigev_notify = SIGEV_SIGNAL;
551 new_timer->sigq->info.si_signo = SIGALRM;
552 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
553 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
89992102 554 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
555 }
556
717835d9 557 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 558 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 559
2b08de00
AV
560 if (copy_to_user(created_timer_id,
561 &new_timer_id, sizeof (new_timer_id))) {
562 error = -EFAULT;
563 goto out;
564 }
565
838394fb 566 error = kc->timer_create(new_timer);
45e0fffc
AV
567 if (error)
568 goto out;
569
36b2f046 570 spin_lock_irq(&current->sighand->siglock);
27af4245 571 new_timer->it_signal = current->signal;
36b2f046
ON
572 list_add(&new_timer->list, &current->signal->posix_timers);
573 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
574
575 return 0;
838394fb 576 /*
1da177e4
LT
577 * In the case of the timer belonging to another task, after
578 * the task is unlocked, the timer is owned by the other task
579 * and may cease to exist at any time. Don't use or modify
580 * new_timer after the unlock call.
581 */
1da177e4 582out:
ef864c95 583 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
584 return error;
585}
586
2482097c
AV
587SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
588 struct sigevent __user *, timer_event_spec,
589 timer_t __user *, created_timer_id)
590{
591 if (timer_event_spec) {
592 sigevent_t event;
593
594 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
595 return -EFAULT;
596 return do_timer_create(which_clock, &event, created_timer_id);
597 }
598 return do_timer_create(which_clock, NULL, created_timer_id);
599}
600
601#ifdef CONFIG_COMPAT
602COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
603 struct compat_sigevent __user *, timer_event_spec,
604 timer_t __user *, created_timer_id)
605{
606 if (timer_event_spec) {
607 sigevent_t event;
608
609 if (get_compat_sigevent(&event, timer_event_spec))
610 return -EFAULT;
611 return do_timer_create(which_clock, &event, created_timer_id);
612 }
613 return do_timer_create(which_clock, NULL, created_timer_id);
614}
615#endif
616
1da177e4
LT
617/*
618 * Locking issues: We need to protect the result of the id look up until
619 * we get the timer locked down so it is not deleted under us. The
620 * removal is done under the idr spinlock so we use that here to bridge
621 * the find to the timer lock. To avoid a dead lock, the timer id MUST
622 * be release with out holding the timer lock.
623 */
20f33a03 624static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
625{
626 struct k_itimer *timr;
8af08871 627
e182bb38
TH
628 /*
629 * timer_t could be any type >= int and we want to make sure any
630 * @timer_id outside positive int range fails lookup.
631 */
632 if ((unsigned long long)timer_id > INT_MAX)
633 return NULL;
634
8af08871 635 rcu_read_lock();
5ed67f05 636 timr = posix_timer_by_id(timer_id);
1da177e4 637 if (timr) {
8af08871 638 spin_lock_irqsave(&timr->it_lock, *flags);
89992102 639 if (timr->it_signal == current->signal) {
8af08871 640 rcu_read_unlock();
31d92845
ON
641 return timr;
642 }
8af08871 643 spin_unlock_irqrestore(&timr->it_lock, *flags);
31d92845 644 }
8af08871 645 rcu_read_unlock();
1da177e4 646
31d92845 647 return NULL;
1da177e4
LT
648}
649
91d57bae
TG
650static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
651{
652 struct hrtimer *timer = &timr->it.real.timer;
653
654 return __hrtimer_expires_remaining_adjusted(timer, now);
655}
656
657static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
658{
659 struct hrtimer *timer = &timr->it.real.timer;
660
661 return (int)hrtimer_forward(timer, now, timr->it_interval);
662}
663
1da177e4
LT
664/*
665 * Get the time remaining on a POSIX.1b interval timer. This function
666 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
667 * mess with irq.
668 *
669 * We have a couple of messes to clean up here. First there is the case
670 * of a timer that has a requeue pending. These timers should appear to
671 * be in the timer list with an expiry as if we were to requeue them
672 * now.
673 *
674 * The second issue is the SIGEV_NONE timer which may be active but is
675 * not really ever put in the timer list (to save system resources).
676 * This timer may be expired, and if so, we will do it here. Otherwise
677 * it is the same as a requeue pending timer WRT to what we should
678 * report.
679 */
f2c45807 680void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
1da177e4 681{
91d57bae 682 const struct k_clock *kc = timr->kclock;
3b98a532 683 ktime_t now, remaining, iv;
91d57bae
TG
684 struct timespec64 ts64;
685 bool sig_none;
1da177e4 686
cef31d9a 687 sig_none = timr->it_sigev_notify == SIGEV_NONE;
80105cd0 688 iv = timr->it_interval;
3b98a532 689
becf8b5d 690 /* interval timer ? */
91d57bae 691 if (iv) {
5f252b32 692 cur_setting->it_interval = ktime_to_timespec64(iv);
91d57bae
TG
693 } else if (!timr->it_active) {
694 /*
695 * SIGEV_NONE oneshot timers are never queued. Check them
696 * below.
697 */
698 if (!sig_none)
699 return;
700 }
3b98a532 701
91d57bae
TG
702 /*
703 * The timespec64 based conversion is suboptimal, but it's not
704 * worth to implement yet another callback.
705 */
706 kc->clock_get(timr->it_clock, &ts64);
707 now = timespec64_to_ktime(ts64);
3b98a532 708
becf8b5d 709 /*
91d57bae
TG
710 * When a requeue is pending or this is a SIGEV_NONE timer move the
711 * expiry time forward by intervals, so expiry is > now.
becf8b5d 712 */
91d57bae
TG
713 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
714 timr->it_overrun += kc->timer_forward(timr, now);
3b98a532 715
91d57bae 716 remaining = kc->timer_remaining(timr, now);
becf8b5d 717 /* Return 0 only, when the timer is expired and not pending */
2456e855 718 if (remaining <= 0) {
3b98a532
RZ
719 /*
720 * A single shot SIGEV_NONE timer must return 0, when
721 * it is expired !
722 */
91d57bae 723 if (!sig_none)
3b98a532 724 cur_setting->it_value.tv_nsec = 1;
91d57bae 725 } else {
5f252b32 726 cur_setting->it_value = ktime_to_timespec64(remaining);
91d57bae 727 }
1da177e4
LT
728}
729
730/* Get the time remaining on a POSIX.1b interval timer. */
b0dc1242 731static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
1da177e4 732{
a7319fa2 733 struct k_itimer *timr;
d3ba5a9a 734 const struct k_clock *kc;
1da177e4 735 unsigned long flags;
a7319fa2 736 int ret = 0;
1da177e4
LT
737
738 timr = lock_timer(timer_id, &flags);
739 if (!timr)
740 return -EINVAL;
741
b0dc1242 742 memset(setting, 0, sizeof(*setting));
d97bb75d 743 kc = timr->kclock;
a7319fa2
TG
744 if (WARN_ON_ONCE(!kc || !kc->timer_get))
745 ret = -EINVAL;
746 else
b0dc1242 747 kc->timer_get(timr, setting);
1da177e4
LT
748
749 unlock_timer(timr, flags);
b0dc1242
AV
750 return ret;
751}
1da177e4 752
b0dc1242
AV
753/* Get the time remaining on a POSIX.1b interval timer. */
754SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
755 struct itimerspec __user *, setting)
756{
725816e8 757 struct itimerspec64 cur_setting;
1da177e4 758
725816e8 759 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 760 if (!ret) {
725816e8 761 if (put_itimerspec64(&cur_setting, setting))
b0dc1242
AV
762 ret = -EFAULT;
763 }
a7319fa2 764 return ret;
1da177e4 765}
becf8b5d 766
b0dc1242
AV
767#ifdef CONFIG_COMPAT
768COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
769 struct compat_itimerspec __user *, setting)
770{
725816e8 771 struct itimerspec64 cur_setting;
b0dc1242 772
725816e8 773 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 774 if (!ret) {
725816e8 775 if (put_compat_itimerspec64(&cur_setting, setting))
b0dc1242
AV
776 ret = -EFAULT;
777 }
778 return ret;
779}
780#endif
781
1da177e4
LT
782/*
783 * Get the number of overruns of a POSIX.1b interval timer. This is to
784 * be the overrun of the timer last delivered. At the same time we are
785 * accumulating overruns on the next timer. The overrun is frozen when
786 * the signal is delivered, either at the notify time (if the info block
787 * is not queued) or at the actual delivery time (as we are informed by
96fe3b07 788 * the call back to posixtimer_rearm(). So all we need to do is
1da177e4
LT
789 * to pick up the frozen overrun.
790 */
362e9c07 791SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
792{
793 struct k_itimer *timr;
794 int overrun;
5ba25331 795 unsigned long flags;
1da177e4
LT
796
797 timr = lock_timer(timer_id, &flags);
798 if (!timr)
799 return -EINVAL;
800
4729028b 801 overrun = timer_overrun_to_int(timr, 0);
1da177e4
LT
802 unlock_timer(timr, flags);
803
804 return overrun;
805}
1da177e4 806
eae1c4ae
TG
807static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
808 bool absolute, bool sigev_none)
809{
810 struct hrtimer *timer = &timr->it.real.timer;
811 enum hrtimer_mode mode;
812
813 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
67edab48
TG
814 /*
815 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
816 * clock modifications, so they become CLOCK_MONOTONIC based under the
817 * hood. See hrtimer_init(). Update timr->kclock, so the generic
818 * functions which use timr->kclock->clock_get() work.
819 *
820 * Note: it_clock stays unmodified, because the next timer_set() might
821 * use ABSTIME, so it needs to switch back.
822 */
823 if (timr->it_clock == CLOCK_REALTIME)
824 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
825
eae1c4ae
TG
826 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
827 timr->it.real.timer.function = posix_timer_fn;
828
829 if (!absolute)
830 expires = ktime_add_safe(expires, timer->base->get_time());
831 hrtimer_set_expires(timer, expires);
832
833 if (!sigev_none)
834 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
835}
836
837static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
838{
839 return hrtimer_try_to_cancel(&timr->it.real.timer);
840}
841
1da177e4 842/* Set a POSIX.1b interval timer. */
f2c45807
TG
843int common_timer_set(struct k_itimer *timr, int flags,
844 struct itimerspec64 *new_setting,
845 struct itimerspec64 *old_setting)
1da177e4 846{
eae1c4ae
TG
847 const struct k_clock *kc = timr->kclock;
848 bool sigev_none;
849 ktime_t expires;
1da177e4
LT
850
851 if (old_setting)
852 common_timer_get(timr, old_setting);
853
eae1c4ae 854 /* Prevent rearming by clearing the interval */
80105cd0 855 timr->it_interval = 0;
1da177e4 856 /*
eae1c4ae
TG
857 * Careful here. On SMP systems the timer expiry function could be
858 * active and spinning on timr->it_lock.
1da177e4 859 */
eae1c4ae 860 if (kc->timer_try_to_cancel(timr) < 0)
1da177e4 861 return TIMER_RETRY;
1da177e4 862
21e55c1f
TG
863 timr->it_active = 0;
864 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
1da177e4
LT
865 ~REQUEUE_PENDING;
866 timr->it_overrun_last = 0;
1da177e4 867
eae1c4ae 868 /* Switch off the timer when it_value is zero */
becf8b5d
TG
869 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
870 return 0;
1da177e4 871
80105cd0 872 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
eae1c4ae 873 expires = timespec64_to_ktime(new_setting->it_value);
cef31d9a 874 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
becf8b5d 875
eae1c4ae
TG
876 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
877 timr->it_active = !sigev_none;
1da177e4
LT
878 return 0;
879}
880
1acbe770
AV
881static int do_timer_settime(timer_t timer_id, int flags,
882 struct itimerspec64 *new_spec64,
883 struct itimerspec64 *old_spec64)
1da177e4 884{
1acbe770 885 const struct k_clock *kc;
5f252b32 886 struct k_itimer *timr;
5ba25331 887 unsigned long flag;
5f252b32 888 int error = 0;
1da177e4 889
1acbe770
AV
890 if (!timespec64_valid(&new_spec64->it_interval) ||
891 !timespec64_valid(&new_spec64->it_value))
1da177e4
LT
892 return -EINVAL;
893
1acbe770
AV
894 if (old_spec64)
895 memset(old_spec64, 0, sizeof(*old_spec64));
1da177e4
LT
896retry:
897 timr = lock_timer(timer_id, &flag);
898 if (!timr)
899 return -EINVAL;
900
d97bb75d 901 kc = timr->kclock;
27722df1
TG
902 if (WARN_ON_ONCE(!kc || !kc->timer_set))
903 error = -EINVAL;
904 else
1acbe770 905 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
1da177e4
LT
906
907 unlock_timer(timr, flag);
908 if (error == TIMER_RETRY) {
1acbe770 909 old_spec64 = NULL; // We already got the old time...
1da177e4
LT
910 goto retry;
911 }
912
1acbe770
AV
913 return error;
914}
1da177e4 915
1acbe770
AV
916/* Set a POSIX.1b interval timer */
917SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
918 const struct itimerspec __user *, new_setting,
919 struct itimerspec __user *, old_setting)
920{
725816e8
DD
921 struct itimerspec64 new_spec, old_spec;
922 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
1acbe770
AV
923 int error = 0;
924
925 if (!new_setting)
926 return -EINVAL;
927
725816e8 928 if (get_itimerspec64(&new_spec, new_setting))
1acbe770 929 return -EFAULT;
1acbe770 930
725816e8 931 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 932 if (!error && old_setting) {
725816e8 933 if (put_itimerspec64(&old_spec, old_setting))
1acbe770
AV
934 error = -EFAULT;
935 }
936 return error;
937}
938
939#ifdef CONFIG_COMPAT
940COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
941 struct compat_itimerspec __user *, new,
942 struct compat_itimerspec __user *, old)
943{
725816e8
DD
944 struct itimerspec64 new_spec, old_spec;
945 struct itimerspec64 *rtn = old ? &old_spec : NULL;
1acbe770
AV
946 int error = 0;
947
948 if (!new)
949 return -EINVAL;
725816e8 950 if (get_compat_itimerspec64(&new_spec, new))
1acbe770
AV
951 return -EFAULT;
952
725816e8 953 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 954 if (!error && old) {
725816e8 955 if (put_compat_itimerspec64(&old_spec, old))
1acbe770
AV
956 error = -EFAULT;
957 }
1da177e4
LT
958 return error;
959}
1acbe770 960#endif
1da177e4 961
f2c45807 962int common_timer_del(struct k_itimer *timer)
1da177e4 963{
eae1c4ae 964 const struct k_clock *kc = timer->kclock;
f972be33 965
eae1c4ae
TG
966 timer->it_interval = 0;
967 if (kc->timer_try_to_cancel(timer) < 0)
1da177e4 968 return TIMER_RETRY;
21e55c1f 969 timer->it_active = 0;
1da177e4
LT
970 return 0;
971}
972
973static inline int timer_delete_hook(struct k_itimer *timer)
974{
d97bb75d 975 const struct k_clock *kc = timer->kclock;
6761c670
TG
976
977 if (WARN_ON_ONCE(!kc || !kc->timer_del))
978 return -EINVAL;
979 return kc->timer_del(timer);
1da177e4
LT
980}
981
982/* Delete a POSIX.1b interval timer. */
362e9c07 983SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
984{
985 struct k_itimer *timer;
5ba25331 986 unsigned long flags;
1da177e4 987
1da177e4 988retry_delete:
1da177e4
LT
989 timer = lock_timer(timer_id, &flags);
990 if (!timer)
991 return -EINVAL;
992
becf8b5d 993 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
994 unlock_timer(timer, flags);
995 goto retry_delete;
996 }
becf8b5d 997
1da177e4
LT
998 spin_lock(&current->sighand->siglock);
999 list_del(&timer->list);
1000 spin_unlock(&current->sighand->siglock);
1001 /*
1002 * This keeps any tasks waiting on the spin lock from thinking
1003 * they got something (see the lock code above).
1004 */
89992102 1005 timer->it_signal = NULL;
4b7a1304 1006
1da177e4
LT
1007 unlock_timer(timer, flags);
1008 release_posix_timer(timer, IT_ID_SET);
1009 return 0;
1010}
becf8b5d 1011
1da177e4
LT
1012/*
1013 * return timer owned by the process, used by exit_itimers
1014 */
858119e1 1015static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
1016{
1017 unsigned long flags;
1018
1da177e4 1019retry_delete:
1da177e4
LT
1020 spin_lock_irqsave(&timer->it_lock, flags);
1021
becf8b5d 1022 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
1023 unlock_timer(timer, flags);
1024 goto retry_delete;
1025 }
1da177e4
LT
1026 list_del(&timer->list);
1027 /*
1028 * This keeps any tasks waiting on the spin lock from thinking
1029 * they got something (see the lock code above).
1030 */
89992102 1031 timer->it_signal = NULL;
4b7a1304 1032
1da177e4
LT
1033 unlock_timer(timer, flags);
1034 release_posix_timer(timer, IT_ID_SET);
1035}
1036
1037/*
25f407f0 1038 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
1039 * references to the shared signal_struct.
1040 */
1041void exit_itimers(struct signal_struct *sig)
1042{
1043 struct k_itimer *tmr;
1044
1045 while (!list_empty(&sig->posix_timers)) {
1046 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1047 itimer_delete(tmr);
1048 }
1049}
1050
362e9c07
HC
1051SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1052 const struct timespec __user *, tp)
1da177e4 1053{
d3ba5a9a 1054 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1055 struct timespec64 new_tp;
1da177e4 1056
26f9a479 1057 if (!kc || !kc->clock_set)
1da177e4 1058 return -EINVAL;
26f9a479 1059
5c499410 1060 if (get_timespec64(&new_tp, tp))
1da177e4
LT
1061 return -EFAULT;
1062
5c499410 1063 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
1064}
1065
362e9c07
HC
1066SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1067 struct timespec __user *,tp)
1da177e4 1068{
d3ba5a9a 1069 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1070 struct timespec64 kernel_tp;
1da177e4
LT
1071 int error;
1072
42285777 1073 if (!kc)
1da177e4 1074 return -EINVAL;
42285777 1075
5c499410 1076 error = kc->clock_get(which_clock, &kernel_tp);
42285777 1077
5c499410 1078 if (!error && put_timespec64(&kernel_tp, tp))
1da177e4
LT
1079 error = -EFAULT;
1080
1081 return error;
1da177e4
LT
1082}
1083
f1f1d5eb
RC
1084SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1085 struct timex __user *, utx)
1086{
d3ba5a9a 1087 const struct k_clock *kc = clockid_to_kclock(which_clock);
f1f1d5eb
RC
1088 struct timex ktx;
1089 int err;
1090
1091 if (!kc)
1092 return -EINVAL;
1093 if (!kc->clock_adj)
1094 return -EOPNOTSUPP;
1095
1096 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1097 return -EFAULT;
1098
1099 err = kc->clock_adj(which_clock, &ktx);
1100
f0dbe81f 1101 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
f1f1d5eb
RC
1102 return -EFAULT;
1103
1104 return err;
1105}
1106
d822cdcc
AV
1107SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1108 struct timespec __user *, tp)
1109{
1110 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1111 struct timespec64 rtn_tp;
d822cdcc
AV
1112 int error;
1113
1114 if (!kc)
1115 return -EINVAL;
1116
5c499410 1117 error = kc->clock_getres(which_clock, &rtn_tp);
d822cdcc 1118
5c499410 1119 if (!error && tp && put_timespec64(&rtn_tp, tp))
d822cdcc
AV
1120 error = -EFAULT;
1121
1122 return error;
1123}
1124
3a4d44b6
AV
1125#ifdef CONFIG_COMPAT
1126
d822cdcc
AV
1127COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1128 struct compat_timespec __user *, tp)
1129{
1130 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1131 struct timespec64 ts;
d822cdcc
AV
1132
1133 if (!kc || !kc->clock_set)
1134 return -EINVAL;
1135
5c499410 1136 if (compat_get_timespec64(&ts, tp))
d822cdcc
AV
1137 return -EFAULT;
1138
5c499410 1139 return kc->clock_set(which_clock, &ts);
d822cdcc
AV
1140}
1141
1142COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1143 struct compat_timespec __user *, tp)
1144{
1145 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1146 struct timespec64 ts;
1147 int err;
d822cdcc
AV
1148
1149 if (!kc)
1150 return -EINVAL;
1151
5c499410 1152 err = kc->clock_get(which_clock, &ts);
d822cdcc 1153
5c499410
DD
1154 if (!err && compat_put_timespec64(&ts, tp))
1155 err = -EFAULT;
d822cdcc 1156
5c499410 1157 return err;
d822cdcc
AV
1158}
1159
3a4d44b6
AV
1160COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1161 struct compat_timex __user *, utp)
1162{
1163 const struct k_clock *kc = clockid_to_kclock(which_clock);
1164 struct timex ktx;
1165 int err;
1166
1167 if (!kc)
1168 return -EINVAL;
1169 if (!kc->clock_adj)
1170 return -EOPNOTSUPP;
1171
1172 err = compat_get_timex(&ktx, utp);
1173 if (err)
1174 return err;
1175
1176 err = kc->clock_adj(which_clock, &ktx);
1177
1178 if (err >= 0)
1179 err = compat_put_timex(utp, &ktx);
1180
1181 return err;
1182}
3a4d44b6 1183
d822cdcc
AV
1184COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1185 struct compat_timespec __user *, tp)
1da177e4 1186{
d3ba5a9a 1187 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1188 struct timespec64 ts;
1189 int err;
1da177e4 1190
e5e542ee 1191 if (!kc)
1da177e4
LT
1192 return -EINVAL;
1193
5c499410
DD
1194 err = kc->clock_getres(which_clock, &ts);
1195 if (!err && tp && compat_put_timespec64(&ts, tp))
1196 return -EFAULT;
1da177e4 1197
5c499410 1198 return err;
1da177e4 1199}
5c499410 1200
d822cdcc 1201#endif
1da177e4 1202
97735f25
TG
1203/*
1204 * nanosleep for monotonic and realtime clocks
1205 */
1206static int common_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1207 const struct timespec64 *rqtp)
97735f25 1208{
938e7cf2 1209 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
080344b9
ON
1210 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1211 which_clock);
97735f25 1212}
1da177e4 1213
362e9c07
HC
1214SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1215 const struct timespec __user *, rqtp,
1216 struct timespec __user *, rmtp)
1da177e4 1217{
d3ba5a9a 1218 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1219 struct timespec64 t;
1da177e4 1220
a5cd2880 1221 if (!kc)
1da177e4 1222 return -EINVAL;
a5cd2880
TG
1223 if (!kc->nsleep)
1224 return -ENANOSLEEP_NOTSUP;
1da177e4 1225
c0edd7c9 1226 if (get_timespec64(&t, rqtp))
1da177e4
LT
1227 return -EFAULT;
1228
c0edd7c9 1229 if (!timespec64_valid(&t))
1da177e4 1230 return -EINVAL;
99e6c0e6
AV
1231 if (flags & TIMER_ABSTIME)
1232 rmtp = NULL;
edbeda46 1233 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
99e6c0e6 1234 current->restart_block.nanosleep.rmtp = rmtp;
1da177e4 1235
c0edd7c9 1236 return kc->nsleep(which_clock, flags, &t);
1da177e4 1237}
1711ef38 1238
edbeda46
AV
1239#ifdef CONFIG_COMPAT
1240COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1241 struct compat_timespec __user *, rqtp,
1242 struct compat_timespec __user *, rmtp)
1711ef38 1243{
d3ba5a9a 1244 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1245 struct timespec64 t;
59bd5bc2 1246
edbeda46 1247 if (!kc)
59bd5bc2 1248 return -EINVAL;
edbeda46
AV
1249 if (!kc->nsleep)
1250 return -ENANOSLEEP_NOTSUP;
1251
c0edd7c9 1252 if (compat_get_timespec64(&t, rqtp))
edbeda46 1253 return -EFAULT;
1711ef38 1254
c0edd7c9 1255 if (!timespec64_valid(&t))
edbeda46
AV
1256 return -EINVAL;
1257 if (flags & TIMER_ABSTIME)
1258 rmtp = NULL;
1259 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1260 current->restart_block.nanosleep.compat_rmtp = rmtp;
1261
c0edd7c9 1262 return kc->nsleep(which_clock, flags, &t);
1711ef38 1263}
edbeda46 1264#endif
6631fa12
TG
1265
1266static const struct k_clock clock_realtime = {
eae1c4ae
TG
1267 .clock_getres = posix_get_hrtimer_res,
1268 .clock_get = posix_clock_realtime_get,
1269 .clock_set = posix_clock_realtime_set,
1270 .clock_adj = posix_clock_realtime_adj,
1271 .nsleep = common_nsleep,
eae1c4ae
TG
1272 .timer_create = common_timer_create,
1273 .timer_set = common_timer_set,
1274 .timer_get = common_timer_get,
1275 .timer_del = common_timer_del,
1276 .timer_rearm = common_hrtimer_rearm,
1277 .timer_forward = common_hrtimer_forward,
1278 .timer_remaining = common_hrtimer_remaining,
1279 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1280 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1281};
1282
1283static const struct k_clock clock_monotonic = {
eae1c4ae
TG
1284 .clock_getres = posix_get_hrtimer_res,
1285 .clock_get = posix_ktime_get_ts,
1286 .nsleep = common_nsleep,
eae1c4ae
TG
1287 .timer_create = common_timer_create,
1288 .timer_set = common_timer_set,
1289 .timer_get = common_timer_get,
1290 .timer_del = common_timer_del,
1291 .timer_rearm = common_hrtimer_rearm,
1292 .timer_forward = common_hrtimer_forward,
1293 .timer_remaining = common_hrtimer_remaining,
1294 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1295 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1296};
1297
1298static const struct k_clock clock_monotonic_raw = {
eae1c4ae
TG
1299 .clock_getres = posix_get_hrtimer_res,
1300 .clock_get = posix_get_monotonic_raw,
6631fa12
TG
1301};
1302
1303static const struct k_clock clock_realtime_coarse = {
eae1c4ae
TG
1304 .clock_getres = posix_get_coarse_res,
1305 .clock_get = posix_get_realtime_coarse,
6631fa12
TG
1306};
1307
1308static const struct k_clock clock_monotonic_coarse = {
eae1c4ae
TG
1309 .clock_getres = posix_get_coarse_res,
1310 .clock_get = posix_get_monotonic_coarse,
6631fa12
TG
1311};
1312
1313static const struct k_clock clock_tai = {
eae1c4ae
TG
1314 .clock_getres = posix_get_hrtimer_res,
1315 .clock_get = posix_get_tai,
1316 .nsleep = common_nsleep,
eae1c4ae
TG
1317 .timer_create = common_timer_create,
1318 .timer_set = common_timer_set,
1319 .timer_get = common_timer_get,
1320 .timer_del = common_timer_del,
1321 .timer_rearm = common_hrtimer_rearm,
1322 .timer_forward = common_hrtimer_forward,
1323 .timer_remaining = common_hrtimer_remaining,
1324 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1325 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1326};
1327
1328static const struct k_clock clock_boottime = {
eae1c4ae
TG
1329 .clock_getres = posix_get_hrtimer_res,
1330 .clock_get = posix_get_boottime,
1331 .nsleep = common_nsleep,
eae1c4ae
TG
1332 .timer_create = common_timer_create,
1333 .timer_set = common_timer_set,
1334 .timer_get = common_timer_get,
1335 .timer_del = common_timer_del,
1336 .timer_rearm = common_hrtimer_rearm,
1337 .timer_forward = common_hrtimer_forward,
1338 .timer_remaining = common_hrtimer_remaining,
1339 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1340 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1341};
1342
1343static const struct k_clock * const posix_clocks[] = {
1344 [CLOCK_REALTIME] = &clock_realtime,
1345 [CLOCK_MONOTONIC] = &clock_monotonic,
1346 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1347 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1348 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1349 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1350 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1351 [CLOCK_BOOTTIME] = &clock_boottime,
1352 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1353 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1354 [CLOCK_TAI] = &clock_tai,
1355};
1356
1357static const struct k_clock *clockid_to_kclock(const clockid_t id)
1358{
2565de67
TG
1359 clockid_t idx = id;
1360
1361 if (id < 0) {
6631fa12
TG
1362 return (id & CLOCKFD_MASK) == CLOCKFD ?
1363 &clock_posix_dynamic : &clock_posix_cpu;
2565de67 1364 }
6631fa12 1365
2565de67 1366 if (id >= ARRAY_SIZE(posix_clocks))
6631fa12 1367 return NULL;
2565de67
TG
1368
1369 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
6631fa12 1370}