]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/time/posix-timers.c
cdrom: Fix info leak/OOB read in cdrom_ioctl_drive_status
[mirror_ubuntu-bionic-kernel.git] / kernel / time / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
61855b6b 38#include <linux/sched/task.h>
1da177e4 39
7c0f6ba6 40#include <linux/uaccess.h>
1da177e4
LT
41#include <linux/list.h>
42#include <linux/init.h>
43#include <linux/compiler.h>
5ed67f05 44#include <linux/hash.h>
0606f422 45#include <linux/posix-clock.h>
1da177e4
LT
46#include <linux/posix-timers.h>
47#include <linux/syscalls.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
9984de1a 50#include <linux/export.h>
5ed67f05 51#include <linux/hashtable.h>
edbeda46 52#include <linux/compat.h>
2565de67 53#include <linux/nospec.h>
1da177e4 54
8b094cd0 55#include "timekeeping.h"
bab0aae9 56#include "posix-timers.h"
8b094cd0 57
1da177e4 58/*
5ed67f05
PE
59 * Management arrays for POSIX timers. Timers are now kept in static hash table
60 * with 512 entries.
61 * Timer ids are allocated by local routine, which selects proper hash head by
62 * key, constructed from current->signal address and per signal struct counter.
63 * This keeps timer ids unique per process, but now they can intersect between
64 * processes.
1da177e4
LT
65 */
66
67/*
68 * Lets keep our timers in a slab cache :-)
69 */
e18b890b 70static struct kmem_cache *posix_timers_cache;
5ed67f05
PE
71
72static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73static DEFINE_SPINLOCK(hash_lock);
1da177e4 74
6631fa12
TG
75static const struct k_clock * const posix_clocks[];
76static const struct k_clock *clockid_to_kclock(const clockid_t id);
67edab48 77static const struct k_clock clock_realtime, clock_monotonic;
6631fa12 78
1da177e4
LT
79/*
80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81 * SIGEV values. Here we put out an error if this assumption fails.
82 */
83#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86#endif
87
65da528d
TG
88/*
89 * parisc wants ENOTSUP instead of EOPNOTSUPP
90 */
91#ifndef ENOTSUP
92# define ENANOSLEEP_NOTSUP EOPNOTSUPP
93#else
94# define ENANOSLEEP_NOTSUP ENOTSUP
95#endif
1da177e4
LT
96
97/*
98 * The timer ID is turned into a timer address by idr_find().
99 * Verifying a valid ID consists of:
100 *
101 * a) checking that idr_find() returns other than -1.
102 * b) checking that the timer id matches the one in the timer itself.
103 * c) that the timer owner is in the callers thread group.
104 */
105
106/*
107 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
108 * to implement others. This structure defines the various
0061748d 109 * clocks.
1da177e4
LT
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
0061748d
RC
119 * FUNCTIONS: The CLOCKs structure defines possible functions to
120 * handle various clock functions.
1da177e4 121 *
0061748d
RC
122 * The standard POSIX timer management code assumes the
123 * following: 1.) The k_itimer struct (sched.h) is used for
124 * the timer. 2.) The list, it_lock, it_clock, it_id and
125 * it_pid fields are not modified by timer code.
1da177e4
LT
126 *
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
133 */
20f33a03
NK
134static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
135
136#define lock_timer(tid, flags) \
137({ struct k_itimer *__timr; \
138 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
139 __timr; \
140})
1da177e4 141
5ed67f05
PE
142static int hash(struct signal_struct *sig, unsigned int nr)
143{
144 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
145}
146
147static struct k_itimer *__posix_timers_find(struct hlist_head *head,
148 struct signal_struct *sig,
149 timer_t id)
150{
5ed67f05
PE
151 struct k_itimer *timer;
152
153 hlist_for_each_entry_rcu(timer, head, t_hash) {
154 if ((timer->it_signal == sig) && (timer->it_id == id))
155 return timer;
156 }
157 return NULL;
158}
159
160static struct k_itimer *posix_timer_by_id(timer_t id)
161{
162 struct signal_struct *sig = current->signal;
163 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
164
165 return __posix_timers_find(head, sig, id);
166}
167
168static int posix_timer_add(struct k_itimer *timer)
169{
170 struct signal_struct *sig = current->signal;
171 int first_free_id = sig->posix_timer_id;
172 struct hlist_head *head;
173 int ret = -ENOENT;
174
175 do {
176 spin_lock(&hash_lock);
177 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
178 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
179 hlist_add_head_rcu(&timer->t_hash, head);
180 ret = sig->posix_timer_id;
181 }
182 if (++sig->posix_timer_id < 0)
183 sig->posix_timer_id = 0;
184 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
185 /* Loop over all possible ids completed */
186 ret = -EAGAIN;
187 spin_unlock(&hash_lock);
188 } while (ret == -ENOENT);
189 return ret;
190}
191
1da177e4
LT
192static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
193{
194 spin_unlock_irqrestore(&timr->it_lock, flags);
195}
196
42285777 197/* Get clock_realtime */
3c9c12f4 198static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
42285777 199{
3c9c12f4 200 ktime_get_real_ts64(tp);
42285777
TG
201 return 0;
202}
203
26f9a479
TG
204/* Set clock_realtime */
205static int posix_clock_realtime_set(const clockid_t which_clock,
0fe6afe3 206 const struct timespec64 *tp)
26f9a479 207{
0fe6afe3 208 return do_sys_settimeofday64(tp, NULL);
26f9a479
TG
209}
210
f1f1d5eb
RC
211static int posix_clock_realtime_adj(const clockid_t which_clock,
212 struct timex *t)
213{
214 return do_adjtimex(t);
215}
216
becf8b5d
TG
217/*
218 * Get monotonic time for posix timers
219 */
3c9c12f4 220static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
becf8b5d 221{
3c9c12f4 222 ktime_get_ts64(tp);
becf8b5d
TG
223 return 0;
224}
1da177e4 225
2d42244a 226/*
7fdd7f89 227 * Get monotonic-raw time for posix timers
2d42244a 228 */
3c9c12f4 229static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
2d42244a 230{
3c9c12f4 231 getrawmonotonic64(tp);
2d42244a
JS
232 return 0;
233}
234
da15cfda 235
3c9c12f4 236static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
da15cfda 237{
3c9c12f4 238 *tp = current_kernel_time64();
da15cfda
JS
239 return 0;
240}
241
242static int posix_get_monotonic_coarse(clockid_t which_clock,
3c9c12f4 243 struct timespec64 *tp)
da15cfda 244{
3c9c12f4 245 *tp = get_monotonic_coarse64();
da15cfda
JS
246 return 0;
247}
248
d2e3e0ca 249static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
da15cfda 250{
d2e3e0ca 251 *tp = ktime_to_timespec64(KTIME_LOW_RES);
da15cfda
JS
252 return 0;
253}
7fdd7f89 254
3c9c12f4 255static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
7fdd7f89 256{
3c9c12f4 257 get_monotonic_boottime64(tp);
7fdd7f89
JS
258 return 0;
259}
260
3c9c12f4 261static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
1ff3c967 262{
3c9c12f4 263 timekeeping_clocktai64(tp);
1ff3c967
JS
264 return 0;
265}
7fdd7f89 266
d2e3e0ca 267static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
056a3cac
TG
268{
269 tp->tv_sec = 0;
270 tp->tv_nsec = hrtimer_resolution;
271 return 0;
272}
273
1da177e4
LT
274/*
275 * Initialize everything, well, just everything in Posix clocks/timers ;)
276 */
277static __init int init_posix_timers(void)
278{
1da177e4 279 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
280 sizeof (struct k_itimer), 0, SLAB_PANIC,
281 NULL);
1da177e4
LT
282 return 0;
283}
1da177e4
LT
284__initcall(init_posix_timers);
285
f37fb0aa 286static void common_hrtimer_rearm(struct k_itimer *timr)
1da177e4 287{
44f21475
RZ
288 struct hrtimer *timer = &timr->it.real.timer;
289
80105cd0 290 if (!timr->it_interval)
1da177e4
LT
291 return;
292
4d672e7a
DL
293 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
294 timer->base->get_time(),
80105cd0 295 timr->it_interval);
44f21475 296 hrtimer_restart(timer);
1da177e4
LT
297}
298
299/*
300 * This function is exported for use by the signal deliver code. It is
301 * called just prior to the info block being released and passes that
302 * block to us. It's function is to update the overrun entry AND to
303 * restart the timer. It should only be called if the timer is to be
304 * restarted (i.e. we have flagged this in the sys_private entry of the
305 * info block).
306 *
25985edc 307 * To protect against the timer going away while the interrupt is queued,
1da177e4
LT
308 * we require that the it_requeue_pending flag be set.
309 */
96fe3b07 310void posixtimer_rearm(struct siginfo *info)
1da177e4
LT
311{
312 struct k_itimer *timr;
313 unsigned long flags;
314
315 timr = lock_timer(info->si_tid, &flags);
af888d67
TG
316 if (!timr)
317 return;
1da177e4 318
af888d67 319 if (timr->it_requeue_pending == info->si_sys_private) {
f37fb0aa 320 timr->kclock->timer_rearm(timr);
1da177e4 321
21e55c1f 322 timr->it_active = 1;
af888d67
TG
323 timr->it_overrun_last = timr->it_overrun;
324 timr->it_overrun = -1;
325 ++timr->it_requeue_pending;
326
54da1174 327 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
328 }
329
af888d67 330 unlock_timer(timr, flags);
1da177e4
LT
331}
332
ba661292 333int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 334{
27af4245
ON
335 struct task_struct *task;
336 int shared, ret = -1;
ba661292
ON
337 /*
338 * FIXME: if ->sigq is queued we can race with
96fe3b07 339 * dequeue_signal()->posixtimer_rearm().
ba661292
ON
340 *
341 * If dequeue_signal() sees the "right" value of
96fe3b07 342 * si_sys_private it calls posixtimer_rearm().
ba661292 343 * We re-queue ->sigq and drop ->it_lock().
96fe3b07 344 * posixtimer_rearm() locks the timer
ba661292
ON
345 * and re-schedules it while ->sigq is pending.
346 * Not really bad, but not that we want.
347 */
1da177e4 348 timr->sigq->info.si_sys_private = si_private;
1da177e4 349
27af4245
ON
350 rcu_read_lock();
351 task = pid_task(timr->it_pid, PIDTYPE_PID);
352 if (task) {
353 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
354 ret = send_sigqueue(timr->sigq, task, shared);
355 }
356 rcu_read_unlock();
4aa73611
ON
357 /* If we failed to send the signal the timer stops. */
358 return ret > 0;
1da177e4 359}
1da177e4
LT
360
361/*
362 * This function gets called when a POSIX.1b interval timer expires. It
363 * is used as a callback from the kernel internal timer. The
364 * run_timer_list code ALWAYS calls with interrupts on.
365
366 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
367 */
c9cb2e3d 368static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 369{
05cfb614 370 struct k_itimer *timr;
1da177e4 371 unsigned long flags;
becf8b5d 372 int si_private = 0;
c9cb2e3d 373 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 374
05cfb614 375 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 376 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 377
21e55c1f 378 timr->it_active = 0;
80105cd0 379 if (timr->it_interval != 0)
becf8b5d 380 si_private = ++timr->it_requeue_pending;
1da177e4 381
becf8b5d
TG
382 if (posix_timer_event(timr, si_private)) {
383 /*
384 * signal was not sent because of sig_ignor
385 * we will not get a call back to restart it AND
386 * it should be restarted.
387 */
80105cd0 388 if (timr->it_interval != 0) {
58229a18
TG
389 ktime_t now = hrtimer_cb_get_time(timer);
390
391 /*
392 * FIXME: What we really want, is to stop this
393 * timer completely and restart it in case the
394 * SIG_IGN is removed. This is a non trivial
395 * change which involves sighand locking
396 * (sigh !), which we don't want to do late in
397 * the release cycle.
398 *
399 * For now we just let timers with an interval
400 * less than a jiffie expire every jiffie to
401 * avoid softirq starvation in case of SIG_IGN
402 * and a very small interval, which would put
403 * the timer right back on the softirq pending
404 * list. By moving now ahead of time we trick
405 * hrtimer_forward() to expire the timer
406 * later, while we still maintain the overrun
407 * accuracy, but have some inconsistency in
408 * the timer_gettime() case. This is at least
409 * better than a starved softirq. A more
410 * complex fix which solves also another related
411 * inconsistency is already in the pipeline.
412 */
413#ifdef CONFIG_HIGH_RES_TIMERS
414 {
8b0e1953 415 ktime_t kj = NSEC_PER_SEC / HZ;
58229a18 416
80105cd0 417 if (timr->it_interval < kj)
58229a18
TG
418 now = ktime_add(now, kj);
419 }
420#endif
4d672e7a 421 timr->it_overrun += (unsigned int)
58229a18 422 hrtimer_forward(timer, now,
80105cd0 423 timr->it_interval);
becf8b5d 424 ret = HRTIMER_RESTART;
a0a0c28c 425 ++timr->it_requeue_pending;
21e55c1f 426 timr->it_active = 1;
1da177e4 427 }
1da177e4 428 }
1da177e4 429
becf8b5d
TG
430 unlock_timer(timr, flags);
431 return ret;
432}
1da177e4 433
27af4245 434static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
435{
436 struct task_struct *rtn = current->group_leader;
437
cef31d9a
TG
438 switch (event->sigev_notify) {
439 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
440 rtn = find_task_by_vpid(event->sigev_notify_thread_id);
441 if (!rtn || !same_thread_group(rtn, current))
442 return NULL;
443 /* FALLTHRU */
444 case SIGEV_SIGNAL:
445 case SIGEV_THREAD:
446 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
447 return NULL;
448 /* FALLTHRU */
449 case SIGEV_NONE:
450 return task_pid(rtn);
451 default:
1da177e4 452 return NULL;
cef31d9a 453 }
1da177e4
LT
454}
455
1da177e4
LT
456static struct k_itimer * alloc_posix_timer(void)
457{
458 struct k_itimer *tmr;
c3762229 459 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
460 if (!tmr)
461 return tmr;
1da177e4
LT
462 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
463 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 464 return NULL;
1da177e4 465 }
ba661292 466 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
467 return tmr;
468}
469
8af08871
ED
470static void k_itimer_rcu_free(struct rcu_head *head)
471{
472 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
473
474 kmem_cache_free(posix_timers_cache, tmr);
475}
476
1da177e4
LT
477#define IT_ID_SET 1
478#define IT_ID_NOT_SET 0
479static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
480{
481 if (it_id_set) {
482 unsigned long flags;
5ed67f05
PE
483 spin_lock_irqsave(&hash_lock, flags);
484 hlist_del_rcu(&tmr->t_hash);
485 spin_unlock_irqrestore(&hash_lock, flags);
1da177e4 486 }
89992102 487 put_pid(tmr->it_pid);
1da177e4 488 sigqueue_free(tmr->sigq);
8af08871 489 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
1da177e4
LT
490}
491
838394fb
TG
492static int common_timer_create(struct k_itimer *new_timer)
493{
494 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
495 return 0;
496}
497
1da177e4 498/* Create a POSIX.1b interval timer. */
2482097c
AV
499static int do_timer_create(clockid_t which_clock, struct sigevent *event,
500 timer_t __user *created_timer_id)
1da177e4 501{
d3ba5a9a 502 const struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 503 struct k_itimer *new_timer;
ef864c95 504 int error, new_timer_id;
1da177e4
LT
505 int it_id_set = IT_ID_NOT_SET;
506
838394fb 507 if (!kc)
1da177e4 508 return -EINVAL;
838394fb
TG
509 if (!kc->timer_create)
510 return -EOPNOTSUPP;
1da177e4
LT
511
512 new_timer = alloc_posix_timer();
513 if (unlikely(!new_timer))
514 return -EAGAIN;
515
516 spin_lock_init(&new_timer->it_lock);
5ed67f05
PE
517 new_timer_id = posix_timer_add(new_timer);
518 if (new_timer_id < 0) {
519 error = new_timer_id;
1da177e4
LT
520 goto out;
521 }
522
523 it_id_set = IT_ID_SET;
524 new_timer->it_id = (timer_t) new_timer_id;
525 new_timer->it_clock = which_clock;
d97bb75d 526 new_timer->kclock = kc;
1da177e4 527 new_timer->it_overrun = -1;
1da177e4 528
2482097c 529 if (event) {
36b2f046 530 rcu_read_lock();
2482097c 531 new_timer->it_pid = get_pid(good_sigevent(event));
36b2f046 532 rcu_read_unlock();
89992102 533 if (!new_timer->it_pid) {
1da177e4
LT
534 error = -EINVAL;
535 goto out;
536 }
2482097c
AV
537 new_timer->it_sigev_notify = event->sigev_notify;
538 new_timer->sigq->info.si_signo = event->sigev_signo;
539 new_timer->sigq->info.si_value = event->sigev_value;
1da177e4 540 } else {
2482097c
AV
541 new_timer->it_sigev_notify = SIGEV_SIGNAL;
542 new_timer->sigq->info.si_signo = SIGALRM;
543 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
544 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
89992102 545 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
546 }
547
717835d9 548 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 549 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 550
2b08de00
AV
551 if (copy_to_user(created_timer_id,
552 &new_timer_id, sizeof (new_timer_id))) {
553 error = -EFAULT;
554 goto out;
555 }
556
838394fb 557 error = kc->timer_create(new_timer);
45e0fffc
AV
558 if (error)
559 goto out;
560
36b2f046 561 spin_lock_irq(&current->sighand->siglock);
27af4245 562 new_timer->it_signal = current->signal;
36b2f046
ON
563 list_add(&new_timer->list, &current->signal->posix_timers);
564 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
565
566 return 0;
838394fb 567 /*
1da177e4
LT
568 * In the case of the timer belonging to another task, after
569 * the task is unlocked, the timer is owned by the other task
570 * and may cease to exist at any time. Don't use or modify
571 * new_timer after the unlock call.
572 */
1da177e4 573out:
ef864c95 574 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
575 return error;
576}
577
2482097c
AV
578SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
579 struct sigevent __user *, timer_event_spec,
580 timer_t __user *, created_timer_id)
581{
582 if (timer_event_spec) {
583 sigevent_t event;
584
585 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
586 return -EFAULT;
587 return do_timer_create(which_clock, &event, created_timer_id);
588 }
589 return do_timer_create(which_clock, NULL, created_timer_id);
590}
591
592#ifdef CONFIG_COMPAT
593COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
594 struct compat_sigevent __user *, timer_event_spec,
595 timer_t __user *, created_timer_id)
596{
597 if (timer_event_spec) {
598 sigevent_t event;
599
600 if (get_compat_sigevent(&event, timer_event_spec))
601 return -EFAULT;
602 return do_timer_create(which_clock, &event, created_timer_id);
603 }
604 return do_timer_create(which_clock, NULL, created_timer_id);
605}
606#endif
607
1da177e4
LT
608/*
609 * Locking issues: We need to protect the result of the id look up until
610 * we get the timer locked down so it is not deleted under us. The
611 * removal is done under the idr spinlock so we use that here to bridge
612 * the find to the timer lock. To avoid a dead lock, the timer id MUST
613 * be release with out holding the timer lock.
614 */
20f33a03 615static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
616{
617 struct k_itimer *timr;
8af08871 618
e182bb38
TH
619 /*
620 * timer_t could be any type >= int and we want to make sure any
621 * @timer_id outside positive int range fails lookup.
622 */
623 if ((unsigned long long)timer_id > INT_MAX)
624 return NULL;
625
8af08871 626 rcu_read_lock();
5ed67f05 627 timr = posix_timer_by_id(timer_id);
1da177e4 628 if (timr) {
8af08871 629 spin_lock_irqsave(&timr->it_lock, *flags);
89992102 630 if (timr->it_signal == current->signal) {
8af08871 631 rcu_read_unlock();
31d92845
ON
632 return timr;
633 }
8af08871 634 spin_unlock_irqrestore(&timr->it_lock, *flags);
31d92845 635 }
8af08871 636 rcu_read_unlock();
1da177e4 637
31d92845 638 return NULL;
1da177e4
LT
639}
640
91d57bae
TG
641static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
642{
643 struct hrtimer *timer = &timr->it.real.timer;
644
645 return __hrtimer_expires_remaining_adjusted(timer, now);
646}
647
648static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
649{
650 struct hrtimer *timer = &timr->it.real.timer;
651
652 return (int)hrtimer_forward(timer, now, timr->it_interval);
653}
654
1da177e4
LT
655/*
656 * Get the time remaining on a POSIX.1b interval timer. This function
657 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
658 * mess with irq.
659 *
660 * We have a couple of messes to clean up here. First there is the case
661 * of a timer that has a requeue pending. These timers should appear to
662 * be in the timer list with an expiry as if we were to requeue them
663 * now.
664 *
665 * The second issue is the SIGEV_NONE timer which may be active but is
666 * not really ever put in the timer list (to save system resources).
667 * This timer may be expired, and if so, we will do it here. Otherwise
668 * it is the same as a requeue pending timer WRT to what we should
669 * report.
670 */
f2c45807 671void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
1da177e4 672{
91d57bae 673 const struct k_clock *kc = timr->kclock;
3b98a532 674 ktime_t now, remaining, iv;
91d57bae
TG
675 struct timespec64 ts64;
676 bool sig_none;
1da177e4 677
cef31d9a 678 sig_none = timr->it_sigev_notify == SIGEV_NONE;
80105cd0 679 iv = timr->it_interval;
3b98a532 680
becf8b5d 681 /* interval timer ? */
91d57bae 682 if (iv) {
5f252b32 683 cur_setting->it_interval = ktime_to_timespec64(iv);
91d57bae
TG
684 } else if (!timr->it_active) {
685 /*
686 * SIGEV_NONE oneshot timers are never queued. Check them
687 * below.
688 */
689 if (!sig_none)
690 return;
691 }
3b98a532 692
91d57bae
TG
693 /*
694 * The timespec64 based conversion is suboptimal, but it's not
695 * worth to implement yet another callback.
696 */
697 kc->clock_get(timr->it_clock, &ts64);
698 now = timespec64_to_ktime(ts64);
3b98a532 699
becf8b5d 700 /*
91d57bae
TG
701 * When a requeue is pending or this is a SIGEV_NONE timer move the
702 * expiry time forward by intervals, so expiry is > now.
becf8b5d 703 */
91d57bae
TG
704 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
705 timr->it_overrun += kc->timer_forward(timr, now);
3b98a532 706
91d57bae 707 remaining = kc->timer_remaining(timr, now);
becf8b5d 708 /* Return 0 only, when the timer is expired and not pending */
2456e855 709 if (remaining <= 0) {
3b98a532
RZ
710 /*
711 * A single shot SIGEV_NONE timer must return 0, when
712 * it is expired !
713 */
91d57bae 714 if (!sig_none)
3b98a532 715 cur_setting->it_value.tv_nsec = 1;
91d57bae 716 } else {
5f252b32 717 cur_setting->it_value = ktime_to_timespec64(remaining);
91d57bae 718 }
1da177e4
LT
719}
720
721/* Get the time remaining on a POSIX.1b interval timer. */
b0dc1242 722static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
1da177e4 723{
a7319fa2 724 struct k_itimer *timr;
d3ba5a9a 725 const struct k_clock *kc;
1da177e4 726 unsigned long flags;
a7319fa2 727 int ret = 0;
1da177e4
LT
728
729 timr = lock_timer(timer_id, &flags);
730 if (!timr)
731 return -EINVAL;
732
b0dc1242 733 memset(setting, 0, sizeof(*setting));
d97bb75d 734 kc = timr->kclock;
a7319fa2
TG
735 if (WARN_ON_ONCE(!kc || !kc->timer_get))
736 ret = -EINVAL;
737 else
b0dc1242 738 kc->timer_get(timr, setting);
1da177e4
LT
739
740 unlock_timer(timr, flags);
b0dc1242
AV
741 return ret;
742}
1da177e4 743
b0dc1242
AV
744/* Get the time remaining on a POSIX.1b interval timer. */
745SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
746 struct itimerspec __user *, setting)
747{
725816e8 748 struct itimerspec64 cur_setting;
1da177e4 749
725816e8 750 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 751 if (!ret) {
725816e8 752 if (put_itimerspec64(&cur_setting, setting))
b0dc1242
AV
753 ret = -EFAULT;
754 }
a7319fa2 755 return ret;
1da177e4 756}
becf8b5d 757
b0dc1242
AV
758#ifdef CONFIG_COMPAT
759COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
760 struct compat_itimerspec __user *, setting)
761{
725816e8 762 struct itimerspec64 cur_setting;
b0dc1242 763
725816e8 764 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 765 if (!ret) {
725816e8 766 if (put_compat_itimerspec64(&cur_setting, setting))
b0dc1242
AV
767 ret = -EFAULT;
768 }
769 return ret;
770}
771#endif
772
1da177e4
LT
773/*
774 * Get the number of overruns of a POSIX.1b interval timer. This is to
775 * be the overrun of the timer last delivered. At the same time we are
776 * accumulating overruns on the next timer. The overrun is frozen when
777 * the signal is delivered, either at the notify time (if the info block
778 * is not queued) or at the actual delivery time (as we are informed by
96fe3b07 779 * the call back to posixtimer_rearm(). So all we need to do is
1da177e4
LT
780 * to pick up the frozen overrun.
781 */
362e9c07 782SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
783{
784 struct k_itimer *timr;
785 int overrun;
5ba25331 786 unsigned long flags;
1da177e4
LT
787
788 timr = lock_timer(timer_id, &flags);
789 if (!timr)
790 return -EINVAL;
791
792 overrun = timr->it_overrun_last;
793 unlock_timer(timr, flags);
794
795 return overrun;
796}
1da177e4 797
eae1c4ae
TG
798static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
799 bool absolute, bool sigev_none)
800{
801 struct hrtimer *timer = &timr->it.real.timer;
802 enum hrtimer_mode mode;
803
804 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
67edab48
TG
805 /*
806 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
807 * clock modifications, so they become CLOCK_MONOTONIC based under the
808 * hood. See hrtimer_init(). Update timr->kclock, so the generic
809 * functions which use timr->kclock->clock_get() work.
810 *
811 * Note: it_clock stays unmodified, because the next timer_set() might
812 * use ABSTIME, so it needs to switch back.
813 */
814 if (timr->it_clock == CLOCK_REALTIME)
815 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
816
eae1c4ae
TG
817 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
818 timr->it.real.timer.function = posix_timer_fn;
819
820 if (!absolute)
821 expires = ktime_add_safe(expires, timer->base->get_time());
822 hrtimer_set_expires(timer, expires);
823
824 if (!sigev_none)
825 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
826}
827
828static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
829{
830 return hrtimer_try_to_cancel(&timr->it.real.timer);
831}
832
1da177e4 833/* Set a POSIX.1b interval timer. */
f2c45807
TG
834int common_timer_set(struct k_itimer *timr, int flags,
835 struct itimerspec64 *new_setting,
836 struct itimerspec64 *old_setting)
1da177e4 837{
eae1c4ae
TG
838 const struct k_clock *kc = timr->kclock;
839 bool sigev_none;
840 ktime_t expires;
1da177e4
LT
841
842 if (old_setting)
843 common_timer_get(timr, old_setting);
844
eae1c4ae 845 /* Prevent rearming by clearing the interval */
80105cd0 846 timr->it_interval = 0;
1da177e4 847 /*
eae1c4ae
TG
848 * Careful here. On SMP systems the timer expiry function could be
849 * active and spinning on timr->it_lock.
1da177e4 850 */
eae1c4ae 851 if (kc->timer_try_to_cancel(timr) < 0)
1da177e4 852 return TIMER_RETRY;
1da177e4 853
21e55c1f
TG
854 timr->it_active = 0;
855 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
1da177e4
LT
856 ~REQUEUE_PENDING;
857 timr->it_overrun_last = 0;
1da177e4 858
eae1c4ae 859 /* Switch off the timer when it_value is zero */
becf8b5d
TG
860 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
861 return 0;
1da177e4 862
80105cd0 863 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
eae1c4ae 864 expires = timespec64_to_ktime(new_setting->it_value);
cef31d9a 865 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
becf8b5d 866
eae1c4ae
TG
867 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
868 timr->it_active = !sigev_none;
1da177e4
LT
869 return 0;
870}
871
1acbe770
AV
872static int do_timer_settime(timer_t timer_id, int flags,
873 struct itimerspec64 *new_spec64,
874 struct itimerspec64 *old_spec64)
1da177e4 875{
1acbe770 876 const struct k_clock *kc;
5f252b32 877 struct k_itimer *timr;
5ba25331 878 unsigned long flag;
5f252b32 879 int error = 0;
1da177e4 880
1acbe770
AV
881 if (!timespec64_valid(&new_spec64->it_interval) ||
882 !timespec64_valid(&new_spec64->it_value))
1da177e4
LT
883 return -EINVAL;
884
1acbe770
AV
885 if (old_spec64)
886 memset(old_spec64, 0, sizeof(*old_spec64));
1da177e4
LT
887retry:
888 timr = lock_timer(timer_id, &flag);
889 if (!timr)
890 return -EINVAL;
891
d97bb75d 892 kc = timr->kclock;
27722df1
TG
893 if (WARN_ON_ONCE(!kc || !kc->timer_set))
894 error = -EINVAL;
895 else
1acbe770 896 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
1da177e4
LT
897
898 unlock_timer(timr, flag);
899 if (error == TIMER_RETRY) {
1acbe770 900 old_spec64 = NULL; // We already got the old time...
1da177e4
LT
901 goto retry;
902 }
903
1acbe770
AV
904 return error;
905}
1da177e4 906
1acbe770
AV
907/* Set a POSIX.1b interval timer */
908SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
909 const struct itimerspec __user *, new_setting,
910 struct itimerspec __user *, old_setting)
911{
725816e8
DD
912 struct itimerspec64 new_spec, old_spec;
913 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
1acbe770
AV
914 int error = 0;
915
916 if (!new_setting)
917 return -EINVAL;
918
725816e8 919 if (get_itimerspec64(&new_spec, new_setting))
1acbe770 920 return -EFAULT;
1acbe770 921
725816e8 922 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 923 if (!error && old_setting) {
725816e8 924 if (put_itimerspec64(&old_spec, old_setting))
1acbe770
AV
925 error = -EFAULT;
926 }
927 return error;
928}
929
930#ifdef CONFIG_COMPAT
931COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
932 struct compat_itimerspec __user *, new,
933 struct compat_itimerspec __user *, old)
934{
725816e8
DD
935 struct itimerspec64 new_spec, old_spec;
936 struct itimerspec64 *rtn = old ? &old_spec : NULL;
1acbe770
AV
937 int error = 0;
938
939 if (!new)
940 return -EINVAL;
725816e8 941 if (get_compat_itimerspec64(&new_spec, new))
1acbe770
AV
942 return -EFAULT;
943
725816e8 944 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 945 if (!error && old) {
725816e8 946 if (put_compat_itimerspec64(&old_spec, old))
1acbe770
AV
947 error = -EFAULT;
948 }
1da177e4
LT
949 return error;
950}
1acbe770 951#endif
1da177e4 952
f2c45807 953int common_timer_del(struct k_itimer *timer)
1da177e4 954{
eae1c4ae 955 const struct k_clock *kc = timer->kclock;
f972be33 956
eae1c4ae
TG
957 timer->it_interval = 0;
958 if (kc->timer_try_to_cancel(timer) < 0)
1da177e4 959 return TIMER_RETRY;
21e55c1f 960 timer->it_active = 0;
1da177e4
LT
961 return 0;
962}
963
964static inline int timer_delete_hook(struct k_itimer *timer)
965{
d97bb75d 966 const struct k_clock *kc = timer->kclock;
6761c670
TG
967
968 if (WARN_ON_ONCE(!kc || !kc->timer_del))
969 return -EINVAL;
970 return kc->timer_del(timer);
1da177e4
LT
971}
972
973/* Delete a POSIX.1b interval timer. */
362e9c07 974SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
975{
976 struct k_itimer *timer;
5ba25331 977 unsigned long flags;
1da177e4 978
1da177e4 979retry_delete:
1da177e4
LT
980 timer = lock_timer(timer_id, &flags);
981 if (!timer)
982 return -EINVAL;
983
becf8b5d 984 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
985 unlock_timer(timer, flags);
986 goto retry_delete;
987 }
becf8b5d 988
1da177e4
LT
989 spin_lock(&current->sighand->siglock);
990 list_del(&timer->list);
991 spin_unlock(&current->sighand->siglock);
992 /*
993 * This keeps any tasks waiting on the spin lock from thinking
994 * they got something (see the lock code above).
995 */
89992102 996 timer->it_signal = NULL;
4b7a1304 997
1da177e4
LT
998 unlock_timer(timer, flags);
999 release_posix_timer(timer, IT_ID_SET);
1000 return 0;
1001}
becf8b5d 1002
1da177e4
LT
1003/*
1004 * return timer owned by the process, used by exit_itimers
1005 */
858119e1 1006static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
1007{
1008 unsigned long flags;
1009
1da177e4 1010retry_delete:
1da177e4
LT
1011 spin_lock_irqsave(&timer->it_lock, flags);
1012
becf8b5d 1013 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
1014 unlock_timer(timer, flags);
1015 goto retry_delete;
1016 }
1da177e4
LT
1017 list_del(&timer->list);
1018 /*
1019 * This keeps any tasks waiting on the spin lock from thinking
1020 * they got something (see the lock code above).
1021 */
89992102 1022 timer->it_signal = NULL;
4b7a1304 1023
1da177e4
LT
1024 unlock_timer(timer, flags);
1025 release_posix_timer(timer, IT_ID_SET);
1026}
1027
1028/*
25f407f0 1029 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
1030 * references to the shared signal_struct.
1031 */
1032void exit_itimers(struct signal_struct *sig)
1033{
1034 struct k_itimer *tmr;
1035
1036 while (!list_empty(&sig->posix_timers)) {
1037 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1038 itimer_delete(tmr);
1039 }
1040}
1041
362e9c07
HC
1042SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1043 const struct timespec __user *, tp)
1da177e4 1044{
d3ba5a9a 1045 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1046 struct timespec64 new_tp;
1da177e4 1047
26f9a479 1048 if (!kc || !kc->clock_set)
1da177e4 1049 return -EINVAL;
26f9a479 1050
5c499410 1051 if (get_timespec64(&new_tp, tp))
1da177e4
LT
1052 return -EFAULT;
1053
5c499410 1054 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
1055}
1056
362e9c07
HC
1057SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1058 struct timespec __user *,tp)
1da177e4 1059{
d3ba5a9a 1060 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1061 struct timespec64 kernel_tp;
1da177e4
LT
1062 int error;
1063
42285777 1064 if (!kc)
1da177e4 1065 return -EINVAL;
42285777 1066
5c499410 1067 error = kc->clock_get(which_clock, &kernel_tp);
42285777 1068
5c499410 1069 if (!error && put_timespec64(&kernel_tp, tp))
1da177e4
LT
1070 error = -EFAULT;
1071
1072 return error;
1da177e4
LT
1073}
1074
f1f1d5eb
RC
1075SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1076 struct timex __user *, utx)
1077{
d3ba5a9a 1078 const struct k_clock *kc = clockid_to_kclock(which_clock);
f1f1d5eb
RC
1079 struct timex ktx;
1080 int err;
1081
1082 if (!kc)
1083 return -EINVAL;
1084 if (!kc->clock_adj)
1085 return -EOPNOTSUPP;
1086
1087 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1088 return -EFAULT;
1089
1090 err = kc->clock_adj(which_clock, &ktx);
1091
f0dbe81f 1092 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
f1f1d5eb
RC
1093 return -EFAULT;
1094
1095 return err;
1096}
1097
d822cdcc
AV
1098SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1099 struct timespec __user *, tp)
1100{
1101 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1102 struct timespec64 rtn_tp;
d822cdcc
AV
1103 int error;
1104
1105 if (!kc)
1106 return -EINVAL;
1107
5c499410 1108 error = kc->clock_getres(which_clock, &rtn_tp);
d822cdcc 1109
5c499410 1110 if (!error && tp && put_timespec64(&rtn_tp, tp))
d822cdcc
AV
1111 error = -EFAULT;
1112
1113 return error;
1114}
1115
3a4d44b6
AV
1116#ifdef CONFIG_COMPAT
1117
d822cdcc
AV
1118COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1119 struct compat_timespec __user *, tp)
1120{
1121 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1122 struct timespec64 ts;
d822cdcc
AV
1123
1124 if (!kc || !kc->clock_set)
1125 return -EINVAL;
1126
5c499410 1127 if (compat_get_timespec64(&ts, tp))
d822cdcc
AV
1128 return -EFAULT;
1129
5c499410 1130 return kc->clock_set(which_clock, &ts);
d822cdcc
AV
1131}
1132
1133COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1134 struct compat_timespec __user *, tp)
1135{
1136 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1137 struct timespec64 ts;
1138 int err;
d822cdcc
AV
1139
1140 if (!kc)
1141 return -EINVAL;
1142
5c499410 1143 err = kc->clock_get(which_clock, &ts);
d822cdcc 1144
5c499410
DD
1145 if (!err && compat_put_timespec64(&ts, tp))
1146 err = -EFAULT;
d822cdcc 1147
5c499410 1148 return err;
d822cdcc
AV
1149}
1150
3a4d44b6
AV
1151COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1152 struct compat_timex __user *, utp)
1153{
1154 const struct k_clock *kc = clockid_to_kclock(which_clock);
1155 struct timex ktx;
1156 int err;
1157
1158 if (!kc)
1159 return -EINVAL;
1160 if (!kc->clock_adj)
1161 return -EOPNOTSUPP;
1162
1163 err = compat_get_timex(&ktx, utp);
1164 if (err)
1165 return err;
1166
1167 err = kc->clock_adj(which_clock, &ktx);
1168
1169 if (err >= 0)
1170 err = compat_put_timex(utp, &ktx);
1171
1172 return err;
1173}
3a4d44b6 1174
d822cdcc
AV
1175COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1176 struct compat_timespec __user *, tp)
1da177e4 1177{
d3ba5a9a 1178 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1179 struct timespec64 ts;
1180 int err;
1da177e4 1181
e5e542ee 1182 if (!kc)
1da177e4
LT
1183 return -EINVAL;
1184
5c499410
DD
1185 err = kc->clock_getres(which_clock, &ts);
1186 if (!err && tp && compat_put_timespec64(&ts, tp))
1187 return -EFAULT;
1da177e4 1188
5c499410 1189 return err;
1da177e4 1190}
5c499410 1191
d822cdcc 1192#endif
1da177e4 1193
97735f25
TG
1194/*
1195 * nanosleep for monotonic and realtime clocks
1196 */
1197static int common_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1198 const struct timespec64 *rqtp)
97735f25 1199{
938e7cf2 1200 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
080344b9
ON
1201 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1202 which_clock);
97735f25 1203}
1da177e4 1204
362e9c07
HC
1205SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1206 const struct timespec __user *, rqtp,
1207 struct timespec __user *, rmtp)
1da177e4 1208{
d3ba5a9a 1209 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1210 struct timespec64 t;
1da177e4 1211
a5cd2880 1212 if (!kc)
1da177e4 1213 return -EINVAL;
a5cd2880
TG
1214 if (!kc->nsleep)
1215 return -ENANOSLEEP_NOTSUP;
1da177e4 1216
c0edd7c9 1217 if (get_timespec64(&t, rqtp))
1da177e4
LT
1218 return -EFAULT;
1219
c0edd7c9 1220 if (!timespec64_valid(&t))
1da177e4 1221 return -EINVAL;
99e6c0e6
AV
1222 if (flags & TIMER_ABSTIME)
1223 rmtp = NULL;
edbeda46 1224 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
99e6c0e6 1225 current->restart_block.nanosleep.rmtp = rmtp;
1da177e4 1226
c0edd7c9 1227 return kc->nsleep(which_clock, flags, &t);
1da177e4 1228}
1711ef38 1229
edbeda46
AV
1230#ifdef CONFIG_COMPAT
1231COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1232 struct compat_timespec __user *, rqtp,
1233 struct compat_timespec __user *, rmtp)
1711ef38 1234{
d3ba5a9a 1235 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1236 struct timespec64 t;
59bd5bc2 1237
edbeda46 1238 if (!kc)
59bd5bc2 1239 return -EINVAL;
edbeda46
AV
1240 if (!kc->nsleep)
1241 return -ENANOSLEEP_NOTSUP;
1242
c0edd7c9 1243 if (compat_get_timespec64(&t, rqtp))
edbeda46 1244 return -EFAULT;
1711ef38 1245
c0edd7c9 1246 if (!timespec64_valid(&t))
edbeda46
AV
1247 return -EINVAL;
1248 if (flags & TIMER_ABSTIME)
1249 rmtp = NULL;
1250 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1251 current->restart_block.nanosleep.compat_rmtp = rmtp;
1252
c0edd7c9 1253 return kc->nsleep(which_clock, flags, &t);
1711ef38 1254}
edbeda46 1255#endif
6631fa12
TG
1256
1257static const struct k_clock clock_realtime = {
eae1c4ae
TG
1258 .clock_getres = posix_get_hrtimer_res,
1259 .clock_get = posix_clock_realtime_get,
1260 .clock_set = posix_clock_realtime_set,
1261 .clock_adj = posix_clock_realtime_adj,
1262 .nsleep = common_nsleep,
eae1c4ae
TG
1263 .timer_create = common_timer_create,
1264 .timer_set = common_timer_set,
1265 .timer_get = common_timer_get,
1266 .timer_del = common_timer_del,
1267 .timer_rearm = common_hrtimer_rearm,
1268 .timer_forward = common_hrtimer_forward,
1269 .timer_remaining = common_hrtimer_remaining,
1270 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1271 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1272};
1273
1274static const struct k_clock clock_monotonic = {
eae1c4ae
TG
1275 .clock_getres = posix_get_hrtimer_res,
1276 .clock_get = posix_ktime_get_ts,
1277 .nsleep = common_nsleep,
eae1c4ae
TG
1278 .timer_create = common_timer_create,
1279 .timer_set = common_timer_set,
1280 .timer_get = common_timer_get,
1281 .timer_del = common_timer_del,
1282 .timer_rearm = common_hrtimer_rearm,
1283 .timer_forward = common_hrtimer_forward,
1284 .timer_remaining = common_hrtimer_remaining,
1285 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1286 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1287};
1288
1289static const struct k_clock clock_monotonic_raw = {
eae1c4ae
TG
1290 .clock_getres = posix_get_hrtimer_res,
1291 .clock_get = posix_get_monotonic_raw,
6631fa12
TG
1292};
1293
1294static const struct k_clock clock_realtime_coarse = {
eae1c4ae
TG
1295 .clock_getres = posix_get_coarse_res,
1296 .clock_get = posix_get_realtime_coarse,
6631fa12
TG
1297};
1298
1299static const struct k_clock clock_monotonic_coarse = {
eae1c4ae
TG
1300 .clock_getres = posix_get_coarse_res,
1301 .clock_get = posix_get_monotonic_coarse,
6631fa12
TG
1302};
1303
1304static const struct k_clock clock_tai = {
eae1c4ae
TG
1305 .clock_getres = posix_get_hrtimer_res,
1306 .clock_get = posix_get_tai,
1307 .nsleep = common_nsleep,
eae1c4ae
TG
1308 .timer_create = common_timer_create,
1309 .timer_set = common_timer_set,
1310 .timer_get = common_timer_get,
1311 .timer_del = common_timer_del,
1312 .timer_rearm = common_hrtimer_rearm,
1313 .timer_forward = common_hrtimer_forward,
1314 .timer_remaining = common_hrtimer_remaining,
1315 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1316 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1317};
1318
1319static const struct k_clock clock_boottime = {
eae1c4ae
TG
1320 .clock_getres = posix_get_hrtimer_res,
1321 .clock_get = posix_get_boottime,
1322 .nsleep = common_nsleep,
eae1c4ae
TG
1323 .timer_create = common_timer_create,
1324 .timer_set = common_timer_set,
1325 .timer_get = common_timer_get,
1326 .timer_del = common_timer_del,
1327 .timer_rearm = common_hrtimer_rearm,
1328 .timer_forward = common_hrtimer_forward,
1329 .timer_remaining = common_hrtimer_remaining,
1330 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1331 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1332};
1333
1334static const struct k_clock * const posix_clocks[] = {
1335 [CLOCK_REALTIME] = &clock_realtime,
1336 [CLOCK_MONOTONIC] = &clock_monotonic,
1337 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1338 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1339 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1340 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1341 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1342 [CLOCK_BOOTTIME] = &clock_boottime,
1343 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1344 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1345 [CLOCK_TAI] = &clock_tai,
1346};
1347
1348static const struct k_clock *clockid_to_kclock(const clockid_t id)
1349{
2565de67
TG
1350 clockid_t idx = id;
1351
1352 if (id < 0) {
6631fa12
TG
1353 return (id & CLOCKFD_MASK) == CLOCKFD ?
1354 &clock_posix_dynamic : &clock_posix_cpu;
2565de67 1355 }
6631fa12 1356
2565de67 1357 if (id >= ARRAY_SIZE(posix_clocks))
6631fa12 1358 return NULL;
2565de67
TG
1359
1360 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
6631fa12 1361}