]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/time/posix-timers.c
posix-cpu-timers: Avoid timespec conversion in do_cpu_nanosleep()
[mirror_ubuntu-hirsute-kernel.git] / kernel / time / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
61855b6b 38#include <linux/sched/task.h>
1da177e4 39
7c0f6ba6 40#include <linux/uaccess.h>
1da177e4
LT
41#include <linux/list.h>
42#include <linux/init.h>
43#include <linux/compiler.h>
5ed67f05 44#include <linux/hash.h>
0606f422 45#include <linux/posix-clock.h>
1da177e4
LT
46#include <linux/posix-timers.h>
47#include <linux/syscalls.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
9984de1a 50#include <linux/export.h>
5ed67f05 51#include <linux/hashtable.h>
edbeda46 52#include <linux/compat.h>
1da177e4 53
8b094cd0 54#include "timekeeping.h"
bab0aae9 55#include "posix-timers.h"
8b094cd0 56
1da177e4 57/*
5ed67f05
PE
58 * Management arrays for POSIX timers. Timers are now kept in static hash table
59 * with 512 entries.
60 * Timer ids are allocated by local routine, which selects proper hash head by
61 * key, constructed from current->signal address and per signal struct counter.
62 * This keeps timer ids unique per process, but now they can intersect between
63 * processes.
1da177e4
LT
64 */
65
66/*
67 * Lets keep our timers in a slab cache :-)
68 */
e18b890b 69static struct kmem_cache *posix_timers_cache;
5ed67f05
PE
70
71static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
72static DEFINE_SPINLOCK(hash_lock);
1da177e4 73
6631fa12
TG
74static const struct k_clock * const posix_clocks[];
75static const struct k_clock *clockid_to_kclock(const clockid_t id);
67edab48 76static const struct k_clock clock_realtime, clock_monotonic;
6631fa12 77
1da177e4
LT
78/*
79 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
80 * SIGEV values. Here we put out an error if this assumption fails.
81 */
82#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
83 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
84#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
85#endif
86
65da528d
TG
87/*
88 * parisc wants ENOTSUP instead of EOPNOTSUPP
89 */
90#ifndef ENOTSUP
91# define ENANOSLEEP_NOTSUP EOPNOTSUPP
92#else
93# define ENANOSLEEP_NOTSUP ENOTSUP
94#endif
1da177e4
LT
95
96/*
97 * The timer ID is turned into a timer address by idr_find().
98 * Verifying a valid ID consists of:
99 *
100 * a) checking that idr_find() returns other than -1.
101 * b) checking that the timer id matches the one in the timer itself.
102 * c) that the timer owner is in the callers thread group.
103 */
104
105/*
106 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
107 * to implement others. This structure defines the various
0061748d 108 * clocks.
1da177e4
LT
109 *
110 * RESOLUTION: Clock resolution is used to round up timer and interval
111 * times, NOT to report clock times, which are reported with as
112 * much resolution as the system can muster. In some cases this
113 * resolution may depend on the underlying clock hardware and
114 * may not be quantifiable until run time, and only then is the
115 * necessary code is written. The standard says we should say
116 * something about this issue in the documentation...
117 *
0061748d
RC
118 * FUNCTIONS: The CLOCKs structure defines possible functions to
119 * handle various clock functions.
1da177e4 120 *
0061748d
RC
121 * The standard POSIX timer management code assumes the
122 * following: 1.) The k_itimer struct (sched.h) is used for
123 * the timer. 2.) The list, it_lock, it_clock, it_id and
124 * it_pid fields are not modified by timer code.
1da177e4
LT
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
20f33a03
NK
133static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
134
135#define lock_timer(tid, flags) \
136({ struct k_itimer *__timr; \
137 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
138 __timr; \
139})
1da177e4 140
5ed67f05
PE
141static int hash(struct signal_struct *sig, unsigned int nr)
142{
143 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
144}
145
146static struct k_itimer *__posix_timers_find(struct hlist_head *head,
147 struct signal_struct *sig,
148 timer_t id)
149{
5ed67f05
PE
150 struct k_itimer *timer;
151
152 hlist_for_each_entry_rcu(timer, head, t_hash) {
153 if ((timer->it_signal == sig) && (timer->it_id == id))
154 return timer;
155 }
156 return NULL;
157}
158
159static struct k_itimer *posix_timer_by_id(timer_t id)
160{
161 struct signal_struct *sig = current->signal;
162 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
163
164 return __posix_timers_find(head, sig, id);
165}
166
167static int posix_timer_add(struct k_itimer *timer)
168{
169 struct signal_struct *sig = current->signal;
170 int first_free_id = sig->posix_timer_id;
171 struct hlist_head *head;
172 int ret = -ENOENT;
173
174 do {
175 spin_lock(&hash_lock);
176 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
177 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
178 hlist_add_head_rcu(&timer->t_hash, head);
179 ret = sig->posix_timer_id;
180 }
181 if (++sig->posix_timer_id < 0)
182 sig->posix_timer_id = 0;
183 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
184 /* Loop over all possible ids completed */
185 ret = -EAGAIN;
186 spin_unlock(&hash_lock);
187 } while (ret == -ENOENT);
188 return ret;
189}
190
1da177e4
LT
191static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
192{
193 spin_unlock_irqrestore(&timr->it_lock, flags);
194}
195
42285777 196/* Get clock_realtime */
3c9c12f4 197static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
42285777 198{
3c9c12f4 199 ktime_get_real_ts64(tp);
42285777
TG
200 return 0;
201}
202
26f9a479
TG
203/* Set clock_realtime */
204static int posix_clock_realtime_set(const clockid_t which_clock,
0fe6afe3 205 const struct timespec64 *tp)
26f9a479 206{
0fe6afe3 207 return do_sys_settimeofday64(tp, NULL);
26f9a479
TG
208}
209
f1f1d5eb
RC
210static int posix_clock_realtime_adj(const clockid_t which_clock,
211 struct timex *t)
212{
213 return do_adjtimex(t);
214}
215
becf8b5d
TG
216/*
217 * Get monotonic time for posix timers
218 */
3c9c12f4 219static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
becf8b5d 220{
3c9c12f4 221 ktime_get_ts64(tp);
becf8b5d
TG
222 return 0;
223}
1da177e4 224
2d42244a 225/*
7fdd7f89 226 * Get monotonic-raw time for posix timers
2d42244a 227 */
3c9c12f4 228static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
2d42244a 229{
3c9c12f4 230 getrawmonotonic64(tp);
2d42244a
JS
231 return 0;
232}
233
da15cfda 234
3c9c12f4 235static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
da15cfda 236{
3c9c12f4 237 *tp = current_kernel_time64();
da15cfda
JS
238 return 0;
239}
240
241static int posix_get_monotonic_coarse(clockid_t which_clock,
3c9c12f4 242 struct timespec64 *tp)
da15cfda 243{
3c9c12f4 244 *tp = get_monotonic_coarse64();
da15cfda
JS
245 return 0;
246}
247
d2e3e0ca 248static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
da15cfda 249{
d2e3e0ca 250 *tp = ktime_to_timespec64(KTIME_LOW_RES);
da15cfda
JS
251 return 0;
252}
7fdd7f89 253
3c9c12f4 254static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
7fdd7f89 255{
3c9c12f4 256 get_monotonic_boottime64(tp);
7fdd7f89
JS
257 return 0;
258}
259
3c9c12f4 260static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
1ff3c967 261{
3c9c12f4 262 timekeeping_clocktai64(tp);
1ff3c967
JS
263 return 0;
264}
7fdd7f89 265
d2e3e0ca 266static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
056a3cac
TG
267{
268 tp->tv_sec = 0;
269 tp->tv_nsec = hrtimer_resolution;
270 return 0;
271}
272
1da177e4
LT
273/*
274 * Initialize everything, well, just everything in Posix clocks/timers ;)
275 */
276static __init int init_posix_timers(void)
277{
1da177e4 278 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
279 sizeof (struct k_itimer), 0, SLAB_PANIC,
280 NULL);
1da177e4
LT
281 return 0;
282}
1da177e4
LT
283__initcall(init_posix_timers);
284
f37fb0aa 285static void common_hrtimer_rearm(struct k_itimer *timr)
1da177e4 286{
44f21475
RZ
287 struct hrtimer *timer = &timr->it.real.timer;
288
80105cd0 289 if (!timr->it_interval)
1da177e4
LT
290 return;
291
4d672e7a
DL
292 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
293 timer->base->get_time(),
80105cd0 294 timr->it_interval);
44f21475 295 hrtimer_restart(timer);
1da177e4
LT
296}
297
298/*
299 * This function is exported for use by the signal deliver code. It is
300 * called just prior to the info block being released and passes that
301 * block to us. It's function is to update the overrun entry AND to
302 * restart the timer. It should only be called if the timer is to be
303 * restarted (i.e. we have flagged this in the sys_private entry of the
304 * info block).
305 *
25985edc 306 * To protect against the timer going away while the interrupt is queued,
1da177e4
LT
307 * we require that the it_requeue_pending flag be set.
308 */
96fe3b07 309void posixtimer_rearm(struct siginfo *info)
1da177e4
LT
310{
311 struct k_itimer *timr;
312 unsigned long flags;
313
314 timr = lock_timer(info->si_tid, &flags);
af888d67
TG
315 if (!timr)
316 return;
1da177e4 317
af888d67 318 if (timr->it_requeue_pending == info->si_sys_private) {
f37fb0aa 319 timr->kclock->timer_rearm(timr);
1da177e4 320
21e55c1f 321 timr->it_active = 1;
af888d67
TG
322 timr->it_overrun_last = timr->it_overrun;
323 timr->it_overrun = -1;
324 ++timr->it_requeue_pending;
325
54da1174 326 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
327 }
328
af888d67 329 unlock_timer(timr, flags);
1da177e4
LT
330}
331
ba661292 332int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 333{
27af4245
ON
334 struct task_struct *task;
335 int shared, ret = -1;
ba661292
ON
336 /*
337 * FIXME: if ->sigq is queued we can race with
96fe3b07 338 * dequeue_signal()->posixtimer_rearm().
ba661292
ON
339 *
340 * If dequeue_signal() sees the "right" value of
96fe3b07 341 * si_sys_private it calls posixtimer_rearm().
ba661292 342 * We re-queue ->sigq and drop ->it_lock().
96fe3b07 343 * posixtimer_rearm() locks the timer
ba661292
ON
344 * and re-schedules it while ->sigq is pending.
345 * Not really bad, but not that we want.
346 */
1da177e4 347 timr->sigq->info.si_sys_private = si_private;
1da177e4 348
27af4245
ON
349 rcu_read_lock();
350 task = pid_task(timr->it_pid, PIDTYPE_PID);
351 if (task) {
352 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
353 ret = send_sigqueue(timr->sigq, task, shared);
354 }
355 rcu_read_unlock();
4aa73611
ON
356 /* If we failed to send the signal the timer stops. */
357 return ret > 0;
1da177e4 358}
1da177e4
LT
359
360/*
361 * This function gets called when a POSIX.1b interval timer expires. It
362 * is used as a callback from the kernel internal timer. The
363 * run_timer_list code ALWAYS calls with interrupts on.
364
365 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
366 */
c9cb2e3d 367static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 368{
05cfb614 369 struct k_itimer *timr;
1da177e4 370 unsigned long flags;
becf8b5d 371 int si_private = 0;
c9cb2e3d 372 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 373
05cfb614 374 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 375 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 376
21e55c1f 377 timr->it_active = 0;
80105cd0 378 if (timr->it_interval != 0)
becf8b5d 379 si_private = ++timr->it_requeue_pending;
1da177e4 380
becf8b5d
TG
381 if (posix_timer_event(timr, si_private)) {
382 /*
383 * signal was not sent because of sig_ignor
384 * we will not get a call back to restart it AND
385 * it should be restarted.
386 */
80105cd0 387 if (timr->it_interval != 0) {
58229a18
TG
388 ktime_t now = hrtimer_cb_get_time(timer);
389
390 /*
391 * FIXME: What we really want, is to stop this
392 * timer completely and restart it in case the
393 * SIG_IGN is removed. This is a non trivial
394 * change which involves sighand locking
395 * (sigh !), which we don't want to do late in
396 * the release cycle.
397 *
398 * For now we just let timers with an interval
399 * less than a jiffie expire every jiffie to
400 * avoid softirq starvation in case of SIG_IGN
401 * and a very small interval, which would put
402 * the timer right back on the softirq pending
403 * list. By moving now ahead of time we trick
404 * hrtimer_forward() to expire the timer
405 * later, while we still maintain the overrun
406 * accuracy, but have some inconsistency in
407 * the timer_gettime() case. This is at least
408 * better than a starved softirq. A more
409 * complex fix which solves also another related
410 * inconsistency is already in the pipeline.
411 */
412#ifdef CONFIG_HIGH_RES_TIMERS
413 {
8b0e1953 414 ktime_t kj = NSEC_PER_SEC / HZ;
58229a18 415
80105cd0 416 if (timr->it_interval < kj)
58229a18
TG
417 now = ktime_add(now, kj);
418 }
419#endif
4d672e7a 420 timr->it_overrun += (unsigned int)
58229a18 421 hrtimer_forward(timer, now,
80105cd0 422 timr->it_interval);
becf8b5d 423 ret = HRTIMER_RESTART;
a0a0c28c 424 ++timr->it_requeue_pending;
21e55c1f 425 timr->it_active = 1;
1da177e4 426 }
1da177e4 427 }
1da177e4 428
becf8b5d
TG
429 unlock_timer(timr, flags);
430 return ret;
431}
1da177e4 432
27af4245 433static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
434{
435 struct task_struct *rtn = current->group_leader;
436
437 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 438 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 439 !same_thread_group(rtn, current) ||
1da177e4
LT
440 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
441 return NULL;
442
443 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
444 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
445 return NULL;
446
27af4245 447 return task_pid(rtn);
1da177e4
LT
448}
449
1da177e4
LT
450static struct k_itimer * alloc_posix_timer(void)
451{
452 struct k_itimer *tmr;
c3762229 453 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
454 if (!tmr)
455 return tmr;
1da177e4
LT
456 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
457 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 458 return NULL;
1da177e4 459 }
ba661292 460 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
461 return tmr;
462}
463
8af08871
ED
464static void k_itimer_rcu_free(struct rcu_head *head)
465{
466 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
467
468 kmem_cache_free(posix_timers_cache, tmr);
469}
470
1da177e4
LT
471#define IT_ID_SET 1
472#define IT_ID_NOT_SET 0
473static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
474{
475 if (it_id_set) {
476 unsigned long flags;
5ed67f05
PE
477 spin_lock_irqsave(&hash_lock, flags);
478 hlist_del_rcu(&tmr->t_hash);
479 spin_unlock_irqrestore(&hash_lock, flags);
1da177e4 480 }
89992102 481 put_pid(tmr->it_pid);
1da177e4 482 sigqueue_free(tmr->sigq);
8af08871 483 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
1da177e4
LT
484}
485
838394fb
TG
486static int common_timer_create(struct k_itimer *new_timer)
487{
488 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
489 return 0;
490}
491
1da177e4 492/* Create a POSIX.1b interval timer. */
2482097c
AV
493static int do_timer_create(clockid_t which_clock, struct sigevent *event,
494 timer_t __user *created_timer_id)
1da177e4 495{
d3ba5a9a 496 const struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 497 struct k_itimer *new_timer;
ef864c95 498 int error, new_timer_id;
1da177e4
LT
499 int it_id_set = IT_ID_NOT_SET;
500
838394fb 501 if (!kc)
1da177e4 502 return -EINVAL;
838394fb
TG
503 if (!kc->timer_create)
504 return -EOPNOTSUPP;
1da177e4
LT
505
506 new_timer = alloc_posix_timer();
507 if (unlikely(!new_timer))
508 return -EAGAIN;
509
510 spin_lock_init(&new_timer->it_lock);
5ed67f05
PE
511 new_timer_id = posix_timer_add(new_timer);
512 if (new_timer_id < 0) {
513 error = new_timer_id;
1da177e4
LT
514 goto out;
515 }
516
517 it_id_set = IT_ID_SET;
518 new_timer->it_id = (timer_t) new_timer_id;
519 new_timer->it_clock = which_clock;
d97bb75d 520 new_timer->kclock = kc;
1da177e4 521 new_timer->it_overrun = -1;
1da177e4 522
2482097c 523 if (event) {
36b2f046 524 rcu_read_lock();
2482097c 525 new_timer->it_pid = get_pid(good_sigevent(event));
36b2f046 526 rcu_read_unlock();
89992102 527 if (!new_timer->it_pid) {
1da177e4
LT
528 error = -EINVAL;
529 goto out;
530 }
2482097c
AV
531 new_timer->it_sigev_notify = event->sigev_notify;
532 new_timer->sigq->info.si_signo = event->sigev_signo;
533 new_timer->sigq->info.si_value = event->sigev_value;
1da177e4 534 } else {
2482097c
AV
535 new_timer->it_sigev_notify = SIGEV_SIGNAL;
536 new_timer->sigq->info.si_signo = SIGALRM;
537 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
538 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
89992102 539 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
540 }
541
717835d9 542 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 543 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 544
2b08de00
AV
545 if (copy_to_user(created_timer_id,
546 &new_timer_id, sizeof (new_timer_id))) {
547 error = -EFAULT;
548 goto out;
549 }
550
838394fb 551 error = kc->timer_create(new_timer);
45e0fffc
AV
552 if (error)
553 goto out;
554
36b2f046 555 spin_lock_irq(&current->sighand->siglock);
27af4245 556 new_timer->it_signal = current->signal;
36b2f046
ON
557 list_add(&new_timer->list, &current->signal->posix_timers);
558 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
559
560 return 0;
838394fb 561 /*
1da177e4
LT
562 * In the case of the timer belonging to another task, after
563 * the task is unlocked, the timer is owned by the other task
564 * and may cease to exist at any time. Don't use or modify
565 * new_timer after the unlock call.
566 */
1da177e4 567out:
ef864c95 568 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
569 return error;
570}
571
2482097c
AV
572SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
573 struct sigevent __user *, timer_event_spec,
574 timer_t __user *, created_timer_id)
575{
576 if (timer_event_spec) {
577 sigevent_t event;
578
579 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
580 return -EFAULT;
581 return do_timer_create(which_clock, &event, created_timer_id);
582 }
583 return do_timer_create(which_clock, NULL, created_timer_id);
584}
585
586#ifdef CONFIG_COMPAT
587COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
588 struct compat_sigevent __user *, timer_event_spec,
589 timer_t __user *, created_timer_id)
590{
591 if (timer_event_spec) {
592 sigevent_t event;
593
594 if (get_compat_sigevent(&event, timer_event_spec))
595 return -EFAULT;
596 return do_timer_create(which_clock, &event, created_timer_id);
597 }
598 return do_timer_create(which_clock, NULL, created_timer_id);
599}
600#endif
601
1da177e4
LT
602/*
603 * Locking issues: We need to protect the result of the id look up until
604 * we get the timer locked down so it is not deleted under us. The
605 * removal is done under the idr spinlock so we use that here to bridge
606 * the find to the timer lock. To avoid a dead lock, the timer id MUST
607 * be release with out holding the timer lock.
608 */
20f33a03 609static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
610{
611 struct k_itimer *timr;
8af08871 612
e182bb38
TH
613 /*
614 * timer_t could be any type >= int and we want to make sure any
615 * @timer_id outside positive int range fails lookup.
616 */
617 if ((unsigned long long)timer_id > INT_MAX)
618 return NULL;
619
8af08871 620 rcu_read_lock();
5ed67f05 621 timr = posix_timer_by_id(timer_id);
1da177e4 622 if (timr) {
8af08871 623 spin_lock_irqsave(&timr->it_lock, *flags);
89992102 624 if (timr->it_signal == current->signal) {
8af08871 625 rcu_read_unlock();
31d92845
ON
626 return timr;
627 }
8af08871 628 spin_unlock_irqrestore(&timr->it_lock, *flags);
31d92845 629 }
8af08871 630 rcu_read_unlock();
1da177e4 631
31d92845 632 return NULL;
1da177e4
LT
633}
634
91d57bae
TG
635static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
636{
637 struct hrtimer *timer = &timr->it.real.timer;
638
639 return __hrtimer_expires_remaining_adjusted(timer, now);
640}
641
642static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
643{
644 struct hrtimer *timer = &timr->it.real.timer;
645
646 return (int)hrtimer_forward(timer, now, timr->it_interval);
647}
648
1da177e4
LT
649/*
650 * Get the time remaining on a POSIX.1b interval timer. This function
651 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
652 * mess with irq.
653 *
654 * We have a couple of messes to clean up here. First there is the case
655 * of a timer that has a requeue pending. These timers should appear to
656 * be in the timer list with an expiry as if we were to requeue them
657 * now.
658 *
659 * The second issue is the SIGEV_NONE timer which may be active but is
660 * not really ever put in the timer list (to save system resources).
661 * This timer may be expired, and if so, we will do it here. Otherwise
662 * it is the same as a requeue pending timer WRT to what we should
663 * report.
664 */
f2c45807 665void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
1da177e4 666{
91d57bae 667 const struct k_clock *kc = timr->kclock;
3b98a532 668 ktime_t now, remaining, iv;
91d57bae
TG
669 struct timespec64 ts64;
670 bool sig_none;
1da177e4 671
c6503be5 672 sig_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE;
80105cd0 673 iv = timr->it_interval;
3b98a532 674
becf8b5d 675 /* interval timer ? */
91d57bae 676 if (iv) {
5f252b32 677 cur_setting->it_interval = ktime_to_timespec64(iv);
91d57bae
TG
678 } else if (!timr->it_active) {
679 /*
680 * SIGEV_NONE oneshot timers are never queued. Check them
681 * below.
682 */
683 if (!sig_none)
684 return;
685 }
3b98a532 686
91d57bae
TG
687 /*
688 * The timespec64 based conversion is suboptimal, but it's not
689 * worth to implement yet another callback.
690 */
691 kc->clock_get(timr->it_clock, &ts64);
692 now = timespec64_to_ktime(ts64);
3b98a532 693
becf8b5d 694 /*
91d57bae
TG
695 * When a requeue is pending or this is a SIGEV_NONE timer move the
696 * expiry time forward by intervals, so expiry is > now.
becf8b5d 697 */
91d57bae
TG
698 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
699 timr->it_overrun += kc->timer_forward(timr, now);
3b98a532 700
91d57bae 701 remaining = kc->timer_remaining(timr, now);
becf8b5d 702 /* Return 0 only, when the timer is expired and not pending */
2456e855 703 if (remaining <= 0) {
3b98a532
RZ
704 /*
705 * A single shot SIGEV_NONE timer must return 0, when
706 * it is expired !
707 */
91d57bae 708 if (!sig_none)
3b98a532 709 cur_setting->it_value.tv_nsec = 1;
91d57bae 710 } else {
5f252b32 711 cur_setting->it_value = ktime_to_timespec64(remaining);
91d57bae 712 }
1da177e4
LT
713}
714
715/* Get the time remaining on a POSIX.1b interval timer. */
b0dc1242 716static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
1da177e4 717{
a7319fa2 718 struct k_itimer *timr;
d3ba5a9a 719 const struct k_clock *kc;
1da177e4 720 unsigned long flags;
a7319fa2 721 int ret = 0;
1da177e4
LT
722
723 timr = lock_timer(timer_id, &flags);
724 if (!timr)
725 return -EINVAL;
726
b0dc1242 727 memset(setting, 0, sizeof(*setting));
d97bb75d 728 kc = timr->kclock;
a7319fa2
TG
729 if (WARN_ON_ONCE(!kc || !kc->timer_get))
730 ret = -EINVAL;
731 else
b0dc1242 732 kc->timer_get(timr, setting);
1da177e4
LT
733
734 unlock_timer(timr, flags);
b0dc1242
AV
735 return ret;
736}
1da177e4 737
b0dc1242
AV
738/* Get the time remaining on a POSIX.1b interval timer. */
739SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
740 struct itimerspec __user *, setting)
741{
742 struct itimerspec64 cur_setting64;
1da177e4 743
b0dc1242
AV
744 int ret = do_timer_gettime(timer_id, &cur_setting64);
745 if (!ret) {
746 struct itimerspec cur_setting;
747 cur_setting = itimerspec64_to_itimerspec(&cur_setting64);
748 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
749 ret = -EFAULT;
750 }
a7319fa2 751 return ret;
1da177e4 752}
becf8b5d 753
b0dc1242
AV
754#ifdef CONFIG_COMPAT
755COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
756 struct compat_itimerspec __user *, setting)
757{
758 struct itimerspec64 cur_setting64;
759
760 int ret = do_timer_gettime(timer_id, &cur_setting64);
761 if (!ret) {
762 struct itimerspec cur_setting;
763 cur_setting = itimerspec64_to_itimerspec(&cur_setting64);
764 if (put_compat_itimerspec(setting, &cur_setting))
765 ret = -EFAULT;
766 }
767 return ret;
768}
769#endif
770
1da177e4
LT
771/*
772 * Get the number of overruns of a POSIX.1b interval timer. This is to
773 * be the overrun of the timer last delivered. At the same time we are
774 * accumulating overruns on the next timer. The overrun is frozen when
775 * the signal is delivered, either at the notify time (if the info block
776 * is not queued) or at the actual delivery time (as we are informed by
96fe3b07 777 * the call back to posixtimer_rearm(). So all we need to do is
1da177e4
LT
778 * to pick up the frozen overrun.
779 */
362e9c07 780SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
781{
782 struct k_itimer *timr;
783 int overrun;
5ba25331 784 unsigned long flags;
1da177e4
LT
785
786 timr = lock_timer(timer_id, &flags);
787 if (!timr)
788 return -EINVAL;
789
790 overrun = timr->it_overrun_last;
791 unlock_timer(timr, flags);
792
793 return overrun;
794}
1da177e4 795
eae1c4ae
TG
796static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
797 bool absolute, bool sigev_none)
798{
799 struct hrtimer *timer = &timr->it.real.timer;
800 enum hrtimer_mode mode;
801
802 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
67edab48
TG
803 /*
804 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
805 * clock modifications, so they become CLOCK_MONOTONIC based under the
806 * hood. See hrtimer_init(). Update timr->kclock, so the generic
807 * functions which use timr->kclock->clock_get() work.
808 *
809 * Note: it_clock stays unmodified, because the next timer_set() might
810 * use ABSTIME, so it needs to switch back.
811 */
812 if (timr->it_clock == CLOCK_REALTIME)
813 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
814
eae1c4ae
TG
815 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
816 timr->it.real.timer.function = posix_timer_fn;
817
818 if (!absolute)
819 expires = ktime_add_safe(expires, timer->base->get_time());
820 hrtimer_set_expires(timer, expires);
821
822 if (!sigev_none)
823 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
824}
825
826static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
827{
828 return hrtimer_try_to_cancel(&timr->it.real.timer);
829}
830
1da177e4 831/* Set a POSIX.1b interval timer. */
f2c45807
TG
832int common_timer_set(struct k_itimer *timr, int flags,
833 struct itimerspec64 *new_setting,
834 struct itimerspec64 *old_setting)
1da177e4 835{
eae1c4ae
TG
836 const struct k_clock *kc = timr->kclock;
837 bool sigev_none;
838 ktime_t expires;
1da177e4
LT
839
840 if (old_setting)
841 common_timer_get(timr, old_setting);
842
eae1c4ae 843 /* Prevent rearming by clearing the interval */
80105cd0 844 timr->it_interval = 0;
1da177e4 845 /*
eae1c4ae
TG
846 * Careful here. On SMP systems the timer expiry function could be
847 * active and spinning on timr->it_lock.
1da177e4 848 */
eae1c4ae 849 if (kc->timer_try_to_cancel(timr) < 0)
1da177e4 850 return TIMER_RETRY;
1da177e4 851
21e55c1f
TG
852 timr->it_active = 0;
853 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
1da177e4
LT
854 ~REQUEUE_PENDING;
855 timr->it_overrun_last = 0;
1da177e4 856
eae1c4ae 857 /* Switch off the timer when it_value is zero */
becf8b5d
TG
858 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
859 return 0;
1da177e4 860
80105cd0 861 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
eae1c4ae
TG
862 expires = timespec64_to_ktime(new_setting->it_value);
863 sigev_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE;
becf8b5d 864
eae1c4ae
TG
865 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
866 timr->it_active = !sigev_none;
1da177e4
LT
867 return 0;
868}
869
1acbe770
AV
870static int do_timer_settime(timer_t timer_id, int flags,
871 struct itimerspec64 *new_spec64,
872 struct itimerspec64 *old_spec64)
1da177e4 873{
1acbe770 874 const struct k_clock *kc;
5f252b32 875 struct k_itimer *timr;
5ba25331 876 unsigned long flag;
5f252b32 877 int error = 0;
1da177e4 878
1acbe770
AV
879 if (!timespec64_valid(&new_spec64->it_interval) ||
880 !timespec64_valid(&new_spec64->it_value))
1da177e4
LT
881 return -EINVAL;
882
1acbe770
AV
883 if (old_spec64)
884 memset(old_spec64, 0, sizeof(*old_spec64));
1da177e4
LT
885retry:
886 timr = lock_timer(timer_id, &flag);
887 if (!timr)
888 return -EINVAL;
889
d97bb75d 890 kc = timr->kclock;
27722df1
TG
891 if (WARN_ON_ONCE(!kc || !kc->timer_set))
892 error = -EINVAL;
893 else
1acbe770 894 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
1da177e4
LT
895
896 unlock_timer(timr, flag);
897 if (error == TIMER_RETRY) {
1acbe770 898 old_spec64 = NULL; // We already got the old time...
1da177e4
LT
899 goto retry;
900 }
901
1acbe770
AV
902 return error;
903}
1da177e4 904
1acbe770
AV
905/* Set a POSIX.1b interval timer */
906SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
907 const struct itimerspec __user *, new_setting,
908 struct itimerspec __user *, old_setting)
909{
910 struct itimerspec64 new_spec64, old_spec64;
911 struct itimerspec64 *rtn = old_setting ? &old_spec64 : NULL;
912 struct itimerspec new_spec;
913 int error = 0;
914
915 if (!new_setting)
916 return -EINVAL;
917
918 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
919 return -EFAULT;
920 new_spec64 = itimerspec_to_itimerspec64(&new_spec);
921
922 error = do_timer_settime(timer_id, flags, &new_spec64, rtn);
923 if (!error && old_setting) {
924 struct itimerspec old_spec;
925 old_spec = itimerspec64_to_itimerspec(&old_spec64);
926 if (copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
927 error = -EFAULT;
928 }
929 return error;
930}
931
932#ifdef CONFIG_COMPAT
933COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
934 struct compat_itimerspec __user *, new,
935 struct compat_itimerspec __user *, old)
936{
937 struct itimerspec64 new_spec64, old_spec64;
938 struct itimerspec64 *rtn = old ? &old_spec64 : NULL;
939 struct itimerspec new_spec;
940 int error = 0;
941
942 if (!new)
943 return -EINVAL;
944 if (get_compat_itimerspec(&new_spec, new))
945 return -EFAULT;
946
947 new_spec64 = itimerspec_to_itimerspec64(&new_spec);
948 error = do_timer_settime(timer_id, flags, &new_spec64, rtn);
949 if (!error && old) {
950 struct itimerspec old_spec;
951 old_spec = itimerspec64_to_itimerspec(&old_spec64);
952 if (put_compat_itimerspec(old, &old_spec))
953 error = -EFAULT;
954 }
1da177e4
LT
955 return error;
956}
1acbe770 957#endif
1da177e4 958
f2c45807 959int common_timer_del(struct k_itimer *timer)
1da177e4 960{
eae1c4ae 961 const struct k_clock *kc = timer->kclock;
f972be33 962
eae1c4ae
TG
963 timer->it_interval = 0;
964 if (kc->timer_try_to_cancel(timer) < 0)
1da177e4 965 return TIMER_RETRY;
21e55c1f 966 timer->it_active = 0;
1da177e4
LT
967 return 0;
968}
969
970static inline int timer_delete_hook(struct k_itimer *timer)
971{
d97bb75d 972 const struct k_clock *kc = timer->kclock;
6761c670
TG
973
974 if (WARN_ON_ONCE(!kc || !kc->timer_del))
975 return -EINVAL;
976 return kc->timer_del(timer);
1da177e4
LT
977}
978
979/* Delete a POSIX.1b interval timer. */
362e9c07 980SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
981{
982 struct k_itimer *timer;
5ba25331 983 unsigned long flags;
1da177e4 984
1da177e4 985retry_delete:
1da177e4
LT
986 timer = lock_timer(timer_id, &flags);
987 if (!timer)
988 return -EINVAL;
989
becf8b5d 990 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
991 unlock_timer(timer, flags);
992 goto retry_delete;
993 }
becf8b5d 994
1da177e4
LT
995 spin_lock(&current->sighand->siglock);
996 list_del(&timer->list);
997 spin_unlock(&current->sighand->siglock);
998 /*
999 * This keeps any tasks waiting on the spin lock from thinking
1000 * they got something (see the lock code above).
1001 */
89992102 1002 timer->it_signal = NULL;
4b7a1304 1003
1da177e4
LT
1004 unlock_timer(timer, flags);
1005 release_posix_timer(timer, IT_ID_SET);
1006 return 0;
1007}
becf8b5d 1008
1da177e4
LT
1009/*
1010 * return timer owned by the process, used by exit_itimers
1011 */
858119e1 1012static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
1013{
1014 unsigned long flags;
1015
1da177e4 1016retry_delete:
1da177e4
LT
1017 spin_lock_irqsave(&timer->it_lock, flags);
1018
becf8b5d 1019 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
1020 unlock_timer(timer, flags);
1021 goto retry_delete;
1022 }
1da177e4
LT
1023 list_del(&timer->list);
1024 /*
1025 * This keeps any tasks waiting on the spin lock from thinking
1026 * they got something (see the lock code above).
1027 */
89992102 1028 timer->it_signal = NULL;
4b7a1304 1029
1da177e4
LT
1030 unlock_timer(timer, flags);
1031 release_posix_timer(timer, IT_ID_SET);
1032}
1033
1034/*
25f407f0 1035 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
1036 * references to the shared signal_struct.
1037 */
1038void exit_itimers(struct signal_struct *sig)
1039{
1040 struct k_itimer *tmr;
1041
1042 while (!list_empty(&sig->posix_timers)) {
1043 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1044 itimer_delete(tmr);
1045 }
1046}
1047
362e9c07
HC
1048SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1049 const struct timespec __user *, tp)
1da177e4 1050{
d3ba5a9a 1051 const struct k_clock *kc = clockid_to_kclock(which_clock);
0fe6afe3 1052 struct timespec64 new_tp64;
1da177e4
LT
1053 struct timespec new_tp;
1054
26f9a479 1055 if (!kc || !kc->clock_set)
1da177e4 1056 return -EINVAL;
26f9a479 1057
1da177e4
LT
1058 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1059 return -EFAULT;
0fe6afe3 1060 new_tp64 = timespec_to_timespec64(new_tp);
1da177e4 1061
0fe6afe3 1062 return kc->clock_set(which_clock, &new_tp64);
1da177e4
LT
1063}
1064
362e9c07
HC
1065SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1066 struct timespec __user *,tp)
1da177e4 1067{
d3ba5a9a 1068 const struct k_clock *kc = clockid_to_kclock(which_clock);
3c9c12f4 1069 struct timespec64 kernel_tp64;
1da177e4
LT
1070 struct timespec kernel_tp;
1071 int error;
1072
42285777 1073 if (!kc)
1da177e4 1074 return -EINVAL;
42285777 1075
3c9c12f4
DD
1076 error = kc->clock_get(which_clock, &kernel_tp64);
1077 kernel_tp = timespec64_to_timespec(kernel_tp64);
42285777 1078
1da177e4
LT
1079 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1080 error = -EFAULT;
1081
1082 return error;
1da177e4
LT
1083}
1084
f1f1d5eb
RC
1085SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1086 struct timex __user *, utx)
1087{
d3ba5a9a 1088 const struct k_clock *kc = clockid_to_kclock(which_clock);
f1f1d5eb
RC
1089 struct timex ktx;
1090 int err;
1091
1092 if (!kc)
1093 return -EINVAL;
1094 if (!kc->clock_adj)
1095 return -EOPNOTSUPP;
1096
1097 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1098 return -EFAULT;
1099
1100 err = kc->clock_adj(which_clock, &ktx);
1101
f0dbe81f 1102 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
f1f1d5eb
RC
1103 return -EFAULT;
1104
1105 return err;
1106}
1107
d822cdcc
AV
1108SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1109 struct timespec __user *, tp)
1110{
1111 const struct k_clock *kc = clockid_to_kclock(which_clock);
1112 struct timespec64 rtn_tp64;
1113 struct timespec rtn_tp;
1114 int error;
1115
1116 if (!kc)
1117 return -EINVAL;
1118
1119 error = kc->clock_getres(which_clock, &rtn_tp64);
1120 rtn_tp = timespec64_to_timespec(rtn_tp64);
1121
1122 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1123 error = -EFAULT;
1124
1125 return error;
1126}
1127
3a4d44b6
AV
1128#ifdef CONFIG_COMPAT
1129
d822cdcc
AV
1130COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1131 struct compat_timespec __user *, tp)
1132{
1133 const struct k_clock *kc = clockid_to_kclock(which_clock);
1134 struct timespec64 new_tp64;
1135 struct timespec new_tp;
1136
1137 if (!kc || !kc->clock_set)
1138 return -EINVAL;
1139
1140 if (compat_get_timespec(&new_tp, tp))
1141 return -EFAULT;
1142
1143 new_tp64 = timespec_to_timespec64(new_tp);
1144
1145 return kc->clock_set(which_clock, &new_tp64);
1146}
1147
1148COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1149 struct compat_timespec __user *, tp)
1150{
1151 const struct k_clock *kc = clockid_to_kclock(which_clock);
1152 struct timespec64 kernel_tp64;
1153 struct timespec kernel_tp;
1154 int error;
1155
1156 if (!kc)
1157 return -EINVAL;
1158
1159 error = kc->clock_get(which_clock, &kernel_tp64);
1160 kernel_tp = timespec64_to_timespec(kernel_tp64);
1161
1162 if (!error && compat_put_timespec(&kernel_tp, tp))
1163 error = -EFAULT;
1164
1165 return error;
1166}
1167
3a4d44b6
AV
1168COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1169 struct compat_timex __user *, utp)
1170{
1171 const struct k_clock *kc = clockid_to_kclock(which_clock);
1172 struct timex ktx;
1173 int err;
1174
1175 if (!kc)
1176 return -EINVAL;
1177 if (!kc->clock_adj)
1178 return -EOPNOTSUPP;
1179
1180 err = compat_get_timex(&ktx, utp);
1181 if (err)
1182 return err;
1183
1184 err = kc->clock_adj(which_clock, &ktx);
1185
1186 if (err >= 0)
1187 err = compat_put_timex(utp, &ktx);
1188
1189 return err;
1190}
3a4d44b6 1191
d822cdcc
AV
1192COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1193 struct compat_timespec __user *, tp)
1da177e4 1194{
d3ba5a9a 1195 const struct k_clock *kc = clockid_to_kclock(which_clock);
d2e3e0ca 1196 struct timespec64 rtn_tp64;
1da177e4
LT
1197 struct timespec rtn_tp;
1198 int error;
1199
e5e542ee 1200 if (!kc)
1da177e4
LT
1201 return -EINVAL;
1202
d2e3e0ca
DD
1203 error = kc->clock_getres(which_clock, &rtn_tp64);
1204 rtn_tp = timespec64_to_timespec(rtn_tp64);
1da177e4 1205
d822cdcc 1206 if (!error && tp && compat_put_timespec(&rtn_tp, tp))
1da177e4 1207 error = -EFAULT;
1da177e4
LT
1208
1209 return error;
1210}
d822cdcc 1211#endif
1da177e4 1212
97735f25
TG
1213/*
1214 * nanosleep for monotonic and realtime clocks
1215 */
1216static int common_nsleep(const clockid_t which_clock, int flags,
99e6c0e6 1217 struct timespec64 *tsave)
97735f25 1218{
192a82f9 1219 return hrtimer_nanosleep(tsave, flags & TIMER_ABSTIME ?
080344b9
ON
1220 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1221 which_clock);
97735f25 1222}
1da177e4 1223
362e9c07
HC
1224SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1225 const struct timespec __user *, rqtp,
1226 struct timespec __user *, rmtp)
1da177e4 1227{
d3ba5a9a 1228 const struct k_clock *kc = clockid_to_kclock(which_clock);
ad196384 1229 struct timespec64 t64;
1da177e4 1230 struct timespec t;
1da177e4 1231
a5cd2880 1232 if (!kc)
1da177e4 1233 return -EINVAL;
a5cd2880
TG
1234 if (!kc->nsleep)
1235 return -ENANOSLEEP_NOTSUP;
1da177e4
LT
1236
1237 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1238 return -EFAULT;
1239
ad196384
DD
1240 t64 = timespec_to_timespec64(t);
1241 if (!timespec64_valid(&t64))
1da177e4 1242 return -EINVAL;
99e6c0e6
AV
1243 if (flags & TIMER_ABSTIME)
1244 rmtp = NULL;
edbeda46 1245 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
99e6c0e6 1246 current->restart_block.nanosleep.rmtp = rmtp;
1da177e4 1247
99e6c0e6 1248 return kc->nsleep(which_clock, flags, &t64);
1da177e4 1249}
1711ef38 1250
edbeda46
AV
1251#ifdef CONFIG_COMPAT
1252COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1253 struct compat_timespec __user *, rqtp,
1254 struct compat_timespec __user *, rmtp)
1711ef38 1255{
d3ba5a9a 1256 const struct k_clock *kc = clockid_to_kclock(which_clock);
edbeda46
AV
1257 struct timespec64 t64;
1258 struct timespec t;
59bd5bc2 1259
edbeda46 1260 if (!kc)
59bd5bc2 1261 return -EINVAL;
edbeda46
AV
1262 if (!kc->nsleep)
1263 return -ENANOSLEEP_NOTSUP;
1264
1265 if (compat_get_timespec(&t, rqtp))
1266 return -EFAULT;
1711ef38 1267
edbeda46
AV
1268 t64 = timespec_to_timespec64(t);
1269 if (!timespec64_valid(&t64))
1270 return -EINVAL;
1271 if (flags & TIMER_ABSTIME)
1272 rmtp = NULL;
1273 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1274 current->restart_block.nanosleep.compat_rmtp = rmtp;
1275
1276 return kc->nsleep(which_clock, flags, &t64);
1711ef38 1277}
edbeda46 1278#endif
6631fa12
TG
1279
1280static const struct k_clock clock_realtime = {
eae1c4ae
TG
1281 .clock_getres = posix_get_hrtimer_res,
1282 .clock_get = posix_clock_realtime_get,
1283 .clock_set = posix_clock_realtime_set,
1284 .clock_adj = posix_clock_realtime_adj,
1285 .nsleep = common_nsleep,
eae1c4ae
TG
1286 .timer_create = common_timer_create,
1287 .timer_set = common_timer_set,
1288 .timer_get = common_timer_get,
1289 .timer_del = common_timer_del,
1290 .timer_rearm = common_hrtimer_rearm,
1291 .timer_forward = common_hrtimer_forward,
1292 .timer_remaining = common_hrtimer_remaining,
1293 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1294 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1295};
1296
1297static const struct k_clock clock_monotonic = {
eae1c4ae
TG
1298 .clock_getres = posix_get_hrtimer_res,
1299 .clock_get = posix_ktime_get_ts,
1300 .nsleep = common_nsleep,
eae1c4ae
TG
1301 .timer_create = common_timer_create,
1302 .timer_set = common_timer_set,
1303 .timer_get = common_timer_get,
1304 .timer_del = common_timer_del,
1305 .timer_rearm = common_hrtimer_rearm,
1306 .timer_forward = common_hrtimer_forward,
1307 .timer_remaining = common_hrtimer_remaining,
1308 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1309 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1310};
1311
1312static const struct k_clock clock_monotonic_raw = {
eae1c4ae
TG
1313 .clock_getres = posix_get_hrtimer_res,
1314 .clock_get = posix_get_monotonic_raw,
6631fa12
TG
1315};
1316
1317static const struct k_clock clock_realtime_coarse = {
eae1c4ae
TG
1318 .clock_getres = posix_get_coarse_res,
1319 .clock_get = posix_get_realtime_coarse,
6631fa12
TG
1320};
1321
1322static const struct k_clock clock_monotonic_coarse = {
eae1c4ae
TG
1323 .clock_getres = posix_get_coarse_res,
1324 .clock_get = posix_get_monotonic_coarse,
6631fa12
TG
1325};
1326
1327static const struct k_clock clock_tai = {
eae1c4ae
TG
1328 .clock_getres = posix_get_hrtimer_res,
1329 .clock_get = posix_get_tai,
1330 .nsleep = common_nsleep,
eae1c4ae
TG
1331 .timer_create = common_timer_create,
1332 .timer_set = common_timer_set,
1333 .timer_get = common_timer_get,
1334 .timer_del = common_timer_del,
1335 .timer_rearm = common_hrtimer_rearm,
1336 .timer_forward = common_hrtimer_forward,
1337 .timer_remaining = common_hrtimer_remaining,
1338 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1339 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1340};
1341
1342static const struct k_clock clock_boottime = {
eae1c4ae
TG
1343 .clock_getres = posix_get_hrtimer_res,
1344 .clock_get = posix_get_boottime,
1345 .nsleep = common_nsleep,
eae1c4ae
TG
1346 .timer_create = common_timer_create,
1347 .timer_set = common_timer_set,
1348 .timer_get = common_timer_get,
1349 .timer_del = common_timer_del,
1350 .timer_rearm = common_hrtimer_rearm,
1351 .timer_forward = common_hrtimer_forward,
1352 .timer_remaining = common_hrtimer_remaining,
1353 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1354 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1355};
1356
1357static const struct k_clock * const posix_clocks[] = {
1358 [CLOCK_REALTIME] = &clock_realtime,
1359 [CLOCK_MONOTONIC] = &clock_monotonic,
1360 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1361 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1362 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1363 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1364 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1365 [CLOCK_BOOTTIME] = &clock_boottime,
1366 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1367 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1368 [CLOCK_TAI] = &clock_tai,
1369};
1370
1371static const struct k_clock *clockid_to_kclock(const clockid_t id)
1372{
1373 if (id < 0)
1374 return (id & CLOCKFD_MASK) == CLOCKFD ?
1375 &clock_posix_dynamic : &clock_posix_cpu;
1376
1377 if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id])
1378 return NULL;
1379 return posix_clocks[id];
1380}