]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/time/posix-timers.c
signal: Introduce copy_siginfo_from_user and use it's return value
[mirror_ubuntu-hirsute-kernel.git] / kernel / time / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
61855b6b 38#include <linux/sched/task.h>
1da177e4 39
7c0f6ba6 40#include <linux/uaccess.h>
1da177e4
LT
41#include <linux/list.h>
42#include <linux/init.h>
43#include <linux/compiler.h>
5ed67f05 44#include <linux/hash.h>
0606f422 45#include <linux/posix-clock.h>
1da177e4
LT
46#include <linux/posix-timers.h>
47#include <linux/syscalls.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
9984de1a 50#include <linux/export.h>
5ed67f05 51#include <linux/hashtable.h>
edbeda46 52#include <linux/compat.h>
19b558db 53#include <linux/nospec.h>
1da177e4 54
8b094cd0 55#include "timekeeping.h"
bab0aae9 56#include "posix-timers.h"
8b094cd0 57
1da177e4 58/*
5ed67f05
PE
59 * Management arrays for POSIX timers. Timers are now kept in static hash table
60 * with 512 entries.
61 * Timer ids are allocated by local routine, which selects proper hash head by
62 * key, constructed from current->signal address and per signal struct counter.
63 * This keeps timer ids unique per process, but now they can intersect between
64 * processes.
1da177e4
LT
65 */
66
67/*
68 * Lets keep our timers in a slab cache :-)
69 */
e18b890b 70static struct kmem_cache *posix_timers_cache;
5ed67f05
PE
71
72static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73static DEFINE_SPINLOCK(hash_lock);
1da177e4 74
6631fa12
TG
75static const struct k_clock * const posix_clocks[];
76static const struct k_clock *clockid_to_kclock(const clockid_t id);
67edab48 77static const struct k_clock clock_realtime, clock_monotonic;
6631fa12 78
1da177e4
LT
79/*
80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81 * SIGEV values. Here we put out an error if this assumption fails.
82 */
83#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86#endif
87
1da177e4
LT
88/*
89 * The timer ID is turned into a timer address by idr_find().
90 * Verifying a valid ID consists of:
91 *
92 * a) checking that idr_find() returns other than -1.
93 * b) checking that the timer id matches the one in the timer itself.
94 * c) that the timer owner is in the callers thread group.
95 */
96
97/*
98 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
99 * to implement others. This structure defines the various
0061748d 100 * clocks.
1da177e4
LT
101 *
102 * RESOLUTION: Clock resolution is used to round up timer and interval
103 * times, NOT to report clock times, which are reported with as
104 * much resolution as the system can muster. In some cases this
105 * resolution may depend on the underlying clock hardware and
106 * may not be quantifiable until run time, and only then is the
107 * necessary code is written. The standard says we should say
108 * something about this issue in the documentation...
109 *
0061748d
RC
110 * FUNCTIONS: The CLOCKs structure defines possible functions to
111 * handle various clock functions.
1da177e4 112 *
0061748d
RC
113 * The standard POSIX timer management code assumes the
114 * following: 1.) The k_itimer struct (sched.h) is used for
115 * the timer. 2.) The list, it_lock, it_clock, it_id and
116 * it_pid fields are not modified by timer code.
1da177e4
LT
117 *
118 * Permissions: It is assumed that the clock_settime() function defined
119 * for each clock will take care of permission checks. Some
120 * clocks may be set able by any user (i.e. local process
121 * clocks) others not. Currently the only set able clock we
122 * have is CLOCK_REALTIME and its high res counter part, both of
123 * which we beg off on and pass to do_sys_settimeofday().
124 */
20f33a03
NK
125static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
126
127#define lock_timer(tid, flags) \
128({ struct k_itimer *__timr; \
129 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
130 __timr; \
131})
1da177e4 132
5ed67f05
PE
133static int hash(struct signal_struct *sig, unsigned int nr)
134{
135 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
136}
137
138static struct k_itimer *__posix_timers_find(struct hlist_head *head,
139 struct signal_struct *sig,
140 timer_t id)
141{
5ed67f05
PE
142 struct k_itimer *timer;
143
144 hlist_for_each_entry_rcu(timer, head, t_hash) {
145 if ((timer->it_signal == sig) && (timer->it_id == id))
146 return timer;
147 }
148 return NULL;
149}
150
151static struct k_itimer *posix_timer_by_id(timer_t id)
152{
153 struct signal_struct *sig = current->signal;
154 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
155
156 return __posix_timers_find(head, sig, id);
157}
158
159static int posix_timer_add(struct k_itimer *timer)
160{
161 struct signal_struct *sig = current->signal;
162 int first_free_id = sig->posix_timer_id;
163 struct hlist_head *head;
164 int ret = -ENOENT;
165
166 do {
167 spin_lock(&hash_lock);
168 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
169 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
170 hlist_add_head_rcu(&timer->t_hash, head);
171 ret = sig->posix_timer_id;
172 }
173 if (++sig->posix_timer_id < 0)
174 sig->posix_timer_id = 0;
175 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
176 /* Loop over all possible ids completed */
177 ret = -EAGAIN;
178 spin_unlock(&hash_lock);
179 } while (ret == -ENOENT);
180 return ret;
181}
182
1da177e4
LT
183static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
184{
185 spin_unlock_irqrestore(&timr->it_lock, flags);
186}
187
42285777 188/* Get clock_realtime */
3c9c12f4 189static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
42285777 190{
3c9c12f4 191 ktime_get_real_ts64(tp);
42285777
TG
192 return 0;
193}
194
26f9a479
TG
195/* Set clock_realtime */
196static int posix_clock_realtime_set(const clockid_t which_clock,
0fe6afe3 197 const struct timespec64 *tp)
26f9a479 198{
0fe6afe3 199 return do_sys_settimeofday64(tp, NULL);
26f9a479
TG
200}
201
f1f1d5eb
RC
202static int posix_clock_realtime_adj(const clockid_t which_clock,
203 struct timex *t)
204{
205 return do_adjtimex(t);
206}
207
becf8b5d
TG
208/*
209 * Get monotonic time for posix timers
210 */
3c9c12f4 211static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
becf8b5d 212{
3c9c12f4 213 ktime_get_ts64(tp);
becf8b5d
TG
214 return 0;
215}
1da177e4 216
2d42244a 217/*
7fdd7f89 218 * Get monotonic-raw time for posix timers
2d42244a 219 */
3c9c12f4 220static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
2d42244a 221{
58a10456 222 ktime_get_raw_ts64(tp);
2d42244a
JS
223 return 0;
224}
225
da15cfda 226
3c9c12f4 227static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
da15cfda 228{
58a10456 229 ktime_get_coarse_real_ts64(tp);
da15cfda
JS
230 return 0;
231}
232
233static int posix_get_monotonic_coarse(clockid_t which_clock,
3c9c12f4 234 struct timespec64 *tp)
da15cfda 235{
58a10456 236 ktime_get_coarse_ts64(tp);
da15cfda
JS
237 return 0;
238}
239
d2e3e0ca 240static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
da15cfda 241{
d2e3e0ca 242 *tp = ktime_to_timespec64(KTIME_LOW_RES);
da15cfda
JS
243 return 0;
244}
7fdd7f89 245
a3ed0e43 246static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
7fdd7f89 247{
58a10456 248 ktime_get_boottime_ts64(tp);
7fdd7f89
JS
249 return 0;
250}
251
a3ed0e43 252static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
1ff3c967 253{
58a10456 254 ktime_get_clocktai_ts64(tp);
1ff3c967
JS
255 return 0;
256}
7fdd7f89 257
d2e3e0ca 258static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
056a3cac
TG
259{
260 tp->tv_sec = 0;
261 tp->tv_nsec = hrtimer_resolution;
262 return 0;
263}
264
1da177e4
LT
265/*
266 * Initialize everything, well, just everything in Posix clocks/timers ;)
267 */
268static __init int init_posix_timers(void)
269{
1da177e4 270 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
271 sizeof (struct k_itimer), 0, SLAB_PANIC,
272 NULL);
1da177e4
LT
273 return 0;
274}
1da177e4
LT
275__initcall(init_posix_timers);
276
78c9c4df
TG
277/*
278 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
279 * are of type int. Clamp the overrun value to INT_MAX
280 */
281static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
282{
283 s64 sum = timr->it_overrun_last + (s64)baseval;
284
285 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
286}
287
f37fb0aa 288static void common_hrtimer_rearm(struct k_itimer *timr)
1da177e4 289{
44f21475
RZ
290 struct hrtimer *timer = &timr->it.real.timer;
291
80105cd0 292 if (!timr->it_interval)
1da177e4
LT
293 return;
294
78c9c4df
TG
295 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
296 timr->it_interval);
44f21475 297 hrtimer_restart(timer);
1da177e4
LT
298}
299
300/*
301 * This function is exported for use by the signal deliver code. It is
302 * called just prior to the info block being released and passes that
303 * block to us. It's function is to update the overrun entry AND to
304 * restart the timer. It should only be called if the timer is to be
305 * restarted (i.e. we have flagged this in the sys_private entry of the
306 * info block).
307 *
25985edc 308 * To protect against the timer going away while the interrupt is queued,
1da177e4
LT
309 * we require that the it_requeue_pending flag be set.
310 */
96fe3b07 311void posixtimer_rearm(struct siginfo *info)
1da177e4
LT
312{
313 struct k_itimer *timr;
314 unsigned long flags;
315
316 timr = lock_timer(info->si_tid, &flags);
af888d67
TG
317 if (!timr)
318 return;
1da177e4 319
af888d67 320 if (timr->it_requeue_pending == info->si_sys_private) {
f37fb0aa 321 timr->kclock->timer_rearm(timr);
1da177e4 322
21e55c1f 323 timr->it_active = 1;
af888d67 324 timr->it_overrun_last = timr->it_overrun;
78c9c4df 325 timr->it_overrun = -1LL;
af888d67
TG
326 ++timr->it_requeue_pending;
327
78c9c4df 328 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
becf8b5d
TG
329 }
330
af888d67 331 unlock_timer(timr, flags);
1da177e4
LT
332}
333
ba661292 334int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 335{
24122c7f
EB
336 enum pid_type type;
337 int ret = -1;
ba661292
ON
338 /*
339 * FIXME: if ->sigq is queued we can race with
96fe3b07 340 * dequeue_signal()->posixtimer_rearm().
ba661292
ON
341 *
342 * If dequeue_signal() sees the "right" value of
96fe3b07 343 * si_sys_private it calls posixtimer_rearm().
ba661292 344 * We re-queue ->sigq and drop ->it_lock().
96fe3b07 345 * posixtimer_rearm() locks the timer
ba661292
ON
346 * and re-schedules it while ->sigq is pending.
347 * Not really bad, but not that we want.
348 */
1da177e4 349 timr->sigq->info.si_sys_private = si_private;
1da177e4 350
24122c7f
EB
351 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
352 ret = send_sigqueue(timr->sigq, timr->it_pid, type);
4aa73611
ON
353 /* If we failed to send the signal the timer stops. */
354 return ret > 0;
1da177e4 355}
1da177e4
LT
356
357/*
358 * This function gets called when a POSIX.1b interval timer expires. It
359 * is used as a callback from the kernel internal timer. The
360 * run_timer_list code ALWAYS calls with interrupts on.
361
362 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
363 */
c9cb2e3d 364static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 365{
05cfb614 366 struct k_itimer *timr;
1da177e4 367 unsigned long flags;
becf8b5d 368 int si_private = 0;
c9cb2e3d 369 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 370
05cfb614 371 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 372 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 373
21e55c1f 374 timr->it_active = 0;
80105cd0 375 if (timr->it_interval != 0)
becf8b5d 376 si_private = ++timr->it_requeue_pending;
1da177e4 377
becf8b5d
TG
378 if (posix_timer_event(timr, si_private)) {
379 /*
380 * signal was not sent because of sig_ignor
381 * we will not get a call back to restart it AND
382 * it should be restarted.
383 */
80105cd0 384 if (timr->it_interval != 0) {
58229a18
TG
385 ktime_t now = hrtimer_cb_get_time(timer);
386
387 /*
388 * FIXME: What we really want, is to stop this
389 * timer completely and restart it in case the
390 * SIG_IGN is removed. This is a non trivial
391 * change which involves sighand locking
392 * (sigh !), which we don't want to do late in
393 * the release cycle.
394 *
395 * For now we just let timers with an interval
396 * less than a jiffie expire every jiffie to
397 * avoid softirq starvation in case of SIG_IGN
398 * and a very small interval, which would put
399 * the timer right back on the softirq pending
400 * list. By moving now ahead of time we trick
401 * hrtimer_forward() to expire the timer
402 * later, while we still maintain the overrun
403 * accuracy, but have some inconsistency in
404 * the timer_gettime() case. This is at least
405 * better than a starved softirq. A more
406 * complex fix which solves also another related
407 * inconsistency is already in the pipeline.
408 */
409#ifdef CONFIG_HIGH_RES_TIMERS
410 {
8b0e1953 411 ktime_t kj = NSEC_PER_SEC / HZ;
58229a18 412
80105cd0 413 if (timr->it_interval < kj)
58229a18
TG
414 now = ktime_add(now, kj);
415 }
416#endif
78c9c4df
TG
417 timr->it_overrun += hrtimer_forward(timer, now,
418 timr->it_interval);
becf8b5d 419 ret = HRTIMER_RESTART;
a0a0c28c 420 ++timr->it_requeue_pending;
21e55c1f 421 timr->it_active = 1;
1da177e4 422 }
1da177e4 423 }
1da177e4 424
becf8b5d
TG
425 unlock_timer(timr, flags);
426 return ret;
427}
1da177e4 428
27af4245 429static struct pid *good_sigevent(sigevent_t * event)
1da177e4 430{
2118e1f5
EB
431 struct pid *pid = task_tgid(current);
432 struct task_struct *rtn;
1da177e4 433
cef31d9a
TG
434 switch (event->sigev_notify) {
435 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
2118e1f5
EB
436 pid = find_vpid(event->sigev_notify_thread_id);
437 rtn = pid_task(pid, PIDTYPE_PID);
cef31d9a
TG
438 if (!rtn || !same_thread_group(rtn, current))
439 return NULL;
440 /* FALLTHRU */
441 case SIGEV_SIGNAL:
442 case SIGEV_THREAD:
443 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
444 return NULL;
445 /* FALLTHRU */
446 case SIGEV_NONE:
2118e1f5 447 return pid;
cef31d9a 448 default:
1da177e4 449 return NULL;
cef31d9a 450 }
1da177e4
LT
451}
452
1da177e4
LT
453static struct k_itimer * alloc_posix_timer(void)
454{
455 struct k_itimer *tmr;
c3762229 456 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
457 if (!tmr)
458 return tmr;
1da177e4
LT
459 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
460 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 461 return NULL;
1da177e4 462 }
3b10db2b 463 clear_siginfo(&tmr->sigq->info);
1da177e4
LT
464 return tmr;
465}
466
8af08871
ED
467static void k_itimer_rcu_free(struct rcu_head *head)
468{
469 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
470
471 kmem_cache_free(posix_timers_cache, tmr);
472}
473
1da177e4
LT
474#define IT_ID_SET 1
475#define IT_ID_NOT_SET 0
476static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
477{
478 if (it_id_set) {
479 unsigned long flags;
5ed67f05
PE
480 spin_lock_irqsave(&hash_lock, flags);
481 hlist_del_rcu(&tmr->t_hash);
482 spin_unlock_irqrestore(&hash_lock, flags);
1da177e4 483 }
89992102 484 put_pid(tmr->it_pid);
1da177e4 485 sigqueue_free(tmr->sigq);
8af08871 486 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
1da177e4
LT
487}
488
838394fb
TG
489static int common_timer_create(struct k_itimer *new_timer)
490{
491 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
492 return 0;
493}
494
1da177e4 495/* Create a POSIX.1b interval timer. */
2482097c
AV
496static int do_timer_create(clockid_t which_clock, struct sigevent *event,
497 timer_t __user *created_timer_id)
1da177e4 498{
d3ba5a9a 499 const struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 500 struct k_itimer *new_timer;
ef864c95 501 int error, new_timer_id;
1da177e4
LT
502 int it_id_set = IT_ID_NOT_SET;
503
838394fb 504 if (!kc)
1da177e4 505 return -EINVAL;
838394fb
TG
506 if (!kc->timer_create)
507 return -EOPNOTSUPP;
1da177e4
LT
508
509 new_timer = alloc_posix_timer();
510 if (unlikely(!new_timer))
511 return -EAGAIN;
512
513 spin_lock_init(&new_timer->it_lock);
5ed67f05
PE
514 new_timer_id = posix_timer_add(new_timer);
515 if (new_timer_id < 0) {
516 error = new_timer_id;
1da177e4
LT
517 goto out;
518 }
519
520 it_id_set = IT_ID_SET;
521 new_timer->it_id = (timer_t) new_timer_id;
522 new_timer->it_clock = which_clock;
d97bb75d 523 new_timer->kclock = kc;
78c9c4df 524 new_timer->it_overrun = -1LL;
1da177e4 525
2482097c 526 if (event) {
36b2f046 527 rcu_read_lock();
2482097c 528 new_timer->it_pid = get_pid(good_sigevent(event));
36b2f046 529 rcu_read_unlock();
89992102 530 if (!new_timer->it_pid) {
1da177e4
LT
531 error = -EINVAL;
532 goto out;
533 }
2482097c
AV
534 new_timer->it_sigev_notify = event->sigev_notify;
535 new_timer->sigq->info.si_signo = event->sigev_signo;
536 new_timer->sigq->info.si_value = event->sigev_value;
1da177e4 537 } else {
2482097c
AV
538 new_timer->it_sigev_notify = SIGEV_SIGNAL;
539 new_timer->sigq->info.si_signo = SIGALRM;
540 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
541 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
89992102 542 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
543 }
544
717835d9 545 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 546 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 547
2b08de00
AV
548 if (copy_to_user(created_timer_id,
549 &new_timer_id, sizeof (new_timer_id))) {
550 error = -EFAULT;
551 goto out;
552 }
553
838394fb 554 error = kc->timer_create(new_timer);
45e0fffc
AV
555 if (error)
556 goto out;
557
36b2f046 558 spin_lock_irq(&current->sighand->siglock);
27af4245 559 new_timer->it_signal = current->signal;
36b2f046
ON
560 list_add(&new_timer->list, &current->signal->posix_timers);
561 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
562
563 return 0;
838394fb 564 /*
1da177e4
LT
565 * In the case of the timer belonging to another task, after
566 * the task is unlocked, the timer is owned by the other task
567 * and may cease to exist at any time. Don't use or modify
568 * new_timer after the unlock call.
569 */
1da177e4 570out:
ef864c95 571 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
572 return error;
573}
574
2482097c
AV
575SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
576 struct sigevent __user *, timer_event_spec,
577 timer_t __user *, created_timer_id)
578{
579 if (timer_event_spec) {
580 sigevent_t event;
581
582 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
583 return -EFAULT;
584 return do_timer_create(which_clock, &event, created_timer_id);
585 }
586 return do_timer_create(which_clock, NULL, created_timer_id);
587}
588
589#ifdef CONFIG_COMPAT
590COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
591 struct compat_sigevent __user *, timer_event_spec,
592 timer_t __user *, created_timer_id)
593{
594 if (timer_event_spec) {
595 sigevent_t event;
596
597 if (get_compat_sigevent(&event, timer_event_spec))
598 return -EFAULT;
599 return do_timer_create(which_clock, &event, created_timer_id);
600 }
601 return do_timer_create(which_clock, NULL, created_timer_id);
602}
603#endif
604
1da177e4
LT
605/*
606 * Locking issues: We need to protect the result of the id look up until
607 * we get the timer locked down so it is not deleted under us. The
608 * removal is done under the idr spinlock so we use that here to bridge
609 * the find to the timer lock. To avoid a dead lock, the timer id MUST
610 * be release with out holding the timer lock.
611 */
20f33a03 612static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
613{
614 struct k_itimer *timr;
8af08871 615
e182bb38
TH
616 /*
617 * timer_t could be any type >= int and we want to make sure any
618 * @timer_id outside positive int range fails lookup.
619 */
620 if ((unsigned long long)timer_id > INT_MAX)
621 return NULL;
622
8af08871 623 rcu_read_lock();
5ed67f05 624 timr = posix_timer_by_id(timer_id);
1da177e4 625 if (timr) {
8af08871 626 spin_lock_irqsave(&timr->it_lock, *flags);
89992102 627 if (timr->it_signal == current->signal) {
8af08871 628 rcu_read_unlock();
31d92845
ON
629 return timr;
630 }
8af08871 631 spin_unlock_irqrestore(&timr->it_lock, *flags);
31d92845 632 }
8af08871 633 rcu_read_unlock();
1da177e4 634
31d92845 635 return NULL;
1da177e4
LT
636}
637
91d57bae
TG
638static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
639{
640 struct hrtimer *timer = &timr->it.real.timer;
641
642 return __hrtimer_expires_remaining_adjusted(timer, now);
643}
644
6fec64e1 645static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
91d57bae
TG
646{
647 struct hrtimer *timer = &timr->it.real.timer;
648
6fec64e1 649 return hrtimer_forward(timer, now, timr->it_interval);
91d57bae
TG
650}
651
1da177e4
LT
652/*
653 * Get the time remaining on a POSIX.1b interval timer. This function
654 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
655 * mess with irq.
656 *
657 * We have a couple of messes to clean up here. First there is the case
658 * of a timer that has a requeue pending. These timers should appear to
659 * be in the timer list with an expiry as if we were to requeue them
660 * now.
661 *
662 * The second issue is the SIGEV_NONE timer which may be active but is
663 * not really ever put in the timer list (to save system resources).
664 * This timer may be expired, and if so, we will do it here. Otherwise
665 * it is the same as a requeue pending timer WRT to what we should
666 * report.
667 */
f2c45807 668void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
1da177e4 669{
91d57bae 670 const struct k_clock *kc = timr->kclock;
3b98a532 671 ktime_t now, remaining, iv;
91d57bae
TG
672 struct timespec64 ts64;
673 bool sig_none;
1da177e4 674
cef31d9a 675 sig_none = timr->it_sigev_notify == SIGEV_NONE;
80105cd0 676 iv = timr->it_interval;
3b98a532 677
becf8b5d 678 /* interval timer ? */
91d57bae 679 if (iv) {
5f252b32 680 cur_setting->it_interval = ktime_to_timespec64(iv);
91d57bae
TG
681 } else if (!timr->it_active) {
682 /*
683 * SIGEV_NONE oneshot timers are never queued. Check them
684 * below.
685 */
686 if (!sig_none)
687 return;
688 }
3b98a532 689
91d57bae
TG
690 /*
691 * The timespec64 based conversion is suboptimal, but it's not
692 * worth to implement yet another callback.
693 */
694 kc->clock_get(timr->it_clock, &ts64);
695 now = timespec64_to_ktime(ts64);
3b98a532 696
becf8b5d 697 /*
91d57bae
TG
698 * When a requeue is pending or this is a SIGEV_NONE timer move the
699 * expiry time forward by intervals, so expiry is > now.
becf8b5d 700 */
91d57bae 701 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
78c9c4df 702 timr->it_overrun += kc->timer_forward(timr, now);
3b98a532 703
91d57bae 704 remaining = kc->timer_remaining(timr, now);
becf8b5d 705 /* Return 0 only, when the timer is expired and not pending */
2456e855 706 if (remaining <= 0) {
3b98a532
RZ
707 /*
708 * A single shot SIGEV_NONE timer must return 0, when
709 * it is expired !
710 */
91d57bae 711 if (!sig_none)
3b98a532 712 cur_setting->it_value.tv_nsec = 1;
91d57bae 713 } else {
5f252b32 714 cur_setting->it_value = ktime_to_timespec64(remaining);
91d57bae 715 }
1da177e4
LT
716}
717
718/* Get the time remaining on a POSIX.1b interval timer. */
b0dc1242 719static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
1da177e4 720{
a7319fa2 721 struct k_itimer *timr;
d3ba5a9a 722 const struct k_clock *kc;
1da177e4 723 unsigned long flags;
a7319fa2 724 int ret = 0;
1da177e4
LT
725
726 timr = lock_timer(timer_id, &flags);
727 if (!timr)
728 return -EINVAL;
729
b0dc1242 730 memset(setting, 0, sizeof(*setting));
d97bb75d 731 kc = timr->kclock;
a7319fa2
TG
732 if (WARN_ON_ONCE(!kc || !kc->timer_get))
733 ret = -EINVAL;
734 else
b0dc1242 735 kc->timer_get(timr, setting);
1da177e4
LT
736
737 unlock_timer(timr, flags);
b0dc1242
AV
738 return ret;
739}
1da177e4 740
b0dc1242
AV
741/* Get the time remaining on a POSIX.1b interval timer. */
742SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
6ff84735 743 struct __kernel_itimerspec __user *, setting)
b0dc1242 744{
725816e8 745 struct itimerspec64 cur_setting;
1da177e4 746
725816e8 747 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 748 if (!ret) {
725816e8 749 if (put_itimerspec64(&cur_setting, setting))
b0dc1242
AV
750 ret = -EFAULT;
751 }
a7319fa2 752 return ret;
1da177e4 753}
becf8b5d 754
6ff84735
DD
755#ifdef CONFIG_COMPAT_32BIT_TIME
756
b0dc1242
AV
757COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
758 struct compat_itimerspec __user *, setting)
759{
725816e8 760 struct itimerspec64 cur_setting;
b0dc1242 761
725816e8 762 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 763 if (!ret) {
725816e8 764 if (put_compat_itimerspec64(&cur_setting, setting))
b0dc1242
AV
765 ret = -EFAULT;
766 }
767 return ret;
768}
6ff84735 769
b0dc1242
AV
770#endif
771
1da177e4
LT
772/*
773 * Get the number of overruns of a POSIX.1b interval timer. This is to
774 * be the overrun of the timer last delivered. At the same time we are
775 * accumulating overruns on the next timer. The overrun is frozen when
776 * the signal is delivered, either at the notify time (if the info block
777 * is not queued) or at the actual delivery time (as we are informed by
96fe3b07 778 * the call back to posixtimer_rearm(). So all we need to do is
1da177e4
LT
779 * to pick up the frozen overrun.
780 */
362e9c07 781SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
782{
783 struct k_itimer *timr;
784 int overrun;
5ba25331 785 unsigned long flags;
1da177e4
LT
786
787 timr = lock_timer(timer_id, &flags);
788 if (!timr)
789 return -EINVAL;
790
78c9c4df 791 overrun = timer_overrun_to_int(timr, 0);
1da177e4
LT
792 unlock_timer(timr, flags);
793
794 return overrun;
795}
1da177e4 796
eae1c4ae
TG
797static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
798 bool absolute, bool sigev_none)
799{
800 struct hrtimer *timer = &timr->it.real.timer;
801 enum hrtimer_mode mode;
802
803 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
67edab48
TG
804 /*
805 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
806 * clock modifications, so they become CLOCK_MONOTONIC based under the
807 * hood. See hrtimer_init(). Update timr->kclock, so the generic
808 * functions which use timr->kclock->clock_get() work.
809 *
810 * Note: it_clock stays unmodified, because the next timer_set() might
811 * use ABSTIME, so it needs to switch back.
812 */
813 if (timr->it_clock == CLOCK_REALTIME)
814 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
815
eae1c4ae
TG
816 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
817 timr->it.real.timer.function = posix_timer_fn;
818
819 if (!absolute)
820 expires = ktime_add_safe(expires, timer->base->get_time());
821 hrtimer_set_expires(timer, expires);
822
823 if (!sigev_none)
824 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
825}
826
827static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
828{
829 return hrtimer_try_to_cancel(&timr->it.real.timer);
830}
831
1da177e4 832/* Set a POSIX.1b interval timer. */
f2c45807
TG
833int common_timer_set(struct k_itimer *timr, int flags,
834 struct itimerspec64 *new_setting,
835 struct itimerspec64 *old_setting)
1da177e4 836{
eae1c4ae
TG
837 const struct k_clock *kc = timr->kclock;
838 bool sigev_none;
839 ktime_t expires;
1da177e4
LT
840
841 if (old_setting)
842 common_timer_get(timr, old_setting);
843
eae1c4ae 844 /* Prevent rearming by clearing the interval */
80105cd0 845 timr->it_interval = 0;
1da177e4 846 /*
eae1c4ae
TG
847 * Careful here. On SMP systems the timer expiry function could be
848 * active and spinning on timr->it_lock.
1da177e4 849 */
eae1c4ae 850 if (kc->timer_try_to_cancel(timr) < 0)
1da177e4 851 return TIMER_RETRY;
1da177e4 852
21e55c1f
TG
853 timr->it_active = 0;
854 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
1da177e4
LT
855 ~REQUEUE_PENDING;
856 timr->it_overrun_last = 0;
1da177e4 857
eae1c4ae 858 /* Switch off the timer when it_value is zero */
becf8b5d
TG
859 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
860 return 0;
1da177e4 861
80105cd0 862 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
eae1c4ae 863 expires = timespec64_to_ktime(new_setting->it_value);
cef31d9a 864 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
becf8b5d 865
eae1c4ae
TG
866 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
867 timr->it_active = !sigev_none;
1da177e4
LT
868 return 0;
869}
870
1acbe770
AV
871static int do_timer_settime(timer_t timer_id, int flags,
872 struct itimerspec64 *new_spec64,
873 struct itimerspec64 *old_spec64)
1da177e4 874{
1acbe770 875 const struct k_clock *kc;
5f252b32 876 struct k_itimer *timr;
5ba25331 877 unsigned long flag;
5f252b32 878 int error = 0;
1da177e4 879
1acbe770
AV
880 if (!timespec64_valid(&new_spec64->it_interval) ||
881 !timespec64_valid(&new_spec64->it_value))
1da177e4
LT
882 return -EINVAL;
883
1acbe770
AV
884 if (old_spec64)
885 memset(old_spec64, 0, sizeof(*old_spec64));
1da177e4
LT
886retry:
887 timr = lock_timer(timer_id, &flag);
888 if (!timr)
889 return -EINVAL;
890
d97bb75d 891 kc = timr->kclock;
27722df1
TG
892 if (WARN_ON_ONCE(!kc || !kc->timer_set))
893 error = -EINVAL;
894 else
1acbe770 895 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
1da177e4
LT
896
897 unlock_timer(timr, flag);
898 if (error == TIMER_RETRY) {
1acbe770 899 old_spec64 = NULL; // We already got the old time...
1da177e4
LT
900 goto retry;
901 }
902
1acbe770
AV
903 return error;
904}
1da177e4 905
1acbe770
AV
906/* Set a POSIX.1b interval timer */
907SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
6ff84735
DD
908 const struct __kernel_itimerspec __user *, new_setting,
909 struct __kernel_itimerspec __user *, old_setting)
1acbe770 910{
725816e8
DD
911 struct itimerspec64 new_spec, old_spec;
912 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
1acbe770
AV
913 int error = 0;
914
915 if (!new_setting)
916 return -EINVAL;
917
725816e8 918 if (get_itimerspec64(&new_spec, new_setting))
1acbe770 919 return -EFAULT;
1acbe770 920
725816e8 921 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 922 if (!error && old_setting) {
725816e8 923 if (put_itimerspec64(&old_spec, old_setting))
1acbe770
AV
924 error = -EFAULT;
925 }
926 return error;
927}
928
6ff84735 929#ifdef CONFIG_COMPAT_32BIT_TIME
1acbe770
AV
930COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
931 struct compat_itimerspec __user *, new,
932 struct compat_itimerspec __user *, old)
933{
725816e8
DD
934 struct itimerspec64 new_spec, old_spec;
935 struct itimerspec64 *rtn = old ? &old_spec : NULL;
1acbe770
AV
936 int error = 0;
937
938 if (!new)
939 return -EINVAL;
725816e8 940 if (get_compat_itimerspec64(&new_spec, new))
1acbe770
AV
941 return -EFAULT;
942
725816e8 943 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 944 if (!error && old) {
725816e8 945 if (put_compat_itimerspec64(&old_spec, old))
1acbe770
AV
946 error = -EFAULT;
947 }
1da177e4
LT
948 return error;
949}
1acbe770 950#endif
1da177e4 951
f2c45807 952int common_timer_del(struct k_itimer *timer)
1da177e4 953{
eae1c4ae 954 const struct k_clock *kc = timer->kclock;
f972be33 955
eae1c4ae
TG
956 timer->it_interval = 0;
957 if (kc->timer_try_to_cancel(timer) < 0)
1da177e4 958 return TIMER_RETRY;
21e55c1f 959 timer->it_active = 0;
1da177e4
LT
960 return 0;
961}
962
963static inline int timer_delete_hook(struct k_itimer *timer)
964{
d97bb75d 965 const struct k_clock *kc = timer->kclock;
6761c670
TG
966
967 if (WARN_ON_ONCE(!kc || !kc->timer_del))
968 return -EINVAL;
969 return kc->timer_del(timer);
1da177e4
LT
970}
971
972/* Delete a POSIX.1b interval timer. */
362e9c07 973SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
974{
975 struct k_itimer *timer;
5ba25331 976 unsigned long flags;
1da177e4 977
1da177e4 978retry_delete:
1da177e4
LT
979 timer = lock_timer(timer_id, &flags);
980 if (!timer)
981 return -EINVAL;
982
becf8b5d 983 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
984 unlock_timer(timer, flags);
985 goto retry_delete;
986 }
becf8b5d 987
1da177e4
LT
988 spin_lock(&current->sighand->siglock);
989 list_del(&timer->list);
990 spin_unlock(&current->sighand->siglock);
991 /*
992 * This keeps any tasks waiting on the spin lock from thinking
993 * they got something (see the lock code above).
994 */
89992102 995 timer->it_signal = NULL;
4b7a1304 996
1da177e4
LT
997 unlock_timer(timer, flags);
998 release_posix_timer(timer, IT_ID_SET);
999 return 0;
1000}
becf8b5d 1001
1da177e4
LT
1002/*
1003 * return timer owned by the process, used by exit_itimers
1004 */
858119e1 1005static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
1006{
1007 unsigned long flags;
1008
1da177e4 1009retry_delete:
1da177e4
LT
1010 spin_lock_irqsave(&timer->it_lock, flags);
1011
becf8b5d 1012 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
1013 unlock_timer(timer, flags);
1014 goto retry_delete;
1015 }
1da177e4
LT
1016 list_del(&timer->list);
1017 /*
1018 * This keeps any tasks waiting on the spin lock from thinking
1019 * they got something (see the lock code above).
1020 */
89992102 1021 timer->it_signal = NULL;
4b7a1304 1022
1da177e4
LT
1023 unlock_timer(timer, flags);
1024 release_posix_timer(timer, IT_ID_SET);
1025}
1026
1027/*
25f407f0 1028 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
1029 * references to the shared signal_struct.
1030 */
1031void exit_itimers(struct signal_struct *sig)
1032{
1033 struct k_itimer *tmr;
1034
1035 while (!list_empty(&sig->posix_timers)) {
1036 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1037 itimer_delete(tmr);
1038 }
1039}
1040
362e9c07 1041SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
6d5b8413 1042 const struct __kernel_timespec __user *, tp)
1da177e4 1043{
d3ba5a9a 1044 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1045 struct timespec64 new_tp;
1da177e4 1046
26f9a479 1047 if (!kc || !kc->clock_set)
1da177e4 1048 return -EINVAL;
26f9a479 1049
5c499410 1050 if (get_timespec64(&new_tp, tp))
1da177e4
LT
1051 return -EFAULT;
1052
5c499410 1053 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
1054}
1055
362e9c07 1056SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
6d5b8413 1057 struct __kernel_timespec __user *, tp)
1da177e4 1058{
d3ba5a9a 1059 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1060 struct timespec64 kernel_tp;
1da177e4
LT
1061 int error;
1062
42285777 1063 if (!kc)
1da177e4 1064 return -EINVAL;
42285777 1065
5c499410 1066 error = kc->clock_get(which_clock, &kernel_tp);
42285777 1067
5c499410 1068 if (!error && put_timespec64(&kernel_tp, tp))
1da177e4
LT
1069 error = -EFAULT;
1070
1071 return error;
1da177e4
LT
1072}
1073
f1f1d5eb
RC
1074SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1075 struct timex __user *, utx)
1076{
d3ba5a9a 1077 const struct k_clock *kc = clockid_to_kclock(which_clock);
f1f1d5eb
RC
1078 struct timex ktx;
1079 int err;
1080
1081 if (!kc)
1082 return -EINVAL;
1083 if (!kc->clock_adj)
1084 return -EOPNOTSUPP;
1085
1086 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1087 return -EFAULT;
1088
1089 err = kc->clock_adj(which_clock, &ktx);
1090
f0dbe81f 1091 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
f1f1d5eb
RC
1092 return -EFAULT;
1093
1094 return err;
1095}
1096
d822cdcc 1097SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
6d5b8413 1098 struct __kernel_timespec __user *, tp)
d822cdcc
AV
1099{
1100 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1101 struct timespec64 rtn_tp;
d822cdcc
AV
1102 int error;
1103
1104 if (!kc)
1105 return -EINVAL;
1106
5c499410 1107 error = kc->clock_getres(which_clock, &rtn_tp);
d822cdcc 1108
5c499410 1109 if (!error && tp && put_timespec64(&rtn_tp, tp))
d822cdcc
AV
1110 error = -EFAULT;
1111
1112 return error;
1113}
1114
b5793b0d 1115#ifdef CONFIG_COMPAT_32BIT_TIME
3a4d44b6 1116
d822cdcc
AV
1117COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1118 struct compat_timespec __user *, tp)
1119{
1120 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1121 struct timespec64 ts;
d822cdcc
AV
1122
1123 if (!kc || !kc->clock_set)
1124 return -EINVAL;
1125
5c499410 1126 if (compat_get_timespec64(&ts, tp))
d822cdcc
AV
1127 return -EFAULT;
1128
5c499410 1129 return kc->clock_set(which_clock, &ts);
d822cdcc
AV
1130}
1131
1132COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1133 struct compat_timespec __user *, tp)
1134{
1135 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1136 struct timespec64 ts;
1137 int err;
d822cdcc
AV
1138
1139 if (!kc)
1140 return -EINVAL;
1141
5c499410 1142 err = kc->clock_get(which_clock, &ts);
d822cdcc 1143
5c499410
DD
1144 if (!err && compat_put_timespec64(&ts, tp))
1145 err = -EFAULT;
d822cdcc 1146
5c499410 1147 return err;
d822cdcc
AV
1148}
1149
b5793b0d
DD
1150#endif
1151
1152#ifdef CONFIG_COMPAT
1153
3a4d44b6
AV
1154COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1155 struct compat_timex __user *, utp)
1156{
1157 const struct k_clock *kc = clockid_to_kclock(which_clock);
1158 struct timex ktx;
1159 int err;
1160
1161 if (!kc)
1162 return -EINVAL;
1163 if (!kc->clock_adj)
1164 return -EOPNOTSUPP;
1165
1166 err = compat_get_timex(&ktx, utp);
1167 if (err)
1168 return err;
1169
1170 err = kc->clock_adj(which_clock, &ktx);
1171
1172 if (err >= 0)
1173 err = compat_put_timex(utp, &ktx);
1174
1175 return err;
1176}
3a4d44b6 1177
b5793b0d
DD
1178#endif
1179
1180#ifdef CONFIG_COMPAT_32BIT_TIME
1181
d822cdcc
AV
1182COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1183 struct compat_timespec __user *, tp)
1da177e4 1184{
d3ba5a9a 1185 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1186 struct timespec64 ts;
1187 int err;
1da177e4 1188
e5e542ee 1189 if (!kc)
1da177e4
LT
1190 return -EINVAL;
1191
5c499410
DD
1192 err = kc->clock_getres(which_clock, &ts);
1193 if (!err && tp && compat_put_timespec64(&ts, tp))
1194 return -EFAULT;
1da177e4 1195
5c499410 1196 return err;
1da177e4 1197}
5c499410 1198
d822cdcc 1199#endif
1da177e4 1200
97735f25
TG
1201/*
1202 * nanosleep for monotonic and realtime clocks
1203 */
1204static int common_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1205 const struct timespec64 *rqtp)
97735f25 1206{
938e7cf2 1207 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
080344b9
ON
1208 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1209 which_clock);
97735f25 1210}
1da177e4 1211
362e9c07 1212SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
01909974
DD
1213 const struct __kernel_timespec __user *, rqtp,
1214 struct __kernel_timespec __user *, rmtp)
1da177e4 1215{
d3ba5a9a 1216 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1217 struct timespec64 t;
1da177e4 1218
a5cd2880 1219 if (!kc)
1da177e4 1220 return -EINVAL;
a5cd2880 1221 if (!kc->nsleep)
93cb8e20 1222 return -EOPNOTSUPP;
1da177e4 1223
c0edd7c9 1224 if (get_timespec64(&t, rqtp))
1da177e4
LT
1225 return -EFAULT;
1226
c0edd7c9 1227 if (!timespec64_valid(&t))
1da177e4 1228 return -EINVAL;
99e6c0e6
AV
1229 if (flags & TIMER_ABSTIME)
1230 rmtp = NULL;
edbeda46 1231 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
99e6c0e6 1232 current->restart_block.nanosleep.rmtp = rmtp;
1da177e4 1233
c0edd7c9 1234 return kc->nsleep(which_clock, flags, &t);
1da177e4 1235}
1711ef38 1236
b5793b0d
DD
1237#ifdef CONFIG_COMPAT_32BIT_TIME
1238
edbeda46
AV
1239COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1240 struct compat_timespec __user *, rqtp,
1241 struct compat_timespec __user *, rmtp)
1711ef38 1242{
d3ba5a9a 1243 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1244 struct timespec64 t;
59bd5bc2 1245
edbeda46 1246 if (!kc)
59bd5bc2 1247 return -EINVAL;
edbeda46 1248 if (!kc->nsleep)
93cb8e20 1249 return -EOPNOTSUPP;
edbeda46 1250
c0edd7c9 1251 if (compat_get_timespec64(&t, rqtp))
edbeda46 1252 return -EFAULT;
1711ef38 1253
c0edd7c9 1254 if (!timespec64_valid(&t))
edbeda46
AV
1255 return -EINVAL;
1256 if (flags & TIMER_ABSTIME)
1257 rmtp = NULL;
1258 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1259 current->restart_block.nanosleep.compat_rmtp = rmtp;
1260
c0edd7c9 1261 return kc->nsleep(which_clock, flags, &t);
1711ef38 1262}
b5793b0d 1263
edbeda46 1264#endif
6631fa12
TG
1265
1266static const struct k_clock clock_realtime = {
eae1c4ae
TG
1267 .clock_getres = posix_get_hrtimer_res,
1268 .clock_get = posix_clock_realtime_get,
1269 .clock_set = posix_clock_realtime_set,
1270 .clock_adj = posix_clock_realtime_adj,
1271 .nsleep = common_nsleep,
eae1c4ae
TG
1272 .timer_create = common_timer_create,
1273 .timer_set = common_timer_set,
1274 .timer_get = common_timer_get,
1275 .timer_del = common_timer_del,
1276 .timer_rearm = common_hrtimer_rearm,
1277 .timer_forward = common_hrtimer_forward,
1278 .timer_remaining = common_hrtimer_remaining,
1279 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1280 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1281};
1282
1283static const struct k_clock clock_monotonic = {
eae1c4ae
TG
1284 .clock_getres = posix_get_hrtimer_res,
1285 .clock_get = posix_ktime_get_ts,
1286 .nsleep = common_nsleep,
eae1c4ae
TG
1287 .timer_create = common_timer_create,
1288 .timer_set = common_timer_set,
1289 .timer_get = common_timer_get,
1290 .timer_del = common_timer_del,
1291 .timer_rearm = common_hrtimer_rearm,
1292 .timer_forward = common_hrtimer_forward,
1293 .timer_remaining = common_hrtimer_remaining,
1294 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1295 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1296};
1297
1298static const struct k_clock clock_monotonic_raw = {
eae1c4ae
TG
1299 .clock_getres = posix_get_hrtimer_res,
1300 .clock_get = posix_get_monotonic_raw,
6631fa12
TG
1301};
1302
1303static const struct k_clock clock_realtime_coarse = {
eae1c4ae
TG
1304 .clock_getres = posix_get_coarse_res,
1305 .clock_get = posix_get_realtime_coarse,
6631fa12
TG
1306};
1307
1308static const struct k_clock clock_monotonic_coarse = {
eae1c4ae
TG
1309 .clock_getres = posix_get_coarse_res,
1310 .clock_get = posix_get_monotonic_coarse,
6631fa12
TG
1311};
1312
1313static const struct k_clock clock_tai = {
eae1c4ae
TG
1314 .clock_getres = posix_get_hrtimer_res,
1315 .clock_get = posix_get_tai,
1316 .nsleep = common_nsleep,
eae1c4ae
TG
1317 .timer_create = common_timer_create,
1318 .timer_set = common_timer_set,
1319 .timer_get = common_timer_get,
1320 .timer_del = common_timer_del,
1321 .timer_rearm = common_hrtimer_rearm,
1322 .timer_forward = common_hrtimer_forward,
1323 .timer_remaining = common_hrtimer_remaining,
1324 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1325 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1326};
1327
a3ed0e43 1328static const struct k_clock clock_boottime = {
eae1c4ae 1329 .clock_getres = posix_get_hrtimer_res,
a3ed0e43
TG
1330 .clock_get = posix_get_boottime,
1331 .nsleep = common_nsleep,
1332 .timer_create = common_timer_create,
1333 .timer_set = common_timer_set,
1334 .timer_get = common_timer_get,
1335 .timer_del = common_timer_del,
1336 .timer_rearm = common_hrtimer_rearm,
1337 .timer_forward = common_hrtimer_forward,
1338 .timer_remaining = common_hrtimer_remaining,
1339 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1340 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1341};
1342
1343static const struct k_clock * const posix_clocks[] = {
1344 [CLOCK_REALTIME] = &clock_realtime,
1345 [CLOCK_MONOTONIC] = &clock_monotonic,
1346 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1347 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1348 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1349 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1350 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
a3ed0e43 1351 [CLOCK_BOOTTIME] = &clock_boottime,
6631fa12
TG
1352 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1353 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1354 [CLOCK_TAI] = &clock_tai,
1355};
1356
1357static const struct k_clock *clockid_to_kclock(const clockid_t id)
1358{
19b558db
TG
1359 clockid_t idx = id;
1360
1361 if (id < 0) {
6631fa12
TG
1362 return (id & CLOCKFD_MASK) == CLOCKFD ?
1363 &clock_posix_dynamic : &clock_posix_cpu;
19b558db 1364 }
6631fa12 1365
19b558db 1366 if (id >= ARRAY_SIZE(posix_clocks))
6631fa12 1367 return NULL;
19b558db
TG
1368
1369 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
6631fa12 1370}