]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/time/posix-timers.c
posix-timers: Use a callback for cancel synchronization on PREEMPT_RT
[mirror_ubuntu-hirsute-kernel.git] / kernel / time / posix-timers.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0+
1da177e4 2/*
1da177e4
LT
3 * 2002-10-15 Posix Clocks & timers
4 * by George Anzinger george@mvista.com
1da177e4
LT
5 * Copyright (C) 2002 2003 by MontaVista Software.
6 *
7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8 * Copyright (C) 2004 Boris Hu
9 *
0141de74 10 * These are all the functions necessary to implement POSIX clocks & timers
1da177e4
LT
11 */
12#include <linux/mm.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/slab.h>
15#include <linux/time.h>
97d1f15b 16#include <linux/mutex.h>
61855b6b 17#include <linux/sched/task.h>
1da177e4 18
7c0f6ba6 19#include <linux/uaccess.h>
1da177e4
LT
20#include <linux/list.h>
21#include <linux/init.h>
22#include <linux/compiler.h>
5ed67f05 23#include <linux/hash.h>
0606f422 24#include <linux/posix-clock.h>
1da177e4
LT
25#include <linux/posix-timers.h>
26#include <linux/syscalls.h>
27#include <linux/wait.h>
28#include <linux/workqueue.h>
9984de1a 29#include <linux/export.h>
5ed67f05 30#include <linux/hashtable.h>
edbeda46 31#include <linux/compat.h>
19b558db 32#include <linux/nospec.h>
1da177e4 33
8b094cd0 34#include "timekeeping.h"
bab0aae9 35#include "posix-timers.h"
8b094cd0 36
1da177e4 37/*
5ed67f05
PE
38 * Management arrays for POSIX timers. Timers are now kept in static hash table
39 * with 512 entries.
40 * Timer ids are allocated by local routine, which selects proper hash head by
41 * key, constructed from current->signal address and per signal struct counter.
42 * This keeps timer ids unique per process, but now they can intersect between
43 * processes.
1da177e4
LT
44 */
45
46/*
47 * Lets keep our timers in a slab cache :-)
48 */
e18b890b 49static struct kmem_cache *posix_timers_cache;
5ed67f05
PE
50
51static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
52static DEFINE_SPINLOCK(hash_lock);
1da177e4 53
6631fa12
TG
54static const struct k_clock * const posix_clocks[];
55static const struct k_clock *clockid_to_kclock(const clockid_t id);
67edab48 56static const struct k_clock clock_realtime, clock_monotonic;
6631fa12 57
1da177e4
LT
58/*
59 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
60 * SIGEV values. Here we put out an error if this assumption fails.
61 */
62#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
63 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
64#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
65#endif
66
1da177e4
LT
67/*
68 * The timer ID is turned into a timer address by idr_find().
69 * Verifying a valid ID consists of:
70 *
71 * a) checking that idr_find() returns other than -1.
72 * b) checking that the timer id matches the one in the timer itself.
73 * c) that the timer owner is in the callers thread group.
74 */
75
76/*
77 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
78 * to implement others. This structure defines the various
0061748d 79 * clocks.
1da177e4
LT
80 *
81 * RESOLUTION: Clock resolution is used to round up timer and interval
82 * times, NOT to report clock times, which are reported with as
83 * much resolution as the system can muster. In some cases this
84 * resolution may depend on the underlying clock hardware and
85 * may not be quantifiable until run time, and only then is the
86 * necessary code is written. The standard says we should say
87 * something about this issue in the documentation...
88 *
0061748d
RC
89 * FUNCTIONS: The CLOCKs structure defines possible functions to
90 * handle various clock functions.
1da177e4 91 *
0061748d
RC
92 * The standard POSIX timer management code assumes the
93 * following: 1.) The k_itimer struct (sched.h) is used for
94 * the timer. 2.) The list, it_lock, it_clock, it_id and
95 * it_pid fields are not modified by timer code.
1da177e4
LT
96 *
97 * Permissions: It is assumed that the clock_settime() function defined
98 * for each clock will take care of permission checks. Some
99 * clocks may be set able by any user (i.e. local process
100 * clocks) others not. Currently the only set able clock we
101 * have is CLOCK_REALTIME and its high res counter part, both of
102 * which we beg off on and pass to do_sys_settimeofday().
103 */
20f33a03
NK
104static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
105
106#define lock_timer(tid, flags) \
107({ struct k_itimer *__timr; \
108 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
109 __timr; \
110})
1da177e4 111
5ed67f05
PE
112static int hash(struct signal_struct *sig, unsigned int nr)
113{
114 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
115}
116
117static struct k_itimer *__posix_timers_find(struct hlist_head *head,
118 struct signal_struct *sig,
119 timer_t id)
120{
5ed67f05
PE
121 struct k_itimer *timer;
122
123 hlist_for_each_entry_rcu(timer, head, t_hash) {
124 if ((timer->it_signal == sig) && (timer->it_id == id))
125 return timer;
126 }
127 return NULL;
128}
129
130static struct k_itimer *posix_timer_by_id(timer_t id)
131{
132 struct signal_struct *sig = current->signal;
133 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
134
135 return __posix_timers_find(head, sig, id);
136}
137
138static int posix_timer_add(struct k_itimer *timer)
139{
140 struct signal_struct *sig = current->signal;
141 int first_free_id = sig->posix_timer_id;
142 struct hlist_head *head;
143 int ret = -ENOENT;
144
145 do {
146 spin_lock(&hash_lock);
147 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
148 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
149 hlist_add_head_rcu(&timer->t_hash, head);
150 ret = sig->posix_timer_id;
151 }
152 if (++sig->posix_timer_id < 0)
153 sig->posix_timer_id = 0;
154 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
155 /* Loop over all possible ids completed */
156 ret = -EAGAIN;
157 spin_unlock(&hash_lock);
158 } while (ret == -ENOENT);
159 return ret;
160}
161
1da177e4
LT
162static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
163{
164 spin_unlock_irqrestore(&timr->it_lock, flags);
165}
166
42285777 167/* Get clock_realtime */
3c9c12f4 168static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
42285777 169{
3c9c12f4 170 ktime_get_real_ts64(tp);
42285777
TG
171 return 0;
172}
173
26f9a479
TG
174/* Set clock_realtime */
175static int posix_clock_realtime_set(const clockid_t which_clock,
0fe6afe3 176 const struct timespec64 *tp)
26f9a479 177{
0fe6afe3 178 return do_sys_settimeofday64(tp, NULL);
26f9a479
TG
179}
180
f1f1d5eb 181static int posix_clock_realtime_adj(const clockid_t which_clock,
ead25417 182 struct __kernel_timex *t)
f1f1d5eb
RC
183{
184 return do_adjtimex(t);
185}
186
becf8b5d
TG
187/*
188 * Get monotonic time for posix timers
189 */
3c9c12f4 190static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
becf8b5d 191{
3c9c12f4 192 ktime_get_ts64(tp);
becf8b5d
TG
193 return 0;
194}
1da177e4 195
2d42244a 196/*
7fdd7f89 197 * Get monotonic-raw time for posix timers
2d42244a 198 */
3c9c12f4 199static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
2d42244a 200{
58a10456 201 ktime_get_raw_ts64(tp);
2d42244a
JS
202 return 0;
203}
204
da15cfda 205
3c9c12f4 206static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
da15cfda 207{
58a10456 208 ktime_get_coarse_real_ts64(tp);
da15cfda
JS
209 return 0;
210}
211
212static int posix_get_monotonic_coarse(clockid_t which_clock,
3c9c12f4 213 struct timespec64 *tp)
da15cfda 214{
58a10456 215 ktime_get_coarse_ts64(tp);
da15cfda
JS
216 return 0;
217}
218
d2e3e0ca 219static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
da15cfda 220{
d2e3e0ca 221 *tp = ktime_to_timespec64(KTIME_LOW_RES);
da15cfda
JS
222 return 0;
223}
7fdd7f89 224
a3ed0e43 225static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
7fdd7f89 226{
58a10456 227 ktime_get_boottime_ts64(tp);
7fdd7f89
JS
228 return 0;
229}
230
a3ed0e43 231static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
1ff3c967 232{
58a10456 233 ktime_get_clocktai_ts64(tp);
1ff3c967
JS
234 return 0;
235}
7fdd7f89 236
d2e3e0ca 237static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
056a3cac
TG
238{
239 tp->tv_sec = 0;
240 tp->tv_nsec = hrtimer_resolution;
241 return 0;
242}
243
1da177e4
LT
244/*
245 * Initialize everything, well, just everything in Posix clocks/timers ;)
246 */
247static __init int init_posix_timers(void)
248{
1da177e4 249 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
250 sizeof (struct k_itimer), 0, SLAB_PANIC,
251 NULL);
1da177e4
LT
252 return 0;
253}
1da177e4
LT
254__initcall(init_posix_timers);
255
78c9c4df
TG
256/*
257 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
258 * are of type int. Clamp the overrun value to INT_MAX
259 */
260static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
261{
262 s64 sum = timr->it_overrun_last + (s64)baseval;
263
264 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
265}
266
f37fb0aa 267static void common_hrtimer_rearm(struct k_itimer *timr)
1da177e4 268{
44f21475
RZ
269 struct hrtimer *timer = &timr->it.real.timer;
270
78c9c4df
TG
271 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
272 timr->it_interval);
44f21475 273 hrtimer_restart(timer);
1da177e4
LT
274}
275
276/*
277 * This function is exported for use by the signal deliver code. It is
278 * called just prior to the info block being released and passes that
279 * block to us. It's function is to update the overrun entry AND to
280 * restart the timer. It should only be called if the timer is to be
281 * restarted (i.e. we have flagged this in the sys_private entry of the
282 * info block).
283 *
25985edc 284 * To protect against the timer going away while the interrupt is queued,
1da177e4
LT
285 * we require that the it_requeue_pending flag be set.
286 */
ae7795bc 287void posixtimer_rearm(struct kernel_siginfo *info)
1da177e4
LT
288{
289 struct k_itimer *timr;
290 unsigned long flags;
291
292 timr = lock_timer(info->si_tid, &flags);
af888d67
TG
293 if (!timr)
294 return;
1da177e4 295
0e334db6 296 if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
f37fb0aa 297 timr->kclock->timer_rearm(timr);
1da177e4 298
21e55c1f 299 timr->it_active = 1;
af888d67 300 timr->it_overrun_last = timr->it_overrun;
78c9c4df 301 timr->it_overrun = -1LL;
af888d67
TG
302 ++timr->it_requeue_pending;
303
78c9c4df 304 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
becf8b5d
TG
305 }
306
af888d67 307 unlock_timer(timr, flags);
1da177e4
LT
308}
309
ba661292 310int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 311{
24122c7f
EB
312 enum pid_type type;
313 int ret = -1;
ba661292
ON
314 /*
315 * FIXME: if ->sigq is queued we can race with
96fe3b07 316 * dequeue_signal()->posixtimer_rearm().
ba661292
ON
317 *
318 * If dequeue_signal() sees the "right" value of
96fe3b07 319 * si_sys_private it calls posixtimer_rearm().
ba661292 320 * We re-queue ->sigq and drop ->it_lock().
96fe3b07 321 * posixtimer_rearm() locks the timer
ba661292
ON
322 * and re-schedules it while ->sigq is pending.
323 * Not really bad, but not that we want.
324 */
1da177e4 325 timr->sigq->info.si_sys_private = si_private;
1da177e4 326
24122c7f
EB
327 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
328 ret = send_sigqueue(timr->sigq, timr->it_pid, type);
4aa73611
ON
329 /* If we failed to send the signal the timer stops. */
330 return ret > 0;
1da177e4 331}
1da177e4
LT
332
333/*
334 * This function gets called when a POSIX.1b interval timer expires. It
335 * is used as a callback from the kernel internal timer. The
336 * run_timer_list code ALWAYS calls with interrupts on.
337
338 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
339 */
c9cb2e3d 340static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 341{
05cfb614 342 struct k_itimer *timr;
1da177e4 343 unsigned long flags;
becf8b5d 344 int si_private = 0;
c9cb2e3d 345 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 346
05cfb614 347 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 348 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 349
21e55c1f 350 timr->it_active = 0;
80105cd0 351 if (timr->it_interval != 0)
becf8b5d 352 si_private = ++timr->it_requeue_pending;
1da177e4 353
becf8b5d
TG
354 if (posix_timer_event(timr, si_private)) {
355 /*
356 * signal was not sent because of sig_ignor
357 * we will not get a call back to restart it AND
358 * it should be restarted.
359 */
80105cd0 360 if (timr->it_interval != 0) {
58229a18
TG
361 ktime_t now = hrtimer_cb_get_time(timer);
362
363 /*
364 * FIXME: What we really want, is to stop this
365 * timer completely and restart it in case the
366 * SIG_IGN is removed. This is a non trivial
367 * change which involves sighand locking
368 * (sigh !), which we don't want to do late in
369 * the release cycle.
370 *
371 * For now we just let timers with an interval
372 * less than a jiffie expire every jiffie to
373 * avoid softirq starvation in case of SIG_IGN
374 * and a very small interval, which would put
375 * the timer right back on the softirq pending
376 * list. By moving now ahead of time we trick
377 * hrtimer_forward() to expire the timer
378 * later, while we still maintain the overrun
379 * accuracy, but have some inconsistency in
380 * the timer_gettime() case. This is at least
381 * better than a starved softirq. A more
382 * complex fix which solves also another related
383 * inconsistency is already in the pipeline.
384 */
385#ifdef CONFIG_HIGH_RES_TIMERS
386 {
8b0e1953 387 ktime_t kj = NSEC_PER_SEC / HZ;
58229a18 388
80105cd0 389 if (timr->it_interval < kj)
58229a18
TG
390 now = ktime_add(now, kj);
391 }
392#endif
78c9c4df
TG
393 timr->it_overrun += hrtimer_forward(timer, now,
394 timr->it_interval);
becf8b5d 395 ret = HRTIMER_RESTART;
a0a0c28c 396 ++timr->it_requeue_pending;
21e55c1f 397 timr->it_active = 1;
1da177e4 398 }
1da177e4 399 }
1da177e4 400
becf8b5d
TG
401 unlock_timer(timr, flags);
402 return ret;
403}
1da177e4 404
27af4245 405static struct pid *good_sigevent(sigevent_t * event)
1da177e4 406{
2118e1f5
EB
407 struct pid *pid = task_tgid(current);
408 struct task_struct *rtn;
1da177e4 409
cef31d9a
TG
410 switch (event->sigev_notify) {
411 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
2118e1f5
EB
412 pid = find_vpid(event->sigev_notify_thread_id);
413 rtn = pid_task(pid, PIDTYPE_PID);
cef31d9a
TG
414 if (!rtn || !same_thread_group(rtn, current))
415 return NULL;
416 /* FALLTHRU */
417 case SIGEV_SIGNAL:
418 case SIGEV_THREAD:
419 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
420 return NULL;
421 /* FALLTHRU */
422 case SIGEV_NONE:
2118e1f5 423 return pid;
cef31d9a 424 default:
1da177e4 425 return NULL;
cef31d9a 426 }
1da177e4
LT
427}
428
1da177e4
LT
429static struct k_itimer * alloc_posix_timer(void)
430{
431 struct k_itimer *tmr;
c3762229 432 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
433 if (!tmr)
434 return tmr;
1da177e4
LT
435 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
436 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 437 return NULL;
1da177e4 438 }
3b10db2b 439 clear_siginfo(&tmr->sigq->info);
1da177e4
LT
440 return tmr;
441}
442
8af08871
ED
443static void k_itimer_rcu_free(struct rcu_head *head)
444{
5d99b32a 445 struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
8af08871
ED
446
447 kmem_cache_free(posix_timers_cache, tmr);
448}
449
1da177e4
LT
450#define IT_ID_SET 1
451#define IT_ID_NOT_SET 0
452static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
453{
454 if (it_id_set) {
455 unsigned long flags;
5ed67f05
PE
456 spin_lock_irqsave(&hash_lock, flags);
457 hlist_del_rcu(&tmr->t_hash);
458 spin_unlock_irqrestore(&hash_lock, flags);
1da177e4 459 }
89992102 460 put_pid(tmr->it_pid);
1da177e4 461 sigqueue_free(tmr->sigq);
5d99b32a 462 call_rcu(&tmr->rcu, k_itimer_rcu_free);
1da177e4
LT
463}
464
838394fb
TG
465static int common_timer_create(struct k_itimer *new_timer)
466{
467 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
468 return 0;
469}
470
1da177e4 471/* Create a POSIX.1b interval timer. */
2482097c
AV
472static int do_timer_create(clockid_t which_clock, struct sigevent *event,
473 timer_t __user *created_timer_id)
1da177e4 474{
d3ba5a9a 475 const struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 476 struct k_itimer *new_timer;
ef864c95 477 int error, new_timer_id;
1da177e4
LT
478 int it_id_set = IT_ID_NOT_SET;
479
838394fb 480 if (!kc)
1da177e4 481 return -EINVAL;
838394fb
TG
482 if (!kc->timer_create)
483 return -EOPNOTSUPP;
1da177e4
LT
484
485 new_timer = alloc_posix_timer();
486 if (unlikely(!new_timer))
487 return -EAGAIN;
488
489 spin_lock_init(&new_timer->it_lock);
5ed67f05
PE
490 new_timer_id = posix_timer_add(new_timer);
491 if (new_timer_id < 0) {
492 error = new_timer_id;
1da177e4
LT
493 goto out;
494 }
495
496 it_id_set = IT_ID_SET;
497 new_timer->it_id = (timer_t) new_timer_id;
498 new_timer->it_clock = which_clock;
d97bb75d 499 new_timer->kclock = kc;
78c9c4df 500 new_timer->it_overrun = -1LL;
1da177e4 501
2482097c 502 if (event) {
36b2f046 503 rcu_read_lock();
2482097c 504 new_timer->it_pid = get_pid(good_sigevent(event));
36b2f046 505 rcu_read_unlock();
89992102 506 if (!new_timer->it_pid) {
1da177e4
LT
507 error = -EINVAL;
508 goto out;
509 }
2482097c
AV
510 new_timer->it_sigev_notify = event->sigev_notify;
511 new_timer->sigq->info.si_signo = event->sigev_signo;
512 new_timer->sigq->info.si_value = event->sigev_value;
1da177e4 513 } else {
2482097c
AV
514 new_timer->it_sigev_notify = SIGEV_SIGNAL;
515 new_timer->sigq->info.si_signo = SIGALRM;
516 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
517 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
89992102 518 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
519 }
520
717835d9 521 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 522 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 523
2b08de00
AV
524 if (copy_to_user(created_timer_id,
525 &new_timer_id, sizeof (new_timer_id))) {
526 error = -EFAULT;
527 goto out;
528 }
529
838394fb 530 error = kc->timer_create(new_timer);
45e0fffc
AV
531 if (error)
532 goto out;
533
36b2f046 534 spin_lock_irq(&current->sighand->siglock);
27af4245 535 new_timer->it_signal = current->signal;
36b2f046
ON
536 list_add(&new_timer->list, &current->signal->posix_timers);
537 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
538
539 return 0;
838394fb 540 /*
1da177e4
LT
541 * In the case of the timer belonging to another task, after
542 * the task is unlocked, the timer is owned by the other task
543 * and may cease to exist at any time. Don't use or modify
544 * new_timer after the unlock call.
545 */
1da177e4 546out:
ef864c95 547 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
548 return error;
549}
550
2482097c
AV
551SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
552 struct sigevent __user *, timer_event_spec,
553 timer_t __user *, created_timer_id)
554{
555 if (timer_event_spec) {
556 sigevent_t event;
557
558 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
559 return -EFAULT;
560 return do_timer_create(which_clock, &event, created_timer_id);
561 }
562 return do_timer_create(which_clock, NULL, created_timer_id);
563}
564
565#ifdef CONFIG_COMPAT
566COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
567 struct compat_sigevent __user *, timer_event_spec,
568 timer_t __user *, created_timer_id)
569{
570 if (timer_event_spec) {
571 sigevent_t event;
572
573 if (get_compat_sigevent(&event, timer_event_spec))
574 return -EFAULT;
575 return do_timer_create(which_clock, &event, created_timer_id);
576 }
577 return do_timer_create(which_clock, NULL, created_timer_id);
578}
579#endif
580
1da177e4
LT
581/*
582 * Locking issues: We need to protect the result of the id look up until
583 * we get the timer locked down so it is not deleted under us. The
584 * removal is done under the idr spinlock so we use that here to bridge
585 * the find to the timer lock. To avoid a dead lock, the timer id MUST
586 * be release with out holding the timer lock.
587 */
20f33a03 588static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
589{
590 struct k_itimer *timr;
8af08871 591
e182bb38
TH
592 /*
593 * timer_t could be any type >= int and we want to make sure any
594 * @timer_id outside positive int range fails lookup.
595 */
596 if ((unsigned long long)timer_id > INT_MAX)
597 return NULL;
598
8af08871 599 rcu_read_lock();
5ed67f05 600 timr = posix_timer_by_id(timer_id);
1da177e4 601 if (timr) {
8af08871 602 spin_lock_irqsave(&timr->it_lock, *flags);
89992102 603 if (timr->it_signal == current->signal) {
8af08871 604 rcu_read_unlock();
31d92845
ON
605 return timr;
606 }
8af08871 607 spin_unlock_irqrestore(&timr->it_lock, *flags);
31d92845 608 }
8af08871 609 rcu_read_unlock();
1da177e4 610
31d92845 611 return NULL;
1da177e4
LT
612}
613
91d57bae
TG
614static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
615{
616 struct hrtimer *timer = &timr->it.real.timer;
617
618 return __hrtimer_expires_remaining_adjusted(timer, now);
619}
620
6fec64e1 621static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
91d57bae
TG
622{
623 struct hrtimer *timer = &timr->it.real.timer;
624
6fec64e1 625 return hrtimer_forward(timer, now, timr->it_interval);
91d57bae
TG
626}
627
1da177e4
LT
628/*
629 * Get the time remaining on a POSIX.1b interval timer. This function
630 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
631 * mess with irq.
632 *
633 * We have a couple of messes to clean up here. First there is the case
634 * of a timer that has a requeue pending. These timers should appear to
635 * be in the timer list with an expiry as if we were to requeue them
636 * now.
637 *
638 * The second issue is the SIGEV_NONE timer which may be active but is
639 * not really ever put in the timer list (to save system resources).
640 * This timer may be expired, and if so, we will do it here. Otherwise
641 * it is the same as a requeue pending timer WRT to what we should
642 * report.
643 */
f2c45807 644void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
1da177e4 645{
91d57bae 646 const struct k_clock *kc = timr->kclock;
3b98a532 647 ktime_t now, remaining, iv;
91d57bae
TG
648 struct timespec64 ts64;
649 bool sig_none;
1da177e4 650
cef31d9a 651 sig_none = timr->it_sigev_notify == SIGEV_NONE;
80105cd0 652 iv = timr->it_interval;
3b98a532 653
becf8b5d 654 /* interval timer ? */
91d57bae 655 if (iv) {
5f252b32 656 cur_setting->it_interval = ktime_to_timespec64(iv);
91d57bae
TG
657 } else if (!timr->it_active) {
658 /*
659 * SIGEV_NONE oneshot timers are never queued. Check them
660 * below.
661 */
662 if (!sig_none)
663 return;
664 }
3b98a532 665
91d57bae
TG
666 /*
667 * The timespec64 based conversion is suboptimal, but it's not
668 * worth to implement yet another callback.
669 */
670 kc->clock_get(timr->it_clock, &ts64);
671 now = timespec64_to_ktime(ts64);
3b98a532 672
becf8b5d 673 /*
91d57bae
TG
674 * When a requeue is pending or this is a SIGEV_NONE timer move the
675 * expiry time forward by intervals, so expiry is > now.
becf8b5d 676 */
91d57bae 677 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
78c9c4df 678 timr->it_overrun += kc->timer_forward(timr, now);
3b98a532 679
91d57bae 680 remaining = kc->timer_remaining(timr, now);
becf8b5d 681 /* Return 0 only, when the timer is expired and not pending */
2456e855 682 if (remaining <= 0) {
3b98a532
RZ
683 /*
684 * A single shot SIGEV_NONE timer must return 0, when
685 * it is expired !
686 */
91d57bae 687 if (!sig_none)
3b98a532 688 cur_setting->it_value.tv_nsec = 1;
91d57bae 689 } else {
5f252b32 690 cur_setting->it_value = ktime_to_timespec64(remaining);
91d57bae 691 }
1da177e4
LT
692}
693
694/* Get the time remaining on a POSIX.1b interval timer. */
b0dc1242 695static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
1da177e4 696{
a7319fa2 697 struct k_itimer *timr;
d3ba5a9a 698 const struct k_clock *kc;
1da177e4 699 unsigned long flags;
a7319fa2 700 int ret = 0;
1da177e4
LT
701
702 timr = lock_timer(timer_id, &flags);
703 if (!timr)
704 return -EINVAL;
705
b0dc1242 706 memset(setting, 0, sizeof(*setting));
d97bb75d 707 kc = timr->kclock;
a7319fa2
TG
708 if (WARN_ON_ONCE(!kc || !kc->timer_get))
709 ret = -EINVAL;
710 else
b0dc1242 711 kc->timer_get(timr, setting);
1da177e4
LT
712
713 unlock_timer(timr, flags);
b0dc1242
AV
714 return ret;
715}
1da177e4 716
b0dc1242
AV
717/* Get the time remaining on a POSIX.1b interval timer. */
718SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
6ff84735 719 struct __kernel_itimerspec __user *, setting)
b0dc1242 720{
725816e8 721 struct itimerspec64 cur_setting;
1da177e4 722
725816e8 723 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 724 if (!ret) {
725816e8 725 if (put_itimerspec64(&cur_setting, setting))
b0dc1242
AV
726 ret = -EFAULT;
727 }
a7319fa2 728 return ret;
1da177e4 729}
becf8b5d 730
6ff84735
DD
731#ifdef CONFIG_COMPAT_32BIT_TIME
732
8dabe724
AB
733SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
734 struct old_itimerspec32 __user *, setting)
b0dc1242 735{
725816e8 736 struct itimerspec64 cur_setting;
b0dc1242 737
725816e8 738 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 739 if (!ret) {
9afc5eee 740 if (put_old_itimerspec32(&cur_setting, setting))
b0dc1242
AV
741 ret = -EFAULT;
742 }
743 return ret;
744}
6ff84735 745
b0dc1242
AV
746#endif
747
1da177e4
LT
748/*
749 * Get the number of overruns of a POSIX.1b interval timer. This is to
750 * be the overrun of the timer last delivered. At the same time we are
751 * accumulating overruns on the next timer. The overrun is frozen when
752 * the signal is delivered, either at the notify time (if the info block
753 * is not queued) or at the actual delivery time (as we are informed by
96fe3b07 754 * the call back to posixtimer_rearm(). So all we need to do is
1da177e4
LT
755 * to pick up the frozen overrun.
756 */
362e9c07 757SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
758{
759 struct k_itimer *timr;
760 int overrun;
5ba25331 761 unsigned long flags;
1da177e4
LT
762
763 timr = lock_timer(timer_id, &flags);
764 if (!timr)
765 return -EINVAL;
766
78c9c4df 767 overrun = timer_overrun_to_int(timr, 0);
1da177e4
LT
768 unlock_timer(timr, flags);
769
770 return overrun;
771}
1da177e4 772
eae1c4ae
TG
773static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
774 bool absolute, bool sigev_none)
775{
776 struct hrtimer *timer = &timr->it.real.timer;
777 enum hrtimer_mode mode;
778
779 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
67edab48
TG
780 /*
781 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
782 * clock modifications, so they become CLOCK_MONOTONIC based under the
783 * hood. See hrtimer_init(). Update timr->kclock, so the generic
784 * functions which use timr->kclock->clock_get() work.
785 *
786 * Note: it_clock stays unmodified, because the next timer_set() might
787 * use ABSTIME, so it needs to switch back.
788 */
789 if (timr->it_clock == CLOCK_REALTIME)
790 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
791
eae1c4ae
TG
792 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
793 timr->it.real.timer.function = posix_timer_fn;
794
795 if (!absolute)
796 expires = ktime_add_safe(expires, timer->base->get_time());
797 hrtimer_set_expires(timer, expires);
798
799 if (!sigev_none)
800 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
801}
802
803static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
804{
805 return hrtimer_try_to_cancel(&timr->it.real.timer);
806}
807
ec8f954a
TG
808static void common_timer_wait_running(struct k_itimer *timer)
809{
810 hrtimer_cancel_wait_running(&timer->it.real.timer);
811}
812
6945e5c2
TG
813static struct k_itimer *timer_wait_running(struct k_itimer *timer,
814 unsigned long *flags)
815{
ec8f954a 816 const struct k_clock *kc = READ_ONCE(timer->kclock);
6945e5c2
TG
817 timer_t timer_id = READ_ONCE(timer->it_id);
818
ec8f954a
TG
819 /* Prevent kfree(timer) after dropping the lock */
820 rcu_read_lock();
6945e5c2 821 unlock_timer(timer, *flags);
ec8f954a
TG
822
823 if (!WARN_ON_ONCE(!kc->timer_wait_running))
824 kc->timer_wait_running(timer);
825
826 rcu_read_unlock();
6945e5c2
TG
827 /* Relock the timer. It might be not longer hashed. */
828 return lock_timer(timer_id, flags);
829}
830
1da177e4 831/* Set a POSIX.1b interval timer. */
f2c45807
TG
832int common_timer_set(struct k_itimer *timr, int flags,
833 struct itimerspec64 *new_setting,
834 struct itimerspec64 *old_setting)
1da177e4 835{
eae1c4ae
TG
836 const struct k_clock *kc = timr->kclock;
837 bool sigev_none;
838 ktime_t expires;
1da177e4
LT
839
840 if (old_setting)
841 common_timer_get(timr, old_setting);
842
eae1c4ae 843 /* Prevent rearming by clearing the interval */
80105cd0 844 timr->it_interval = 0;
1da177e4 845 /*
eae1c4ae
TG
846 * Careful here. On SMP systems the timer expiry function could be
847 * active and spinning on timr->it_lock.
1da177e4 848 */
eae1c4ae 849 if (kc->timer_try_to_cancel(timr) < 0)
1da177e4 850 return TIMER_RETRY;
1da177e4 851
21e55c1f
TG
852 timr->it_active = 0;
853 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
1da177e4
LT
854 ~REQUEUE_PENDING;
855 timr->it_overrun_last = 0;
1da177e4 856
eae1c4ae 857 /* Switch off the timer when it_value is zero */
becf8b5d
TG
858 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
859 return 0;
1da177e4 860
80105cd0 861 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
eae1c4ae 862 expires = timespec64_to_ktime(new_setting->it_value);
cef31d9a 863 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
becf8b5d 864
eae1c4ae
TG
865 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
866 timr->it_active = !sigev_none;
1da177e4
LT
867 return 0;
868}
869
21670ee4 870static int do_timer_settime(timer_t timer_id, int tmr_flags,
1acbe770
AV
871 struct itimerspec64 *new_spec64,
872 struct itimerspec64 *old_spec64)
1da177e4 873{
1acbe770 874 const struct k_clock *kc;
5f252b32 875 struct k_itimer *timr;
21670ee4 876 unsigned long flags;
5f252b32 877 int error = 0;
1da177e4 878
1acbe770
AV
879 if (!timespec64_valid(&new_spec64->it_interval) ||
880 !timespec64_valid(&new_spec64->it_value))
1da177e4
LT
881 return -EINVAL;
882
1acbe770
AV
883 if (old_spec64)
884 memset(old_spec64, 0, sizeof(*old_spec64));
6945e5c2 885
21670ee4 886 timr = lock_timer(timer_id, &flags);
6945e5c2 887retry:
1da177e4
LT
888 if (!timr)
889 return -EINVAL;
890
d97bb75d 891 kc = timr->kclock;
27722df1
TG
892 if (WARN_ON_ONCE(!kc || !kc->timer_set))
893 error = -EINVAL;
894 else
21670ee4 895 error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
1da177e4 896
1da177e4 897 if (error == TIMER_RETRY) {
6945e5c2
TG
898 // We already got the old time...
899 old_spec64 = NULL;
900 /* Unlocks and relocks the timer if it still exists */
901 timr = timer_wait_running(timr, &flags);
1da177e4
LT
902 goto retry;
903 }
6945e5c2 904 unlock_timer(timr, flags);
1da177e4 905
1acbe770
AV
906 return error;
907}
1da177e4 908
1acbe770
AV
909/* Set a POSIX.1b interval timer */
910SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
6ff84735
DD
911 const struct __kernel_itimerspec __user *, new_setting,
912 struct __kernel_itimerspec __user *, old_setting)
1acbe770 913{
725816e8
DD
914 struct itimerspec64 new_spec, old_spec;
915 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
1acbe770
AV
916 int error = 0;
917
918 if (!new_setting)
919 return -EINVAL;
920
725816e8 921 if (get_itimerspec64(&new_spec, new_setting))
1acbe770 922 return -EFAULT;
1acbe770 923
725816e8 924 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 925 if (!error && old_setting) {
725816e8 926 if (put_itimerspec64(&old_spec, old_setting))
1acbe770
AV
927 error = -EFAULT;
928 }
929 return error;
930}
931
6ff84735 932#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
933SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
934 struct old_itimerspec32 __user *, new,
935 struct old_itimerspec32 __user *, old)
1acbe770 936{
725816e8
DD
937 struct itimerspec64 new_spec, old_spec;
938 struct itimerspec64 *rtn = old ? &old_spec : NULL;
1acbe770
AV
939 int error = 0;
940
941 if (!new)
942 return -EINVAL;
9afc5eee 943 if (get_old_itimerspec32(&new_spec, new))
1acbe770
AV
944 return -EFAULT;
945
725816e8 946 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 947 if (!error && old) {
9afc5eee 948 if (put_old_itimerspec32(&old_spec, old))
1acbe770
AV
949 error = -EFAULT;
950 }
1da177e4
LT
951 return error;
952}
1acbe770 953#endif
1da177e4 954
f2c45807 955int common_timer_del(struct k_itimer *timer)
1da177e4 956{
eae1c4ae 957 const struct k_clock *kc = timer->kclock;
f972be33 958
eae1c4ae
TG
959 timer->it_interval = 0;
960 if (kc->timer_try_to_cancel(timer) < 0)
1da177e4 961 return TIMER_RETRY;
21e55c1f 962 timer->it_active = 0;
1da177e4
LT
963 return 0;
964}
965
966static inline int timer_delete_hook(struct k_itimer *timer)
967{
d97bb75d 968 const struct k_clock *kc = timer->kclock;
6761c670
TG
969
970 if (WARN_ON_ONCE(!kc || !kc->timer_del))
971 return -EINVAL;
972 return kc->timer_del(timer);
1da177e4
LT
973}
974
975/* Delete a POSIX.1b interval timer. */
362e9c07 976SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
977{
978 struct k_itimer *timer;
5ba25331 979 unsigned long flags;
1da177e4 980
1da177e4 981 timer = lock_timer(timer_id, &flags);
6945e5c2
TG
982
983retry_delete:
1da177e4
LT
984 if (!timer)
985 return -EINVAL;
986
6945e5c2
TG
987 if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
988 /* Unlocks and relocks the timer if it still exists */
989 timer = timer_wait_running(timer, &flags);
1da177e4
LT
990 goto retry_delete;
991 }
becf8b5d 992
1da177e4
LT
993 spin_lock(&current->sighand->siglock);
994 list_del(&timer->list);
995 spin_unlock(&current->sighand->siglock);
996 /*
997 * This keeps any tasks waiting on the spin lock from thinking
998 * they got something (see the lock code above).
999 */
89992102 1000 timer->it_signal = NULL;
4b7a1304 1001
1da177e4
LT
1002 unlock_timer(timer, flags);
1003 release_posix_timer(timer, IT_ID_SET);
1004 return 0;
1005}
becf8b5d 1006
1da177e4
LT
1007/*
1008 * return timer owned by the process, used by exit_itimers
1009 */
858119e1 1010static void itimer_delete(struct k_itimer *timer)
1da177e4 1011{
1da177e4 1012retry_delete:
7586addb 1013 spin_lock_irq(&timer->it_lock);
1da177e4 1014
becf8b5d 1015 if (timer_delete_hook(timer) == TIMER_RETRY) {
7586addb 1016 spin_unlock_irq(&timer->it_lock);
1da177e4
LT
1017 goto retry_delete;
1018 }
1da177e4 1019 list_del(&timer->list);
4b7a1304 1020
7586addb 1021 spin_unlock_irq(&timer->it_lock);
1da177e4
LT
1022 release_posix_timer(timer, IT_ID_SET);
1023}
1024
1025/*
25f407f0 1026 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
1027 * references to the shared signal_struct.
1028 */
1029void exit_itimers(struct signal_struct *sig)
1030{
1031 struct k_itimer *tmr;
1032
1033 while (!list_empty(&sig->posix_timers)) {
1034 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1035 itimer_delete(tmr);
1036 }
1037}
1038
362e9c07 1039SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
6d5b8413 1040 const struct __kernel_timespec __user *, tp)
1da177e4 1041{
d3ba5a9a 1042 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1043 struct timespec64 new_tp;
1da177e4 1044
26f9a479 1045 if (!kc || !kc->clock_set)
1da177e4 1046 return -EINVAL;
26f9a479 1047
5c499410 1048 if (get_timespec64(&new_tp, tp))
1da177e4
LT
1049 return -EFAULT;
1050
5c499410 1051 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
1052}
1053
362e9c07 1054SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
6d5b8413 1055 struct __kernel_timespec __user *, tp)
1da177e4 1056{
d3ba5a9a 1057 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1058 struct timespec64 kernel_tp;
1da177e4
LT
1059 int error;
1060
42285777 1061 if (!kc)
1da177e4 1062 return -EINVAL;
42285777 1063
5c499410 1064 error = kc->clock_get(which_clock, &kernel_tp);
42285777 1065
5c499410 1066 if (!error && put_timespec64(&kernel_tp, tp))
1da177e4
LT
1067 error = -EFAULT;
1068
1069 return error;
1da177e4
LT
1070}
1071
ead25417 1072int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
f1f1d5eb 1073{
d3ba5a9a 1074 const struct k_clock *kc = clockid_to_kclock(which_clock);
f1f1d5eb
RC
1075
1076 if (!kc)
1077 return -EINVAL;
1078 if (!kc->clock_adj)
1079 return -EOPNOTSUPP;
1080
1a596398
AB
1081 return kc->clock_adj(which_clock, ktx);
1082}
1083
1084SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
3876ced4 1085 struct __kernel_timex __user *, utx)
1a596398 1086{
ead25417 1087 struct __kernel_timex ktx;
1a596398
AB
1088 int err;
1089
f1f1d5eb
RC
1090 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1091 return -EFAULT;
1092
1a596398 1093 err = do_clock_adjtime(which_clock, &ktx);
f1f1d5eb 1094
f0dbe81f 1095 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
f1f1d5eb
RC
1096 return -EFAULT;
1097
1098 return err;
1099}
1100
d822cdcc 1101SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
6d5b8413 1102 struct __kernel_timespec __user *, tp)
d822cdcc
AV
1103{
1104 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1105 struct timespec64 rtn_tp;
d822cdcc
AV
1106 int error;
1107
1108 if (!kc)
1109 return -EINVAL;
1110
5c499410 1111 error = kc->clock_getres(which_clock, &rtn_tp);
d822cdcc 1112
5c499410 1113 if (!error && tp && put_timespec64(&rtn_tp, tp))
d822cdcc
AV
1114 error = -EFAULT;
1115
1116 return error;
1117}
1118
b5793b0d 1119#ifdef CONFIG_COMPAT_32BIT_TIME
3a4d44b6 1120
8dabe724
AB
1121SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1122 struct old_timespec32 __user *, tp)
d822cdcc
AV
1123{
1124 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1125 struct timespec64 ts;
d822cdcc
AV
1126
1127 if (!kc || !kc->clock_set)
1128 return -EINVAL;
1129
9afc5eee 1130 if (get_old_timespec32(&ts, tp))
d822cdcc
AV
1131 return -EFAULT;
1132
5c499410 1133 return kc->clock_set(which_clock, &ts);
d822cdcc
AV
1134}
1135
8dabe724
AB
1136SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1137 struct old_timespec32 __user *, tp)
d822cdcc
AV
1138{
1139 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1140 struct timespec64 ts;
1141 int err;
d822cdcc
AV
1142
1143 if (!kc)
1144 return -EINVAL;
1145
5c499410 1146 err = kc->clock_get(which_clock, &ts);
d822cdcc 1147
9afc5eee 1148 if (!err && put_old_timespec32(&ts, tp))
5c499410 1149 err = -EFAULT;
d822cdcc 1150
5c499410 1151 return err;
d822cdcc
AV
1152}
1153
8dabe724
AB
1154SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1155 struct old_timex32 __user *, utp)
3a4d44b6 1156{
ead25417 1157 struct __kernel_timex ktx;
3a4d44b6
AV
1158 int err;
1159
4d5f007e 1160 err = get_old_timex32(&ktx, utp);
3a4d44b6
AV
1161 if (err)
1162 return err;
1163
1a596398 1164 err = do_clock_adjtime(which_clock, &ktx);
3a4d44b6
AV
1165
1166 if (err >= 0)
4d5f007e 1167 err = put_old_timex32(utp, &ktx);
3a4d44b6
AV
1168
1169 return err;
1170}
3a4d44b6 1171
8dabe724
AB
1172SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1173 struct old_timespec32 __user *, tp)
1da177e4 1174{
d3ba5a9a 1175 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1176 struct timespec64 ts;
1177 int err;
1da177e4 1178
e5e542ee 1179 if (!kc)
1da177e4
LT
1180 return -EINVAL;
1181
5c499410 1182 err = kc->clock_getres(which_clock, &ts);
9afc5eee 1183 if (!err && tp && put_old_timespec32(&ts, tp))
5c499410 1184 return -EFAULT;
1da177e4 1185
5c499410 1186 return err;
1da177e4 1187}
5c499410 1188
d822cdcc 1189#endif
1da177e4 1190
97735f25
TG
1191/*
1192 * nanosleep for monotonic and realtime clocks
1193 */
1194static int common_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1195 const struct timespec64 *rqtp)
97735f25 1196{
938e7cf2 1197 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
080344b9
ON
1198 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1199 which_clock);
97735f25 1200}
1da177e4 1201
362e9c07 1202SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
01909974
DD
1203 const struct __kernel_timespec __user *, rqtp,
1204 struct __kernel_timespec __user *, rmtp)
1da177e4 1205{
d3ba5a9a 1206 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1207 struct timespec64 t;
1da177e4 1208
a5cd2880 1209 if (!kc)
1da177e4 1210 return -EINVAL;
a5cd2880 1211 if (!kc->nsleep)
93cb8e20 1212 return -EOPNOTSUPP;
1da177e4 1213
c0edd7c9 1214 if (get_timespec64(&t, rqtp))
1da177e4
LT
1215 return -EFAULT;
1216
c0edd7c9 1217 if (!timespec64_valid(&t))
1da177e4 1218 return -EINVAL;
99e6c0e6
AV
1219 if (flags & TIMER_ABSTIME)
1220 rmtp = NULL;
edbeda46 1221 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
99e6c0e6 1222 current->restart_block.nanosleep.rmtp = rmtp;
1da177e4 1223
c0edd7c9 1224 return kc->nsleep(which_clock, flags, &t);
1da177e4 1225}
1711ef38 1226
b5793b0d
DD
1227#ifdef CONFIG_COMPAT_32BIT_TIME
1228
8dabe724
AB
1229SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1230 struct old_timespec32 __user *, rqtp,
1231 struct old_timespec32 __user *, rmtp)
1711ef38 1232{
d3ba5a9a 1233 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1234 struct timespec64 t;
59bd5bc2 1235
edbeda46 1236 if (!kc)
59bd5bc2 1237 return -EINVAL;
edbeda46 1238 if (!kc->nsleep)
93cb8e20 1239 return -EOPNOTSUPP;
edbeda46 1240
9afc5eee 1241 if (get_old_timespec32(&t, rqtp))
edbeda46 1242 return -EFAULT;
1711ef38 1243
c0edd7c9 1244 if (!timespec64_valid(&t))
edbeda46
AV
1245 return -EINVAL;
1246 if (flags & TIMER_ABSTIME)
1247 rmtp = NULL;
1248 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1249 current->restart_block.nanosleep.compat_rmtp = rmtp;
1250
c0edd7c9 1251 return kc->nsleep(which_clock, flags, &t);
1711ef38 1252}
b5793b0d 1253
edbeda46 1254#endif
6631fa12
TG
1255
1256static const struct k_clock clock_realtime = {
eae1c4ae
TG
1257 .clock_getres = posix_get_hrtimer_res,
1258 .clock_get = posix_clock_realtime_get,
1259 .clock_set = posix_clock_realtime_set,
1260 .clock_adj = posix_clock_realtime_adj,
1261 .nsleep = common_nsleep,
eae1c4ae
TG
1262 .timer_create = common_timer_create,
1263 .timer_set = common_timer_set,
1264 .timer_get = common_timer_get,
1265 .timer_del = common_timer_del,
1266 .timer_rearm = common_hrtimer_rearm,
1267 .timer_forward = common_hrtimer_forward,
1268 .timer_remaining = common_hrtimer_remaining,
1269 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
ec8f954a 1270 .timer_wait_running = common_timer_wait_running,
eae1c4ae 1271 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1272};
1273
1274static const struct k_clock clock_monotonic = {
eae1c4ae
TG
1275 .clock_getres = posix_get_hrtimer_res,
1276 .clock_get = posix_ktime_get_ts,
1277 .nsleep = common_nsleep,
eae1c4ae
TG
1278 .timer_create = common_timer_create,
1279 .timer_set = common_timer_set,
1280 .timer_get = common_timer_get,
1281 .timer_del = common_timer_del,
1282 .timer_rearm = common_hrtimer_rearm,
1283 .timer_forward = common_hrtimer_forward,
1284 .timer_remaining = common_hrtimer_remaining,
1285 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
ec8f954a 1286 .timer_wait_running = common_timer_wait_running,
eae1c4ae 1287 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1288};
1289
1290static const struct k_clock clock_monotonic_raw = {
eae1c4ae
TG
1291 .clock_getres = posix_get_hrtimer_res,
1292 .clock_get = posix_get_monotonic_raw,
6631fa12
TG
1293};
1294
1295static const struct k_clock clock_realtime_coarse = {
eae1c4ae
TG
1296 .clock_getres = posix_get_coarse_res,
1297 .clock_get = posix_get_realtime_coarse,
6631fa12
TG
1298};
1299
1300static const struct k_clock clock_monotonic_coarse = {
eae1c4ae
TG
1301 .clock_getres = posix_get_coarse_res,
1302 .clock_get = posix_get_monotonic_coarse,
6631fa12
TG
1303};
1304
1305static const struct k_clock clock_tai = {
eae1c4ae
TG
1306 .clock_getres = posix_get_hrtimer_res,
1307 .clock_get = posix_get_tai,
1308 .nsleep = common_nsleep,
eae1c4ae
TG
1309 .timer_create = common_timer_create,
1310 .timer_set = common_timer_set,
1311 .timer_get = common_timer_get,
1312 .timer_del = common_timer_del,
1313 .timer_rearm = common_hrtimer_rearm,
1314 .timer_forward = common_hrtimer_forward,
1315 .timer_remaining = common_hrtimer_remaining,
1316 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
ec8f954a 1317 .timer_wait_running = common_timer_wait_running,
eae1c4ae 1318 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1319};
1320
a3ed0e43 1321static const struct k_clock clock_boottime = {
eae1c4ae 1322 .clock_getres = posix_get_hrtimer_res,
a3ed0e43
TG
1323 .clock_get = posix_get_boottime,
1324 .nsleep = common_nsleep,
1325 .timer_create = common_timer_create,
1326 .timer_set = common_timer_set,
1327 .timer_get = common_timer_get,
1328 .timer_del = common_timer_del,
1329 .timer_rearm = common_hrtimer_rearm,
1330 .timer_forward = common_hrtimer_forward,
1331 .timer_remaining = common_hrtimer_remaining,
1332 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
ec8f954a 1333 .timer_wait_running = common_timer_wait_running,
a3ed0e43 1334 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1335};
1336
1337static const struct k_clock * const posix_clocks[] = {
1338 [CLOCK_REALTIME] = &clock_realtime,
1339 [CLOCK_MONOTONIC] = &clock_monotonic,
1340 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1341 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1342 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1343 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1344 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
a3ed0e43 1345 [CLOCK_BOOTTIME] = &clock_boottime,
6631fa12
TG
1346 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1347 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1348 [CLOCK_TAI] = &clock_tai,
1349};
1350
1351static const struct k_clock *clockid_to_kclock(const clockid_t id)
1352{
19b558db
TG
1353 clockid_t idx = id;
1354
1355 if (id < 0) {
6631fa12
TG
1356 return (id & CLOCKFD_MASK) == CLOCKFD ?
1357 &clock_posix_dynamic : &clock_posix_cpu;
19b558db 1358 }
6631fa12 1359
19b558db 1360 if (id >= ARRAY_SIZE(posix_clocks))
6631fa12 1361 return NULL;
19b558db
TG
1362
1363 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
6631fa12 1364}