]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/sched_clock.c
powerpc/rfi-flush: Always enable fallback flush on pseries
[mirror_ubuntu-artful-kernel.git] / kernel / time / sched_clock.c
CommitLineData
112f38a4 1/*
32fea568
IM
2 * sched_clock.c: Generic sched_clock() support, to extend low level
3 * hardware time counters to full 64-bit ns values.
112f38a4
RK
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9#include <linux/clocksource.h>
10#include <linux/init.h>
11#include <linux/jiffies.h>
a08ca5d1 12#include <linux/ktime.h>
112f38a4 13#include <linux/kernel.h>
a42c3629 14#include <linux/moduleparam.h>
112f38a4 15#include <linux/sched.h>
e6017571 16#include <linux/sched/clock.h>
f153d017 17#include <linux/syscore_ops.h>
a08ca5d1 18#include <linux/hrtimer.h>
38ff87f7 19#include <linux/sched_clock.h>
85c3d2dd 20#include <linux/seqlock.h>
e7e3ff1b 21#include <linux/bitops.h>
112f38a4 22
cf7c9c17 23/**
32fea568 24 * struct clock_read_data - data required to read from sched_clock()
cf7c9c17 25 *
32fea568
IM
26 * @epoch_ns: sched_clock() value at last update
27 * @epoch_cyc: Clock cycle value at last update.
cf7c9c17 28 * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit
32fea568
IM
29 * clocks.
30 * @read_sched_clock: Current clock source (or dummy source when suspended).
31 * @mult: Multipler for scaled math conversion.
32 * @shift: Shift value for scaled math conversion.
cf7c9c17
DT
33 *
34 * Care must be taken when updating this structure; it is read by
13dbeb38 35 * some very hot code paths. It occupies <=40 bytes and, when combined
cf7c9c17
DT
36 * with the seqcount used to synchronize access, comfortably fits into
37 * a 64 byte cache line.
38 */
39struct clock_read_data {
2f0778af 40 u64 epoch_ns;
e7e3ff1b 41 u64 epoch_cyc;
cf7c9c17
DT
42 u64 sched_clock_mask;
43 u64 (*read_sched_clock)(void);
2f0778af
MZ
44 u32 mult;
45 u32 shift;
46};
47
cf7c9c17 48/**
32fea568 49 * struct clock_data - all data needed for sched_clock() (including
cf7c9c17
DT
50 * registration of a new clock source)
51 *
1809bfa4
DT
52 * @seq: Sequence counter for protecting updates. The lowest
53 * bit is the index for @read_data.
cf7c9c17 54 * @read_data: Data required to read from sched_clock.
32fea568
IM
55 * @wrap_kt: Duration for which clock can run before wrapping.
56 * @rate: Tick rate of the registered clock.
57 * @actual_read_sched_clock: Registered hardware level clock read function.
cf7c9c17
DT
58 *
59 * The ordering of this structure has been chosen to optimize cache
32fea568
IM
60 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
61 * into a single 64-byte cache line.
cf7c9c17
DT
62 */
63struct clock_data {
32fea568
IM
64 seqcount_t seq;
65 struct clock_read_data read_data[2];
66 ktime_t wrap_kt;
67 unsigned long rate;
68
13dbeb38 69 u64 (*actual_read_sched_clock)(void);
cf7c9c17
DT
70};
71
a08ca5d1 72static struct hrtimer sched_clock_timer;
a42c3629
RK
73static int irqtime = -1;
74
75core_param(irqtime, irqtime, int, 0400);
2f0778af 76
e7e3ff1b 77static u64 notrace jiffy_sched_clock_read(void)
2f0778af 78{
e7e3ff1b
SB
79 /*
80 * We don't need to use get_jiffies_64 on 32-bit arches here
81 * because we register with BITS_PER_LONG
82 */
83 return (u64)(jiffies - INITIAL_JIFFIES);
84}
85
cf7c9c17 86static struct clock_data cd ____cacheline_aligned = {
1809bfa4
DT
87 .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
88 .read_sched_clock = jiffy_sched_clock_read, },
13dbeb38 89 .actual_read_sched_clock = jiffy_sched_clock_read,
cf7c9c17 90};
2f0778af 91
cea15092 92static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
2f0778af
MZ
93{
94 return (cyc * mult) >> shift;
95}
96
b4042cea 97unsigned long long notrace sched_clock(void)
2f0778af 98{
8710e914 99 u64 cyc, res;
85c3d2dd 100 unsigned long seq;
1809bfa4 101 struct clock_read_data *rd;
336ae118 102
2f0778af 103 do {
1809bfa4
DT
104 seq = raw_read_seqcount(&cd.seq);
105 rd = cd.read_data + (seq & 1);
8710e914 106
13dbeb38
DT
107 cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
108 rd->sched_clock_mask;
109 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
85c3d2dd 110 } while (read_seqcount_retry(&cd.seq, seq));
2f0778af 111
8710e914 112 return res;
2f0778af
MZ
113}
114
1809bfa4
DT
115/*
116 * Updating the data required to read the clock.
117 *
32fea568 118 * sched_clock() will never observe mis-matched data even if called from
1809bfa4 119 * an NMI. We do this by maintaining an odd/even copy of the data and
32fea568
IM
120 * steering sched_clock() to one or the other using a sequence counter.
121 * In order to preserve the data cache profile of sched_clock() as much
1809bfa4
DT
122 * as possible the system reverts back to the even copy when the update
123 * completes; the odd copy is used *only* during an update.
124 */
125static void update_clock_read_data(struct clock_read_data *rd)
126{
127 /* update the backup (odd) copy with the new data */
128 cd.read_data[1] = *rd;
129
130 /* steer readers towards the odd copy */
131 raw_write_seqcount_latch(&cd.seq);
132
133 /* now its safe for us to update the normal (even) copy */
134 cd.read_data[0] = *rd;
135
136 /* switch readers back to the even copy */
137 raw_write_seqcount_latch(&cd.seq);
138}
139
2f0778af 140/*
32fea568 141 * Atomically update the sched_clock() epoch.
2f0778af 142 */
9fee69a8 143static void update_sched_clock(void)
2f0778af 144{
e7e3ff1b 145 u64 cyc;
2f0778af 146 u64 ns;
1809bfa4
DT
147 struct clock_read_data rd;
148
149 rd = cd.read_data[0];
2f0778af 150
13dbeb38 151 cyc = cd.actual_read_sched_clock();
32fea568 152 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
1809bfa4
DT
153
154 rd.epoch_ns = ns;
155 rd.epoch_cyc = cyc;
156
157 update_clock_read_data(&rd);
2f0778af 158}
112f38a4 159
a08ca5d1 160static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
112f38a4 161{
2f0778af 162 update_sched_clock();
a08ca5d1 163 hrtimer_forward_now(hrt, cd.wrap_kt);
32fea568 164
a08ca5d1 165 return HRTIMER_RESTART;
112f38a4
RK
166}
167
32fea568
IM
168void __init
169sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
112f38a4 170{
5ae8aabe
SB
171 u64 res, wrap, new_mask, new_epoch, cyc, ns;
172 u32 new_mult, new_shift;
a08ca5d1 173 unsigned long r;
112f38a4 174 char r_unit;
1809bfa4 175 struct clock_read_data rd;
112f38a4 176
c115739d
RH
177 if (cd.rate > rate)
178 return;
179
2f0778af 180 WARN_ON(!irqs_disabled());
112f38a4 181
32fea568 182 /* Calculate the mult/shift to convert counter ticks to ns. */
5ae8aabe
SB
183 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
184
185 new_mask = CLOCKSOURCE_MASK(bits);
8710e914 186 cd.rate = rate;
5ae8aabe 187
32fea568 188 /* Calculate how many nanosecs until we risk wrapping */
fb82fe2f 189 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
8710e914 190 cd.wrap_kt = ns_to_ktime(wrap);
5ae8aabe 191
1809bfa4
DT
192 rd = cd.read_data[0];
193
32fea568 194 /* Update epoch for new counter and update 'epoch_ns' from old counter*/
5ae8aabe 195 new_epoch = read();
13dbeb38 196 cyc = cd.actual_read_sched_clock();
32fea568 197 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
13dbeb38 198 cd.actual_read_sched_clock = read;
5ae8aabe 199
32fea568
IM
200 rd.read_sched_clock = read;
201 rd.sched_clock_mask = new_mask;
202 rd.mult = new_mult;
203 rd.shift = new_shift;
204 rd.epoch_cyc = new_epoch;
205 rd.epoch_ns = ns;
206
1809bfa4 207 update_clock_read_data(&rd);
112f38a4 208
1b8955bc
DE
209 if (sched_clock_timer.function != NULL) {
210 /* update timeout for clock wrap */
211 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
212 }
213
112f38a4
RK
214 r = rate;
215 if (r >= 4000000) {
216 r /= 1000000;
217 r_unit = 'M';
32fea568
IM
218 } else {
219 if (r >= 1000) {
220 r /= 1000;
221 r_unit = 'k';
222 } else {
223 r_unit = ' ';
224 }
225 }
226
227 /* Calculate the ns resolution of this counter */
5ae8aabe
SB
228 res = cyc_to_ns(1ULL, new_mult, new_shift);
229
a08ca5d1
SB
230 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
231 bits, r, r_unit, res, wrap);
112f38a4 232
32fea568 233 /* Enable IRQ time accounting if we have a fast enough sched_clock() */
a42c3629
RK
234 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
235 enable_sched_clock_irqtime();
236
2f0778af
MZ
237 pr_debug("Registered %pF as sched_clock source\n", read);
238}
239
211baa70
RK
240void __init sched_clock_postinit(void)
241{
2f0778af 242 /*
32fea568 243 * If no sched_clock() function has been provided at that point,
2f0778af
MZ
244 * make it the final one one.
245 */
13dbeb38 246 if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
e7e3ff1b 247 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
2f0778af 248
a08ca5d1
SB
249 update_sched_clock();
250
251 /*
252 * Start the timer to keep sched_clock() properly updated and
253 * sets the initial epoch.
254 */
255 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
256 sched_clock_timer.function = sched_clock_poll;
257 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
211baa70 258}
f153d017 259
13dbeb38
DT
260/*
261 * Clock read function for use when the clock is suspended.
262 *
263 * This function makes it appear to sched_clock() as if the clock
264 * stopped counting at its last update.
1809bfa4
DT
265 *
266 * This function must only be called from the critical
267 * section in sched_clock(). It relies on the read_seqcount_retry()
268 * at the end of the critical section to be sure we observe the
32fea568 269 * correct copy of 'epoch_cyc'.
13dbeb38
DT
270 */
271static u64 notrace suspended_sched_clock_read(void)
272{
1809bfa4
DT
273 unsigned long seq = raw_read_seqcount(&cd.seq);
274
275 return cd.read_data[seq & 1].epoch_cyc;
13dbeb38
DT
276}
277
f153d017
RK
278static int sched_clock_suspend(void)
279{
1809bfa4 280 struct clock_read_data *rd = &cd.read_data[0];
cf7c9c17 281
f723aa18
SB
282 update_sched_clock();
283 hrtimer_cancel(&sched_clock_timer);
13dbeb38 284 rd->read_sched_clock = suspended_sched_clock_read;
32fea568 285
f153d017
RK
286 return 0;
287}
288
237ec6f2
CC
289static void sched_clock_resume(void)
290{
1809bfa4 291 struct clock_read_data *rd = &cd.read_data[0];
cf7c9c17 292
13dbeb38 293 rd->epoch_cyc = cd.actual_read_sched_clock();
f723aa18 294 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
13dbeb38 295 rd->read_sched_clock = cd.actual_read_sched_clock;
237ec6f2
CC
296}
297
f153d017 298static struct syscore_ops sched_clock_ops = {
32fea568
IM
299 .suspend = sched_clock_suspend,
300 .resume = sched_clock_resume,
f153d017
RK
301};
302
303static int __init sched_clock_syscore_init(void)
304{
305 register_syscore_ops(&sched_clock_ops);
32fea568 306
f153d017
RK
307 return 0;
308}
309device_initcall(sched_clock_syscore_init);