]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/time/tick-broadcast.c
Merge tag 'kvmarm-fixes-5.10-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / kernel / time / tick-broadcast.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
f8381cba 2/*
f8381cba
TG
3 * This file contains functions which emulate a local clock-event
4 * device via a broadcast event source.
5 *
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
f8381cba
TG
9 */
10#include <linux/cpu.h>
11#include <linux/err.h>
12#include <linux/hrtimer.h>
d7b90689 13#include <linux/interrupt.h>
f8381cba
TG
14#include <linux/percpu.h>
15#include <linux/profile.h>
16#include <linux/sched.h>
12ad1000 17#include <linux/smp.h>
ccf33d68 18#include <linux/module.h>
f8381cba
TG
19
20#include "tick-internal.h"
21
22/*
23 * Broadcast support for broken x86 hardware, where the local apic
24 * timer stops in C3 state.
25 */
26
a52f5c56 27static struct tick_device tick_broadcast_device;
668802c2
WL
28static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
29static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
30static cpumask_var_t tmpmask __cpumask_var_read_mostly;
592a438f 31static int tick_broadcast_forced;
f8381cba 32
668802c2
WL
33static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34
5590a536 35#ifdef CONFIG_TICK_ONESHOT
94114c36 36static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
5590a536 37static void tick_broadcast_clear_oneshot(int cpu);
080873ce 38static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
aba09543 39# ifdef CONFIG_HOTPLUG_CPU
1b72d432 40static void tick_broadcast_oneshot_offline(unsigned int cpu);
aba09543 41# endif
5590a536 42#else
94114c36 43static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
5590a536 44static inline void tick_broadcast_clear_oneshot(int cpu) { }
080873ce 45static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
aba09543 46# ifdef CONFIG_HOTPLUG_CPU
1b72d432 47static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
aba09543 48# endif
5590a536
TG
49#endif
50
289f480a
IM
51/*
52 * Debugging: see timer_list.c
53 */
54struct tick_device *tick_get_broadcast_device(void)
55{
56 return &tick_broadcast_device;
57}
58
6b954823 59struct cpumask *tick_get_broadcast_mask(void)
289f480a 60{
b352bc1c 61 return tick_broadcast_mask;
289f480a
IM
62}
63
f8381cba
TG
64/*
65 * Start the device in periodic mode
66 */
67static void tick_broadcast_start_periodic(struct clock_event_device *bc)
68{
18de5bc4 69 if (bc)
f8381cba
TG
70 tick_setup_periodic(bc, 1);
71}
72
73/*
74 * Check, if the device can be utilized as broadcast device:
75 */
45cb8e01
TG
76static bool tick_check_broadcast_device(struct clock_event_device *curdev,
77 struct clock_event_device *newdev)
78{
79 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
245a3496 80 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
45cb8e01
TG
81 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
82 return false;
83
84 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
85 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
86 return false;
87
88 return !curdev || newdev->rating > curdev->rating;
89}
90
91/*
92 * Conditionally install/replace broadcast device
93 */
7172a286 94void tick_install_broadcast_device(struct clock_event_device *dev)
f8381cba 95{
6f7a05d7
TG
96 struct clock_event_device *cur = tick_broadcast_device.evtdev;
97
45cb8e01 98 if (!tick_check_broadcast_device(cur, dev))
7172a286 99 return;
45cb8e01 100
ccf33d68
TG
101 if (!try_module_get(dev->owner))
102 return;
f8381cba 103
45cb8e01 104 clockevents_exchange_device(cur, dev);
6f7a05d7
TG
105 if (cur)
106 cur->event_handler = clockevents_handle_noop;
f8381cba 107 tick_broadcast_device.evtdev = dev;
b352bc1c 108 if (!cpumask_empty(tick_broadcast_mask))
f8381cba 109 tick_broadcast_start_periodic(dev);
c038c1c4
SB
110 /*
111 * Inform all cpus about this. We might be in a situation
112 * where we did not switch to oneshot mode because the per cpu
113 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
114 * of a oneshot capable broadcast device. Without that
115 * notification the systems stays stuck in periodic mode
116 * forever.
117 */
118 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
119 tick_clock_notify();
f8381cba
TG
120}
121
122/*
123 * Check, if the device is the broadcast device
124 */
125int tick_is_broadcast_device(struct clock_event_device *dev)
126{
127 return (dev && tick_broadcast_device.evtdev == dev);
128}
129
627ee794
TG
130int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
131{
132 int ret = -ENODEV;
133
134 if (tick_is_broadcast_device(dev)) {
135 raw_spin_lock(&tick_broadcast_lock);
136 ret = __clockevents_update_freq(dev, freq);
137 raw_spin_unlock(&tick_broadcast_lock);
138 }
139 return ret;
140}
141
142
12ad1000
MR
143static void err_broadcast(const struct cpumask *mask)
144{
145 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
146}
147
5d1d9a29
MR
148static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
149{
150 if (!dev->broadcast)
151 dev->broadcast = tick_broadcast;
152 if (!dev->broadcast) {
153 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
154 dev->name);
155 dev->broadcast = err_broadcast;
156 }
157}
158
f8381cba
TG
159/*
160 * Check, if the device is disfunctional and a place holder, which
161 * needs to be handled by the broadcast device.
162 */
163int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
164{
07bd1172 165 struct clock_event_device *bc = tick_broadcast_device.evtdev;
f8381cba 166 unsigned long flags;
e0454311 167 int ret = 0;
f8381cba 168
b5f91da0 169 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
f8381cba
TG
170
171 /*
172 * Devices might be registered with both periodic and oneshot
173 * mode disabled. This signals, that the device needs to be
174 * operated from the broadcast device and is a placeholder for
175 * the cpu local device.
176 */
177 if (!tick_device_is_functional(dev)) {
178 dev->event_handler = tick_handle_periodic;
5d1d9a29 179 tick_device_setup_broadcast_func(dev);
b352bc1c 180 cpumask_set_cpu(cpu, tick_broadcast_mask);
a272dcca
SB
181 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
182 tick_broadcast_start_periodic(bc);
183 else
184 tick_broadcast_setup_oneshot(bc);
f8381cba 185 ret = 1;
5590a536
TG
186 } else {
187 /*
07bd1172
TG
188 * Clear the broadcast bit for this cpu if the
189 * device is not power state affected.
5590a536 190 */
07bd1172 191 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
b352bc1c 192 cpumask_clear_cpu(cpu, tick_broadcast_mask);
07bd1172 193 else
5d1d9a29 194 tick_device_setup_broadcast_func(dev);
07bd1172
TG
195
196 /*
197 * Clear the broadcast bit if the CPU is not in
198 * periodic broadcast on state.
199 */
200 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
201 cpumask_clear_cpu(cpu, tick_broadcast_mask);
202
203 switch (tick_broadcast_device.mode) {
204 case TICKDEV_MODE_ONESHOT:
205 /*
206 * If the system is in oneshot mode we can
207 * unconditionally clear the oneshot mask bit,
208 * because the CPU is running and therefore
209 * not in an idle state which causes the power
210 * state affected device to stop. Let the
211 * caller initialize the device.
212 */
213 tick_broadcast_clear_oneshot(cpu);
214 ret = 0;
215 break;
216
217 case TICKDEV_MODE_PERIODIC:
218 /*
219 * If the system is in periodic mode, check
220 * whether the broadcast device can be
221 * switched off now.
222 */
223 if (cpumask_empty(tick_broadcast_mask) && bc)
224 clockevents_shutdown(bc);
225 /*
226 * If we kept the cpu in the broadcast mask,
227 * tell the caller to leave the per cpu device
228 * in shutdown state. The periodic interrupt
e0454311
TG
229 * is delivered by the broadcast device, if
230 * the broadcast device exists and is not
231 * hrtimer based.
07bd1172 232 */
e0454311
TG
233 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
234 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
07bd1172
TG
235 break;
236 default:
07bd1172 237 break;
5590a536
TG
238 }
239 }
b5f91da0 240 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
f8381cba
TG
241 return ret;
242}
243
12572dbb
MR
244#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
245int tick_receive_broadcast(void)
246{
247 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
248 struct clock_event_device *evt = td->evtdev;
249
250 if (!evt)
251 return -ENODEV;
252
253 if (!evt->event_handler)
254 return -EINVAL;
255
256 evt->event_handler(evt);
257 return 0;
258}
259#endif
260
f8381cba 261/*
6b954823 262 * Broadcast the event to the cpus, which are set in the mask (mangled).
f8381cba 263 */
2951d5c0 264static bool tick_do_broadcast(struct cpumask *mask)
f8381cba 265{
186e3cb8 266 int cpu = smp_processor_id();
f8381cba 267 struct tick_device *td;
2951d5c0 268 bool local = false;
f8381cba
TG
269
270 /*
271 * Check, if the current cpu is in the mask
272 */
6b954823 273 if (cpumask_test_cpu(cpu, mask)) {
8eb23126
TG
274 struct clock_event_device *bc = tick_broadcast_device.evtdev;
275
6b954823 276 cpumask_clear_cpu(cpu, mask);
8eb23126
TG
277 /*
278 * We only run the local handler, if the broadcast
279 * device is not hrtimer based. Otherwise we run into
280 * a hrtimer recursion.
281 *
282 * local timer_interrupt()
283 * local_handler()
284 * expire_hrtimers()
285 * bc_handler()
286 * local_handler()
287 * expire_hrtimers()
288 */
289 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
f8381cba
TG
290 }
291
6b954823 292 if (!cpumask_empty(mask)) {
f8381cba
TG
293 /*
294 * It might be necessary to actually check whether the devices
295 * have different broadcast functions. For now, just use the
296 * one of the first device. This works as long as we have this
297 * misfeature only on x86 (lapic)
298 */
6b954823
RR
299 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
300 td->evtdev->broadcast(mask);
f8381cba 301 }
2951d5c0 302 return local;
f8381cba
TG
303}
304
305/*
306 * Periodic broadcast:
307 * - invoke the broadcast handlers
308 */
2951d5c0 309static bool tick_do_periodic_broadcast(void)
f8381cba 310{
b352bc1c 311 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
2951d5c0 312 return tick_do_broadcast(tmpmask);
f8381cba
TG
313}
314
315/*
316 * Event handler for periodic broadcast ticks
317 */
318static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
319{
2951d5c0
TG
320 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
321 bool bc_local;
d4496b39 322
627ee794 323 raw_spin_lock(&tick_broadcast_lock);
c4288334
TG
324
325 /* Handle spurious interrupts gracefully */
326 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
327 raw_spin_unlock(&tick_broadcast_lock);
328 return;
329 }
330
2951d5c0 331 bc_local = tick_do_periodic_broadcast();
627ee794 332
472c4a94 333 if (clockevent_state_oneshot(dev)) {
2951d5c0 334 ktime_t next = ktime_add(dev->next_event, tick_period);
f8381cba 335
2951d5c0
TG
336 clockevents_program_event(dev, next, true);
337 }
338 raw_spin_unlock(&tick_broadcast_lock);
f8381cba
TG
339
340 /*
2951d5c0
TG
341 * We run the handler of the local cpu after dropping
342 * tick_broadcast_lock because the handler might deadlock when
343 * trying to switch to oneshot mode.
f8381cba 344 */
2951d5c0
TG
345 if (bc_local)
346 td->evtdev->event_handler(td->evtdev);
f8381cba
TG
347}
348
592a438f
TG
349/**
350 * tick_broadcast_control - Enable/disable or force broadcast mode
351 * @mode: The selected broadcast mode
352 *
353 * Called when the system enters a state where affected tick devices
354 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
f8381cba 355 */
592a438f 356void tick_broadcast_control(enum tick_broadcast_mode mode)
f8381cba
TG
357{
358 struct clock_event_device *bc, *dev;
359 struct tick_device *td;
9c17bcda 360 int cpu, bc_stopped;
202461e2 361 unsigned long flags;
f8381cba 362
202461e2
MG
363 /* Protects also the local clockevent device. */
364 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
592a438f 365 td = this_cpu_ptr(&tick_cpu_device);
f8381cba 366 dev = td->evtdev;
f8381cba
TG
367
368 /*
1595f452 369 * Is the device not affected by the powerstate ?
f8381cba 370 */
1595f452 371 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
202461e2 372 goto out;
f8381cba 373
3dfbc884 374 if (!tick_device_is_functional(dev))
202461e2 375 goto out;
1595f452 376
592a438f
TG
377 cpu = smp_processor_id();
378 bc = tick_broadcast_device.evtdev;
b352bc1c 379 bc_stopped = cpumask_empty(tick_broadcast_mask);
9c17bcda 380
592a438f
TG
381 switch (mode) {
382 case TICK_BROADCAST_FORCE:
383 tick_broadcast_forced = 1;
df561f66 384 fallthrough;
592a438f 385 case TICK_BROADCAST_ON:
07bd1172 386 cpumask_set_cpu(cpu, tick_broadcast_on);
b352bc1c 387 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
e0454311
TG
388 /*
389 * Only shutdown the cpu local device, if:
390 *
391 * - the broadcast device exists
392 * - the broadcast device is not a hrtimer based one
393 * - the broadcast device is in periodic mode to
394 * avoid a hickup during switch to oneshot mode
395 */
396 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
397 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
2344abbc 398 clockevents_shutdown(dev);
f8381cba 399 }
1595f452 400 break;
592a438f
TG
401
402 case TICK_BROADCAST_OFF:
403 if (tick_broadcast_forced)
07bd1172
TG
404 break;
405 cpumask_clear_cpu(cpu, tick_broadcast_on);
07bd1172 406 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
07454bff
TG
407 if (tick_broadcast_device.mode ==
408 TICKDEV_MODE_PERIODIC)
f8381cba
TG
409 tick_setup_periodic(dev, 0);
410 }
1595f452 411 break;
f8381cba
TG
412 }
413
c4d029f2
TG
414 if (bc) {
415 if (cpumask_empty(tick_broadcast_mask)) {
416 if (!bc_stopped)
417 clockevents_shutdown(bc);
418 } else if (bc_stopped) {
419 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
420 tick_broadcast_start_periodic(bc);
421 else
422 tick_broadcast_setup_oneshot(bc);
423 }
f8381cba 424 }
202461e2
MG
425out:
426 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
f8381cba 427}
592a438f 428EXPORT_SYMBOL_GPL(tick_broadcast_control);
f8381cba
TG
429
430/*
431 * Set the periodic handler depending on broadcast on/off
432 */
433void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
434{
435 if (!broadcast)
436 dev->event_handler = tick_handle_periodic;
437 else
438 dev->event_handler = tick_handle_periodic_broadcast;
439}
440
a49b116d 441#ifdef CONFIG_HOTPLUG_CPU
1b72d432 442static void tick_shutdown_broadcast(void)
f8381cba 443{
1b72d432 444 struct clock_event_device *bc = tick_broadcast_device.evtdev;
f8381cba
TG
445
446 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
b352bc1c 447 if (bc && cpumask_empty(tick_broadcast_mask))
2344abbc 448 clockevents_shutdown(bc);
f8381cba 449 }
1b72d432 450}
f8381cba 451
1b72d432
TG
452/*
453 * Remove a CPU from broadcasting
454 */
455void tick_broadcast_offline(unsigned int cpu)
456{
457 raw_spin_lock(&tick_broadcast_lock);
458 cpumask_clear_cpu(cpu, tick_broadcast_mask);
459 cpumask_clear_cpu(cpu, tick_broadcast_on);
460 tick_broadcast_oneshot_offline(cpu);
461 tick_shutdown_broadcast();
462 raw_spin_unlock(&tick_broadcast_lock);
f8381cba 463}
1b72d432 464
a49b116d 465#endif
79bf2bb3 466
6321dd60
TG
467void tick_suspend_broadcast(void)
468{
469 struct clock_event_device *bc;
470 unsigned long flags;
471
b5f91da0 472 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
6321dd60
TG
473
474 bc = tick_broadcast_device.evtdev;
18de5bc4 475 if (bc)
2344abbc 476 clockevents_shutdown(bc);
6321dd60 477
b5f91da0 478 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
6321dd60
TG
479}
480
f46481d0
TG
481/*
482 * This is called from tick_resume_local() on a resuming CPU. That's
483 * called from the core resume function, tick_unfreeze() and the magic XEN
484 * resume hackery.
485 *
486 * In none of these cases the broadcast device mode can change and the
487 * bit of the resuming CPU in the broadcast mask is safe as well.
488 */
489bool tick_resume_check_broadcast(void)
490{
491 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
492 return false;
493 else
494 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
495}
496
497void tick_resume_broadcast(void)
6321dd60
TG
498{
499 struct clock_event_device *bc;
500 unsigned long flags;
6321dd60 501
b5f91da0 502 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
6321dd60
TG
503
504 bc = tick_broadcast_device.evtdev;
6321dd60 505
cd05a1f8 506 if (bc) {
554ef387 507 clockevents_tick_resume(bc);
18de5bc4 508
cd05a1f8
TG
509 switch (tick_broadcast_device.mode) {
510 case TICKDEV_MODE_PERIODIC:
b352bc1c 511 if (!cpumask_empty(tick_broadcast_mask))
cd05a1f8 512 tick_broadcast_start_periodic(bc);
cd05a1f8
TG
513 break;
514 case TICKDEV_MODE_ONESHOT:
b352bc1c 515 if (!cpumask_empty(tick_broadcast_mask))
080873ce 516 tick_resume_broadcast_oneshot(bc);
cd05a1f8
TG
517 break;
518 }
6321dd60 519 }
b5f91da0 520 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
6321dd60
TG
521}
522
79bf2bb3
TG
523#ifdef CONFIG_TICK_ONESHOT
524
668802c2
WL
525static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
526static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
527static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
79bf2bb3 528
289f480a 529/*
6b954823 530 * Exposed for debugging: see timer_list.c
289f480a 531 */
6b954823 532struct cpumask *tick_get_broadcast_oneshot_mask(void)
289f480a 533{
b352bc1c 534 return tick_broadcast_oneshot_mask;
289f480a
IM
535}
536
eaa907c5
TG
537/*
538 * Called before going idle with interrupts disabled. Checks whether a
539 * broadcast event from the other core is about to happen. We detected
540 * that in tick_broadcast_oneshot_control(). The callsite can use this
541 * to avoid a deep idle transition as we are about to get the
542 * broadcast IPI right away.
543 */
544int tick_check_broadcast_expired(void)
545{
546 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
547}
548
d2348fb6
DL
549/*
550 * Set broadcast interrupt affinity
551 */
552static void tick_broadcast_set_affinity(struct clock_event_device *bc,
553 const struct cpumask *cpumask)
554{
555 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
556 return;
557
558 if (cpumask_equal(bc->cpumask, cpumask))
559 return;
560
561 bc->cpumask = cpumask;
562 irq_set_affinity(bc->irq, bc->cpumask);
563}
564
298dbd1c
TG
565static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
566 ktime_t expires)
79bf2bb3 567{
472c4a94 568 if (!clockevent_state_oneshot(bc))
d7eb231c 569 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
b9a6a235 570
298dbd1c
TG
571 clockevents_program_event(bc, expires, 1);
572 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
79bf2bb3
TG
573}
574
080873ce 575static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
cd05a1f8 576{
d7eb231c 577 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
cd05a1f8
TG
578}
579
fb02fbc1
TG
580/*
581 * Called from irq_enter() when idle was interrupted to reenable the
582 * per cpu device.
583 */
e8fcaa5c 584void tick_check_oneshot_broadcast_this_cpu(void)
fb02fbc1 585{
e8fcaa5c 586 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
22127e93 587 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
fb02fbc1 588
1f73a980
TG
589 /*
590 * We might be in the middle of switching over from
591 * periodic to oneshot. If the CPU has not yet
592 * switched over, leave the device alone.
593 */
594 if (td->mode == TICKDEV_MODE_ONESHOT) {
d7eb231c 595 clockevents_switch_state(td->evtdev,
77e32c89 596 CLOCK_EVT_STATE_ONESHOT);
1f73a980 597 }
fb02fbc1
TG
598 }
599}
600
79bf2bb3
TG
601/*
602 * Handle oneshot mode broadcasting
603 */
604static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
605{
606 struct tick_device *td;
cdc6f27d 607 ktime_t now, next_event;
d2348fb6 608 int cpu, next_cpu = 0;
298dbd1c 609 bool bc_local;
79bf2bb3 610
b5f91da0 611 raw_spin_lock(&tick_broadcast_lock);
2456e855
TG
612 dev->next_event = KTIME_MAX;
613 next_event = KTIME_MAX;
b352bc1c 614 cpumask_clear(tmpmask);
79bf2bb3
TG
615 now = ktime_get();
616 /* Find all expired events */
b352bc1c 617 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
5596fe34
DC
618 /*
619 * Required for !SMP because for_each_cpu() reports
620 * unconditionally CPU0 as set on UP kernels.
621 */
622 if (!IS_ENABLED(CONFIG_SMP) &&
623 cpumask_empty(tick_broadcast_oneshot_mask))
624 break;
625
79bf2bb3 626 td = &per_cpu(tick_cpu_device, cpu);
2456e855 627 if (td->evtdev->next_event <= now) {
b352bc1c 628 cpumask_set_cpu(cpu, tmpmask);
26517f3e
TG
629 /*
630 * Mark the remote cpu in the pending mask, so
631 * it can avoid reprogramming the cpu local
632 * timer in tick_broadcast_oneshot_control().
633 */
634 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
2456e855
TG
635 } else if (td->evtdev->next_event < next_event) {
636 next_event = td->evtdev->next_event;
d2348fb6
DL
637 next_cpu = cpu;
638 }
79bf2bb3
TG
639 }
640
2938d275
TG
641 /*
642 * Remove the current cpu from the pending mask. The event is
643 * delivered immediately in tick_do_broadcast() !
644 */
645 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
646
989dcb64
TG
647 /* Take care of enforced broadcast requests */
648 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
649 cpumask_clear(tick_broadcast_force_mask);
650
c9b5a266
TG
651 /*
652 * Sanity check. Catch the case where we try to broadcast to
653 * offline cpus.
654 */
655 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
656 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
657
79bf2bb3 658 /*
298dbd1c 659 * Wakeup the cpus which have an expired event.
cdc6f27d 660 */
298dbd1c 661 bc_local = tick_do_broadcast(tmpmask);
cdc6f27d
TG
662
663 /*
664 * Two reasons for reprogram:
665 *
666 * - The global event did not expire any CPU local
667 * events. This happens in dyntick mode, as the maximum PIT
668 * delta is quite small.
669 *
670 * - There are pending events on sleeping CPUs which were not
671 * in the event mask
79bf2bb3 672 */
2456e855 673 if (next_event != KTIME_MAX)
298dbd1c
TG
674 tick_broadcast_set_event(dev, next_cpu, next_event);
675
b5f91da0 676 raw_spin_unlock(&tick_broadcast_lock);
298dbd1c
TG
677
678 if (bc_local) {
679 td = this_cpu_ptr(&tick_cpu_device);
680 td->evtdev->event_handler(td->evtdev);
681 }
79bf2bb3
TG
682}
683
5d1638ac
PM
684static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
685{
686 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
687 return 0;
2456e855 688 if (bc->next_event == KTIME_MAX)
5d1638ac
PM
689 return 0;
690 return bc->bound_on == cpu ? -EBUSY : 0;
691}
692
693static void broadcast_shutdown_local(struct clock_event_device *bc,
694 struct clock_event_device *dev)
695{
696 /*
697 * For hrtimer based broadcasting we cannot shutdown the cpu
698 * local device if our own event is the first one to expire or
699 * if we own the broadcast timer.
700 */
701 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
702 if (broadcast_needs_cpu(bc, smp_processor_id()))
703 return;
2456e855 704 if (dev->next_event < bc->next_event)
5d1638ac
PM
705 return;
706 }
d7eb231c 707 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
5d1638ac
PM
708}
709
f32dd117 710int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
79bf2bb3
TG
711{
712 struct clock_event_device *bc, *dev;
da7e6f45 713 int cpu, ret = 0;
1fe5d5c3 714 ktime_t now;
79bf2bb3 715
b78f3f3c
TG
716 /*
717 * If there is no broadcast device, tell the caller not to go
718 * into deep idle.
719 */
720 if (!tick_broadcast_device.evtdev)
721 return -EBUSY;
722
e3ac79e0 723 dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
79bf2bb3 724
1fe5d5c3 725 raw_spin_lock(&tick_broadcast_lock);
7372b0b1 726 bc = tick_broadcast_device.evtdev;
1fe5d5c3 727 cpu = smp_processor_id();
79bf2bb3 728
1fe5d5c3 729 if (state == TICK_BROADCAST_ENTER) {
d5113e13
TG
730 /*
731 * If the current CPU owns the hrtimer broadcast
732 * mechanism, it cannot go deep idle and we do not add
733 * the CPU to the broadcast mask. We don't have to go
734 * through the EXIT path as the local timer is not
735 * shutdown.
736 */
737 ret = broadcast_needs_cpu(bc, cpu);
738 if (ret)
739 goto out;
740
e3ac79e0
TG
741 /*
742 * If the broadcast device is in periodic mode, we
743 * return.
744 */
d3325726
TG
745 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
746 /* If it is a hrtimer based broadcast, return busy */
747 if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
748 ret = -EBUSY;
e3ac79e0 749 goto out;
d3325726 750 }
e3ac79e0 751
b352bc1c 752 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
2938d275 753 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
d5113e13
TG
754
755 /* Conditionally shut down the local timer. */
5d1638ac 756 broadcast_shutdown_local(bc, dev);
d5113e13 757
989dcb64
TG
758 /*
759 * We only reprogram the broadcast timer if we
760 * did not mark ourself in the force mask and
761 * if the cpu local event is earlier than the
762 * broadcast event. If the current CPU is in
763 * the force mask, then we are going to be
0cc5281a
TG
764 * woken by the IPI right away; we return
765 * busy, so the CPU does not try to go deep
766 * idle.
989dcb64 767 */
0cc5281a
TG
768 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
769 ret = -EBUSY;
2456e855 770 } else if (dev->next_event < bc->next_event) {
298dbd1c 771 tick_broadcast_set_event(bc, cpu, dev->next_event);
d5113e13
TG
772 /*
773 * In case of hrtimer broadcasts the
774 * programming might have moved the
775 * timer to this cpu. If yes, remove
776 * us from the broadcast mask and
777 * return busy.
778 */
779 ret = broadcast_needs_cpu(bc, cpu);
780 if (ret) {
781 cpumask_clear_cpu(cpu,
782 tick_broadcast_oneshot_mask);
783 }
0cc5281a 784 }
79bf2bb3
TG
785 }
786 } else {
b352bc1c 787 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
d7eb231c 788 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
26517f3e
TG
789 /*
790 * The cpu which was handling the broadcast
791 * timer marked this cpu in the broadcast
792 * pending mask and fired the broadcast
793 * IPI. So we are going to handle the expired
794 * event anyway via the broadcast IPI
795 * handler. No need to reprogram the timer
796 * with an already expired event.
797 */
798 if (cpumask_test_and_clear_cpu(cpu,
799 tick_broadcast_pending_mask))
800 goto out;
801
ea8deb8d
DL
802 /*
803 * Bail out if there is no next event.
804 */
2456e855 805 if (dev->next_event == KTIME_MAX)
ea8deb8d 806 goto out;
989dcb64
TG
807 /*
808 * If the pending bit is not set, then we are
809 * either the CPU handling the broadcast
810 * interrupt or we got woken by something else.
811 *
13e792a1 812 * We are no longer in the broadcast mask, so
989dcb64
TG
813 * if the cpu local expiry time is already
814 * reached, we would reprogram the cpu local
815 * timer with an already expired event.
816 *
817 * This can lead to a ping-pong when we return
13e792a1 818 * to idle and therefore rearm the broadcast
989dcb64
TG
819 * timer before the cpu local timer was able
820 * to fire. This happens because the forced
821 * reprogramming makes sure that the event
822 * will happen in the future and depending on
823 * the min_delta setting this might be far
824 * enough out that the ping-pong starts.
825 *
826 * If the cpu local next_event has expired
827 * then we know that the broadcast timer
828 * next_event has expired as well and
829 * broadcast is about to be handled. So we
830 * avoid reprogramming and enforce that the
831 * broadcast handler, which did not run yet,
832 * will invoke the cpu local handler.
833 *
834 * We cannot call the handler directly from
835 * here, because we might be in a NOHZ phase
836 * and we did not go through the irq_enter()
837 * nohz fixups.
838 */
839 now = ktime_get();
2456e855 840 if (dev->next_event <= now) {
989dcb64
TG
841 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
842 goto out;
843 }
844 /*
845 * We got woken by something else. Reprogram
846 * the cpu local timer device.
847 */
26517f3e 848 tick_program_event(dev->next_event, 1);
79bf2bb3
TG
849 }
850 }
26517f3e 851out:
1fe5d5c3 852 raw_spin_unlock(&tick_broadcast_lock);
da7e6f45 853 return ret;
79bf2bb3
TG
854}
855
5590a536
TG
856/*
857 * Reset the one shot broadcast for a cpu
858 *
859 * Called with tick_broadcast_lock held
860 */
861static void tick_broadcast_clear_oneshot(int cpu)
862{
b352bc1c 863 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
dd5fd9b9 864 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
5590a536
TG
865}
866
6b954823
RR
867static void tick_broadcast_init_next_event(struct cpumask *mask,
868 ktime_t expires)
7300711e
TG
869{
870 struct tick_device *td;
871 int cpu;
872
5db0e1e9 873 for_each_cpu(cpu, mask) {
7300711e
TG
874 td = &per_cpu(tick_cpu_device, cpu);
875 if (td->evtdev)
876 td->evtdev->next_event = expires;
877 }
878}
879
79bf2bb3 880/**
8dce39c2 881 * tick_broadcast_setup_oneshot - setup the broadcast device
79bf2bb3 882 */
94114c36 883static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
79bf2bb3 884{
07f4beb0
TG
885 int cpu = smp_processor_id();
886
c1a9eeb9
TG
887 if (!bc)
888 return;
889
9c17bcda
TG
890 /* Set it up only once ! */
891 if (bc->event_handler != tick_handle_oneshot_broadcast) {
472c4a94 892 int was_periodic = clockevent_state_periodic(bc);
7300711e 893
9c17bcda 894 bc->event_handler = tick_handle_oneshot_broadcast;
7300711e 895
7300711e
TG
896 /*
897 * We must be careful here. There might be other CPUs
898 * waiting for periodic broadcast. We need to set the
899 * oneshot_mask bits for those and program the
900 * broadcast device to fire.
901 */
b352bc1c
TG
902 cpumask_copy(tmpmask, tick_broadcast_mask);
903 cpumask_clear_cpu(cpu, tmpmask);
904 cpumask_or(tick_broadcast_oneshot_mask,
905 tick_broadcast_oneshot_mask, tmpmask);
6b954823 906
b352bc1c 907 if (was_periodic && !cpumask_empty(tmpmask)) {
d7eb231c 908 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
b352bc1c 909 tick_broadcast_init_next_event(tmpmask,
6b954823 910 tick_next_period);
298dbd1c 911 tick_broadcast_set_event(bc, cpu, tick_next_period);
7300711e 912 } else
2456e855 913 bc->next_event = KTIME_MAX;
07f4beb0
TG
914 } else {
915 /*
916 * The first cpu which switches to oneshot mode sets
917 * the bit for all other cpus which are in the general
918 * (periodic) broadcast mask. So the bit is set and
919 * would prevent the first broadcast enter after this
920 * to program the bc device.
921 */
922 tick_broadcast_clear_oneshot(cpu);
9c17bcda 923 }
79bf2bb3
TG
924}
925
926/*
927 * Select oneshot operating mode for the broadcast device
928 */
929void tick_broadcast_switch_to_oneshot(void)
930{
931 struct clock_event_device *bc;
932 unsigned long flags;
933
b5f91da0 934 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
fa4da365
SS
935
936 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
79bf2bb3
TG
937 bc = tick_broadcast_device.evtdev;
938 if (bc)
939 tick_broadcast_setup_oneshot(bc);
77b0d60c 940
b5f91da0 941 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
79bf2bb3
TG
942}
943
a49b116d
TG
944#ifdef CONFIG_HOTPLUG_CPU
945void hotplug_cpu__broadcast_tick_pull(int deadcpu)
946{
947 struct clock_event_device *bc;
948 unsigned long flags;
949
950 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
951 bc = tick_broadcast_device.evtdev;
952
953 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
954 /* This moves the broadcast assignment to this CPU: */
955 clockevents_program_event(bc, bc->next_event, 1);
956 }
957 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
958}
79bf2bb3
TG
959
960/*
1b72d432 961 * Remove a dying CPU from broadcasting
79bf2bb3 962 */
1b72d432 963static void tick_broadcast_oneshot_offline(unsigned int cpu)
79bf2bb3 964{
31d9b393 965 /*
c9b5a266
TG
966 * Clear the broadcast masks for the dead cpu, but do not stop
967 * the broadcast device!
31d9b393 968 */
b352bc1c 969 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
c9b5a266
TG
970 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
971 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
79bf2bb3 972}
a49b116d 973#endif
79bf2bb3 974
27ce4cb4
TG
975/*
976 * Check, whether the broadcast device is in one shot mode
977 */
978int tick_broadcast_oneshot_active(void)
979{
980 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
981}
982
3a142a06
TG
983/*
984 * Check whether the broadcast device supports oneshot.
985 */
986bool tick_broadcast_oneshot_available(void)
987{
988 struct clock_event_device *bc = tick_broadcast_device.evtdev;
989
990 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
991}
992
f32dd117
TG
993#else
994int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
995{
996 struct clock_event_device *bc = tick_broadcast_device.evtdev;
997
998 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
999 return -EBUSY;
1000
1001 return 0;
1002}
79bf2bb3 1003#endif
b352bc1c
TG
1004
1005void __init tick_broadcast_init(void)
1006{
fbd44a60 1007 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
07bd1172 1008 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
fbd44a60 1009 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
b352bc1c 1010#ifdef CONFIG_TICK_ONESHOT
fbd44a60
TG
1011 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1012 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1013 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
b352bc1c
TG
1014#endif
1015}