]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/time/tick-broadcast.c
platform/x86: dell-smbios: Rename dell-smbios source to dell-smbios-base
[mirror_ubuntu-bionic-kernel.git] / kernel / time / tick-broadcast.c
CommitLineData
f8381cba
TG
1/*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
d7b90689 17#include <linux/interrupt.h>
f8381cba
TG
18#include <linux/percpu.h>
19#include <linux/profile.h>
20#include <linux/sched.h>
12ad1000 21#include <linux/smp.h>
ccf33d68 22#include <linux/module.h>
f8381cba
TG
23
24#include "tick-internal.h"
25
26/*
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
29 */
30
a52f5c56 31static struct tick_device tick_broadcast_device;
668802c2
WL
32static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
33static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
34static cpumask_var_t tmpmask __cpumask_var_read_mostly;
592a438f 35static int tick_broadcast_forced;
f8381cba 36
668802c2
WL
37static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
38
5590a536 39#ifdef CONFIG_TICK_ONESHOT
94114c36 40static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
5590a536 41static void tick_broadcast_clear_oneshot(int cpu);
080873ce 42static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
5590a536 43#else
94114c36 44static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
5590a536 45static inline void tick_broadcast_clear_oneshot(int cpu) { }
080873ce 46static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
5590a536
TG
47#endif
48
289f480a
IM
49/*
50 * Debugging: see timer_list.c
51 */
52struct tick_device *tick_get_broadcast_device(void)
53{
54 return &tick_broadcast_device;
55}
56
6b954823 57struct cpumask *tick_get_broadcast_mask(void)
289f480a 58{
b352bc1c 59 return tick_broadcast_mask;
289f480a
IM
60}
61
f8381cba
TG
62/*
63 * Start the device in periodic mode
64 */
65static void tick_broadcast_start_periodic(struct clock_event_device *bc)
66{
18de5bc4 67 if (bc)
f8381cba
TG
68 tick_setup_periodic(bc, 1);
69}
70
71/*
72 * Check, if the device can be utilized as broadcast device:
73 */
45cb8e01
TG
74static bool tick_check_broadcast_device(struct clock_event_device *curdev,
75 struct clock_event_device *newdev)
76{
77 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
245a3496 78 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
45cb8e01
TG
79 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
80 return false;
81
82 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
83 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
84 return false;
85
86 return !curdev || newdev->rating > curdev->rating;
87}
88
89/*
90 * Conditionally install/replace broadcast device
91 */
7172a286 92void tick_install_broadcast_device(struct clock_event_device *dev)
f8381cba 93{
6f7a05d7
TG
94 struct clock_event_device *cur = tick_broadcast_device.evtdev;
95
45cb8e01 96 if (!tick_check_broadcast_device(cur, dev))
7172a286 97 return;
45cb8e01 98
ccf33d68
TG
99 if (!try_module_get(dev->owner))
100 return;
f8381cba 101
45cb8e01 102 clockevents_exchange_device(cur, dev);
6f7a05d7
TG
103 if (cur)
104 cur->event_handler = clockevents_handle_noop;
f8381cba 105 tick_broadcast_device.evtdev = dev;
b352bc1c 106 if (!cpumask_empty(tick_broadcast_mask))
f8381cba 107 tick_broadcast_start_periodic(dev);
c038c1c4
SB
108 /*
109 * Inform all cpus about this. We might be in a situation
110 * where we did not switch to oneshot mode because the per cpu
111 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
112 * of a oneshot capable broadcast device. Without that
113 * notification the systems stays stuck in periodic mode
114 * forever.
115 */
116 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
117 tick_clock_notify();
f8381cba
TG
118}
119
120/*
121 * Check, if the device is the broadcast device
122 */
123int tick_is_broadcast_device(struct clock_event_device *dev)
124{
125 return (dev && tick_broadcast_device.evtdev == dev);
126}
127
627ee794
TG
128int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
129{
130 int ret = -ENODEV;
131
132 if (tick_is_broadcast_device(dev)) {
133 raw_spin_lock(&tick_broadcast_lock);
134 ret = __clockevents_update_freq(dev, freq);
135 raw_spin_unlock(&tick_broadcast_lock);
136 }
137 return ret;
138}
139
140
12ad1000
MR
141static void err_broadcast(const struct cpumask *mask)
142{
143 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
144}
145
5d1d9a29
MR
146static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
147{
148 if (!dev->broadcast)
149 dev->broadcast = tick_broadcast;
150 if (!dev->broadcast) {
151 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
152 dev->name);
153 dev->broadcast = err_broadcast;
154 }
155}
156
f8381cba
TG
157/*
158 * Check, if the device is disfunctional and a place holder, which
159 * needs to be handled by the broadcast device.
160 */
161int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
162{
07bd1172 163 struct clock_event_device *bc = tick_broadcast_device.evtdev;
f8381cba 164 unsigned long flags;
e0454311 165 int ret = 0;
f8381cba 166
b5f91da0 167 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
f8381cba
TG
168
169 /*
170 * Devices might be registered with both periodic and oneshot
171 * mode disabled. This signals, that the device needs to be
172 * operated from the broadcast device and is a placeholder for
173 * the cpu local device.
174 */
175 if (!tick_device_is_functional(dev)) {
176 dev->event_handler = tick_handle_periodic;
5d1d9a29 177 tick_device_setup_broadcast_func(dev);
b352bc1c 178 cpumask_set_cpu(cpu, tick_broadcast_mask);
a272dcca
SB
179 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
180 tick_broadcast_start_periodic(bc);
181 else
182 tick_broadcast_setup_oneshot(bc);
f8381cba 183 ret = 1;
5590a536
TG
184 } else {
185 /*
07bd1172
TG
186 * Clear the broadcast bit for this cpu if the
187 * device is not power state affected.
5590a536 188 */
07bd1172 189 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
b352bc1c 190 cpumask_clear_cpu(cpu, tick_broadcast_mask);
07bd1172 191 else
5d1d9a29 192 tick_device_setup_broadcast_func(dev);
07bd1172
TG
193
194 /*
195 * Clear the broadcast bit if the CPU is not in
196 * periodic broadcast on state.
197 */
198 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
199 cpumask_clear_cpu(cpu, tick_broadcast_mask);
200
201 switch (tick_broadcast_device.mode) {
202 case TICKDEV_MODE_ONESHOT:
203 /*
204 * If the system is in oneshot mode we can
205 * unconditionally clear the oneshot mask bit,
206 * because the CPU is running and therefore
207 * not in an idle state which causes the power
208 * state affected device to stop. Let the
209 * caller initialize the device.
210 */
211 tick_broadcast_clear_oneshot(cpu);
212 ret = 0;
213 break;
214
215 case TICKDEV_MODE_PERIODIC:
216 /*
217 * If the system is in periodic mode, check
218 * whether the broadcast device can be
219 * switched off now.
220 */
221 if (cpumask_empty(tick_broadcast_mask) && bc)
222 clockevents_shutdown(bc);
223 /*
224 * If we kept the cpu in the broadcast mask,
225 * tell the caller to leave the per cpu device
226 * in shutdown state. The periodic interrupt
e0454311
TG
227 * is delivered by the broadcast device, if
228 * the broadcast device exists and is not
229 * hrtimer based.
07bd1172 230 */
e0454311
TG
231 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
232 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
07bd1172
TG
233 break;
234 default:
07bd1172 235 break;
5590a536
TG
236 }
237 }
b5f91da0 238 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
f8381cba
TG
239 return ret;
240}
241
12572dbb
MR
242#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243int tick_receive_broadcast(void)
244{
245 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
246 struct clock_event_device *evt = td->evtdev;
247
248 if (!evt)
249 return -ENODEV;
250
251 if (!evt->event_handler)
252 return -EINVAL;
253
254 evt->event_handler(evt);
255 return 0;
256}
257#endif
258
f8381cba 259/*
6b954823 260 * Broadcast the event to the cpus, which are set in the mask (mangled).
f8381cba 261 */
2951d5c0 262static bool tick_do_broadcast(struct cpumask *mask)
f8381cba 263{
186e3cb8 264 int cpu = smp_processor_id();
f8381cba 265 struct tick_device *td;
2951d5c0 266 bool local = false;
f8381cba
TG
267
268 /*
269 * Check, if the current cpu is in the mask
270 */
6b954823 271 if (cpumask_test_cpu(cpu, mask)) {
8eb23126
TG
272 struct clock_event_device *bc = tick_broadcast_device.evtdev;
273
6b954823 274 cpumask_clear_cpu(cpu, mask);
8eb23126
TG
275 /*
276 * We only run the local handler, if the broadcast
277 * device is not hrtimer based. Otherwise we run into
278 * a hrtimer recursion.
279 *
280 * local timer_interrupt()
281 * local_handler()
282 * expire_hrtimers()
283 * bc_handler()
284 * local_handler()
285 * expire_hrtimers()
286 */
287 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
f8381cba
TG
288 }
289
6b954823 290 if (!cpumask_empty(mask)) {
f8381cba
TG
291 /*
292 * It might be necessary to actually check whether the devices
293 * have different broadcast functions. For now, just use the
294 * one of the first device. This works as long as we have this
295 * misfeature only on x86 (lapic)
296 */
6b954823
RR
297 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
298 td->evtdev->broadcast(mask);
f8381cba 299 }
2951d5c0 300 return local;
f8381cba
TG
301}
302
303/*
304 * Periodic broadcast:
305 * - invoke the broadcast handlers
306 */
2951d5c0 307static bool tick_do_periodic_broadcast(void)
f8381cba 308{
b352bc1c 309 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
2951d5c0 310 return tick_do_broadcast(tmpmask);
f8381cba
TG
311}
312
313/*
314 * Event handler for periodic broadcast ticks
315 */
316static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
317{
2951d5c0
TG
318 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
319 bool bc_local;
d4496b39 320
627ee794 321 raw_spin_lock(&tick_broadcast_lock);
c4288334
TG
322
323 /* Handle spurious interrupts gracefully */
324 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
325 raw_spin_unlock(&tick_broadcast_lock);
326 return;
327 }
328
2951d5c0 329 bc_local = tick_do_periodic_broadcast();
627ee794 330
472c4a94 331 if (clockevent_state_oneshot(dev)) {
2951d5c0 332 ktime_t next = ktime_add(dev->next_event, tick_period);
f8381cba 333
2951d5c0
TG
334 clockevents_program_event(dev, next, true);
335 }
336 raw_spin_unlock(&tick_broadcast_lock);
f8381cba
TG
337
338 /*
2951d5c0
TG
339 * We run the handler of the local cpu after dropping
340 * tick_broadcast_lock because the handler might deadlock when
341 * trying to switch to oneshot mode.
f8381cba 342 */
2951d5c0
TG
343 if (bc_local)
344 td->evtdev->event_handler(td->evtdev);
f8381cba
TG
345}
346
592a438f
TG
347/**
348 * tick_broadcast_control - Enable/disable or force broadcast mode
349 * @mode: The selected broadcast mode
350 *
351 * Called when the system enters a state where affected tick devices
352 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
f8381cba 353 */
592a438f 354void tick_broadcast_control(enum tick_broadcast_mode mode)
f8381cba
TG
355{
356 struct clock_event_device *bc, *dev;
357 struct tick_device *td;
9c17bcda 358 int cpu, bc_stopped;
202461e2 359 unsigned long flags;
f8381cba 360
202461e2
MG
361 /* Protects also the local clockevent device. */
362 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
592a438f 363 td = this_cpu_ptr(&tick_cpu_device);
f8381cba 364 dev = td->evtdev;
f8381cba
TG
365
366 /*
1595f452 367 * Is the device not affected by the powerstate ?
f8381cba 368 */
1595f452 369 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
202461e2 370 goto out;
f8381cba 371
3dfbc884 372 if (!tick_device_is_functional(dev))
202461e2 373 goto out;
1595f452 374
592a438f
TG
375 cpu = smp_processor_id();
376 bc = tick_broadcast_device.evtdev;
b352bc1c 377 bc_stopped = cpumask_empty(tick_broadcast_mask);
9c17bcda 378
592a438f
TG
379 switch (mode) {
380 case TICK_BROADCAST_FORCE:
381 tick_broadcast_forced = 1;
382 case TICK_BROADCAST_ON:
07bd1172 383 cpumask_set_cpu(cpu, tick_broadcast_on);
b352bc1c 384 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
e0454311
TG
385 /*
386 * Only shutdown the cpu local device, if:
387 *
388 * - the broadcast device exists
389 * - the broadcast device is not a hrtimer based one
390 * - the broadcast device is in periodic mode to
391 * avoid a hickup during switch to oneshot mode
392 */
393 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
394 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
2344abbc 395 clockevents_shutdown(dev);
f8381cba 396 }
1595f452 397 break;
592a438f
TG
398
399 case TICK_BROADCAST_OFF:
400 if (tick_broadcast_forced)
07bd1172
TG
401 break;
402 cpumask_clear_cpu(cpu, tick_broadcast_on);
403 if (!tick_device_is_functional(dev))
404 break;
405 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
07454bff
TG
406 if (tick_broadcast_device.mode ==
407 TICKDEV_MODE_PERIODIC)
f8381cba
TG
408 tick_setup_periodic(dev, 0);
409 }
1595f452 410 break;
f8381cba
TG
411 }
412
c4d029f2
TG
413 if (bc) {
414 if (cpumask_empty(tick_broadcast_mask)) {
415 if (!bc_stopped)
416 clockevents_shutdown(bc);
417 } else if (bc_stopped) {
418 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
419 tick_broadcast_start_periodic(bc);
420 else
421 tick_broadcast_setup_oneshot(bc);
422 }
f8381cba 423 }
202461e2
MG
424out:
425 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
f8381cba 426}
592a438f 427EXPORT_SYMBOL_GPL(tick_broadcast_control);
f8381cba
TG
428
429/*
430 * Set the periodic handler depending on broadcast on/off
431 */
432void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
433{
434 if (!broadcast)
435 dev->event_handler = tick_handle_periodic;
436 else
437 dev->event_handler = tick_handle_periodic_broadcast;
438}
439
a49b116d 440#ifdef CONFIG_HOTPLUG_CPU
f8381cba
TG
441/*
442 * Remove a CPU from broadcasting
443 */
a49b116d 444void tick_shutdown_broadcast(unsigned int cpu)
f8381cba
TG
445{
446 struct clock_event_device *bc;
447 unsigned long flags;
f8381cba 448
b5f91da0 449 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
f8381cba
TG
450
451 bc = tick_broadcast_device.evtdev;
b352bc1c 452 cpumask_clear_cpu(cpu, tick_broadcast_mask);
07bd1172 453 cpumask_clear_cpu(cpu, tick_broadcast_on);
f8381cba
TG
454
455 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
b352bc1c 456 if (bc && cpumask_empty(tick_broadcast_mask))
2344abbc 457 clockevents_shutdown(bc);
f8381cba
TG
458 }
459
b5f91da0 460 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
f8381cba 461}
a49b116d 462#endif
79bf2bb3 463
6321dd60
TG
464void tick_suspend_broadcast(void)
465{
466 struct clock_event_device *bc;
467 unsigned long flags;
468
b5f91da0 469 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
6321dd60
TG
470
471 bc = tick_broadcast_device.evtdev;
18de5bc4 472 if (bc)
2344abbc 473 clockevents_shutdown(bc);
6321dd60 474
b5f91da0 475 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
6321dd60
TG
476}
477
f46481d0
TG
478/*
479 * This is called from tick_resume_local() on a resuming CPU. That's
480 * called from the core resume function, tick_unfreeze() and the magic XEN
481 * resume hackery.
482 *
483 * In none of these cases the broadcast device mode can change and the
484 * bit of the resuming CPU in the broadcast mask is safe as well.
485 */
486bool tick_resume_check_broadcast(void)
487{
488 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
489 return false;
490 else
491 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
492}
493
494void tick_resume_broadcast(void)
6321dd60
TG
495{
496 struct clock_event_device *bc;
497 unsigned long flags;
6321dd60 498
b5f91da0 499 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
6321dd60
TG
500
501 bc = tick_broadcast_device.evtdev;
6321dd60 502
cd05a1f8 503 if (bc) {
554ef387 504 clockevents_tick_resume(bc);
18de5bc4 505
cd05a1f8
TG
506 switch (tick_broadcast_device.mode) {
507 case TICKDEV_MODE_PERIODIC:
b352bc1c 508 if (!cpumask_empty(tick_broadcast_mask))
cd05a1f8 509 tick_broadcast_start_periodic(bc);
cd05a1f8
TG
510 break;
511 case TICKDEV_MODE_ONESHOT:
b352bc1c 512 if (!cpumask_empty(tick_broadcast_mask))
080873ce 513 tick_resume_broadcast_oneshot(bc);
cd05a1f8
TG
514 break;
515 }
6321dd60 516 }
b5f91da0 517 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
6321dd60
TG
518}
519
79bf2bb3
TG
520#ifdef CONFIG_TICK_ONESHOT
521
668802c2
WL
522static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
523static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
524static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
79bf2bb3 525
289f480a 526/*
6b954823 527 * Exposed for debugging: see timer_list.c
289f480a 528 */
6b954823 529struct cpumask *tick_get_broadcast_oneshot_mask(void)
289f480a 530{
b352bc1c 531 return tick_broadcast_oneshot_mask;
289f480a
IM
532}
533
eaa907c5
TG
534/*
535 * Called before going idle with interrupts disabled. Checks whether a
536 * broadcast event from the other core is about to happen. We detected
537 * that in tick_broadcast_oneshot_control(). The callsite can use this
538 * to avoid a deep idle transition as we are about to get the
539 * broadcast IPI right away.
540 */
541int tick_check_broadcast_expired(void)
542{
543 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
544}
545
d2348fb6
DL
546/*
547 * Set broadcast interrupt affinity
548 */
549static void tick_broadcast_set_affinity(struct clock_event_device *bc,
550 const struct cpumask *cpumask)
551{
552 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
553 return;
554
555 if (cpumask_equal(bc->cpumask, cpumask))
556 return;
557
558 bc->cpumask = cpumask;
559 irq_set_affinity(bc->irq, bc->cpumask);
560}
561
298dbd1c
TG
562static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
563 ktime_t expires)
79bf2bb3 564{
472c4a94 565 if (!clockevent_state_oneshot(bc))
d7eb231c 566 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
b9a6a235 567
298dbd1c
TG
568 clockevents_program_event(bc, expires, 1);
569 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
79bf2bb3
TG
570}
571
080873ce 572static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
cd05a1f8 573{
d7eb231c 574 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
cd05a1f8
TG
575}
576
fb02fbc1
TG
577/*
578 * Called from irq_enter() when idle was interrupted to reenable the
579 * per cpu device.
580 */
e8fcaa5c 581void tick_check_oneshot_broadcast_this_cpu(void)
fb02fbc1 582{
e8fcaa5c 583 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
22127e93 584 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
fb02fbc1 585
1f73a980
TG
586 /*
587 * We might be in the middle of switching over from
588 * periodic to oneshot. If the CPU has not yet
589 * switched over, leave the device alone.
590 */
591 if (td->mode == TICKDEV_MODE_ONESHOT) {
d7eb231c 592 clockevents_switch_state(td->evtdev,
77e32c89 593 CLOCK_EVT_STATE_ONESHOT);
1f73a980 594 }
fb02fbc1
TG
595 }
596}
597
79bf2bb3
TG
598/*
599 * Handle oneshot mode broadcasting
600 */
601static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
602{
603 struct tick_device *td;
cdc6f27d 604 ktime_t now, next_event;
d2348fb6 605 int cpu, next_cpu = 0;
298dbd1c 606 bool bc_local;
79bf2bb3 607
b5f91da0 608 raw_spin_lock(&tick_broadcast_lock);
2456e855
TG
609 dev->next_event = KTIME_MAX;
610 next_event = KTIME_MAX;
b352bc1c 611 cpumask_clear(tmpmask);
79bf2bb3
TG
612 now = ktime_get();
613 /* Find all expired events */
b352bc1c 614 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
ae83e1ae
DC
615 /*
616 * Required for !SMP because for_each_cpu() reports
617 * unconditionally CPU0 as set on UP kernels.
618 */
619 if (!IS_ENABLED(CONFIG_SMP) &&
620 cpumask_empty(tick_broadcast_oneshot_mask))
621 break;
622
79bf2bb3 623 td = &per_cpu(tick_cpu_device, cpu);
2456e855 624 if (td->evtdev->next_event <= now) {
b352bc1c 625 cpumask_set_cpu(cpu, tmpmask);
26517f3e
TG
626 /*
627 * Mark the remote cpu in the pending mask, so
628 * it can avoid reprogramming the cpu local
629 * timer in tick_broadcast_oneshot_control().
630 */
631 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
2456e855
TG
632 } else if (td->evtdev->next_event < next_event) {
633 next_event = td->evtdev->next_event;
d2348fb6
DL
634 next_cpu = cpu;
635 }
79bf2bb3
TG
636 }
637
2938d275
TG
638 /*
639 * Remove the current cpu from the pending mask. The event is
640 * delivered immediately in tick_do_broadcast() !
641 */
642 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
643
989dcb64
TG
644 /* Take care of enforced broadcast requests */
645 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
646 cpumask_clear(tick_broadcast_force_mask);
647
c9b5a266
TG
648 /*
649 * Sanity check. Catch the case where we try to broadcast to
650 * offline cpus.
651 */
652 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
653 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
654
79bf2bb3 655 /*
298dbd1c 656 * Wakeup the cpus which have an expired event.
cdc6f27d 657 */
298dbd1c 658 bc_local = tick_do_broadcast(tmpmask);
cdc6f27d
TG
659
660 /*
661 * Two reasons for reprogram:
662 *
663 * - The global event did not expire any CPU local
664 * events. This happens in dyntick mode, as the maximum PIT
665 * delta is quite small.
666 *
667 * - There are pending events on sleeping CPUs which were not
668 * in the event mask
79bf2bb3 669 */
2456e855 670 if (next_event != KTIME_MAX)
298dbd1c
TG
671 tick_broadcast_set_event(dev, next_cpu, next_event);
672
b5f91da0 673 raw_spin_unlock(&tick_broadcast_lock);
298dbd1c
TG
674
675 if (bc_local) {
676 td = this_cpu_ptr(&tick_cpu_device);
677 td->evtdev->event_handler(td->evtdev);
678 }
79bf2bb3
TG
679}
680
5d1638ac
PM
681static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
682{
683 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
684 return 0;
2456e855 685 if (bc->next_event == KTIME_MAX)
5d1638ac
PM
686 return 0;
687 return bc->bound_on == cpu ? -EBUSY : 0;
688}
689
690static void broadcast_shutdown_local(struct clock_event_device *bc,
691 struct clock_event_device *dev)
692{
693 /*
694 * For hrtimer based broadcasting we cannot shutdown the cpu
695 * local device if our own event is the first one to expire or
696 * if we own the broadcast timer.
697 */
698 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
699 if (broadcast_needs_cpu(bc, smp_processor_id()))
700 return;
2456e855 701 if (dev->next_event < bc->next_event)
5d1638ac
PM
702 return;
703 }
d7eb231c 704 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
5d1638ac
PM
705}
706
f32dd117 707int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
79bf2bb3
TG
708{
709 struct clock_event_device *bc, *dev;
da7e6f45 710 int cpu, ret = 0;
1fe5d5c3 711 ktime_t now;
79bf2bb3 712
b78f3f3c
TG
713 /*
714 * If there is no broadcast device, tell the caller not to go
715 * into deep idle.
716 */
717 if (!tick_broadcast_device.evtdev)
718 return -EBUSY;
719
e3ac79e0 720 dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
79bf2bb3 721
1fe5d5c3 722 raw_spin_lock(&tick_broadcast_lock);
7372b0b1 723 bc = tick_broadcast_device.evtdev;
1fe5d5c3 724 cpu = smp_processor_id();
79bf2bb3 725
1fe5d5c3 726 if (state == TICK_BROADCAST_ENTER) {
d5113e13
TG
727 /*
728 * If the current CPU owns the hrtimer broadcast
729 * mechanism, it cannot go deep idle and we do not add
730 * the CPU to the broadcast mask. We don't have to go
731 * through the EXIT path as the local timer is not
732 * shutdown.
733 */
734 ret = broadcast_needs_cpu(bc, cpu);
735 if (ret)
736 goto out;
737
e3ac79e0
TG
738 /*
739 * If the broadcast device is in periodic mode, we
740 * return.
741 */
d3325726
TG
742 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
743 /* If it is a hrtimer based broadcast, return busy */
744 if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
745 ret = -EBUSY;
e3ac79e0 746 goto out;
d3325726 747 }
e3ac79e0 748
b352bc1c 749 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
2938d275 750 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
d5113e13
TG
751
752 /* Conditionally shut down the local timer. */
5d1638ac 753 broadcast_shutdown_local(bc, dev);
d5113e13 754
989dcb64
TG
755 /*
756 * We only reprogram the broadcast timer if we
757 * did not mark ourself in the force mask and
758 * if the cpu local event is earlier than the
759 * broadcast event. If the current CPU is in
760 * the force mask, then we are going to be
0cc5281a
TG
761 * woken by the IPI right away; we return
762 * busy, so the CPU does not try to go deep
763 * idle.
989dcb64 764 */
0cc5281a
TG
765 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
766 ret = -EBUSY;
2456e855 767 } else if (dev->next_event < bc->next_event) {
298dbd1c 768 tick_broadcast_set_event(bc, cpu, dev->next_event);
d5113e13
TG
769 /*
770 * In case of hrtimer broadcasts the
771 * programming might have moved the
772 * timer to this cpu. If yes, remove
773 * us from the broadcast mask and
774 * return busy.
775 */
776 ret = broadcast_needs_cpu(bc, cpu);
777 if (ret) {
778 cpumask_clear_cpu(cpu,
779 tick_broadcast_oneshot_mask);
780 }
0cc5281a 781 }
79bf2bb3
TG
782 }
783 } else {
b352bc1c 784 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
d7eb231c 785 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
26517f3e
TG
786 /*
787 * The cpu which was handling the broadcast
788 * timer marked this cpu in the broadcast
789 * pending mask and fired the broadcast
790 * IPI. So we are going to handle the expired
791 * event anyway via the broadcast IPI
792 * handler. No need to reprogram the timer
793 * with an already expired event.
794 */
795 if (cpumask_test_and_clear_cpu(cpu,
796 tick_broadcast_pending_mask))
797 goto out;
798
ea8deb8d
DL
799 /*
800 * Bail out if there is no next event.
801 */
2456e855 802 if (dev->next_event == KTIME_MAX)
ea8deb8d 803 goto out;
989dcb64
TG
804 /*
805 * If the pending bit is not set, then we are
806 * either the CPU handling the broadcast
807 * interrupt or we got woken by something else.
808 *
809 * We are not longer in the broadcast mask, so
810 * if the cpu local expiry time is already
811 * reached, we would reprogram the cpu local
812 * timer with an already expired event.
813 *
814 * This can lead to a ping-pong when we return
815 * to idle and therefor rearm the broadcast
816 * timer before the cpu local timer was able
817 * to fire. This happens because the forced
818 * reprogramming makes sure that the event
819 * will happen in the future and depending on
820 * the min_delta setting this might be far
821 * enough out that the ping-pong starts.
822 *
823 * If the cpu local next_event has expired
824 * then we know that the broadcast timer
825 * next_event has expired as well and
826 * broadcast is about to be handled. So we
827 * avoid reprogramming and enforce that the
828 * broadcast handler, which did not run yet,
829 * will invoke the cpu local handler.
830 *
831 * We cannot call the handler directly from
832 * here, because we might be in a NOHZ phase
833 * and we did not go through the irq_enter()
834 * nohz fixups.
835 */
836 now = ktime_get();
2456e855 837 if (dev->next_event <= now) {
989dcb64
TG
838 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
839 goto out;
840 }
841 /*
842 * We got woken by something else. Reprogram
843 * the cpu local timer device.
844 */
26517f3e 845 tick_program_event(dev->next_event, 1);
79bf2bb3
TG
846 }
847 }
26517f3e 848out:
1fe5d5c3 849 raw_spin_unlock(&tick_broadcast_lock);
da7e6f45 850 return ret;
79bf2bb3
TG
851}
852
5590a536
TG
853/*
854 * Reset the one shot broadcast for a cpu
855 *
856 * Called with tick_broadcast_lock held
857 */
858static void tick_broadcast_clear_oneshot(int cpu)
859{
b352bc1c 860 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
dd5fd9b9 861 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
5590a536
TG
862}
863
6b954823
RR
864static void tick_broadcast_init_next_event(struct cpumask *mask,
865 ktime_t expires)
7300711e
TG
866{
867 struct tick_device *td;
868 int cpu;
869
5db0e1e9 870 for_each_cpu(cpu, mask) {
7300711e
TG
871 td = &per_cpu(tick_cpu_device, cpu);
872 if (td->evtdev)
873 td->evtdev->next_event = expires;
874 }
875}
876
79bf2bb3 877/**
8dce39c2 878 * tick_broadcast_setup_oneshot - setup the broadcast device
79bf2bb3 879 */
94114c36 880static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
79bf2bb3 881{
07f4beb0
TG
882 int cpu = smp_processor_id();
883
c1a9eeb9
TG
884 if (!bc)
885 return;
886
9c17bcda
TG
887 /* Set it up only once ! */
888 if (bc->event_handler != tick_handle_oneshot_broadcast) {
472c4a94 889 int was_periodic = clockevent_state_periodic(bc);
7300711e 890
9c17bcda 891 bc->event_handler = tick_handle_oneshot_broadcast;
7300711e 892
7300711e
TG
893 /*
894 * We must be careful here. There might be other CPUs
895 * waiting for periodic broadcast. We need to set the
896 * oneshot_mask bits for those and program the
897 * broadcast device to fire.
898 */
b352bc1c
TG
899 cpumask_copy(tmpmask, tick_broadcast_mask);
900 cpumask_clear_cpu(cpu, tmpmask);
901 cpumask_or(tick_broadcast_oneshot_mask,
902 tick_broadcast_oneshot_mask, tmpmask);
6b954823 903
b352bc1c 904 if (was_periodic && !cpumask_empty(tmpmask)) {
d7eb231c 905 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
b352bc1c 906 tick_broadcast_init_next_event(tmpmask,
6b954823 907 tick_next_period);
298dbd1c 908 tick_broadcast_set_event(bc, cpu, tick_next_period);
7300711e 909 } else
2456e855 910 bc->next_event = KTIME_MAX;
07f4beb0
TG
911 } else {
912 /*
913 * The first cpu which switches to oneshot mode sets
914 * the bit for all other cpus which are in the general
915 * (periodic) broadcast mask. So the bit is set and
916 * would prevent the first broadcast enter after this
917 * to program the bc device.
918 */
919 tick_broadcast_clear_oneshot(cpu);
9c17bcda 920 }
79bf2bb3
TG
921}
922
923/*
924 * Select oneshot operating mode for the broadcast device
925 */
926void tick_broadcast_switch_to_oneshot(void)
927{
928 struct clock_event_device *bc;
929 unsigned long flags;
930
b5f91da0 931 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
fa4da365
SS
932
933 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
79bf2bb3
TG
934 bc = tick_broadcast_device.evtdev;
935 if (bc)
936 tick_broadcast_setup_oneshot(bc);
77b0d60c 937
b5f91da0 938 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
79bf2bb3
TG
939}
940
a49b116d
TG
941#ifdef CONFIG_HOTPLUG_CPU
942void hotplug_cpu__broadcast_tick_pull(int deadcpu)
943{
944 struct clock_event_device *bc;
945 unsigned long flags;
946
947 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
948 bc = tick_broadcast_device.evtdev;
949
950 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
951 /* This moves the broadcast assignment to this CPU: */
952 clockevents_program_event(bc, bc->next_event, 1);
953 }
954 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
955}
79bf2bb3
TG
956
957/*
958 * Remove a dead CPU from broadcasting
959 */
a49b116d 960void tick_shutdown_broadcast_oneshot(unsigned int cpu)
79bf2bb3 961{
79bf2bb3 962 unsigned long flags;
79bf2bb3 963
b5f91da0 964 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
79bf2bb3 965
31d9b393 966 /*
c9b5a266
TG
967 * Clear the broadcast masks for the dead cpu, but do not stop
968 * the broadcast device!
31d9b393 969 */
b352bc1c 970 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
c9b5a266
TG
971 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
972 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
79bf2bb3 973
b5f91da0 974 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
79bf2bb3 975}
a49b116d 976#endif
79bf2bb3 977
27ce4cb4
TG
978/*
979 * Check, whether the broadcast device is in one shot mode
980 */
981int tick_broadcast_oneshot_active(void)
982{
983 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
984}
985
3a142a06
TG
986/*
987 * Check whether the broadcast device supports oneshot.
988 */
989bool tick_broadcast_oneshot_available(void)
990{
991 struct clock_event_device *bc = tick_broadcast_device.evtdev;
992
993 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
994}
995
f32dd117
TG
996#else
997int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
998{
999 struct clock_event_device *bc = tick_broadcast_device.evtdev;
1000
1001 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1002 return -EBUSY;
1003
1004 return 0;
1005}
79bf2bb3 1006#endif
b352bc1c
TG
1007
1008void __init tick_broadcast_init(void)
1009{
fbd44a60 1010 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
07bd1172 1011 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
fbd44a60 1012 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
b352bc1c 1013#ifdef CONFIG_TICK_ONESHOT
fbd44a60
TG
1014 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1015 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1016 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
b352bc1c
TG
1017#endif
1018}