]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/time/tick-broadcast.c
Merge tag 'gcc-plugins-v4.20-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / kernel / time / tick-broadcast.c
CommitLineData
f8381cba
TG
1/*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
d7b90689 17#include <linux/interrupt.h>
f8381cba
TG
18#include <linux/percpu.h>
19#include <linux/profile.h>
20#include <linux/sched.h>
12ad1000 21#include <linux/smp.h>
ccf33d68 22#include <linux/module.h>
f8381cba
TG
23
24#include "tick-internal.h"
25
26/*
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
29 */
30
a52f5c56 31static struct tick_device tick_broadcast_device;
668802c2
WL
32static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
33static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
34static cpumask_var_t tmpmask __cpumask_var_read_mostly;
592a438f 35static int tick_broadcast_forced;
f8381cba 36
668802c2
WL
37static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
38
5590a536 39#ifdef CONFIG_TICK_ONESHOT
94114c36 40static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
5590a536 41static void tick_broadcast_clear_oneshot(int cpu);
080873ce 42static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
5590a536 43#else
94114c36 44static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
5590a536 45static inline void tick_broadcast_clear_oneshot(int cpu) { }
080873ce 46static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
5590a536
TG
47#endif
48
289f480a
IM
49/*
50 * Debugging: see timer_list.c
51 */
52struct tick_device *tick_get_broadcast_device(void)
53{
54 return &tick_broadcast_device;
55}
56
6b954823 57struct cpumask *tick_get_broadcast_mask(void)
289f480a 58{
b352bc1c 59 return tick_broadcast_mask;
289f480a
IM
60}
61
f8381cba
TG
62/*
63 * Start the device in periodic mode
64 */
65static void tick_broadcast_start_periodic(struct clock_event_device *bc)
66{
18de5bc4 67 if (bc)
f8381cba
TG
68 tick_setup_periodic(bc, 1);
69}
70
71/*
72 * Check, if the device can be utilized as broadcast device:
73 */
45cb8e01
TG
74static bool tick_check_broadcast_device(struct clock_event_device *curdev,
75 struct clock_event_device *newdev)
76{
77 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
245a3496 78 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
45cb8e01
TG
79 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
80 return false;
81
82 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
83 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
84 return false;
85
86 return !curdev || newdev->rating > curdev->rating;
87}
88
89/*
90 * Conditionally install/replace broadcast device
91 */
7172a286 92void tick_install_broadcast_device(struct clock_event_device *dev)
f8381cba 93{
6f7a05d7
TG
94 struct clock_event_device *cur = tick_broadcast_device.evtdev;
95
45cb8e01 96 if (!tick_check_broadcast_device(cur, dev))
7172a286 97 return;
45cb8e01 98
ccf33d68
TG
99 if (!try_module_get(dev->owner))
100 return;
f8381cba 101
45cb8e01 102 clockevents_exchange_device(cur, dev);
6f7a05d7
TG
103 if (cur)
104 cur->event_handler = clockevents_handle_noop;
f8381cba 105 tick_broadcast_device.evtdev = dev;
b352bc1c 106 if (!cpumask_empty(tick_broadcast_mask))
f8381cba 107 tick_broadcast_start_periodic(dev);
c038c1c4
SB
108 /*
109 * Inform all cpus about this. We might be in a situation
110 * where we did not switch to oneshot mode because the per cpu
111 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
112 * of a oneshot capable broadcast device. Without that
113 * notification the systems stays stuck in periodic mode
114 * forever.
115 */
116 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
117 tick_clock_notify();
f8381cba
TG
118}
119
120/*
121 * Check, if the device is the broadcast device
122 */
123int tick_is_broadcast_device(struct clock_event_device *dev)
124{
125 return (dev && tick_broadcast_device.evtdev == dev);
126}
127
627ee794
TG
128int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
129{
130 int ret = -ENODEV;
131
132 if (tick_is_broadcast_device(dev)) {
133 raw_spin_lock(&tick_broadcast_lock);
134 ret = __clockevents_update_freq(dev, freq);
135 raw_spin_unlock(&tick_broadcast_lock);
136 }
137 return ret;
138}
139
140
12ad1000
MR
141static void err_broadcast(const struct cpumask *mask)
142{
143 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
144}
145
5d1d9a29
MR
146static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
147{
148 if (!dev->broadcast)
149 dev->broadcast = tick_broadcast;
150 if (!dev->broadcast) {
151 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
152 dev->name);
153 dev->broadcast = err_broadcast;
154 }
155}
156
f8381cba
TG
157/*
158 * Check, if the device is disfunctional and a place holder, which
159 * needs to be handled by the broadcast device.
160 */
161int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
162{
07bd1172 163 struct clock_event_device *bc = tick_broadcast_device.evtdev;
f8381cba 164 unsigned long flags;
e0454311 165 int ret = 0;
f8381cba 166
b5f91da0 167 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
f8381cba
TG
168
169 /*
170 * Devices might be registered with both periodic and oneshot
171 * mode disabled. This signals, that the device needs to be
172 * operated from the broadcast device and is a placeholder for
173 * the cpu local device.
174 */
175 if (!tick_device_is_functional(dev)) {
176 dev->event_handler = tick_handle_periodic;
5d1d9a29 177 tick_device_setup_broadcast_func(dev);
b352bc1c 178 cpumask_set_cpu(cpu, tick_broadcast_mask);
a272dcca
SB
179 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
180 tick_broadcast_start_periodic(bc);
181 else
182 tick_broadcast_setup_oneshot(bc);
f8381cba 183 ret = 1;
5590a536
TG
184 } else {
185 /*
07bd1172
TG
186 * Clear the broadcast bit for this cpu if the
187 * device is not power state affected.
5590a536 188 */
07bd1172 189 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
b352bc1c 190 cpumask_clear_cpu(cpu, tick_broadcast_mask);
07bd1172 191 else
5d1d9a29 192 tick_device_setup_broadcast_func(dev);
07bd1172
TG
193
194 /*
195 * Clear the broadcast bit if the CPU is not in
196 * periodic broadcast on state.
197 */
198 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
199 cpumask_clear_cpu(cpu, tick_broadcast_mask);
200
201 switch (tick_broadcast_device.mode) {
202 case TICKDEV_MODE_ONESHOT:
203 /*
204 * If the system is in oneshot mode we can
205 * unconditionally clear the oneshot mask bit,
206 * because the CPU is running and therefore
207 * not in an idle state which causes the power
208 * state affected device to stop. Let the
209 * caller initialize the device.
210 */
211 tick_broadcast_clear_oneshot(cpu);
212 ret = 0;
213 break;
214
215 case TICKDEV_MODE_PERIODIC:
216 /*
217 * If the system is in periodic mode, check
218 * whether the broadcast device can be
219 * switched off now.
220 */
221 if (cpumask_empty(tick_broadcast_mask) && bc)
222 clockevents_shutdown(bc);
223 /*
224 * If we kept the cpu in the broadcast mask,
225 * tell the caller to leave the per cpu device
226 * in shutdown state. The periodic interrupt
e0454311
TG
227 * is delivered by the broadcast device, if
228 * the broadcast device exists and is not
229 * hrtimer based.
07bd1172 230 */
e0454311
TG
231 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
232 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
07bd1172
TG
233 break;
234 default:
07bd1172 235 break;
5590a536
TG
236 }
237 }
b5f91da0 238 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
f8381cba
TG
239 return ret;
240}
241
12572dbb
MR
242#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243int tick_receive_broadcast(void)
244{
245 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
246 struct clock_event_device *evt = td->evtdev;
247
248 if (!evt)
249 return -ENODEV;
250
251 if (!evt->event_handler)
252 return -EINVAL;
253
254 evt->event_handler(evt);
255 return 0;
256}
257#endif
258
f8381cba 259/*
6b954823 260 * Broadcast the event to the cpus, which are set in the mask (mangled).
f8381cba 261 */
2951d5c0 262static bool tick_do_broadcast(struct cpumask *mask)
f8381cba 263{
186e3cb8 264 int cpu = smp_processor_id();
f8381cba 265 struct tick_device *td;
2951d5c0 266 bool local = false;
f8381cba
TG
267
268 /*
269 * Check, if the current cpu is in the mask
270 */
6b954823 271 if (cpumask_test_cpu(cpu, mask)) {
8eb23126
TG
272 struct clock_event_device *bc = tick_broadcast_device.evtdev;
273
6b954823 274 cpumask_clear_cpu(cpu, mask);
8eb23126
TG
275 /*
276 * We only run the local handler, if the broadcast
277 * device is not hrtimer based. Otherwise we run into
278 * a hrtimer recursion.
279 *
280 * local timer_interrupt()
281 * local_handler()
282 * expire_hrtimers()
283 * bc_handler()
284 * local_handler()
285 * expire_hrtimers()
286 */
287 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
f8381cba
TG
288 }
289
6b954823 290 if (!cpumask_empty(mask)) {
f8381cba
TG
291 /*
292 * It might be necessary to actually check whether the devices
293 * have different broadcast functions. For now, just use the
294 * one of the first device. This works as long as we have this
295 * misfeature only on x86 (lapic)
296 */
6b954823
RR
297 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
298 td->evtdev->broadcast(mask);
f8381cba 299 }
2951d5c0 300 return local;
f8381cba
TG
301}
302
303/*
304 * Periodic broadcast:
305 * - invoke the broadcast handlers
306 */
2951d5c0 307static bool tick_do_periodic_broadcast(void)
f8381cba 308{
b352bc1c 309 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
2951d5c0 310 return tick_do_broadcast(tmpmask);
f8381cba
TG
311}
312
313/*
314 * Event handler for periodic broadcast ticks
315 */
316static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
317{
2951d5c0
TG
318 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
319 bool bc_local;
d4496b39 320
627ee794 321 raw_spin_lock(&tick_broadcast_lock);
c4288334
TG
322
323 /* Handle spurious interrupts gracefully */
324 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
325 raw_spin_unlock(&tick_broadcast_lock);
326 return;
327 }
328
2951d5c0 329 bc_local = tick_do_periodic_broadcast();
627ee794 330
472c4a94 331 if (clockevent_state_oneshot(dev)) {
2951d5c0 332 ktime_t next = ktime_add(dev->next_event, tick_period);
f8381cba 333
2951d5c0
TG
334 clockevents_program_event(dev, next, true);
335 }
336 raw_spin_unlock(&tick_broadcast_lock);
f8381cba
TG
337
338 /*
2951d5c0
TG
339 * We run the handler of the local cpu after dropping
340 * tick_broadcast_lock because the handler might deadlock when
341 * trying to switch to oneshot mode.
f8381cba 342 */
2951d5c0
TG
343 if (bc_local)
344 td->evtdev->event_handler(td->evtdev);
f8381cba
TG
345}
346
592a438f
TG
347/**
348 * tick_broadcast_control - Enable/disable or force broadcast mode
349 * @mode: The selected broadcast mode
350 *
351 * Called when the system enters a state where affected tick devices
352 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
f8381cba 353 */
592a438f 354void tick_broadcast_control(enum tick_broadcast_mode mode)
f8381cba
TG
355{
356 struct clock_event_device *bc, *dev;
357 struct tick_device *td;
9c17bcda 358 int cpu, bc_stopped;
202461e2 359 unsigned long flags;
f8381cba 360
202461e2
MG
361 /* Protects also the local clockevent device. */
362 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
592a438f 363 td = this_cpu_ptr(&tick_cpu_device);
f8381cba 364 dev = td->evtdev;
f8381cba
TG
365
366 /*
1595f452 367 * Is the device not affected by the powerstate ?
f8381cba 368 */
1595f452 369 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
202461e2 370 goto out;
f8381cba 371
3dfbc884 372 if (!tick_device_is_functional(dev))
202461e2 373 goto out;
1595f452 374
592a438f
TG
375 cpu = smp_processor_id();
376 bc = tick_broadcast_device.evtdev;
b352bc1c 377 bc_stopped = cpumask_empty(tick_broadcast_mask);
9c17bcda 378
592a438f
TG
379 switch (mode) {
380 case TICK_BROADCAST_FORCE:
381 tick_broadcast_forced = 1;
382 case TICK_BROADCAST_ON:
07bd1172 383 cpumask_set_cpu(cpu, tick_broadcast_on);
b352bc1c 384 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
e0454311
TG
385 /*
386 * Only shutdown the cpu local device, if:
387 *
388 * - the broadcast device exists
389 * - the broadcast device is not a hrtimer based one
390 * - the broadcast device is in periodic mode to
391 * avoid a hickup during switch to oneshot mode
392 */
393 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
394 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
2344abbc 395 clockevents_shutdown(dev);
f8381cba 396 }
1595f452 397 break;
592a438f
TG
398
399 case TICK_BROADCAST_OFF:
400 if (tick_broadcast_forced)
07bd1172
TG
401 break;
402 cpumask_clear_cpu(cpu, tick_broadcast_on);
07bd1172 403 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
07454bff
TG
404 if (tick_broadcast_device.mode ==
405 TICKDEV_MODE_PERIODIC)
f8381cba
TG
406 tick_setup_periodic(dev, 0);
407 }
1595f452 408 break;
f8381cba
TG
409 }
410
c4d029f2
TG
411 if (bc) {
412 if (cpumask_empty(tick_broadcast_mask)) {
413 if (!bc_stopped)
414 clockevents_shutdown(bc);
415 } else if (bc_stopped) {
416 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
417 tick_broadcast_start_periodic(bc);
418 else
419 tick_broadcast_setup_oneshot(bc);
420 }
f8381cba 421 }
202461e2
MG
422out:
423 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
f8381cba 424}
592a438f 425EXPORT_SYMBOL_GPL(tick_broadcast_control);
f8381cba
TG
426
427/*
428 * Set the periodic handler depending on broadcast on/off
429 */
430void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
431{
432 if (!broadcast)
433 dev->event_handler = tick_handle_periodic;
434 else
435 dev->event_handler = tick_handle_periodic_broadcast;
436}
437
a49b116d 438#ifdef CONFIG_HOTPLUG_CPU
f8381cba
TG
439/*
440 * Remove a CPU from broadcasting
441 */
a49b116d 442void tick_shutdown_broadcast(unsigned int cpu)
f8381cba
TG
443{
444 struct clock_event_device *bc;
445 unsigned long flags;
f8381cba 446
b5f91da0 447 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
f8381cba
TG
448
449 bc = tick_broadcast_device.evtdev;
b352bc1c 450 cpumask_clear_cpu(cpu, tick_broadcast_mask);
07bd1172 451 cpumask_clear_cpu(cpu, tick_broadcast_on);
f8381cba
TG
452
453 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
b352bc1c 454 if (bc && cpumask_empty(tick_broadcast_mask))
2344abbc 455 clockevents_shutdown(bc);
f8381cba
TG
456 }
457
b5f91da0 458 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
f8381cba 459}
a49b116d 460#endif
79bf2bb3 461
6321dd60
TG
462void tick_suspend_broadcast(void)
463{
464 struct clock_event_device *bc;
465 unsigned long flags;
466
b5f91da0 467 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
6321dd60
TG
468
469 bc = tick_broadcast_device.evtdev;
18de5bc4 470 if (bc)
2344abbc 471 clockevents_shutdown(bc);
6321dd60 472
b5f91da0 473 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
6321dd60
TG
474}
475
f46481d0
TG
476/*
477 * This is called from tick_resume_local() on a resuming CPU. That's
478 * called from the core resume function, tick_unfreeze() and the magic XEN
479 * resume hackery.
480 *
481 * In none of these cases the broadcast device mode can change and the
482 * bit of the resuming CPU in the broadcast mask is safe as well.
483 */
484bool tick_resume_check_broadcast(void)
485{
486 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
487 return false;
488 else
489 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
490}
491
492void tick_resume_broadcast(void)
6321dd60
TG
493{
494 struct clock_event_device *bc;
495 unsigned long flags;
6321dd60 496
b5f91da0 497 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
6321dd60
TG
498
499 bc = tick_broadcast_device.evtdev;
6321dd60 500
cd05a1f8 501 if (bc) {
554ef387 502 clockevents_tick_resume(bc);
18de5bc4 503
cd05a1f8
TG
504 switch (tick_broadcast_device.mode) {
505 case TICKDEV_MODE_PERIODIC:
b352bc1c 506 if (!cpumask_empty(tick_broadcast_mask))
cd05a1f8 507 tick_broadcast_start_periodic(bc);
cd05a1f8
TG
508 break;
509 case TICKDEV_MODE_ONESHOT:
b352bc1c 510 if (!cpumask_empty(tick_broadcast_mask))
080873ce 511 tick_resume_broadcast_oneshot(bc);
cd05a1f8
TG
512 break;
513 }
6321dd60 514 }
b5f91da0 515 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
6321dd60
TG
516}
517
79bf2bb3
TG
518#ifdef CONFIG_TICK_ONESHOT
519
668802c2
WL
520static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
521static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
522static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
79bf2bb3 523
289f480a 524/*
6b954823 525 * Exposed for debugging: see timer_list.c
289f480a 526 */
6b954823 527struct cpumask *tick_get_broadcast_oneshot_mask(void)
289f480a 528{
b352bc1c 529 return tick_broadcast_oneshot_mask;
289f480a
IM
530}
531
eaa907c5
TG
532/*
533 * Called before going idle with interrupts disabled. Checks whether a
534 * broadcast event from the other core is about to happen. We detected
535 * that in tick_broadcast_oneshot_control(). The callsite can use this
536 * to avoid a deep idle transition as we are about to get the
537 * broadcast IPI right away.
538 */
539int tick_check_broadcast_expired(void)
540{
541 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
542}
543
d2348fb6
DL
544/*
545 * Set broadcast interrupt affinity
546 */
547static void tick_broadcast_set_affinity(struct clock_event_device *bc,
548 const struct cpumask *cpumask)
549{
550 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
551 return;
552
553 if (cpumask_equal(bc->cpumask, cpumask))
554 return;
555
556 bc->cpumask = cpumask;
557 irq_set_affinity(bc->irq, bc->cpumask);
558}
559
298dbd1c
TG
560static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
561 ktime_t expires)
79bf2bb3 562{
472c4a94 563 if (!clockevent_state_oneshot(bc))
d7eb231c 564 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
b9a6a235 565
298dbd1c
TG
566 clockevents_program_event(bc, expires, 1);
567 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
79bf2bb3
TG
568}
569
080873ce 570static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
cd05a1f8 571{
d7eb231c 572 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
cd05a1f8
TG
573}
574
fb02fbc1
TG
575/*
576 * Called from irq_enter() when idle was interrupted to reenable the
577 * per cpu device.
578 */
e8fcaa5c 579void tick_check_oneshot_broadcast_this_cpu(void)
fb02fbc1 580{
e8fcaa5c 581 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
22127e93 582 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
fb02fbc1 583
1f73a980
TG
584 /*
585 * We might be in the middle of switching over from
586 * periodic to oneshot. If the CPU has not yet
587 * switched over, leave the device alone.
588 */
589 if (td->mode == TICKDEV_MODE_ONESHOT) {
d7eb231c 590 clockevents_switch_state(td->evtdev,
77e32c89 591 CLOCK_EVT_STATE_ONESHOT);
1f73a980 592 }
fb02fbc1
TG
593 }
594}
595
79bf2bb3
TG
596/*
597 * Handle oneshot mode broadcasting
598 */
599static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
600{
601 struct tick_device *td;
cdc6f27d 602 ktime_t now, next_event;
d2348fb6 603 int cpu, next_cpu = 0;
298dbd1c 604 bool bc_local;
79bf2bb3 605
b5f91da0 606 raw_spin_lock(&tick_broadcast_lock);
2456e855
TG
607 dev->next_event = KTIME_MAX;
608 next_event = KTIME_MAX;
b352bc1c 609 cpumask_clear(tmpmask);
79bf2bb3
TG
610 now = ktime_get();
611 /* Find all expired events */
b352bc1c 612 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
5596fe34
DC
613 /*
614 * Required for !SMP because for_each_cpu() reports
615 * unconditionally CPU0 as set on UP kernels.
616 */
617 if (!IS_ENABLED(CONFIG_SMP) &&
618 cpumask_empty(tick_broadcast_oneshot_mask))
619 break;
620
79bf2bb3 621 td = &per_cpu(tick_cpu_device, cpu);
2456e855 622 if (td->evtdev->next_event <= now) {
b352bc1c 623 cpumask_set_cpu(cpu, tmpmask);
26517f3e
TG
624 /*
625 * Mark the remote cpu in the pending mask, so
626 * it can avoid reprogramming the cpu local
627 * timer in tick_broadcast_oneshot_control().
628 */
629 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
2456e855
TG
630 } else if (td->evtdev->next_event < next_event) {
631 next_event = td->evtdev->next_event;
d2348fb6
DL
632 next_cpu = cpu;
633 }
79bf2bb3
TG
634 }
635
2938d275
TG
636 /*
637 * Remove the current cpu from the pending mask. The event is
638 * delivered immediately in tick_do_broadcast() !
639 */
640 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
641
989dcb64
TG
642 /* Take care of enforced broadcast requests */
643 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
644 cpumask_clear(tick_broadcast_force_mask);
645
c9b5a266
TG
646 /*
647 * Sanity check. Catch the case where we try to broadcast to
648 * offline cpus.
649 */
650 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
651 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
652
79bf2bb3 653 /*
298dbd1c 654 * Wakeup the cpus which have an expired event.
cdc6f27d 655 */
298dbd1c 656 bc_local = tick_do_broadcast(tmpmask);
cdc6f27d
TG
657
658 /*
659 * Two reasons for reprogram:
660 *
661 * - The global event did not expire any CPU local
662 * events. This happens in dyntick mode, as the maximum PIT
663 * delta is quite small.
664 *
665 * - There are pending events on sleeping CPUs which were not
666 * in the event mask
79bf2bb3 667 */
2456e855 668 if (next_event != KTIME_MAX)
298dbd1c
TG
669 tick_broadcast_set_event(dev, next_cpu, next_event);
670
b5f91da0 671 raw_spin_unlock(&tick_broadcast_lock);
298dbd1c
TG
672
673 if (bc_local) {
674 td = this_cpu_ptr(&tick_cpu_device);
675 td->evtdev->event_handler(td->evtdev);
676 }
79bf2bb3
TG
677}
678
5d1638ac
PM
679static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
680{
681 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
682 return 0;
2456e855 683 if (bc->next_event == KTIME_MAX)
5d1638ac
PM
684 return 0;
685 return bc->bound_on == cpu ? -EBUSY : 0;
686}
687
688static void broadcast_shutdown_local(struct clock_event_device *bc,
689 struct clock_event_device *dev)
690{
691 /*
692 * For hrtimer based broadcasting we cannot shutdown the cpu
693 * local device if our own event is the first one to expire or
694 * if we own the broadcast timer.
695 */
696 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
697 if (broadcast_needs_cpu(bc, smp_processor_id()))
698 return;
2456e855 699 if (dev->next_event < bc->next_event)
5d1638ac
PM
700 return;
701 }
d7eb231c 702 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
5d1638ac
PM
703}
704
f32dd117 705int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
79bf2bb3
TG
706{
707 struct clock_event_device *bc, *dev;
da7e6f45 708 int cpu, ret = 0;
1fe5d5c3 709 ktime_t now;
79bf2bb3 710
b78f3f3c
TG
711 /*
712 * If there is no broadcast device, tell the caller not to go
713 * into deep idle.
714 */
715 if (!tick_broadcast_device.evtdev)
716 return -EBUSY;
717
e3ac79e0 718 dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
79bf2bb3 719
1fe5d5c3 720 raw_spin_lock(&tick_broadcast_lock);
7372b0b1 721 bc = tick_broadcast_device.evtdev;
1fe5d5c3 722 cpu = smp_processor_id();
79bf2bb3 723
1fe5d5c3 724 if (state == TICK_BROADCAST_ENTER) {
d5113e13
TG
725 /*
726 * If the current CPU owns the hrtimer broadcast
727 * mechanism, it cannot go deep idle and we do not add
728 * the CPU to the broadcast mask. We don't have to go
729 * through the EXIT path as the local timer is not
730 * shutdown.
731 */
732 ret = broadcast_needs_cpu(bc, cpu);
733 if (ret)
734 goto out;
735
e3ac79e0
TG
736 /*
737 * If the broadcast device is in periodic mode, we
738 * return.
739 */
d3325726
TG
740 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
741 /* If it is a hrtimer based broadcast, return busy */
742 if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
743 ret = -EBUSY;
e3ac79e0 744 goto out;
d3325726 745 }
e3ac79e0 746
b352bc1c 747 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
2938d275 748 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
d5113e13
TG
749
750 /* Conditionally shut down the local timer. */
5d1638ac 751 broadcast_shutdown_local(bc, dev);
d5113e13 752
989dcb64
TG
753 /*
754 * We only reprogram the broadcast timer if we
755 * did not mark ourself in the force mask and
756 * if the cpu local event is earlier than the
757 * broadcast event. If the current CPU is in
758 * the force mask, then we are going to be
0cc5281a
TG
759 * woken by the IPI right away; we return
760 * busy, so the CPU does not try to go deep
761 * idle.
989dcb64 762 */
0cc5281a
TG
763 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
764 ret = -EBUSY;
2456e855 765 } else if (dev->next_event < bc->next_event) {
298dbd1c 766 tick_broadcast_set_event(bc, cpu, dev->next_event);
d5113e13
TG
767 /*
768 * In case of hrtimer broadcasts the
769 * programming might have moved the
770 * timer to this cpu. If yes, remove
771 * us from the broadcast mask and
772 * return busy.
773 */
774 ret = broadcast_needs_cpu(bc, cpu);
775 if (ret) {
776 cpumask_clear_cpu(cpu,
777 tick_broadcast_oneshot_mask);
778 }
0cc5281a 779 }
79bf2bb3
TG
780 }
781 } else {
b352bc1c 782 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
d7eb231c 783 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
26517f3e
TG
784 /*
785 * The cpu which was handling the broadcast
786 * timer marked this cpu in the broadcast
787 * pending mask and fired the broadcast
788 * IPI. So we are going to handle the expired
789 * event anyway via the broadcast IPI
790 * handler. No need to reprogram the timer
791 * with an already expired event.
792 */
793 if (cpumask_test_and_clear_cpu(cpu,
794 tick_broadcast_pending_mask))
795 goto out;
796
ea8deb8d
DL
797 /*
798 * Bail out if there is no next event.
799 */
2456e855 800 if (dev->next_event == KTIME_MAX)
ea8deb8d 801 goto out;
989dcb64
TG
802 /*
803 * If the pending bit is not set, then we are
804 * either the CPU handling the broadcast
805 * interrupt or we got woken by something else.
806 *
807 * We are not longer in the broadcast mask, so
808 * if the cpu local expiry time is already
809 * reached, we would reprogram the cpu local
810 * timer with an already expired event.
811 *
812 * This can lead to a ping-pong when we return
813 * to idle and therefor rearm the broadcast
814 * timer before the cpu local timer was able
815 * to fire. This happens because the forced
816 * reprogramming makes sure that the event
817 * will happen in the future and depending on
818 * the min_delta setting this might be far
819 * enough out that the ping-pong starts.
820 *
821 * If the cpu local next_event has expired
822 * then we know that the broadcast timer
823 * next_event has expired as well and
824 * broadcast is about to be handled. So we
825 * avoid reprogramming and enforce that the
826 * broadcast handler, which did not run yet,
827 * will invoke the cpu local handler.
828 *
829 * We cannot call the handler directly from
830 * here, because we might be in a NOHZ phase
831 * and we did not go through the irq_enter()
832 * nohz fixups.
833 */
834 now = ktime_get();
2456e855 835 if (dev->next_event <= now) {
989dcb64
TG
836 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
837 goto out;
838 }
839 /*
840 * We got woken by something else. Reprogram
841 * the cpu local timer device.
842 */
26517f3e 843 tick_program_event(dev->next_event, 1);
79bf2bb3
TG
844 }
845 }
26517f3e 846out:
1fe5d5c3 847 raw_spin_unlock(&tick_broadcast_lock);
da7e6f45 848 return ret;
79bf2bb3
TG
849}
850
5590a536
TG
851/*
852 * Reset the one shot broadcast for a cpu
853 *
854 * Called with tick_broadcast_lock held
855 */
856static void tick_broadcast_clear_oneshot(int cpu)
857{
b352bc1c 858 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
dd5fd9b9 859 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
5590a536
TG
860}
861
6b954823
RR
862static void tick_broadcast_init_next_event(struct cpumask *mask,
863 ktime_t expires)
7300711e
TG
864{
865 struct tick_device *td;
866 int cpu;
867
5db0e1e9 868 for_each_cpu(cpu, mask) {
7300711e
TG
869 td = &per_cpu(tick_cpu_device, cpu);
870 if (td->evtdev)
871 td->evtdev->next_event = expires;
872 }
873}
874
79bf2bb3 875/**
8dce39c2 876 * tick_broadcast_setup_oneshot - setup the broadcast device
79bf2bb3 877 */
94114c36 878static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
79bf2bb3 879{
07f4beb0
TG
880 int cpu = smp_processor_id();
881
c1a9eeb9
TG
882 if (!bc)
883 return;
884
9c17bcda
TG
885 /* Set it up only once ! */
886 if (bc->event_handler != tick_handle_oneshot_broadcast) {
472c4a94 887 int was_periodic = clockevent_state_periodic(bc);
7300711e 888
9c17bcda 889 bc->event_handler = tick_handle_oneshot_broadcast;
7300711e 890
7300711e
TG
891 /*
892 * We must be careful here. There might be other CPUs
893 * waiting for periodic broadcast. We need to set the
894 * oneshot_mask bits for those and program the
895 * broadcast device to fire.
896 */
b352bc1c
TG
897 cpumask_copy(tmpmask, tick_broadcast_mask);
898 cpumask_clear_cpu(cpu, tmpmask);
899 cpumask_or(tick_broadcast_oneshot_mask,
900 tick_broadcast_oneshot_mask, tmpmask);
6b954823 901
b352bc1c 902 if (was_periodic && !cpumask_empty(tmpmask)) {
d7eb231c 903 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
b352bc1c 904 tick_broadcast_init_next_event(tmpmask,
6b954823 905 tick_next_period);
298dbd1c 906 tick_broadcast_set_event(bc, cpu, tick_next_period);
7300711e 907 } else
2456e855 908 bc->next_event = KTIME_MAX;
07f4beb0
TG
909 } else {
910 /*
911 * The first cpu which switches to oneshot mode sets
912 * the bit for all other cpus which are in the general
913 * (periodic) broadcast mask. So the bit is set and
914 * would prevent the first broadcast enter after this
915 * to program the bc device.
916 */
917 tick_broadcast_clear_oneshot(cpu);
9c17bcda 918 }
79bf2bb3
TG
919}
920
921/*
922 * Select oneshot operating mode for the broadcast device
923 */
924void tick_broadcast_switch_to_oneshot(void)
925{
926 struct clock_event_device *bc;
927 unsigned long flags;
928
b5f91da0 929 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
fa4da365
SS
930
931 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
79bf2bb3
TG
932 bc = tick_broadcast_device.evtdev;
933 if (bc)
934 tick_broadcast_setup_oneshot(bc);
77b0d60c 935
b5f91da0 936 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
79bf2bb3
TG
937}
938
a49b116d
TG
939#ifdef CONFIG_HOTPLUG_CPU
940void hotplug_cpu__broadcast_tick_pull(int deadcpu)
941{
942 struct clock_event_device *bc;
943 unsigned long flags;
944
945 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
946 bc = tick_broadcast_device.evtdev;
947
948 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
949 /* This moves the broadcast assignment to this CPU: */
950 clockevents_program_event(bc, bc->next_event, 1);
951 }
952 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
953}
79bf2bb3
TG
954
955/*
956 * Remove a dead CPU from broadcasting
957 */
a49b116d 958void tick_shutdown_broadcast_oneshot(unsigned int cpu)
79bf2bb3 959{
79bf2bb3 960 unsigned long flags;
79bf2bb3 961
b5f91da0 962 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
79bf2bb3 963
31d9b393 964 /*
c9b5a266
TG
965 * Clear the broadcast masks for the dead cpu, but do not stop
966 * the broadcast device!
31d9b393 967 */
b352bc1c 968 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
c9b5a266
TG
969 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
970 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
79bf2bb3 971
b5f91da0 972 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
79bf2bb3 973}
a49b116d 974#endif
79bf2bb3 975
27ce4cb4
TG
976/*
977 * Check, whether the broadcast device is in one shot mode
978 */
979int tick_broadcast_oneshot_active(void)
980{
981 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
982}
983
3a142a06
TG
984/*
985 * Check whether the broadcast device supports oneshot.
986 */
987bool tick_broadcast_oneshot_available(void)
988{
989 struct clock_event_device *bc = tick_broadcast_device.evtdev;
990
991 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
992}
993
f32dd117
TG
994#else
995int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
996{
997 struct clock_event_device *bc = tick_broadcast_device.evtdev;
998
999 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1000 return -EBUSY;
1001
1002 return 0;
1003}
79bf2bb3 1004#endif
b352bc1c
TG
1005
1006void __init tick_broadcast_init(void)
1007{
fbd44a60 1008 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
07bd1172 1009 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
fbd44a60 1010 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
b352bc1c 1011#ifdef CONFIG_TICK_ONESHOT
fbd44a60
TG
1012 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1013 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1014 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
b352bc1c
TG
1015#endif
1016}