]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/tick-sched.c
Merge branches 'pm-sleep' and 'powercap'
[mirror_ubuntu-artful-kernel.git] / kernel / time / tick-sched.c
CommitLineData
79bf2bb3
TG
1/*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
b10db7f0 12 * Distribute under GPLv2.
79bf2bb3
TG
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/kernel_stat.h>
19#include <linux/percpu.h>
38b8d208 20#include <linux/nmi.h>
79bf2bb3 21#include <linux/profile.h>
3f07c014 22#include <linux/sched/signal.h>
e6017571 23#include <linux/sched/clock.h>
03441a34 24#include <linux/sched/stat.h>
370c9135 25#include <linux/sched/nohz.h>
8083e4ad 26#include <linux/module.h>
00b42959 27#include <linux/irq_work.h>
9014c45d 28#include <linux/posix-timers.h>
2e709338 29#include <linux/context_tracking.h>
79bf2bb3 30
9e203bcc
DM
31#include <asm/irq_regs.h>
32
79bf2bb3
TG
33#include "tick-internal.h"
34
cb41a290
FW
35#include <trace/events/timer.h>
36
79bf2bb3 37/*
0de7611a 38 * Per-CPU nohz control structure
79bf2bb3 39 */
c1797baf 40static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
79bf2bb3 41
289f480a
IM
42struct tick_sched *tick_get_tick_sched(int cpu)
43{
44 return &per_cpu(tick_cpu_sched, cpu);
45}
46
7809998a
AB
47#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
48/*
49 * The time, when the last jiffy update happened. Protected by jiffies_lock.
50 */
51static ktime_t last_jiffies_update;
52
79bf2bb3
TG
53/*
54 * Must be called with interrupts disabled !
55 */
56static void tick_do_update_jiffies64(ktime_t now)
57{
58 unsigned long ticks = 0;
59 ktime_t delta;
60
7a14ce1d 61 /*
d6ad4187 62 * Do a quick check without holding jiffies_lock:
7a14ce1d
IM
63 */
64 delta = ktime_sub(now, last_jiffies_update);
2456e855 65 if (delta < tick_period)
7a14ce1d
IM
66 return;
67
6168f8ed 68 /* Reevaluate with jiffies_lock held */
d6ad4187 69 write_seqlock(&jiffies_lock);
79bf2bb3
TG
70
71 delta = ktime_sub(now, last_jiffies_update);
2456e855 72 if (delta >= tick_period) {
79bf2bb3
TG
73
74 delta = ktime_sub(delta, tick_period);
75 last_jiffies_update = ktime_add(last_jiffies_update,
76 tick_period);
77
78 /* Slow path for long timeouts */
2456e855 79 if (unlikely(delta >= tick_period)) {
79bf2bb3
TG
80 s64 incr = ktime_to_ns(tick_period);
81
82 ticks = ktime_divns(delta, incr);
83
84 last_jiffies_update = ktime_add_ns(last_jiffies_update,
85 incr * ticks);
86 }
87 do_timer(++ticks);
49d670fb
TG
88
89 /* Keep the tick_next_period variable up to date */
90 tick_next_period = ktime_add(last_jiffies_update, tick_period);
03e6bdc5
VK
91 } else {
92 write_sequnlock(&jiffies_lock);
93 return;
79bf2bb3 94 }
d6ad4187 95 write_sequnlock(&jiffies_lock);
47a1b796 96 update_wall_time();
79bf2bb3
TG
97}
98
99/*
100 * Initialize and return retrieve the jiffies update.
101 */
102static ktime_t tick_init_jiffy_update(void)
103{
104 ktime_t period;
105
d6ad4187 106 write_seqlock(&jiffies_lock);
79bf2bb3 107 /* Did we start the jiffies update yet ? */
2456e855 108 if (last_jiffies_update == 0)
79bf2bb3
TG
109 last_jiffies_update = tick_next_period;
110 period = last_jiffies_update;
d6ad4187 111 write_sequnlock(&jiffies_lock);
79bf2bb3
TG
112 return period;
113}
114
5bb96226
FW
115
116static void tick_sched_do_timer(ktime_t now)
117{
118 int cpu = smp_processor_id();
119
3451d024 120#ifdef CONFIG_NO_HZ_COMMON
5bb96226
FW
121 /*
122 * Check if the do_timer duty was dropped. We don't care about
0de7611a
IM
123 * concurrency: This happens only when the CPU in charge went
124 * into a long sleep. If two CPUs happen to assign themselves to
5bb96226 125 * this duty, then the jiffies update is still serialized by
9c3f9e28 126 * jiffies_lock.
5bb96226 127 */
a382bf93 128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
c5bfece2 129 && !tick_nohz_full_cpu(cpu))
5bb96226
FW
130 tick_do_timer_cpu = cpu;
131#endif
132
133 /* Check, if the jiffies need an update */
134 if (tick_do_timer_cpu == cpu)
135 tick_do_update_jiffies64(now);
136}
137
9e8f559b
FW
138static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
139{
3451d024 140#ifdef CONFIG_NO_HZ_COMMON
9e8f559b
FW
141 /*
142 * When we are idle and the tick is stopped, we have to touch
143 * the watchdog as we might not schedule for a really long
144 * time. This happens on complete idle SMP systems while
145 * waiting on the login prompt. We also increment the "start of
146 * idle" jiffy stamp so the idle accounting adjustment we do
147 * when we go busy again does not account too much ticks.
148 */
149 if (ts->tick_stopped) {
03e0d461 150 touch_softlockup_watchdog_sched();
9e8f559b
FW
151 if (is_idle_task(current))
152 ts->idle_jiffies++;
153 }
94a57140 154#endif
9e8f559b
FW
155 update_process_times(user_mode(regs));
156 profile_tick(CPU_PROFILING);
157}
7809998a 158#endif
9e8f559b 159
c5bfece2 160#ifdef CONFIG_NO_HZ_FULL
460775df 161cpumask_var_t tick_nohz_full_mask;
c0f489d2 162cpumask_var_t housekeeping_mask;
73867dcd 163bool tick_nohz_full_running;
f009a7a7 164static atomic_t tick_dep_mask;
a831881b 165
f009a7a7 166static bool check_tick_dependency(atomic_t *dep)
d027d45d 167{
f009a7a7
FW
168 int val = atomic_read(dep);
169
170 if (val & TICK_DEP_MASK_POSIX_TIMER) {
e6e6cc22 171 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
f009a7a7 172 return true;
d027d45d
FW
173 }
174
f009a7a7 175 if (val & TICK_DEP_MASK_PERF_EVENTS) {
e6e6cc22 176 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
f009a7a7 177 return true;
d027d45d
FW
178 }
179
f009a7a7 180 if (val & TICK_DEP_MASK_SCHED) {
e6e6cc22 181 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
f009a7a7 182 return true;
d027d45d
FW
183 }
184
f009a7a7 185 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
e6e6cc22 186 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
f009a7a7
FW
187 return true;
188 }
189
190 return false;
d027d45d
FW
191}
192
57ccdf44 193static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
9014c45d
FW
194{
195 WARN_ON_ONCE(!irqs_disabled());
196
57ccdf44
WL
197 if (unlikely(!cpu_online(cpu)))
198 return false;
199
f009a7a7 200 if (check_tick_dependency(&tick_dep_mask))
d027d45d 201 return false;
d027d45d 202
f009a7a7 203 if (check_tick_dependency(&ts->tick_dep_mask))
d027d45d 204 return false;
d027d45d 205
f009a7a7 206 if (check_tick_dependency(&current->tick_dep_mask))
d027d45d 207 return false;
d027d45d 208
f009a7a7 209 if (check_tick_dependency(&current->signal->tick_dep_mask))
d027d45d 210 return false;
d027d45d 211
9014c45d
FW
212 return true;
213}
214
d027d45d 215static void nohz_full_kick_func(struct irq_work *work)
76c24fb0 216{
73738a95 217 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
76c24fb0
FW
218}
219
220static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
d027d45d 221 .func = nohz_full_kick_func,
76c24fb0
FW
222};
223
40bea039
FW
224/*
225 * Kick this CPU if it's full dynticks in order to force it to
226 * re-evaluate its dependency on the tick and restart it if necessary.
227 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
228 * is NMI safe.
229 */
555e0c1e 230static void tick_nohz_full_kick(void)
40bea039
FW
231{
232 if (!tick_nohz_full_cpu(smp_processor_id()))
233 return;
234
56e4dea8 235 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
40bea039
FW
236}
237
76c24fb0 238/*
3d36aebc 239 * Kick the CPU if it's full dynticks in order to force it to
76c24fb0
FW
240 * re-evaluate its dependency on the tick and restart it if necessary.
241 */
3d36aebc 242void tick_nohz_full_kick_cpu(int cpu)
76c24fb0 243{
3d36aebc
FW
244 if (!tick_nohz_full_cpu(cpu))
245 return;
246
247 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
76c24fb0
FW
248}
249
76c24fb0
FW
250/*
251 * Kick all full dynticks CPUs in order to force these to re-evaluate
252 * their dependency on the tick and restart it if necessary.
253 */
b7878300 254static void tick_nohz_full_kick_all(void)
76c24fb0 255{
8537bb95
FW
256 int cpu;
257
73867dcd 258 if (!tick_nohz_full_running)
76c24fb0
FW
259 return;
260
261 preempt_disable();
8537bb95
FW
262 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
263 tick_nohz_full_kick_cpu(cpu);
76c24fb0
FW
264 preempt_enable();
265}
266
f009a7a7 267static void tick_nohz_dep_set_all(atomic_t *dep,
d027d45d
FW
268 enum tick_dep_bits bit)
269{
f009a7a7 270 int prev;
d027d45d 271
a1cc5bcf 272 prev = atomic_fetch_or(BIT(bit), dep);
d027d45d
FW
273 if (!prev)
274 tick_nohz_full_kick_all();
275}
276
277/*
278 * Set a global tick dependency. Used by perf events that rely on freq and
279 * by unstable clock.
280 */
281void tick_nohz_dep_set(enum tick_dep_bits bit)
282{
283 tick_nohz_dep_set_all(&tick_dep_mask, bit);
284}
285
286void tick_nohz_dep_clear(enum tick_dep_bits bit)
287{
f009a7a7 288 atomic_andnot(BIT(bit), &tick_dep_mask);
d027d45d
FW
289}
290
291/*
292 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
293 * manage events throttling.
294 */
295void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
296{
f009a7a7 297 int prev;
d027d45d
FW
298 struct tick_sched *ts;
299
300 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
301
a1cc5bcf 302 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
303 if (!prev) {
304 preempt_disable();
305 /* Perf needs local kick that is NMI safe */
306 if (cpu == smp_processor_id()) {
307 tick_nohz_full_kick();
308 } else {
309 /* Remote irq work not NMI-safe */
310 if (!WARN_ON_ONCE(in_nmi()))
311 tick_nohz_full_kick_cpu(cpu);
312 }
313 preempt_enable();
314 }
315}
316
317void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
318{
319 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
320
f009a7a7 321 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
322}
323
324/*
325 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
326 * per task timers.
327 */
328void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
329{
330 /*
331 * We could optimize this with just kicking the target running the task
332 * if that noise matters for nohz full users.
333 */
334 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
335}
336
337void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
338{
f009a7a7 339 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
d027d45d
FW
340}
341
342/*
343 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
344 * per process timers.
345 */
346void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
347{
348 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
349}
350
351void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
352{
f009a7a7 353 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
d027d45d
FW
354}
355
99e5ada9
FW
356/*
357 * Re-evaluate the need for the tick as we switch the current task.
358 * It might need the tick due to per task/process properties:
0de7611a 359 * perf events, posix CPU timers, ...
99e5ada9 360 */
de734f89 361void __tick_nohz_task_switch(void)
99e5ada9
FW
362{
363 unsigned long flags;
d027d45d 364 struct tick_sched *ts;
99e5ada9 365
99e5ada9
FW
366 local_irq_save(flags);
367
6296ace4
LZ
368 if (!tick_nohz_full_cpu(smp_processor_id()))
369 goto out;
370
d027d45d 371 ts = this_cpu_ptr(&tick_cpu_sched);
99e5ada9 372
d027d45d 373 if (ts->tick_stopped) {
f009a7a7
FW
374 if (atomic_read(&current->tick_dep_mask) ||
375 atomic_read(&current->signal->tick_dep_mask))
d027d45d
FW
376 tick_nohz_full_kick();
377 }
6296ace4 378out:
99e5ada9
FW
379 local_irq_restore(flags);
380}
381
a831881b 382/* Parse the boot-time nohz CPU list from the kernel parameters. */
c5bfece2 383static int __init tick_nohz_full_setup(char *str)
a831881b 384{
73867dcd
FW
385 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
386 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
a395d6a7 387 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
4327b15f 388 free_bootmem_cpumask_var(tick_nohz_full_mask);
0453b435
FW
389 return 1;
390 }
73867dcd 391 tick_nohz_full_running = true;
0453b435 392
a831881b
FW
393 return 1;
394}
c5bfece2 395__setup("nohz_full=", tick_nohz_full_setup);
a831881b 396
31eff243 397static int tick_nohz_cpu_down(unsigned int cpu)
a382bf93 398{
31eff243
SAS
399 /*
400 * The boot CPU handles housekeeping duty (unbound timers,
401 * workqueues, timekeeping, ...) on behalf of full dynticks
402 * CPUs. It must remain online when nohz full is enabled.
403 */
404 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
405 return -EBUSY;
406 return 0;
a382bf93
FW
407}
408
f98823ac
FW
409static int tick_nohz_init_all(void)
410{
411 int err = -1;
412
413#ifdef CONFIG_NO_HZ_FULL_ALL
73867dcd 414 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
4327b15f 415 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
c0f489d2
PM
416 return err;
417 }
f98823ac 418 err = 0;
73867dcd 419 cpumask_setall(tick_nohz_full_mask);
73867dcd 420 tick_nohz_full_running = true;
f98823ac
FW
421#endif
422 return err;
423}
424
d1e43fa5 425void __init tick_nohz_init(void)
a831881b 426{
31eff243 427 int cpu, ret;
d1e43fa5 428
73867dcd 429 if (!tick_nohz_full_running) {
f98823ac
FW
430 if (tick_nohz_init_all() < 0)
431 return;
432 }
d1e43fa5 433
4327b15f
FW
434 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
435 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
436 cpumask_clear(tick_nohz_full_mask);
437 tick_nohz_full_running = false;
438 return;
439 }
440
9b01f5bf
FW
441 /*
442 * Full dynticks uses irq work to drive the tick rescheduling on safe
443 * locking contexts. But then we need irq work to raise its own
444 * interrupts to avoid circular dependency on the tick
445 */
446 if (!arch_irq_work_has_interrupt()) {
a395d6a7 447 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
9b01f5bf
FW
448 cpumask_clear(tick_nohz_full_mask);
449 cpumask_copy(housekeeping_mask, cpu_possible_mask);
450 tick_nohz_full_running = false;
451 return;
452 }
453
4327b15f
FW
454 cpu = smp_processor_id();
455
456 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
a395d6a7
JP
457 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
458 cpu);
4327b15f
FW
459 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
460 }
461
462 cpumask_andnot(housekeeping_mask,
463 cpu_possible_mask, tick_nohz_full_mask);
464
73867dcd 465 for_each_cpu(cpu, tick_nohz_full_mask)
2e709338
FW
466 context_tracking_cpu_set(cpu);
467
31eff243
SAS
468 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
469 "kernel/nohz:predown", NULL,
470 tick_nohz_cpu_down);
471 WARN_ON(ret < 0);
ffda22c1
TH
472 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
473 cpumask_pr_args(tick_nohz_full_mask));
7c8bb6cb
FW
474
475 /*
476 * We need at least one CPU to handle housekeeping work such
477 * as timekeeping, unbound timers, workqueues, ...
478 */
479 WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
a831881b 480}
a831881b
FW
481#endif
482
79bf2bb3
TG
483/*
484 * NOHZ - aka dynamic tick functionality
485 */
3451d024 486#ifdef CONFIG_NO_HZ_COMMON
79bf2bb3
TG
487/*
488 * NO HZ enabled ?
489 */
4cc7ecb7 490bool tick_nohz_enabled __read_mostly = true;
bc7a34b8 491unsigned long tick_nohz_active __read_mostly;
79bf2bb3
TG
492/*
493 * Enable / Disable tickless mode
494 */
495static int __init setup_tick_nohz(char *str)
496{
4cc7ecb7 497 return (kstrtobool(str, &tick_nohz_enabled) == 0);
79bf2bb3
TG
498}
499
500__setup("nohz=", setup_tick_nohz);
501
c1797baf
TG
502int tick_nohz_tick_stopped(void)
503{
504 return __this_cpu_read(tick_cpu_sched.tick_stopped);
505}
506
79bf2bb3
TG
507/**
508 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
509 *
510 * Called from interrupt entry when the CPU was idle
511 *
512 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
513 * must be updated. Otherwise an interrupt handler could use a stale jiffy
0de7611a
IM
514 * value. We do this unconditionally on any CPU, as we don't know whether the
515 * CPU, which has the update task assigned is in a long sleep.
79bf2bb3 516 */
eed3b9cf 517static void tick_nohz_update_jiffies(ktime_t now)
79bf2bb3 518{
79bf2bb3 519 unsigned long flags;
79bf2bb3 520
e8fcaa5c 521 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
79bf2bb3
TG
522
523 local_irq_save(flags);
524 tick_do_update_jiffies64(now);
525 local_irq_restore(flags);
02ff3755 526
03e0d461 527 touch_softlockup_watchdog_sched();
79bf2bb3
TG
528}
529
595aac48 530/*
0de7611a 531 * Updates the per-CPU time idle statistics counters
595aac48 532 */
8d63bf94 533static void
8c215bd3 534update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
6378ddb5 535{
eed3b9cf 536 ktime_t delta;
6378ddb5 537
595aac48
AV
538 if (ts->idle_active) {
539 delta = ktime_sub(now, ts->idle_entrytime);
8c215bd3 540 if (nr_iowait_cpu(cpu) > 0)
0224cf4c 541 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
6beea0cd
MH
542 else
543 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
8c7b09f4 544 ts->idle_entrytime = now;
595aac48 545 }
8d63bf94 546
e0e37c20 547 if (last_update_time)
8d63bf94
AV
548 *last_update_time = ktime_to_us(now);
549
595aac48
AV
550}
551
e8fcaa5c 552static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
595aac48 553{
e8fcaa5c 554 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
eed3b9cf 555 ts->idle_active = 0;
56c7426b 556
eed3b9cf 557 sched_clock_idle_wakeup_event(0);
6378ddb5
VP
558}
559
e8fcaa5c 560static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
6378ddb5 561{
430ee881 562 ktime_t now = ktime_get();
595aac48 563
6378ddb5
VP
564 ts->idle_entrytime = now;
565 ts->idle_active = 1;
56c7426b 566 sched_clock_idle_sleep_event();
6378ddb5
VP
567 return now;
568}
569
b1f724c3 570/**
0de7611a 571 * get_cpu_idle_time_us - get the total idle time of a CPU
b1f724c3 572 * @cpu: CPU number to query
09a1d34f
MH
573 * @last_update_time: variable to store update time in. Do not update
574 * counters if NULL.
b1f724c3 575 *
6168f8ed 576 * Return the cumulative idle time (since boot) for a given
6beea0cd 577 * CPU, in microseconds.
b1f724c3
AV
578 *
579 * This time is measured via accounting rather than sampling,
580 * and is as accurate as ktime_get() is.
581 *
582 * This function returns -1 if NOHZ is not enabled.
583 */
6378ddb5
VP
584u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
585{
586 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 587 ktime_t now, idle;
6378ddb5 588
d689fe22 589 if (!tick_nohz_active)
8083e4ad 590 return -1;
591
09a1d34f
MH
592 now = ktime_get();
593 if (last_update_time) {
594 update_ts_time_stats(cpu, ts, now, last_update_time);
595 idle = ts->idle_sleeptime;
596 } else {
597 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
598 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
599
600 idle = ktime_add(ts->idle_sleeptime, delta);
601 } else {
602 idle = ts->idle_sleeptime;
603 }
604 }
605
606 return ktime_to_us(idle);
8083e4ad 607
6378ddb5 608}
8083e4ad 609EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
6378ddb5 610
6beea0cd 611/**
0de7611a 612 * get_cpu_iowait_time_us - get the total iowait time of a CPU
0224cf4c 613 * @cpu: CPU number to query
09a1d34f
MH
614 * @last_update_time: variable to store update time in. Do not update
615 * counters if NULL.
0224cf4c 616 *
6168f8ed 617 * Return the cumulative iowait time (since boot) for a given
0224cf4c
AV
618 * CPU, in microseconds.
619 *
620 * This time is measured via accounting rather than sampling,
621 * and is as accurate as ktime_get() is.
622 *
623 * This function returns -1 if NOHZ is not enabled.
624 */
625u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
626{
627 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 628 ktime_t now, iowait;
0224cf4c 629
d689fe22 630 if (!tick_nohz_active)
0224cf4c
AV
631 return -1;
632
09a1d34f
MH
633 now = ktime_get();
634 if (last_update_time) {
635 update_ts_time_stats(cpu, ts, now, last_update_time);
636 iowait = ts->iowait_sleeptime;
637 } else {
638 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
639 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
0224cf4c 640
09a1d34f
MH
641 iowait = ktime_add(ts->iowait_sleeptime, delta);
642 } else {
643 iowait = ts->iowait_sleeptime;
644 }
645 }
0224cf4c 646
09a1d34f 647 return ktime_to_us(iowait);
0224cf4c
AV
648}
649EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
650
0ff53d09
TG
651static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
652{
653 hrtimer_cancel(&ts->sched_timer);
654 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
655
656 /* Forward the time to expire in the future */
657 hrtimer_forward(&ts->sched_timer, now, tick_period);
658
659 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
660 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
661 else
662 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
663}
664
84bf1bcc
FW
665static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
666 ktime_t now, int cpu)
79bf2bb3 667{
22127e93 668 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
c1ad348b
TG
669 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
670 unsigned long seq, basejiff;
671 ktime_t tick;
855a0fc3 672
79bf2bb3
TG
673 /* Read jiffies and the time when jiffies were updated last */
674 do {
d6ad4187 675 seq = read_seqbegin(&jiffies_lock);
2456e855 676 basemono = last_jiffies_update;
c1ad348b 677 basejiff = jiffies;
d6ad4187 678 } while (read_seqretry(&jiffies_lock, seq));
c1ad348b 679 ts->last_jiffies = basejiff;
79bf2bb3 680
c1ad348b 681 if (rcu_needs_cpu(basemono, &next_rcu) ||
fe0f4976 682 arch_needs_cpu() || irq_work_needs_cpu()) {
c1ad348b 683 next_tick = basemono + TICK_NSEC;
3c5d92a0 684 } else {
c1ad348b
TG
685 /*
686 * Get the next pending timer. If high resolution
687 * timers are enabled this only takes the timer wheel
688 * timers into account. If high resolution timers are
689 * disabled this also looks at the next expiring
690 * hrtimer.
691 */
692 next_tmr = get_next_timer_interrupt(basejiff, basemono);
693 ts->next_timer = next_tmr;
694 /* Take the next rcu event into account */
695 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
3c5d92a0 696 }
47aa8b6c 697
c1ad348b
TG
698 /*
699 * If the tick is due in the next period, keep it ticking or
82bbe34b 700 * force prod the timer.
c1ad348b
TG
701 */
702 delta = next_tick - basemono;
703 if (delta <= (u64)TICK_NSEC) {
2456e855 704 tick = 0;
a683f390
TG
705
706 /*
707 * Tell the timer code that the base is not idle, i.e. undo
708 * the effect of get_next_timer_interrupt():
709 */
710 timer_clear_idle();
82bbe34b
PZ
711 /*
712 * We've not stopped the tick yet, and there's a timer in the
713 * next period, so no point in stopping it either, bail.
714 */
157d29e1
TG
715 if (!ts->tick_stopped)
716 goto out;
82bbe34b
PZ
717
718 /*
719 * If, OTOH, we did stop it, but there's a pending (expired)
720 * timer reprogram the timer hardware to fire now.
721 *
722 * We will not restart the tick proper, just prod the timer
723 * hardware into firing an interrupt to process the pending
724 * timers. Just like tick_irq_exit() will not restart the tick
725 * for 'normal' interrupts.
726 *
727 * Only once we exit the idle loop will we re-enable the tick,
728 * see tick_nohz_idle_exit().
729 */
c1ad348b 730 if (delta == 0) {
157d29e1
TG
731 tick_nohz_restart(ts, now);
732 goto out;
733 }
734 }
735
79bf2bb3 736 /*
0de7611a
IM
737 * If this CPU is the one which updates jiffies, then give up
738 * the assignment and let it be taken by the CPU which runs
739 * the tick timer next, which might be this CPU as well. If we
157d29e1
TG
740 * don't drop this here the jiffies might be stale and
741 * do_timer() never invoked. Keep track of the fact that it
0de7611a 742 * was the one which had the do_timer() duty last. If this CPU
157d29e1 743 * is the one which had the do_timer() duty last, we limit the
6168f8ed 744 * sleep time to the timekeeping max_deferment value.
c1ad348b 745 * Otherwise we can sleep as long as we want.
79bf2bb3 746 */
c1ad348b 747 delta = timekeeping_max_deferment();
157d29e1
TG
748 if (cpu == tick_do_timer_cpu) {
749 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
750 ts->do_timer_last = 1;
751 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
c1ad348b 752 delta = KTIME_MAX;
157d29e1
TG
753 ts->do_timer_last = 0;
754 } else if (!ts->do_timer_last) {
c1ad348b 755 delta = KTIME_MAX;
157d29e1 756 }
27185016 757
265f22a9 758#ifdef CONFIG_NO_HZ_FULL
c1ad348b 759 /* Limit the tick delta to the maximum scheduler deferment */
157d29e1 760 if (!ts->inidle)
c1ad348b 761 delta = min(delta, scheduler_tick_max_deferment());
265f22a9
FW
762#endif
763
c1ad348b
TG
764 /* Calculate the next expiry time */
765 if (delta < (KTIME_MAX - basemono))
766 expires = basemono + delta;
157d29e1 767 else
c1ad348b
TG
768 expires = KTIME_MAX;
769
770 expires = min_t(u64, expires, next_tick);
2456e855 771 tick = expires;
00147449 772
157d29e1 773 /* Skip reprogram of event if its not changed */
558e8e27 774 if (ts->tick_stopped && (expires == dev->next_event))
157d29e1 775 goto out;
84bf1bcc 776
157d29e1
TG
777 /*
778 * nohz_stop_sched_tick can be called several times before
779 * the nohz_restart_sched_tick is called. This happens when
780 * interrupts arrive which do not cause a reschedule. In the
781 * first call we save the current tick time, so we can restart
782 * the scheduler tick in nohz_restart_sched_tick.
783 */
784 if (!ts->tick_stopped) {
785 nohz_balance_enter_idle(cpu);
786 calc_load_enter_idle();
1f41906a 787 cpu_load_update_nohz_start();
d3ed7824 788
157d29e1
TG
789 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
790 ts->tick_stopped = 1;
e6e6cc22 791 trace_tick_stop(1, TICK_DEP_MASK_NONE);
157d29e1 792 }
eaad084b 793
157d29e1 794 /*
c1ad348b
TG
795 * If the expiration time == KTIME_MAX, then we simply stop
796 * the tick timer.
157d29e1 797 */
c1ad348b 798 if (unlikely(expires == KTIME_MAX)) {
157d29e1
TG
799 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
800 hrtimer_cancel(&ts->sched_timer);
801 goto out;
79bf2bb3 802 }
0ff53d09 803
157d29e1 804 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
c1ad348b 805 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
157d29e1 806 else
c1ad348b 807 tick_program_event(tick, 1);
79bf2bb3 808out:
558e8e27 809 /* Update the estimated sleep length */
4f86d3a8 810 ts->sleep_length = ktime_sub(dev->next_event, now);
c1ad348b 811 return tick;
280f0677
FW
812}
813
1f41906a 814static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
59d2c7ca
FW
815{
816 /* Update jiffies first */
817 tick_do_update_jiffies64(now);
1f41906a 818 cpu_load_update_nohz_stop();
59d2c7ca 819
a683f390
TG
820 /*
821 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
822 * the clock forward checks in the enqueue path:
823 */
824 timer_clear_idle();
825
59d2c7ca 826 calc_load_exit_idle();
03e0d461 827 touch_softlockup_watchdog_sched();
59d2c7ca
FW
828 /*
829 * Cancel the scheduled timer and restore the tick
830 */
831 ts->tick_stopped = 0;
832 ts->idle_exittime = now;
833
834 tick_nohz_restart(ts, now);
835}
73738a95
FW
836
837static void tick_nohz_full_update_tick(struct tick_sched *ts)
5811d996
FW
838{
839#ifdef CONFIG_NO_HZ_FULL
e9a2eb40 840 int cpu = smp_processor_id();
5811d996 841
59449359 842 if (!tick_nohz_full_cpu(cpu))
e9a2eb40 843 return;
5811d996 844
e9a2eb40
AS
845 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
846 return;
5811d996 847
57ccdf44 848 if (can_stop_full_tick(cpu, ts))
73738a95
FW
849 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
850 else if (ts->tick_stopped)
1f41906a 851 tick_nohz_restart_sched_tick(ts, ktime_get());
5811d996
FW
852#endif
853}
854
5b39939a
FW
855static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
856{
857 /*
0de7611a 858 * If this CPU is offline and it is the one which updates
5b39939a 859 * jiffies, then give up the assignment and let it be taken by
0de7611a 860 * the CPU which runs the tick timer next. If we don't drop
5b39939a
FW
861 * this here the jiffies might be stale and do_timer() never
862 * invoked.
863 */
864 if (unlikely(!cpu_online(cpu))) {
865 if (cpu == tick_do_timer_cpu)
866 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
f7ea0fd6 867 return false;
5b39939a
FW
868 }
869
0e576acb 870 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
2456e855 871 ts->sleep_length = NSEC_PER_SEC / HZ;
5b39939a 872 return false;
0e576acb 873 }
5b39939a
FW
874
875 if (need_resched())
876 return false;
877
878 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
879 static int ratelimit;
880
803b0eba
PM
881 if (ratelimit < 10 &&
882 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
cfea7d7e
RV
883 pr_warn("NOHZ: local_softirq_pending %02x\n",
884 (unsigned int) local_softirq_pending());
5b39939a
FW
885 ratelimit++;
886 }
887 return false;
888 }
889
460775df 890 if (tick_nohz_full_enabled()) {
a382bf93
FW
891 /*
892 * Keep the tick alive to guarantee timekeeping progression
893 * if there are full dynticks CPUs around
894 */
895 if (tick_do_timer_cpu == cpu)
896 return false;
897 /*
898 * Boot safety: make sure the timekeeping duty has been
899 * assigned before entering dyntick-idle mode,
900 */
901 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
902 return false;
903 }
904
5b39939a
FW
905 return true;
906}
907
19f5f736
FW
908static void __tick_nohz_idle_enter(struct tick_sched *ts)
909{
84bf1bcc 910 ktime_t now, expires;
5b39939a 911 int cpu = smp_processor_id();
19f5f736 912
08d07259
WL
913 now = tick_nohz_start_idle(ts);
914
5b39939a
FW
915 if (can_stop_idle_tick(cpu, ts)) {
916 int was_stopped = ts->tick_stopped;
917
918 ts->idle_calls++;
84bf1bcc
FW
919
920 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
2456e855 921 if (expires > 0LL) {
84bf1bcc
FW
922 ts->idle_sleeps++;
923 ts->idle_expires = expires;
924 }
5b39939a
FW
925
926 if (!was_stopped && ts->tick_stopped)
927 ts->idle_jiffies = ts->last_jiffies;
928 }
280f0677
FW
929}
930
931/**
932 * tick_nohz_idle_enter - stop the idle tick from the idle task
933 *
934 * When the next event is more than a tick into the future, stop the idle tick
935 * Called when we start the idle loop.
2bbb6817 936 *
1268fbc7 937 * The arch is responsible of calling:
2bbb6817
FW
938 *
939 * - rcu_idle_enter() after its last use of RCU before the CPU is put
940 * to sleep.
941 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
280f0677 942 */
1268fbc7 943void tick_nohz_idle_enter(void)
280f0677
FW
944{
945 struct tick_sched *ts;
946
1268fbc7
FW
947 WARN_ON_ONCE(irqs_disabled());
948
0db49b72 949 /*
0de7611a
IM
950 * Update the idle state in the scheduler domain hierarchy
951 * when tick_nohz_stop_sched_tick() is called from the idle loop.
952 * State will be updated to busy during the first busy tick after
953 * exiting idle.
954 */
0db49b72
LT
955 set_cpu_sd_state_idle();
956
1268fbc7
FW
957 local_irq_disable();
958
22127e93 959 ts = this_cpu_ptr(&tick_cpu_sched);
280f0677 960 ts->inidle = 1;
19f5f736 961 __tick_nohz_idle_enter(ts);
1268fbc7
FW
962
963 local_irq_enable();
280f0677
FW
964}
965
966/**
967 * tick_nohz_irq_exit - update next tick event from interrupt exit
968 *
969 * When an interrupt fires while we are idle and it doesn't cause
970 * a reschedule, it may still add, modify or delete a timer, enqueue
971 * an RCU callback, etc...
972 * So we need to re-calculate and reprogram the next tick event.
973 */
974void tick_nohz_irq_exit(void)
975{
22127e93 976 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
280f0677 977
14851912 978 if (ts->inidle)
5811d996 979 __tick_nohz_idle_enter(ts);
14851912 980 else
73738a95 981 tick_nohz_full_update_tick(ts);
79bf2bb3
TG
982}
983
4f86d3a8
LB
984/**
985 * tick_nohz_get_sleep_length - return the length of the current sleep
986 *
987 * Called from power state control code with interrupts disabled
988 */
989ktime_t tick_nohz_get_sleep_length(void)
990{
22127e93 991 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
4f86d3a8
LB
992
993 return ts->sleep_length;
994}
995
b7eaf1aa
RW
996/**
997 * tick_nohz_get_idle_calls - return the current idle calls counter value
998 *
999 * Called from the schedutil frequency scaling governor in scheduler context.
1000 */
1001unsigned long tick_nohz_get_idle_calls(void)
1002{
1003 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1004
1005 return ts->idle_calls;
1006}
1007
2ac0d98f
FW
1008static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1009{
3f4724ea 1010#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
2ac0d98f 1011 unsigned long ticks;
3f4724ea 1012
55dbdcfa 1013 if (vtime_accounting_cpu_enabled())
3f4724ea 1014 return;
79bf2bb3
TG
1015 /*
1016 * We stopped the tick in idle. Update process times would miss the
1017 * time we slept as update_process_times does only a 1 tick
1018 * accounting. Enforce that this is accounted to idle !
1019 */
1020 ticks = jiffies - ts->idle_jiffies;
1021 /*
1022 * We might be one off. Do not randomly account a huge number of ticks!
1023 */
79741dd3
MS
1024 if (ticks && ticks < LONG_MAX)
1025 account_idle_ticks(ticks);
1026#endif
19f5f736
FW
1027}
1028
79bf2bb3 1029/**
280f0677 1030 * tick_nohz_idle_exit - restart the idle tick from the idle task
79bf2bb3
TG
1031 *
1032 * Restart the idle tick when the CPU is woken up from idle
280f0677
FW
1033 * This also exit the RCU extended quiescent state. The CPU
1034 * can use RCU again after this function is called.
79bf2bb3 1035 */
280f0677 1036void tick_nohz_idle_exit(void)
79bf2bb3 1037{
4a32fea9 1038 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
6378ddb5 1039 ktime_t now;
79bf2bb3 1040
6378ddb5 1041 local_irq_disable();
2bbb6817 1042
15f827be
FW
1043 WARN_ON_ONCE(!ts->inidle);
1044
1045 ts->inidle = 0;
1046
1047 if (ts->idle_active || ts->tick_stopped)
eed3b9cf
MS
1048 now = ktime_get();
1049
1050 if (ts->idle_active)
e8fcaa5c 1051 tick_nohz_stop_idle(ts, now);
6378ddb5 1052
2ac0d98f 1053 if (ts->tick_stopped) {
1f41906a 1054 tick_nohz_restart_sched_tick(ts, now);
2ac0d98f 1055 tick_nohz_account_idle_ticks(ts);
6378ddb5 1056 }
79bf2bb3 1057
79bf2bb3
TG
1058 local_irq_enable();
1059}
1060
79bf2bb3
TG
1061/*
1062 * The nohz low res interrupt handler
1063 */
1064static void tick_nohz_handler(struct clock_event_device *dev)
1065{
22127e93 1066 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1067 struct pt_regs *regs = get_irq_regs();
1068 ktime_t now = ktime_get();
1069
2456e855 1070 dev->next_event = KTIME_MAX;
79bf2bb3 1071
5bb96226 1072 tick_sched_do_timer(now);
9e8f559b 1073 tick_sched_handle(ts, regs);
79bf2bb3 1074
b5e995e6
VK
1075 /* No need to reprogram if we are running tickless */
1076 if (unlikely(ts->tick_stopped))
1077 return;
1078
0ff53d09
TG
1079 hrtimer_forward(&ts->sched_timer, now, tick_period);
1080 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
79bf2bb3
TG
1081}
1082
bc7a34b8
TG
1083static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1084{
1085 if (!tick_nohz_enabled)
1086 return;
1087 ts->nohz_mode = mode;
1088 /* One update is enough */
1089 if (!test_and_set_bit(0, &tick_nohz_active))
683be13a 1090 timers_update_migration(true);
bc7a34b8
TG
1091}
1092
79bf2bb3
TG
1093/**
1094 * tick_nohz_switch_to_nohz - switch to nohz mode
1095 */
1096static void tick_nohz_switch_to_nohz(void)
1097{
22127e93 1098 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1099 ktime_t next;
1100
27630532 1101 if (!tick_nohz_enabled)
79bf2bb3
TG
1102 return;
1103
6b442bc8 1104 if (tick_switch_to_oneshot(tick_nohz_handler))
79bf2bb3 1105 return;
6b442bc8 1106
79bf2bb3
TG
1107 /*
1108 * Recycle the hrtimer in ts, so we can share the
1109 * hrtimer_forward with the highres code.
1110 */
1111 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1112 /* Get the next period */
1113 next = tick_init_jiffy_update();
1114
0ff53d09 1115 hrtimer_set_expires(&ts->sched_timer, next);
1ca8ec53
WL
1116 hrtimer_forward_now(&ts->sched_timer, tick_period);
1117 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
bc7a34b8 1118 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
79bf2bb3
TG
1119}
1120
5acac1be 1121static inline void tick_nohz_irq_enter(void)
eed3b9cf 1122{
4a32fea9 1123 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
eed3b9cf
MS
1124 ktime_t now;
1125
1126 if (!ts->idle_active && !ts->tick_stopped)
1127 return;
1128 now = ktime_get();
1129 if (ts->idle_active)
e8fcaa5c 1130 tick_nohz_stop_idle(ts, now);
ff006732 1131 if (ts->tick_stopped)
eed3b9cf 1132 tick_nohz_update_jiffies(now);
eed3b9cf
MS
1133}
1134
79bf2bb3
TG
1135#else
1136
1137static inline void tick_nohz_switch_to_nohz(void) { }
5acac1be 1138static inline void tick_nohz_irq_enter(void) { }
bc7a34b8 1139static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
79bf2bb3 1140
3451d024 1141#endif /* CONFIG_NO_HZ_COMMON */
79bf2bb3 1142
719254fa
TG
1143/*
1144 * Called from irq_enter to notify about the possible interruption of idle()
1145 */
5acac1be 1146void tick_irq_enter(void)
719254fa 1147{
e8fcaa5c 1148 tick_check_oneshot_broadcast_this_cpu();
5acac1be 1149 tick_nohz_irq_enter();
719254fa
TG
1150}
1151
79bf2bb3
TG
1152/*
1153 * High resolution timer specific code
1154 */
1155#ifdef CONFIG_HIGH_RES_TIMERS
1156/*
4c9dc641 1157 * We rearm the timer until we get disabled by the idle code.
351f181f 1158 * Called with interrupts disabled.
79bf2bb3
TG
1159 */
1160static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1161{
1162 struct tick_sched *ts =
1163 container_of(timer, struct tick_sched, sched_timer);
79bf2bb3
TG
1164 struct pt_regs *regs = get_irq_regs();
1165 ktime_t now = ktime_get();
d3ed7824 1166
5bb96226 1167 tick_sched_do_timer(now);
79bf2bb3
TG
1168
1169 /*
1170 * Do not call, when we are not in irq context and have
1171 * no valid regs pointer
1172 */
9e8f559b
FW
1173 if (regs)
1174 tick_sched_handle(ts, regs);
79bf2bb3 1175
2a16fc93
VK
1176 /* No need to reprogram if we are in idle or full dynticks mode */
1177 if (unlikely(ts->tick_stopped))
1178 return HRTIMER_NORESTART;
1179
79bf2bb3
TG
1180 hrtimer_forward(timer, now, tick_period);
1181
1182 return HRTIMER_RESTART;
1183}
1184
5307c955
MG
1185static int sched_skew_tick;
1186
62cf20b3
TG
1187static int __init skew_tick(char *str)
1188{
1189 get_option(&str, &sched_skew_tick);
1190
1191 return 0;
1192}
1193early_param("skew_tick", skew_tick);
1194
79bf2bb3
TG
1195/**
1196 * tick_setup_sched_timer - setup the tick emulation timer
1197 */
1198void tick_setup_sched_timer(void)
1199{
22127e93 1200 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1201 ktime_t now = ktime_get();
1202
1203 /*
1204 * Emulate tick processing via per-CPU hrtimers:
1205 */
1206 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1207 ts->sched_timer.function = tick_sched_timer;
79bf2bb3 1208
0de7611a 1209 /* Get the next period (per-CPU) */
cc584b21 1210 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
79bf2bb3 1211
9c3f9e28 1212 /* Offset the tick to avert jiffies_lock contention. */
5307c955
MG
1213 if (sched_skew_tick) {
1214 u64 offset = ktime_to_ns(tick_period) >> 1;
1215 do_div(offset, num_possible_cpus());
1216 offset *= smp_processor_id();
1217 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1218 }
1219
afc08b15
TG
1220 hrtimer_forward(&ts->sched_timer, now, tick_period);
1221 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
bc7a34b8 1222 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
79bf2bb3 1223}
3c4fbe5e 1224#endif /* HIGH_RES_TIMERS */
79bf2bb3 1225
3451d024 1226#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1227void tick_cancel_sched_timer(int cpu)
1228{
1229 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1230
3c4fbe5e 1231# ifdef CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1232 if (ts->sched_timer.base)
1233 hrtimer_cancel(&ts->sched_timer);
3c4fbe5e 1234# endif
a7901766 1235
4b0c0f29 1236 memset(ts, 0, sizeof(*ts));
79bf2bb3 1237}
3c4fbe5e 1238#endif
79bf2bb3
TG
1239
1240/**
1241 * Async notification about clocksource changes
1242 */
1243void tick_clock_notify(void)
1244{
1245 int cpu;
1246
1247 for_each_possible_cpu(cpu)
1248 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1249}
1250
1251/*
1252 * Async notification about clock event changes
1253 */
1254void tick_oneshot_notify(void)
1255{
22127e93 1256 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1257
1258 set_bit(0, &ts->check_clocks);
1259}
1260
1261/**
1262 * Check, if a change happened, which makes oneshot possible.
1263 *
1264 * Called cyclic from the hrtimer softirq (driven by the timer
1265 * softirq) allow_nohz signals, that we can switch into low-res nohz
1266 * mode, because high resolution timers are disabled (either compile
6b442bc8 1267 * or runtime). Called with interrupts disabled.
79bf2bb3
TG
1268 */
1269int tick_check_oneshot_change(int allow_nohz)
1270{
22127e93 1271 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1272
1273 if (!test_and_clear_bit(0, &ts->check_clocks))
1274 return 0;
1275
1276 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1277 return 0;
1278
cf4fc6cb 1279 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
79bf2bb3
TG
1280 return 0;
1281
1282 if (!allow_nohz)
1283 return 1;
1284
1285 tick_nohz_switch_to_nohz();
1286 return 0;
1287}