]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/time/tick-sched.c
x86/speculation/mds: Conditionally clear CPU buffers on idle entry
[mirror_ubuntu-bionic-kernel.git] / kernel / time / tick-sched.c
CommitLineData
79bf2bb3
TG
1/*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
b10db7f0 12 * Distribute under GPLv2.
79bf2bb3
TG
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/kernel_stat.h>
19#include <linux/percpu.h>
38b8d208 20#include <linux/nmi.h>
79bf2bb3 21#include <linux/profile.h>
3f07c014 22#include <linux/sched/signal.h>
e6017571 23#include <linux/sched/clock.h>
03441a34 24#include <linux/sched/stat.h>
370c9135 25#include <linux/sched/nohz.h>
8083e4ad 26#include <linux/module.h>
00b42959 27#include <linux/irq_work.h>
9014c45d 28#include <linux/posix-timers.h>
2e709338 29#include <linux/context_tracking.h>
62cb1188 30#include <linux/mm.h>
79bf2bb3 31
9e203bcc
DM
32#include <asm/irq_regs.h>
33
79bf2bb3
TG
34#include "tick-internal.h"
35
cb41a290
FW
36#include <trace/events/timer.h>
37
79bf2bb3 38/*
0de7611a 39 * Per-CPU nohz control structure
79bf2bb3 40 */
c1797baf 41static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
79bf2bb3 42
289f480a
IM
43struct tick_sched *tick_get_tick_sched(int cpu)
44{
45 return &per_cpu(tick_cpu_sched, cpu);
46}
47
7809998a
AB
48#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
49/*
50 * The time, when the last jiffy update happened. Protected by jiffies_lock.
51 */
52static ktime_t last_jiffies_update;
53
79bf2bb3
TG
54/*
55 * Must be called with interrupts disabled !
56 */
57static void tick_do_update_jiffies64(ktime_t now)
58{
59 unsigned long ticks = 0;
60 ktime_t delta;
61
7a14ce1d 62 /*
d6ad4187 63 * Do a quick check without holding jiffies_lock:
7a14ce1d
IM
64 */
65 delta = ktime_sub(now, last_jiffies_update);
2456e855 66 if (delta < tick_period)
7a14ce1d
IM
67 return;
68
6168f8ed 69 /* Reevaluate with jiffies_lock held */
d6ad4187 70 write_seqlock(&jiffies_lock);
79bf2bb3
TG
71
72 delta = ktime_sub(now, last_jiffies_update);
2456e855 73 if (delta >= tick_period) {
79bf2bb3
TG
74
75 delta = ktime_sub(delta, tick_period);
76 last_jiffies_update = ktime_add(last_jiffies_update,
77 tick_period);
78
79 /* Slow path for long timeouts */
2456e855 80 if (unlikely(delta >= tick_period)) {
79bf2bb3
TG
81 s64 incr = ktime_to_ns(tick_period);
82
83 ticks = ktime_divns(delta, incr);
84
85 last_jiffies_update = ktime_add_ns(last_jiffies_update,
86 incr * ticks);
87 }
88 do_timer(++ticks);
49d670fb
TG
89
90 /* Keep the tick_next_period variable up to date */
91 tick_next_period = ktime_add(last_jiffies_update, tick_period);
03e6bdc5
VK
92 } else {
93 write_sequnlock(&jiffies_lock);
94 return;
79bf2bb3 95 }
d6ad4187 96 write_sequnlock(&jiffies_lock);
47a1b796 97 update_wall_time();
79bf2bb3
TG
98}
99
100/*
101 * Initialize and return retrieve the jiffies update.
102 */
103static ktime_t tick_init_jiffy_update(void)
104{
105 ktime_t period;
106
d6ad4187 107 write_seqlock(&jiffies_lock);
79bf2bb3 108 /* Did we start the jiffies update yet ? */
2456e855 109 if (last_jiffies_update == 0)
79bf2bb3
TG
110 last_jiffies_update = tick_next_period;
111 period = last_jiffies_update;
d6ad4187 112 write_sequnlock(&jiffies_lock);
79bf2bb3
TG
113 return period;
114}
115
5bb96226
FW
116
117static void tick_sched_do_timer(ktime_t now)
118{
119 int cpu = smp_processor_id();
120
3451d024 121#ifdef CONFIG_NO_HZ_COMMON
5bb96226
FW
122 /*
123 * Check if the do_timer duty was dropped. We don't care about
0de7611a
IM
124 * concurrency: This happens only when the CPU in charge went
125 * into a long sleep. If two CPUs happen to assign themselves to
5bb96226 126 * this duty, then the jiffies update is still serialized by
9c3f9e28 127 * jiffies_lock.
5bb96226 128 */
a382bf93 129 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
c5bfece2 130 && !tick_nohz_full_cpu(cpu))
5bb96226
FW
131 tick_do_timer_cpu = cpu;
132#endif
133
134 /* Check, if the jiffies need an update */
135 if (tick_do_timer_cpu == cpu)
136 tick_do_update_jiffies64(now);
137}
138
9e8f559b
FW
139static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
140{
3451d024 141#ifdef CONFIG_NO_HZ_COMMON
9e8f559b
FW
142 /*
143 * When we are idle and the tick is stopped, we have to touch
144 * the watchdog as we might not schedule for a really long
145 * time. This happens on complete idle SMP systems while
146 * waiting on the login prompt. We also increment the "start of
147 * idle" jiffy stamp so the idle accounting adjustment we do
148 * when we go busy again does not account too much ticks.
149 */
150 if (ts->tick_stopped) {
03e0d461 151 touch_softlockup_watchdog_sched();
9e8f559b
FW
152 if (is_idle_task(current))
153 ts->idle_jiffies++;
411fe24e
FW
154 /*
155 * In case the current tick fired too early past its expected
156 * expiration, make sure we don't bypass the next clock reprogramming
157 * to the same deadline.
158 */
159 ts->next_tick = 0;
9e8f559b 160 }
94a57140 161#endif
9e8f559b
FW
162 update_process_times(user_mode(regs));
163 profile_tick(CPU_PROFILING);
164}
7809998a 165#endif
9e8f559b 166
c5bfece2 167#ifdef CONFIG_NO_HZ_FULL
460775df 168cpumask_var_t tick_nohz_full_mask;
73867dcd 169bool tick_nohz_full_running;
f009a7a7 170static atomic_t tick_dep_mask;
a831881b 171
f009a7a7 172static bool check_tick_dependency(atomic_t *dep)
d027d45d 173{
f009a7a7
FW
174 int val = atomic_read(dep);
175
176 if (val & TICK_DEP_MASK_POSIX_TIMER) {
e6e6cc22 177 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
f009a7a7 178 return true;
d027d45d
FW
179 }
180
f009a7a7 181 if (val & TICK_DEP_MASK_PERF_EVENTS) {
e6e6cc22 182 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
f009a7a7 183 return true;
d027d45d
FW
184 }
185
f009a7a7 186 if (val & TICK_DEP_MASK_SCHED) {
e6e6cc22 187 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
f009a7a7 188 return true;
d027d45d
FW
189 }
190
f009a7a7 191 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
e6e6cc22 192 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
f009a7a7
FW
193 return true;
194 }
195
196 return false;
d027d45d
FW
197}
198
57ccdf44 199static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
9014c45d 200{
ebf3adba 201 lockdep_assert_irqs_disabled();
9014c45d 202
57ccdf44
WL
203 if (unlikely(!cpu_online(cpu)))
204 return false;
205
f009a7a7 206 if (check_tick_dependency(&tick_dep_mask))
d027d45d 207 return false;
d027d45d 208
f009a7a7 209 if (check_tick_dependency(&ts->tick_dep_mask))
d027d45d 210 return false;
d027d45d 211
f009a7a7 212 if (check_tick_dependency(&current->tick_dep_mask))
d027d45d 213 return false;
d027d45d 214
f009a7a7 215 if (check_tick_dependency(&current->signal->tick_dep_mask))
d027d45d 216 return false;
d027d45d 217
9014c45d
FW
218 return true;
219}
220
d027d45d 221static void nohz_full_kick_func(struct irq_work *work)
76c24fb0 222{
73738a95 223 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
76c24fb0
FW
224}
225
226static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
d027d45d 227 .func = nohz_full_kick_func,
76c24fb0
FW
228};
229
40bea039
FW
230/*
231 * Kick this CPU if it's full dynticks in order to force it to
232 * re-evaluate its dependency on the tick and restart it if necessary.
233 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
234 * is NMI safe.
235 */
555e0c1e 236static void tick_nohz_full_kick(void)
40bea039
FW
237{
238 if (!tick_nohz_full_cpu(smp_processor_id()))
239 return;
240
56e4dea8 241 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
40bea039
FW
242}
243
76c24fb0 244/*
3d36aebc 245 * Kick the CPU if it's full dynticks in order to force it to
76c24fb0
FW
246 * re-evaluate its dependency on the tick and restart it if necessary.
247 */
3d36aebc 248void tick_nohz_full_kick_cpu(int cpu)
76c24fb0 249{
3d36aebc
FW
250 if (!tick_nohz_full_cpu(cpu))
251 return;
252
253 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
76c24fb0
FW
254}
255
76c24fb0
FW
256/*
257 * Kick all full dynticks CPUs in order to force these to re-evaluate
258 * their dependency on the tick and restart it if necessary.
259 */
b7878300 260static void tick_nohz_full_kick_all(void)
76c24fb0 261{
8537bb95
FW
262 int cpu;
263
73867dcd 264 if (!tick_nohz_full_running)
76c24fb0
FW
265 return;
266
267 preempt_disable();
8537bb95
FW
268 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
269 tick_nohz_full_kick_cpu(cpu);
76c24fb0
FW
270 preempt_enable();
271}
272
f009a7a7 273static void tick_nohz_dep_set_all(atomic_t *dep,
d027d45d
FW
274 enum tick_dep_bits bit)
275{
f009a7a7 276 int prev;
d027d45d 277
a1cc5bcf 278 prev = atomic_fetch_or(BIT(bit), dep);
d027d45d
FW
279 if (!prev)
280 tick_nohz_full_kick_all();
281}
282
283/*
284 * Set a global tick dependency. Used by perf events that rely on freq and
285 * by unstable clock.
286 */
287void tick_nohz_dep_set(enum tick_dep_bits bit)
288{
289 tick_nohz_dep_set_all(&tick_dep_mask, bit);
290}
291
292void tick_nohz_dep_clear(enum tick_dep_bits bit)
293{
f009a7a7 294 atomic_andnot(BIT(bit), &tick_dep_mask);
d027d45d
FW
295}
296
297/*
298 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299 * manage events throttling.
300 */
301void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
302{
f009a7a7 303 int prev;
d027d45d
FW
304 struct tick_sched *ts;
305
306 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
307
a1cc5bcf 308 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
309 if (!prev) {
310 preempt_disable();
311 /* Perf needs local kick that is NMI safe */
312 if (cpu == smp_processor_id()) {
313 tick_nohz_full_kick();
314 } else {
315 /* Remote irq work not NMI-safe */
316 if (!WARN_ON_ONCE(in_nmi()))
317 tick_nohz_full_kick_cpu(cpu);
318 }
319 preempt_enable();
320 }
321}
322
323void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
324{
325 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
326
f009a7a7 327 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
328}
329
330/*
331 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
332 * per task timers.
333 */
334void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
335{
336 /*
337 * We could optimize this with just kicking the target running the task
338 * if that noise matters for nohz full users.
339 */
340 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
341}
342
343void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
344{
f009a7a7 345 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
d027d45d
FW
346}
347
348/*
349 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350 * per process timers.
351 */
352void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
353{
354 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
355}
356
357void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358{
f009a7a7 359 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
d027d45d
FW
360}
361
99e5ada9
FW
362/*
363 * Re-evaluate the need for the tick as we switch the current task.
364 * It might need the tick due to per task/process properties:
0de7611a 365 * perf events, posix CPU timers, ...
99e5ada9 366 */
de734f89 367void __tick_nohz_task_switch(void)
99e5ada9
FW
368{
369 unsigned long flags;
d027d45d 370 struct tick_sched *ts;
99e5ada9 371
99e5ada9
FW
372 local_irq_save(flags);
373
6296ace4
LZ
374 if (!tick_nohz_full_cpu(smp_processor_id()))
375 goto out;
376
d027d45d 377 ts = this_cpu_ptr(&tick_cpu_sched);
99e5ada9 378
d027d45d 379 if (ts->tick_stopped) {
f009a7a7
FW
380 if (atomic_read(&current->tick_dep_mask) ||
381 atomic_read(&current->signal->tick_dep_mask))
d027d45d
FW
382 tick_nohz_full_kick();
383 }
6296ace4 384out:
99e5ada9
FW
385 local_irq_restore(flags);
386}
387
6f1982fe
FW
388/* Get the boot-time nohz CPU list from the kernel parameters. */
389void __init tick_nohz_full_setup(cpumask_var_t cpumask)
a831881b 390{
73867dcd 391 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
6f1982fe 392 cpumask_copy(tick_nohz_full_mask, cpumask);
73867dcd 393 tick_nohz_full_running = true;
a831881b 394}
a831881b 395
31eff243 396static int tick_nohz_cpu_down(unsigned int cpu)
a382bf93 397{
31eff243
SAS
398 /*
399 * The boot CPU handles housekeeping duty (unbound timers,
400 * workqueues, timekeeping, ...) on behalf of full dynticks
401 * CPUs. It must remain online when nohz full is enabled.
402 */
403 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
404 return -EBUSY;
405 return 0;
a382bf93
FW
406}
407
f98823ac
FW
408static int tick_nohz_init_all(void)
409{
410 int err = -1;
411
412#ifdef CONFIG_NO_HZ_FULL_ALL
73867dcd 413 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
4327b15f 414 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
c0f489d2
PM
415 return err;
416 }
f98823ac 417 err = 0;
73867dcd 418 cpumask_setall(tick_nohz_full_mask);
73867dcd 419 tick_nohz_full_running = true;
f98823ac
FW
420#endif
421 return err;
422}
423
d1e43fa5 424void __init tick_nohz_init(void)
a831881b 425{
31eff243 426 int cpu, ret;
d1e43fa5 427
73867dcd 428 if (!tick_nohz_full_running) {
f98823ac
FW
429 if (tick_nohz_init_all() < 0)
430 return;
431 }
d1e43fa5 432
9b01f5bf
FW
433 /*
434 * Full dynticks uses irq work to drive the tick rescheduling on safe
435 * locking contexts. But then we need irq work to raise its own
436 * interrupts to avoid circular dependency on the tick
437 */
438 if (!arch_irq_work_has_interrupt()) {
a395d6a7 439 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
9b01f5bf 440 cpumask_clear(tick_nohz_full_mask);
9b01f5bf
FW
441 tick_nohz_full_running = false;
442 return;
443 }
444
4327b15f
FW
445 cpu = smp_processor_id();
446
447 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
a395d6a7
JP
448 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
449 cpu);
4327b15f
FW
450 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
451 }
452
73867dcd 453 for_each_cpu(cpu, tick_nohz_full_mask)
2e709338
FW
454 context_tracking_cpu_set(cpu);
455
31eff243
SAS
456 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
457 "kernel/nohz:predown", NULL,
458 tick_nohz_cpu_down);
459 WARN_ON(ret < 0);
ffda22c1
TH
460 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
461 cpumask_pr_args(tick_nohz_full_mask));
a831881b 462}
a831881b
FW
463#endif
464
79bf2bb3
TG
465/*
466 * NOHZ - aka dynamic tick functionality
467 */
3451d024 468#ifdef CONFIG_NO_HZ_COMMON
79bf2bb3
TG
469/*
470 * NO HZ enabled ?
471 */
4cc7ecb7 472bool tick_nohz_enabled __read_mostly = true;
bc7a34b8 473unsigned long tick_nohz_active __read_mostly;
79bf2bb3
TG
474/*
475 * Enable / Disable tickless mode
476 */
477static int __init setup_tick_nohz(char *str)
478{
4cc7ecb7 479 return (kstrtobool(str, &tick_nohz_enabled) == 0);
79bf2bb3
TG
480}
481
482__setup("nohz=", setup_tick_nohz);
483
c1797baf
TG
484int tick_nohz_tick_stopped(void)
485{
486 return __this_cpu_read(tick_cpu_sched.tick_stopped);
487}
488
79bf2bb3
TG
489/**
490 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
491 *
492 * Called from interrupt entry when the CPU was idle
493 *
494 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
495 * must be updated. Otherwise an interrupt handler could use a stale jiffy
0de7611a
IM
496 * value. We do this unconditionally on any CPU, as we don't know whether the
497 * CPU, which has the update task assigned is in a long sleep.
79bf2bb3 498 */
eed3b9cf 499static void tick_nohz_update_jiffies(ktime_t now)
79bf2bb3 500{
79bf2bb3 501 unsigned long flags;
79bf2bb3 502
e8fcaa5c 503 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
79bf2bb3
TG
504
505 local_irq_save(flags);
506 tick_do_update_jiffies64(now);
507 local_irq_restore(flags);
02ff3755 508
03e0d461 509 touch_softlockup_watchdog_sched();
79bf2bb3
TG
510}
511
595aac48 512/*
0de7611a 513 * Updates the per-CPU time idle statistics counters
595aac48 514 */
8d63bf94 515static void
8c215bd3 516update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
6378ddb5 517{
eed3b9cf 518 ktime_t delta;
6378ddb5 519
595aac48
AV
520 if (ts->idle_active) {
521 delta = ktime_sub(now, ts->idle_entrytime);
8c215bd3 522 if (nr_iowait_cpu(cpu) > 0)
0224cf4c 523 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
6beea0cd
MH
524 else
525 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
8c7b09f4 526 ts->idle_entrytime = now;
595aac48 527 }
8d63bf94 528
e0e37c20 529 if (last_update_time)
8d63bf94
AV
530 *last_update_time = ktime_to_us(now);
531
595aac48
AV
532}
533
e8fcaa5c 534static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
595aac48 535{
e8fcaa5c 536 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
eed3b9cf 537 ts->idle_active = 0;
56c7426b 538
ac1e843f 539 sched_clock_idle_wakeup_event();
6378ddb5
VP
540}
541
e8fcaa5c 542static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
6378ddb5 543{
430ee881 544 ktime_t now = ktime_get();
595aac48 545
6378ddb5
VP
546 ts->idle_entrytime = now;
547 ts->idle_active = 1;
56c7426b 548 sched_clock_idle_sleep_event();
6378ddb5
VP
549 return now;
550}
551
b1f724c3 552/**
0de7611a 553 * get_cpu_idle_time_us - get the total idle time of a CPU
b1f724c3 554 * @cpu: CPU number to query
09a1d34f
MH
555 * @last_update_time: variable to store update time in. Do not update
556 * counters if NULL.
b1f724c3 557 *
6168f8ed 558 * Return the cumulative idle time (since boot) for a given
6beea0cd 559 * CPU, in microseconds.
b1f724c3
AV
560 *
561 * This time is measured via accounting rather than sampling,
562 * and is as accurate as ktime_get() is.
563 *
564 * This function returns -1 if NOHZ is not enabled.
565 */
6378ddb5
VP
566u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
567{
568 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 569 ktime_t now, idle;
6378ddb5 570
d689fe22 571 if (!tick_nohz_active)
8083e4ad 572 return -1;
573
09a1d34f
MH
574 now = ktime_get();
575 if (last_update_time) {
576 update_ts_time_stats(cpu, ts, now, last_update_time);
577 idle = ts->idle_sleeptime;
578 } else {
579 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
580 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
581
582 idle = ktime_add(ts->idle_sleeptime, delta);
583 } else {
584 idle = ts->idle_sleeptime;
585 }
586 }
587
588 return ktime_to_us(idle);
8083e4ad 589
6378ddb5 590}
8083e4ad 591EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
6378ddb5 592
6beea0cd 593/**
0de7611a 594 * get_cpu_iowait_time_us - get the total iowait time of a CPU
0224cf4c 595 * @cpu: CPU number to query
09a1d34f
MH
596 * @last_update_time: variable to store update time in. Do not update
597 * counters if NULL.
0224cf4c 598 *
6168f8ed 599 * Return the cumulative iowait time (since boot) for a given
0224cf4c
AV
600 * CPU, in microseconds.
601 *
602 * This time is measured via accounting rather than sampling,
603 * and is as accurate as ktime_get() is.
604 *
605 * This function returns -1 if NOHZ is not enabled.
606 */
607u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
608{
609 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 610 ktime_t now, iowait;
0224cf4c 611
d689fe22 612 if (!tick_nohz_active)
0224cf4c
AV
613 return -1;
614
09a1d34f
MH
615 now = ktime_get();
616 if (last_update_time) {
617 update_ts_time_stats(cpu, ts, now, last_update_time);
618 iowait = ts->iowait_sleeptime;
619 } else {
620 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
621 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
0224cf4c 622
09a1d34f
MH
623 iowait = ktime_add(ts->iowait_sleeptime, delta);
624 } else {
625 iowait = ts->iowait_sleeptime;
626 }
627 }
0224cf4c 628
09a1d34f 629 return ktime_to_us(iowait);
0224cf4c
AV
630}
631EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
632
0ff53d09
TG
633static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
634{
635 hrtimer_cancel(&ts->sched_timer);
636 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
637
638 /* Forward the time to expire in the future */
639 hrtimer_forward(&ts->sched_timer, now, tick_period);
640
641 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
642 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
643 else
644 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
411fe24e
FW
645
646 /*
647 * Reset to make sure next tick stop doesn't get fooled by past
648 * cached clock deadline.
649 */
650 ts->next_tick = 0;
0ff53d09
TG
651}
652
5d62c183
TG
653static inline bool local_timer_softirq_pending(void)
654{
655 return local_softirq_pending() & TIMER_SOFTIRQ;
656}
657
84bf1bcc
FW
658static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
659 ktime_t now, int cpu)
79bf2bb3 660{
22127e93 661 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
c1ad348b
TG
662 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
663 unsigned long seq, basejiff;
664 ktime_t tick;
855a0fc3 665
79bf2bb3
TG
666 /* Read jiffies and the time when jiffies were updated last */
667 do {
d6ad4187 668 seq = read_seqbegin(&jiffies_lock);
2456e855 669 basemono = last_jiffies_update;
c1ad348b 670 basejiff = jiffies;
d6ad4187 671 } while (read_seqretry(&jiffies_lock, seq));
c1ad348b 672 ts->last_jiffies = basejiff;
79bf2bb3 673
5d62c183
TG
674 /*
675 * Keep the periodic tick, when RCU, architecture or irq_work
676 * requests it.
677 * Aside of that check whether the local timer softirq is
678 * pending. If so its a bad idea to call get_next_timer_interrupt()
679 * because there is an already expired timer, so it will request
680 * immeditate expiry, which rearms the hardware timer with a
681 * minimal delta which brings us back to this place
682 * immediately. Lather, rinse and repeat...
683 */
684 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
685 irq_work_needs_cpu() || local_timer_softirq_pending()) {
c1ad348b 686 next_tick = basemono + TICK_NSEC;
3c5d92a0 687 } else {
c1ad348b
TG
688 /*
689 * Get the next pending timer. If high resolution
690 * timers are enabled this only takes the timer wheel
691 * timers into account. If high resolution timers are
692 * disabled this also looks at the next expiring
693 * hrtimer.
694 */
695 next_tmr = get_next_timer_interrupt(basejiff, basemono);
696 ts->next_timer = next_tmr;
697 /* Take the next rcu event into account */
698 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
3c5d92a0 699 }
47aa8b6c 700
c1ad348b
TG
701 /*
702 * If the tick is due in the next period, keep it ticking or
82bbe34b 703 * force prod the timer.
c1ad348b
TG
704 */
705 delta = next_tick - basemono;
706 if (delta <= (u64)TICK_NSEC) {
a683f390
TG
707 /*
708 * Tell the timer code that the base is not idle, i.e. undo
709 * the effect of get_next_timer_interrupt():
710 */
711 timer_clear_idle();
82bbe34b
PZ
712 /*
713 * We've not stopped the tick yet, and there's a timer in the
714 * next period, so no point in stopping it either, bail.
715 */
f99973e1
FW
716 if (!ts->tick_stopped) {
717 tick = 0;
157d29e1
TG
718 goto out;
719 }
720 }
721
79bf2bb3 722 /*
0de7611a
IM
723 * If this CPU is the one which updates jiffies, then give up
724 * the assignment and let it be taken by the CPU which runs
725 * the tick timer next, which might be this CPU as well. If we
157d29e1
TG
726 * don't drop this here the jiffies might be stale and
727 * do_timer() never invoked. Keep track of the fact that it
0de7611a 728 * was the one which had the do_timer() duty last. If this CPU
157d29e1 729 * is the one which had the do_timer() duty last, we limit the
6168f8ed 730 * sleep time to the timekeeping max_deferment value.
c1ad348b 731 * Otherwise we can sleep as long as we want.
79bf2bb3 732 */
c1ad348b 733 delta = timekeeping_max_deferment();
157d29e1
TG
734 if (cpu == tick_do_timer_cpu) {
735 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
736 ts->do_timer_last = 1;
737 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
c1ad348b 738 delta = KTIME_MAX;
157d29e1
TG
739 ts->do_timer_last = 0;
740 } else if (!ts->do_timer_last) {
c1ad348b 741 delta = KTIME_MAX;
157d29e1 742 }
27185016 743
265f22a9 744#ifdef CONFIG_NO_HZ_FULL
c1ad348b 745 /* Limit the tick delta to the maximum scheduler deferment */
157d29e1 746 if (!ts->inidle)
c1ad348b 747 delta = min(delta, scheduler_tick_max_deferment());
265f22a9
FW
748#endif
749
c1ad348b
TG
750 /* Calculate the next expiry time */
751 if (delta < (KTIME_MAX - basemono))
752 expires = basemono + delta;
157d29e1 753 else
c1ad348b
TG
754 expires = KTIME_MAX;
755
756 expires = min_t(u64, expires, next_tick);
2456e855 757 tick = expires;
00147449 758
157d29e1 759 /* Skip reprogram of event if its not changed */
411fe24e
FW
760 if (ts->tick_stopped && (expires == ts->next_tick)) {
761 /* Sanity check: make sure clockevent is actually programmed */
d4af6d93 762 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
ce6cf9a1 763 goto out;
411fe24e
FW
764
765 WARN_ON_ONCE(1);
766 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
767 basemono, ts->next_tick, dev->next_event,
768 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
ce6cf9a1 769 }
84bf1bcc 770
157d29e1
TG
771 /*
772 * nohz_stop_sched_tick can be called several times before
773 * the nohz_restart_sched_tick is called. This happens when
774 * interrupts arrive which do not cause a reschedule. In the
775 * first call we save the current tick time, so we can restart
776 * the scheduler tick in nohz_restart_sched_tick.
777 */
778 if (!ts->tick_stopped) {
3c85d6db 779 calc_load_nohz_start();
1f41906a 780 cpu_load_update_nohz_start();
62cb1188 781 quiet_vmstat();
d3ed7824 782
157d29e1
TG
783 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
784 ts->tick_stopped = 1;
e6e6cc22 785 trace_tick_stop(1, TICK_DEP_MASK_NONE);
157d29e1 786 }
eaad084b 787
411fe24e
FW
788 ts->next_tick = tick;
789
157d29e1 790 /*
c1ad348b
TG
791 * If the expiration time == KTIME_MAX, then we simply stop
792 * the tick timer.
157d29e1 793 */
c1ad348b 794 if (unlikely(expires == KTIME_MAX)) {
157d29e1
TG
795 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
796 hrtimer_cancel(&ts->sched_timer);
797 goto out;
79bf2bb3 798 }
0ff53d09 799
7c806763
TG
800 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
801 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
802 } else {
803 hrtimer_set_expires(&ts->sched_timer, tick);
c1ad348b 804 tick_program_event(tick, 1);
7c806763
TG
805 }
806
79bf2bb3 807out:
411fe24e
FW
808 /*
809 * Update the estimated sleep length until the next timer
810 * (not only the tick).
811 */
4f86d3a8 812 ts->sleep_length = ktime_sub(dev->next_event, now);
c1ad348b 813 return tick;
280f0677
FW
814}
815
1f41906a 816static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
59d2c7ca
FW
817{
818 /* Update jiffies first */
819 tick_do_update_jiffies64(now);
1f41906a 820 cpu_load_update_nohz_stop();
59d2c7ca 821
a683f390
TG
822 /*
823 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
824 * the clock forward checks in the enqueue path:
825 */
826 timer_clear_idle();
827
3c85d6db 828 calc_load_nohz_stop();
03e0d461 829 touch_softlockup_watchdog_sched();
59d2c7ca
FW
830 /*
831 * Cancel the scheduled timer and restore the tick
832 */
833 ts->tick_stopped = 0;
834 ts->idle_exittime = now;
835
836 tick_nohz_restart(ts, now);
837}
73738a95
FW
838
839static void tick_nohz_full_update_tick(struct tick_sched *ts)
5811d996
FW
840{
841#ifdef CONFIG_NO_HZ_FULL
e9a2eb40 842 int cpu = smp_processor_id();
5811d996 843
59449359 844 if (!tick_nohz_full_cpu(cpu))
e9a2eb40 845 return;
5811d996 846
e9a2eb40
AS
847 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
848 return;
5811d996 849
57ccdf44 850 if (can_stop_full_tick(cpu, ts))
73738a95
FW
851 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
852 else if (ts->tick_stopped)
1f41906a 853 tick_nohz_restart_sched_tick(ts, ktime_get());
5811d996
FW
854#endif
855}
856
5b39939a
FW
857static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
858{
859 /*
0de7611a 860 * If this CPU is offline and it is the one which updates
5b39939a 861 * jiffies, then give up the assignment and let it be taken by
0de7611a 862 * the CPU which runs the tick timer next. If we don't drop
5b39939a
FW
863 * this here the jiffies might be stale and do_timer() never
864 * invoked.
865 */
866 if (unlikely(!cpu_online(cpu))) {
867 if (cpu == tick_do_timer_cpu)
868 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
411fe24e
FW
869 /*
870 * Make sure the CPU doesn't get fooled by obsolete tick
871 * deadline if it comes back online later.
872 */
873 ts->next_tick = 0;
f7ea0fd6 874 return false;
5b39939a
FW
875 }
876
0e576acb 877 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
2456e855 878 ts->sleep_length = NSEC_PER_SEC / HZ;
5b39939a 879 return false;
0e576acb 880 }
5b39939a
FW
881
882 if (need_resched())
883 return false;
884
885 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
886 static int ratelimit;
887
803b0eba
PM
888 if (ratelimit < 10 &&
889 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
cfea7d7e
RV
890 pr_warn("NOHZ: local_softirq_pending %02x\n",
891 (unsigned int) local_softirq_pending());
5b39939a
FW
892 ratelimit++;
893 }
894 return false;
895 }
896
460775df 897 if (tick_nohz_full_enabled()) {
a382bf93
FW
898 /*
899 * Keep the tick alive to guarantee timekeeping progression
900 * if there are full dynticks CPUs around
901 */
902 if (tick_do_timer_cpu == cpu)
903 return false;
904 /*
905 * Boot safety: make sure the timekeeping duty has been
906 * assigned before entering dyntick-idle mode,
907 */
908 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
909 return false;
910 }
911
5b39939a
FW
912 return true;
913}
914
19f5f736
FW
915static void __tick_nohz_idle_enter(struct tick_sched *ts)
916{
84bf1bcc 917 ktime_t now, expires;
5b39939a 918 int cpu = smp_processor_id();
19f5f736 919
08d07259
WL
920 now = tick_nohz_start_idle(ts);
921
5b39939a
FW
922 if (can_stop_idle_tick(cpu, ts)) {
923 int was_stopped = ts->tick_stopped;
924
925 ts->idle_calls++;
84bf1bcc
FW
926
927 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
2456e855 928 if (expires > 0LL) {
84bf1bcc
FW
929 ts->idle_sleeps++;
930 ts->idle_expires = expires;
931 }
5b39939a 932
a0db971e 933 if (!was_stopped && ts->tick_stopped) {
5b39939a 934 ts->idle_jiffies = ts->last_jiffies;
a0db971e
FW
935 nohz_balance_enter_idle(cpu);
936 }
5b39939a 937 }
280f0677
FW
938}
939
940/**
941 * tick_nohz_idle_enter - stop the idle tick from the idle task
942 *
943 * When the next event is more than a tick into the future, stop the idle tick
944 * Called when we start the idle loop.
2bbb6817 945 *
1268fbc7 946 * The arch is responsible of calling:
2bbb6817
FW
947 *
948 * - rcu_idle_enter() after its last use of RCU before the CPU is put
949 * to sleep.
950 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
280f0677 951 */
1268fbc7 952void tick_nohz_idle_enter(void)
280f0677
FW
953{
954 struct tick_sched *ts;
955
ebf3adba 956 lockdep_assert_irqs_enabled();
0db49b72 957 /*
0de7611a
IM
958 * Update the idle state in the scheduler domain hierarchy
959 * when tick_nohz_stop_sched_tick() is called from the idle loop.
960 * State will be updated to busy during the first busy tick after
961 * exiting idle.
962 */
0db49b72
LT
963 set_cpu_sd_state_idle();
964
1268fbc7
FW
965 local_irq_disable();
966
22127e93 967 ts = this_cpu_ptr(&tick_cpu_sched);
280f0677 968 ts->inidle = 1;
19f5f736 969 __tick_nohz_idle_enter(ts);
1268fbc7
FW
970
971 local_irq_enable();
280f0677
FW
972}
973
974/**
975 * tick_nohz_irq_exit - update next tick event from interrupt exit
976 *
977 * When an interrupt fires while we are idle and it doesn't cause
978 * a reschedule, it may still add, modify or delete a timer, enqueue
979 * an RCU callback, etc...
980 * So we need to re-calculate and reprogram the next tick event.
981 */
982void tick_nohz_irq_exit(void)
983{
22127e93 984 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
280f0677 985
14851912 986 if (ts->inidle)
5811d996 987 __tick_nohz_idle_enter(ts);
14851912 988 else
73738a95 989 tick_nohz_full_update_tick(ts);
79bf2bb3
TG
990}
991
4f86d3a8
LB
992/**
993 * tick_nohz_get_sleep_length - return the length of the current sleep
994 *
995 * Called from power state control code with interrupts disabled
996 */
997ktime_t tick_nohz_get_sleep_length(void)
998{
22127e93 999 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
4f86d3a8
LB
1000
1001 return ts->sleep_length;
1002}
1003
466a2b42
JF
1004/**
1005 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1006 * for a particular CPU.
1007 *
1008 * Called from the schedutil frequency scaling governor in scheduler context.
1009 */
1010unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1011{
1012 struct tick_sched *ts = tick_get_tick_sched(cpu);
1013
1014 return ts->idle_calls;
1015}
1016
b7eaf1aa
RW
1017/**
1018 * tick_nohz_get_idle_calls - return the current idle calls counter value
1019 *
1020 * Called from the schedutil frequency scaling governor in scheduler context.
1021 */
1022unsigned long tick_nohz_get_idle_calls(void)
1023{
1024 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1025
1026 return ts->idle_calls;
1027}
1028
2ac0d98f
FW
1029static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1030{
3f4724ea 1031#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
2ac0d98f 1032 unsigned long ticks;
3f4724ea 1033
55dbdcfa 1034 if (vtime_accounting_cpu_enabled())
3f4724ea 1035 return;
79bf2bb3
TG
1036 /*
1037 * We stopped the tick in idle. Update process times would miss the
1038 * time we slept as update_process_times does only a 1 tick
1039 * accounting. Enforce that this is accounted to idle !
1040 */
1041 ticks = jiffies - ts->idle_jiffies;
1042 /*
1043 * We might be one off. Do not randomly account a huge number of ticks!
1044 */
79741dd3
MS
1045 if (ticks && ticks < LONG_MAX)
1046 account_idle_ticks(ticks);
1047#endif
19f5f736
FW
1048}
1049
79bf2bb3 1050/**
280f0677 1051 * tick_nohz_idle_exit - restart the idle tick from the idle task
79bf2bb3
TG
1052 *
1053 * Restart the idle tick when the CPU is woken up from idle
280f0677
FW
1054 * This also exit the RCU extended quiescent state. The CPU
1055 * can use RCU again after this function is called.
79bf2bb3 1056 */
280f0677 1057void tick_nohz_idle_exit(void)
79bf2bb3 1058{
4a32fea9 1059 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
6378ddb5 1060 ktime_t now;
79bf2bb3 1061
6378ddb5 1062 local_irq_disable();
2bbb6817 1063
15f827be
FW
1064 WARN_ON_ONCE(!ts->inidle);
1065
1066 ts->inidle = 0;
1067
1068 if (ts->idle_active || ts->tick_stopped)
eed3b9cf
MS
1069 now = ktime_get();
1070
1071 if (ts->idle_active)
e8fcaa5c 1072 tick_nohz_stop_idle(ts, now);
6378ddb5 1073
2ac0d98f 1074 if (ts->tick_stopped) {
1f41906a 1075 tick_nohz_restart_sched_tick(ts, now);
2ac0d98f 1076 tick_nohz_account_idle_ticks(ts);
6378ddb5 1077 }
79bf2bb3 1078
79bf2bb3
TG
1079 local_irq_enable();
1080}
1081
79bf2bb3
TG
1082/*
1083 * The nohz low res interrupt handler
1084 */
1085static void tick_nohz_handler(struct clock_event_device *dev)
1086{
22127e93 1087 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1088 struct pt_regs *regs = get_irq_regs();
1089 ktime_t now = ktime_get();
1090
2456e855 1091 dev->next_event = KTIME_MAX;
79bf2bb3 1092
5bb96226 1093 tick_sched_do_timer(now);
9e8f559b 1094 tick_sched_handle(ts, regs);
79bf2bb3 1095
b5e995e6
VK
1096 /* No need to reprogram if we are running tickless */
1097 if (unlikely(ts->tick_stopped))
1098 return;
1099
0ff53d09
TG
1100 hrtimer_forward(&ts->sched_timer, now, tick_period);
1101 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
79bf2bb3
TG
1102}
1103
bc7a34b8
TG
1104static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1105{
1106 if (!tick_nohz_enabled)
1107 return;
1108 ts->nohz_mode = mode;
1109 /* One update is enough */
1110 if (!test_and_set_bit(0, &tick_nohz_active))
683be13a 1111 timers_update_migration(true);
bc7a34b8
TG
1112}
1113
79bf2bb3
TG
1114/**
1115 * tick_nohz_switch_to_nohz - switch to nohz mode
1116 */
1117static void tick_nohz_switch_to_nohz(void)
1118{
22127e93 1119 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1120 ktime_t next;
1121
27630532 1122 if (!tick_nohz_enabled)
79bf2bb3
TG
1123 return;
1124
6b442bc8 1125 if (tick_switch_to_oneshot(tick_nohz_handler))
79bf2bb3 1126 return;
6b442bc8 1127
79bf2bb3
TG
1128 /*
1129 * Recycle the hrtimer in ts, so we can share the
1130 * hrtimer_forward with the highres code.
1131 */
1132 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1133 /* Get the next period */
1134 next = tick_init_jiffy_update();
1135
0ff53d09 1136 hrtimer_set_expires(&ts->sched_timer, next);
1ca8ec53
WL
1137 hrtimer_forward_now(&ts->sched_timer, tick_period);
1138 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
bc7a34b8 1139 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
79bf2bb3
TG
1140}
1141
5acac1be 1142static inline void tick_nohz_irq_enter(void)
eed3b9cf 1143{
4a32fea9 1144 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
eed3b9cf
MS
1145 ktime_t now;
1146
1147 if (!ts->idle_active && !ts->tick_stopped)
1148 return;
1149 now = ktime_get();
1150 if (ts->idle_active)
e8fcaa5c 1151 tick_nohz_stop_idle(ts, now);
ff006732 1152 if (ts->tick_stopped)
eed3b9cf 1153 tick_nohz_update_jiffies(now);
eed3b9cf
MS
1154}
1155
79bf2bb3
TG
1156#else
1157
1158static inline void tick_nohz_switch_to_nohz(void) { }
5acac1be 1159static inline void tick_nohz_irq_enter(void) { }
bc7a34b8 1160static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
79bf2bb3 1161
3451d024 1162#endif /* CONFIG_NO_HZ_COMMON */
79bf2bb3 1163
719254fa
TG
1164/*
1165 * Called from irq_enter to notify about the possible interruption of idle()
1166 */
5acac1be 1167void tick_irq_enter(void)
719254fa 1168{
e8fcaa5c 1169 tick_check_oneshot_broadcast_this_cpu();
5acac1be 1170 tick_nohz_irq_enter();
719254fa
TG
1171}
1172
79bf2bb3
TG
1173/*
1174 * High resolution timer specific code
1175 */
1176#ifdef CONFIG_HIGH_RES_TIMERS
1177/*
4c9dc641 1178 * We rearm the timer until we get disabled by the idle code.
351f181f 1179 * Called with interrupts disabled.
79bf2bb3
TG
1180 */
1181static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1182{
1183 struct tick_sched *ts =
1184 container_of(timer, struct tick_sched, sched_timer);
79bf2bb3
TG
1185 struct pt_regs *regs = get_irq_regs();
1186 ktime_t now = ktime_get();
d3ed7824 1187
5bb96226 1188 tick_sched_do_timer(now);
79bf2bb3
TG
1189
1190 /*
1191 * Do not call, when we are not in irq context and have
1192 * no valid regs pointer
1193 */
9e8f559b
FW
1194 if (regs)
1195 tick_sched_handle(ts, regs);
7c259045
FW
1196 else
1197 ts->next_tick = 0;
79bf2bb3 1198
2a16fc93
VK
1199 /* No need to reprogram if we are in idle or full dynticks mode */
1200 if (unlikely(ts->tick_stopped))
1201 return HRTIMER_NORESTART;
1202
79bf2bb3
TG
1203 hrtimer_forward(timer, now, tick_period);
1204
1205 return HRTIMER_RESTART;
1206}
1207
5307c955
MG
1208static int sched_skew_tick;
1209
62cf20b3
TG
1210static int __init skew_tick(char *str)
1211{
1212 get_option(&str, &sched_skew_tick);
1213
1214 return 0;
1215}
1216early_param("skew_tick", skew_tick);
1217
79bf2bb3
TG
1218/**
1219 * tick_setup_sched_timer - setup the tick emulation timer
1220 */
1221void tick_setup_sched_timer(void)
1222{
22127e93 1223 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1224 ktime_t now = ktime_get();
1225
1226 /*
1227 * Emulate tick processing via per-CPU hrtimers:
1228 */
1229 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1230 ts->sched_timer.function = tick_sched_timer;
79bf2bb3 1231
0de7611a 1232 /* Get the next period (per-CPU) */
cc584b21 1233 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
79bf2bb3 1234
9c3f9e28 1235 /* Offset the tick to avert jiffies_lock contention. */
5307c955
MG
1236 if (sched_skew_tick) {
1237 u64 offset = ktime_to_ns(tick_period) >> 1;
1238 do_div(offset, num_possible_cpus());
1239 offset *= smp_processor_id();
1240 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1241 }
1242
afc08b15
TG
1243 hrtimer_forward(&ts->sched_timer, now, tick_period);
1244 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
bc7a34b8 1245 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
79bf2bb3 1246}
3c4fbe5e 1247#endif /* HIGH_RES_TIMERS */
79bf2bb3 1248
3451d024 1249#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1250void tick_cancel_sched_timer(int cpu)
1251{
1252 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1253
3c4fbe5e 1254# ifdef CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1255 if (ts->sched_timer.base)
1256 hrtimer_cancel(&ts->sched_timer);
3c4fbe5e 1257# endif
a7901766 1258
4b0c0f29 1259 memset(ts, 0, sizeof(*ts));
79bf2bb3 1260}
3c4fbe5e 1261#endif
79bf2bb3
TG
1262
1263/**
1264 * Async notification about clocksource changes
1265 */
1266void tick_clock_notify(void)
1267{
1268 int cpu;
1269
1270 for_each_possible_cpu(cpu)
1271 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1272}
1273
1274/*
1275 * Async notification about clock event changes
1276 */
1277void tick_oneshot_notify(void)
1278{
22127e93 1279 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1280
1281 set_bit(0, &ts->check_clocks);
1282}
1283
1284/**
1285 * Check, if a change happened, which makes oneshot possible.
1286 *
1287 * Called cyclic from the hrtimer softirq (driven by the timer
1288 * softirq) allow_nohz signals, that we can switch into low-res nohz
1289 * mode, because high resolution timers are disabled (either compile
6b442bc8 1290 * or runtime). Called with interrupts disabled.
79bf2bb3
TG
1291 */
1292int tick_check_oneshot_change(int allow_nohz)
1293{
22127e93 1294 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1295
1296 if (!test_and_clear_bit(0, &ts->check_clocks))
1297 return 0;
1298
1299 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1300 return 0;
1301
cf4fc6cb 1302 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
79bf2bb3
TG
1303 return 0;
1304
1305 if (!allow_nohz)
1306 return 1;
1307
1308 tick_nohz_switch_to_nohz();
1309 return 0;
1310}