]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/tick-sched.c
tick/nohz: Use WARN_ON_ONCE() to prevent console saturation
[mirror_ubuntu-jammy-kernel.git] / kernel / time / tick-sched.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
79bf2bb3 2/*
79bf2bb3
TG
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
79bf2bb3
TG
10 */
11#include <linux/cpu.h>
12#include <linux/err.h>
13#include <linux/hrtimer.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/percpu.h>
38b8d208 17#include <linux/nmi.h>
79bf2bb3 18#include <linux/profile.h>
3f07c014 19#include <linux/sched/signal.h>
e6017571 20#include <linux/sched/clock.h>
03441a34 21#include <linux/sched/stat.h>
370c9135 22#include <linux/sched/nohz.h>
896b969e 23#include <linux/sched/loadavg.h>
8083e4ad 24#include <linux/module.h>
00b42959 25#include <linux/irq_work.h>
9014c45d 26#include <linux/posix-timers.h>
2e709338 27#include <linux/context_tracking.h>
62cb1188 28#include <linux/mm.h>
79bf2bb3 29
9e203bcc
DM
30#include <asm/irq_regs.h>
31
79bf2bb3
TG
32#include "tick-internal.h"
33
cb41a290
FW
34#include <trace/events/timer.h>
35
79bf2bb3 36/*
0de7611a 37 * Per-CPU nohz control structure
79bf2bb3 38 */
c1797baf 39static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
79bf2bb3 40
289f480a
IM
41struct tick_sched *tick_get_tick_sched(int cpu)
42{
43 return &per_cpu(tick_cpu_sched, cpu);
44}
45
7809998a
AB
46#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47/*
c398960c
TG
48 * The time, when the last jiffy update happened. Write access must hold
49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50 * consistent view of jiffies and last_jiffies_update.
7809998a
AB
51 */
52static ktime_t last_jiffies_update;
53
79bf2bb3
TG
54/*
55 * Must be called with interrupts disabled !
56 */
57static void tick_do_update_jiffies64(ktime_t now)
58{
7a35bf2a 59 unsigned long ticks = 1;
aa3b66f4 60 ktime_t delta, nextp;
79bf2bb3 61
7a14ce1d 62 /*
aa3b66f4
TG
63 * 64bit can do a quick check without holding jiffies lock and
64 * without looking at the sequence count. The smp_load_acquire()
372acbba
TG
65 * pairs with the update done later in this function.
66 *
aa3b66f4
TG
67 * 32bit cannot do that because the store of tick_next_period
68 * consists of two 32bit stores and the first store could move it
69 * to a random point in the future.
7a14ce1d 70 */
aa3b66f4
TG
71 if (IS_ENABLED(CONFIG_64BIT)) {
72 if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 return;
74 } else {
75 unsigned int seq;
76
77 /*
78 * Avoid contention on jiffies_lock and protect the quick
79 * check with the sequence count.
80 */
81 do {
82 seq = read_seqcount_begin(&jiffies_seq);
83 nextp = tick_next_period;
84 } while (read_seqcount_retry(&jiffies_seq, seq));
85
86 if (ktime_before(now, nextp))
87 return;
88 }
7a14ce1d 89
aa3b66f4 90 /* Quick check failed, i.e. update is required. */
e5d4d175 91 raw_spin_lock(&jiffies_lock);
aa3b66f4
TG
92 /*
93 * Reevaluate with the lock held. Another CPU might have done the
94 * update already.
95 */
94ad2e3c 96 if (ktime_before(now, tick_next_period)) {
e5d4d175 97 raw_spin_unlock(&jiffies_lock);
03e6bdc5 98 return;
79bf2bb3 99 }
94ad2e3c
YY
100
101 write_seqcount_begin(&jiffies_seq);
102
94ad2e3c 103 delta = ktime_sub(now, tick_next_period);
b9965449 104 if (unlikely(delta >= TICK_NSEC)) {
94ad2e3c 105 /* Slow path for long idle sleep times */
b9965449 106 s64 incr = TICK_NSEC;
94ad2e3c 107
7a35bf2a 108 ticks += ktime_divns(delta, incr);
94ad2e3c
YY
109
110 last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 incr * ticks);
7a35bf2a 112 } else {
b9965449
TG
113 last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 TICK_NSEC);
94ad2e3c
YY
115 }
116
896b969e
YY
117 /* Advance jiffies to complete the jiffies_seq protected job */
118 jiffies_64 += ticks;
94ad2e3c
YY
119
120 /*
aa3b66f4 121 * Keep the tick_next_period variable up to date.
94ad2e3c 122 */
aa3b66f4
TG
123 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124
125 if (IS_ENABLED(CONFIG_64BIT)) {
126 /*
127 * Pairs with smp_load_acquire() in the lockless quick
128 * check above and ensures that the update to jiffies_64 is
129 * not reordered vs. the store to tick_next_period, neither
130 * by the compiler nor by the CPU.
131 */
132 smp_store_release(&tick_next_period, nextp);
133 } else {
134 /*
135 * A plain store is good enough on 32bit as the quick check
136 * above is protected by the sequence count.
137 */
138 tick_next_period = nextp;
139 }
94ad2e3c 140
896b969e
YY
141 /*
142 * Release the sequence count. calc_global_load() below is not
143 * protected by it, but jiffies_lock needs to be held to prevent
144 * concurrent invocations.
145 */
e5d4d175 146 write_seqcount_end(&jiffies_seq);
896b969e
YY
147
148 calc_global_load();
149
e5d4d175 150 raw_spin_unlock(&jiffies_lock);
47a1b796 151 update_wall_time();
79bf2bb3
TG
152}
153
154/*
155 * Initialize and return retrieve the jiffies update.
156 */
157static ktime_t tick_init_jiffy_update(void)
158{
159 ktime_t period;
160
e5d4d175
TG
161 raw_spin_lock(&jiffies_lock);
162 write_seqcount_begin(&jiffies_seq);
79bf2bb3 163 /* Did we start the jiffies update yet ? */
2456e855 164 if (last_jiffies_update == 0)
79bf2bb3
TG
165 last_jiffies_update = tick_next_period;
166 period = last_jiffies_update;
e5d4d175
TG
167 write_seqcount_end(&jiffies_seq);
168 raw_spin_unlock(&jiffies_lock);
79bf2bb3
TG
169 return period;
170}
171
ff7de620 172static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
5bb96226
FW
173{
174 int cpu = smp_processor_id();
175
3451d024 176#ifdef CONFIG_NO_HZ_COMMON
5bb96226
FW
177 /*
178 * Check if the do_timer duty was dropped. We don't care about
0de7611a
IM
179 * concurrency: This happens only when the CPU in charge went
180 * into a long sleep. If two CPUs happen to assign themselves to
5bb96226 181 * this duty, then the jiffies update is still serialized by
9c3f9e28 182 * jiffies_lock.
08ae95f4
NP
183 *
184 * If nohz_full is enabled, this should not happen because the
185 * tick_do_timer_cpu never relinquishes.
5bb96226 186 */
08ae95f4
NP
187 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
188#ifdef CONFIG_NO_HZ_FULL
f26af895 189 WARN_ON_ONCE(tick_nohz_full_running);
08ae95f4 190#endif
5bb96226 191 tick_do_timer_cpu = cpu;
08ae95f4 192 }
5bb96226
FW
193#endif
194
195 /* Check, if the jiffies need an update */
196 if (tick_do_timer_cpu == cpu)
197 tick_do_update_jiffies64(now);
ff7de620
RW
198
199 if (ts->inidle)
200 ts->got_idle_tick = 1;
5bb96226
FW
201}
202
9e8f559b
FW
203static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
204{
3451d024 205#ifdef CONFIG_NO_HZ_COMMON
9e8f559b
FW
206 /*
207 * When we are idle and the tick is stopped, we have to touch
208 * the watchdog as we might not schedule for a really long
209 * time. This happens on complete idle SMP systems while
210 * waiting on the login prompt. We also increment the "start of
211 * idle" jiffy stamp so the idle accounting adjustment we do
212 * when we go busy again does not account too much ticks.
213 */
214 if (ts->tick_stopped) {
03e0d461 215 touch_softlockup_watchdog_sched();
9e8f559b
FW
216 if (is_idle_task(current))
217 ts->idle_jiffies++;
411fe24e
FW
218 /*
219 * In case the current tick fired too early past its expected
220 * expiration, make sure we don't bypass the next clock reprogramming
221 * to the same deadline.
222 */
223 ts->next_tick = 0;
9e8f559b 224 }
94a57140 225#endif
9e8f559b
FW
226 update_process_times(user_mode(regs));
227 profile_tick(CPU_PROFILING);
228}
7809998a 229#endif
9e8f559b 230
c5bfece2 231#ifdef CONFIG_NO_HZ_FULL
460775df 232cpumask_var_t tick_nohz_full_mask;
f268c373 233EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
73867dcd 234bool tick_nohz_full_running;
ae9e557b 235EXPORT_SYMBOL_GPL(tick_nohz_full_running);
f009a7a7 236static atomic_t tick_dep_mask;
a831881b 237
f009a7a7 238static bool check_tick_dependency(atomic_t *dep)
d027d45d 239{
f009a7a7
FW
240 int val = atomic_read(dep);
241
242 if (val & TICK_DEP_MASK_POSIX_TIMER) {
e6e6cc22 243 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
f009a7a7 244 return true;
d027d45d
FW
245 }
246
f009a7a7 247 if (val & TICK_DEP_MASK_PERF_EVENTS) {
e6e6cc22 248 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
f009a7a7 249 return true;
d027d45d
FW
250 }
251
f009a7a7 252 if (val & TICK_DEP_MASK_SCHED) {
e6e6cc22 253 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
f009a7a7 254 return true;
d027d45d
FW
255 }
256
f009a7a7 257 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
e6e6cc22 258 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
f009a7a7
FW
259 return true;
260 }
261
01b4c399
FW
262 if (val & TICK_DEP_MASK_RCU) {
263 trace_tick_stop(0, TICK_DEP_MASK_RCU);
264 return true;
265 }
266
f009a7a7 267 return false;
d027d45d
FW
268}
269
57ccdf44 270static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
9014c45d 271{
ebf3adba 272 lockdep_assert_irqs_disabled();
9014c45d 273
57ccdf44
WL
274 if (unlikely(!cpu_online(cpu)))
275 return false;
276
f009a7a7 277 if (check_tick_dependency(&tick_dep_mask))
d027d45d 278 return false;
d027d45d 279
f009a7a7 280 if (check_tick_dependency(&ts->tick_dep_mask))
d027d45d 281 return false;
d027d45d 282
f009a7a7 283 if (check_tick_dependency(&current->tick_dep_mask))
d027d45d 284 return false;
d027d45d 285
f009a7a7 286 if (check_tick_dependency(&current->signal->tick_dep_mask))
d027d45d 287 return false;
d027d45d 288
9014c45d
FW
289 return true;
290}
291
d027d45d 292static void nohz_full_kick_func(struct irq_work *work)
76c24fb0 293{
73738a95 294 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
76c24fb0
FW
295}
296
7a9f50a0
PZ
297static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
298 IRQ_WORK_INIT_HARD(nohz_full_kick_func);
76c24fb0 299
40bea039
FW
300/*
301 * Kick this CPU if it's full dynticks in order to force it to
302 * re-evaluate its dependency on the tick and restart it if necessary.
303 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
304 * is NMI safe.
305 */
555e0c1e 306static void tick_nohz_full_kick(void)
40bea039
FW
307{
308 if (!tick_nohz_full_cpu(smp_processor_id()))
309 return;
310
56e4dea8 311 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
40bea039
FW
312}
313
76c24fb0 314/*
3d36aebc 315 * Kick the CPU if it's full dynticks in order to force it to
76c24fb0
FW
316 * re-evaluate its dependency on the tick and restart it if necessary.
317 */
3d36aebc 318void tick_nohz_full_kick_cpu(int cpu)
76c24fb0 319{
3d36aebc
FW
320 if (!tick_nohz_full_cpu(cpu))
321 return;
322
323 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
76c24fb0
FW
324}
325
29721b85
FW
326static void tick_nohz_kick_task(struct task_struct *tsk)
327{
a1dfb631
MT
328 int cpu;
329
330 /*
331 * If the task is not running, run_posix_cpu_timers()
332 * has nothing to elapse, IPI can then be spared.
333 *
334 * activate_task() STORE p->tick_dep_mask
335 * STORE p->on_rq
336 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
337 * LOCK rq->lock LOAD p->on_rq
338 * smp_mb__after_spin_lock()
339 * tick_nohz_task_switch()
340 * LOAD p->tick_dep_mask
341 */
342 if (!sched_task_on_rq(tsk))
343 return;
29721b85
FW
344
345 /*
346 * If the task concurrently migrates to another CPU,
347 * we guarantee it sees the new tick dependency upon
348 * schedule.
349 *
29721b85
FW
350 * set_task_cpu(p, cpu);
351 * STORE p->cpu = @cpu
352 * __schedule() (switch to task 'p')
353 * LOCK rq->lock
354 * smp_mb__after_spin_lock() STORE p->tick_dep_mask
355 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
356 * LOAD p->tick_dep_mask LOAD p->cpu
357 */
a1dfb631 358 cpu = task_cpu(tsk);
29721b85
FW
359
360 preempt_disable();
361 if (cpu_online(cpu))
362 tick_nohz_full_kick_cpu(cpu);
363 preempt_enable();
364}
365
76c24fb0
FW
366/*
367 * Kick all full dynticks CPUs in order to force these to re-evaluate
368 * their dependency on the tick and restart it if necessary.
369 */
b7878300 370static void tick_nohz_full_kick_all(void)
76c24fb0 371{
8537bb95
FW
372 int cpu;
373
73867dcd 374 if (!tick_nohz_full_running)
76c24fb0
FW
375 return;
376
377 preempt_disable();
8537bb95
FW
378 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
379 tick_nohz_full_kick_cpu(cpu);
76c24fb0
FW
380 preempt_enable();
381}
382
f009a7a7 383static void tick_nohz_dep_set_all(atomic_t *dep,
d027d45d
FW
384 enum tick_dep_bits bit)
385{
f009a7a7 386 int prev;
d027d45d 387
a1cc5bcf 388 prev = atomic_fetch_or(BIT(bit), dep);
d027d45d
FW
389 if (!prev)
390 tick_nohz_full_kick_all();
391}
392
393/*
394 * Set a global tick dependency. Used by perf events that rely on freq and
395 * by unstable clock.
396 */
397void tick_nohz_dep_set(enum tick_dep_bits bit)
398{
399 tick_nohz_dep_set_all(&tick_dep_mask, bit);
400}
401
402void tick_nohz_dep_clear(enum tick_dep_bits bit)
403{
f009a7a7 404 atomic_andnot(BIT(bit), &tick_dep_mask);
d027d45d
FW
405}
406
407/*
408 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
409 * manage events throttling.
410 */
411void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
412{
f009a7a7 413 int prev;
d027d45d
FW
414 struct tick_sched *ts;
415
416 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
417
a1cc5bcf 418 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
419 if (!prev) {
420 preempt_disable();
421 /* Perf needs local kick that is NMI safe */
422 if (cpu == smp_processor_id()) {
423 tick_nohz_full_kick();
424 } else {
425 /* Remote irq work not NMI-safe */
426 if (!WARN_ON_ONCE(in_nmi()))
427 tick_nohz_full_kick_cpu(cpu);
428 }
429 preempt_enable();
430 }
431}
01b4c399 432EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
d027d45d
FW
433
434void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
435{
436 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
437
f009a7a7 438 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
d027d45d 439}
01b4c399 440EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
d027d45d
FW
441
442/*
3c8920e2
FW
443 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
444 * in order to elapse per task timers.
d027d45d
FW
445 */
446void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
447{
29721b85
FW
448 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
449 tick_nohz_kick_task(tsk);
d027d45d 450}
ae9e557b 451EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
d027d45d
FW
452
453void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
454{
f009a7a7 455 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
d027d45d 456}
ae9e557b 457EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
d027d45d
FW
458
459/*
460 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
461 * per process timers.
462 */
1e4ca26d
MT
463void tick_nohz_dep_set_signal(struct task_struct *tsk,
464 enum tick_dep_bits bit)
d027d45d 465{
1e4ca26d
MT
466 int prev;
467 struct signal_struct *sig = tsk->signal;
468
469 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
470 if (!prev) {
471 struct task_struct *t;
472
473 lockdep_assert_held(&tsk->sighand->siglock);
474 __for_each_thread(sig, t)
475 tick_nohz_kick_task(t);
476 }
d027d45d
FW
477}
478
479void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
480{
f009a7a7 481 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
d027d45d
FW
482}
483
99e5ada9
FW
484/*
485 * Re-evaluate the need for the tick as we switch the current task.
486 * It might need the tick due to per task/process properties:
0de7611a 487 * perf events, posix CPU timers, ...
99e5ada9 488 */
de734f89 489void __tick_nohz_task_switch(void)
99e5ada9 490{
d027d45d 491 struct tick_sched *ts;
99e5ada9 492
6296ace4 493 if (!tick_nohz_full_cpu(smp_processor_id()))
0fdcccfa 494 return;
6296ace4 495
d027d45d 496 ts = this_cpu_ptr(&tick_cpu_sched);
99e5ada9 497
d027d45d 498 if (ts->tick_stopped) {
f009a7a7
FW
499 if (atomic_read(&current->tick_dep_mask) ||
500 atomic_read(&current->signal->tick_dep_mask))
d027d45d
FW
501 tick_nohz_full_kick();
502 }
99e5ada9
FW
503}
504
6f1982fe
FW
505/* Get the boot-time nohz CPU list from the kernel parameters. */
506void __init tick_nohz_full_setup(cpumask_var_t cpumask)
a831881b 507{
73867dcd 508 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
6f1982fe 509 cpumask_copy(tick_nohz_full_mask, cpumask);
73867dcd 510 tick_nohz_full_running = true;
a831881b 511}
ae9e557b 512EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
a831881b 513
31eff243 514static int tick_nohz_cpu_down(unsigned int cpu)
a382bf93 515{
31eff243 516 /*
08ae95f4
NP
517 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
518 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
31eff243
SAS
519 * CPUs. It must remain online when nohz full is enabled.
520 */
521 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
522 return -EBUSY;
523 return 0;
a382bf93
FW
524}
525
d1e43fa5 526void __init tick_nohz_init(void)
a831881b 527{
31eff243 528 int cpu, ret;
d1e43fa5 529
a7c8655b
PM
530 if (!tick_nohz_full_running)
531 return;
d1e43fa5 532
9b01f5bf
FW
533 /*
534 * Full dynticks uses irq work to drive the tick rescheduling on safe
535 * locking contexts. But then we need irq work to raise its own
536 * interrupts to avoid circular dependency on the tick
537 */
538 if (!arch_irq_work_has_interrupt()) {
a395d6a7 539 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
9b01f5bf 540 cpumask_clear(tick_nohz_full_mask);
9b01f5bf
FW
541 tick_nohz_full_running = false;
542 return;
543 }
544
08ae95f4
NP
545 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
546 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
547 cpu = smp_processor_id();
4327b15f 548
08ae95f4
NP
549 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
550 pr_warn("NO_HZ: Clearing %d from nohz_full range "
551 "for timekeeping\n", cpu);
552 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
553 }
4327b15f
FW
554 }
555
73867dcd 556 for_each_cpu(cpu, tick_nohz_full_mask)
2e709338
FW
557 context_tracking_cpu_set(cpu);
558
31eff243
SAS
559 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
560 "kernel/nohz:predown", NULL,
561 tick_nohz_cpu_down);
562 WARN_ON(ret < 0);
ffda22c1
TH
563 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
564 cpumask_pr_args(tick_nohz_full_mask));
a831881b 565}
a831881b
FW
566#endif
567
79bf2bb3
TG
568/*
569 * NOHZ - aka dynamic tick functionality
570 */
3451d024 571#ifdef CONFIG_NO_HZ_COMMON
79bf2bb3
TG
572/*
573 * NO HZ enabled ?
574 */
4cc7ecb7 575bool tick_nohz_enabled __read_mostly = true;
bc7a34b8 576unsigned long tick_nohz_active __read_mostly;
79bf2bb3
TG
577/*
578 * Enable / Disable tickless mode
579 */
580static int __init setup_tick_nohz(char *str)
581{
4cc7ecb7 582 return (kstrtobool(str, &tick_nohz_enabled) == 0);
79bf2bb3
TG
583}
584
585__setup("nohz=", setup_tick_nohz);
586
a3642983 587bool tick_nohz_tick_stopped(void)
c1797baf 588{
2bc629a6
FW
589 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
590
591 return ts->tick_stopped;
c1797baf
TG
592}
593
22ab8bc0
FW
594bool tick_nohz_tick_stopped_cpu(int cpu)
595{
596 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
597
598 return ts->tick_stopped;
599}
600
79bf2bb3
TG
601/**
602 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
603 *
604 * Called from interrupt entry when the CPU was idle
605 *
606 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
607 * must be updated. Otherwise an interrupt handler could use a stale jiffy
0de7611a
IM
608 * value. We do this unconditionally on any CPU, as we don't know whether the
609 * CPU, which has the update task assigned is in a long sleep.
79bf2bb3 610 */
eed3b9cf 611static void tick_nohz_update_jiffies(ktime_t now)
79bf2bb3 612{
79bf2bb3 613 unsigned long flags;
79bf2bb3 614
e8fcaa5c 615 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
79bf2bb3
TG
616
617 local_irq_save(flags);
618 tick_do_update_jiffies64(now);
619 local_irq_restore(flags);
02ff3755 620
03e0d461 621 touch_softlockup_watchdog_sched();
79bf2bb3
TG
622}
623
595aac48 624/*
0de7611a 625 * Updates the per-CPU time idle statistics counters
595aac48 626 */
8d63bf94 627static void
8c215bd3 628update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
6378ddb5 629{
eed3b9cf 630 ktime_t delta;
6378ddb5 631
595aac48
AV
632 if (ts->idle_active) {
633 delta = ktime_sub(now, ts->idle_entrytime);
8c215bd3 634 if (nr_iowait_cpu(cpu) > 0)
0224cf4c 635 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
6beea0cd
MH
636 else
637 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
8c7b09f4 638 ts->idle_entrytime = now;
595aac48 639 }
8d63bf94 640
e0e37c20 641 if (last_update_time)
8d63bf94
AV
642 *last_update_time = ktime_to_us(now);
643
595aac48
AV
644}
645
e8fcaa5c 646static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
595aac48 647{
e8fcaa5c 648 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
eed3b9cf 649 ts->idle_active = 0;
56c7426b 650
ac1e843f 651 sched_clock_idle_wakeup_event();
6378ddb5
VP
652}
653
0e776768 654static void tick_nohz_start_idle(struct tick_sched *ts)
6378ddb5 655{
0e776768 656 ts->idle_entrytime = ktime_get();
6378ddb5 657 ts->idle_active = 1;
56c7426b 658 sched_clock_idle_sleep_event();
6378ddb5
VP
659}
660
b1f724c3 661/**
0de7611a 662 * get_cpu_idle_time_us - get the total idle time of a CPU
b1f724c3 663 * @cpu: CPU number to query
09a1d34f
MH
664 * @last_update_time: variable to store update time in. Do not update
665 * counters if NULL.
b1f724c3 666 *
6168f8ed 667 * Return the cumulative idle time (since boot) for a given
6beea0cd 668 * CPU, in microseconds.
b1f724c3
AV
669 *
670 * This time is measured via accounting rather than sampling,
671 * and is as accurate as ktime_get() is.
672 *
673 * This function returns -1 if NOHZ is not enabled.
674 */
6378ddb5
VP
675u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
676{
677 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 678 ktime_t now, idle;
6378ddb5 679
d689fe22 680 if (!tick_nohz_active)
8083e4ad 681 return -1;
682
09a1d34f
MH
683 now = ktime_get();
684 if (last_update_time) {
685 update_ts_time_stats(cpu, ts, now, last_update_time);
686 idle = ts->idle_sleeptime;
687 } else {
688 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
689 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
690
691 idle = ktime_add(ts->idle_sleeptime, delta);
692 } else {
693 idle = ts->idle_sleeptime;
694 }
695 }
696
697 return ktime_to_us(idle);
8083e4ad 698
6378ddb5 699}
8083e4ad 700EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
6378ddb5 701
6beea0cd 702/**
0de7611a 703 * get_cpu_iowait_time_us - get the total iowait time of a CPU
0224cf4c 704 * @cpu: CPU number to query
09a1d34f
MH
705 * @last_update_time: variable to store update time in. Do not update
706 * counters if NULL.
0224cf4c 707 *
6168f8ed 708 * Return the cumulative iowait time (since boot) for a given
0224cf4c
AV
709 * CPU, in microseconds.
710 *
711 * This time is measured via accounting rather than sampling,
712 * and is as accurate as ktime_get() is.
713 *
714 * This function returns -1 if NOHZ is not enabled.
715 */
716u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
717{
718 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 719 ktime_t now, iowait;
0224cf4c 720
d689fe22 721 if (!tick_nohz_active)
0224cf4c
AV
722 return -1;
723
09a1d34f
MH
724 now = ktime_get();
725 if (last_update_time) {
726 update_ts_time_stats(cpu, ts, now, last_update_time);
727 iowait = ts->iowait_sleeptime;
728 } else {
729 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
730 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
0224cf4c 731
09a1d34f
MH
732 iowait = ktime_add(ts->iowait_sleeptime, delta);
733 } else {
734 iowait = ts->iowait_sleeptime;
735 }
736 }
0224cf4c 737
09a1d34f 738 return ktime_to_us(iowait);
0224cf4c
AV
739}
740EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
741
0ff53d09
TG
742static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
743{
744 hrtimer_cancel(&ts->sched_timer);
745 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
746
747 /* Forward the time to expire in the future */
b9965449 748 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
0ff53d09 749
902a9f9c
SAS
750 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
751 hrtimer_start_expires(&ts->sched_timer,
752 HRTIMER_MODE_ABS_PINNED_HARD);
753 } else {
0ff53d09 754 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
902a9f9c 755 }
411fe24e
FW
756
757 /*
758 * Reset to make sure next tick stop doesn't get fooled by past
759 * cached clock deadline.
760 */
761 ts->next_tick = 0;
0ff53d09
TG
762}
763
5d62c183
TG
764static inline bool local_timer_softirq_pending(void)
765{
80d20d35 766 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
5d62c183
TG
767}
768
23a8d888 769static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
79bf2bb3 770{
c1ad348b 771 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
e1e41b6c
RV
772 unsigned long basejiff;
773 unsigned int seq;
855a0fc3 774
79bf2bb3
TG
775 /* Read jiffies and the time when jiffies were updated last */
776 do {
e5d4d175 777 seq = read_seqcount_begin(&jiffies_seq);
2456e855 778 basemono = last_jiffies_update;
c1ad348b 779 basejiff = jiffies;
e5d4d175 780 } while (read_seqcount_retry(&jiffies_seq, seq));
c1ad348b 781 ts->last_jiffies = basejiff;
23a8d888 782 ts->timer_expires_base = basemono;
79bf2bb3 783
5d62c183
TG
784 /*
785 * Keep the periodic tick, when RCU, architecture or irq_work
786 * requests it.
787 * Aside of that check whether the local timer softirq is
788 * pending. If so its a bad idea to call get_next_timer_interrupt()
789 * because there is an already expired timer, so it will request
4bf07f65 790 * immediate expiry, which rearms the hardware timer with a
5d62c183
TG
791 * minimal delta which brings us back to this place
792 * immediately. Lather, rinse and repeat...
793 */
794 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
795 irq_work_needs_cpu() || local_timer_softirq_pending()) {
c1ad348b 796 next_tick = basemono + TICK_NSEC;
3c5d92a0 797 } else {
c1ad348b
TG
798 /*
799 * Get the next pending timer. If high resolution
800 * timers are enabled this only takes the timer wheel
801 * timers into account. If high resolution timers are
802 * disabled this also looks at the next expiring
803 * hrtimer.
804 */
805 next_tmr = get_next_timer_interrupt(basejiff, basemono);
806 ts->next_timer = next_tmr;
807 /* Take the next rcu event into account */
808 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
3c5d92a0 809 }
47aa8b6c 810
c1ad348b
TG
811 /*
812 * If the tick is due in the next period, keep it ticking or
82bbe34b 813 * force prod the timer.
c1ad348b
TG
814 */
815 delta = next_tick - basemono;
816 if (delta <= (u64)TICK_NSEC) {
a683f390
TG
817 /*
818 * Tell the timer code that the base is not idle, i.e. undo
819 * the effect of get_next_timer_interrupt():
820 */
821 timer_clear_idle();
82bbe34b
PZ
822 /*
823 * We've not stopped the tick yet, and there's a timer in the
824 * next period, so no point in stopping it either, bail.
825 */
f99973e1 826 if (!ts->tick_stopped) {
23a8d888 827 ts->timer_expires = 0;
157d29e1
TG
828 goto out;
829 }
830 }
831
23a8d888
RW
832 /*
833 * If this CPU is the one which had the do_timer() duty last, we limit
834 * the sleep time to the timekeeping max_deferment value.
835 * Otherwise we can sleep as long as we want.
836 */
837 delta = timekeeping_max_deferment();
838 if (cpu != tick_do_timer_cpu &&
839 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
840 delta = KTIME_MAX;
841
842 /* Calculate the next expiry time */
843 if (delta < (KTIME_MAX - basemono))
844 expires = basemono + delta;
845 else
846 expires = KTIME_MAX;
847
848 ts->timer_expires = min_t(u64, expires, next_tick);
849
850out:
851 return ts->timer_expires;
852}
853
854static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
855{
856 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
857 u64 basemono = ts->timer_expires_base;
858 u64 expires = ts->timer_expires;
859 ktime_t tick = expires;
860
861 /* Make sure we won't be trying to stop it twice in a row. */
862 ts->timer_expires_base = 0;
863
79bf2bb3 864 /*
0de7611a
IM
865 * If this CPU is the one which updates jiffies, then give up
866 * the assignment and let it be taken by the CPU which runs
867 * the tick timer next, which might be this CPU as well. If we
157d29e1
TG
868 * don't drop this here the jiffies might be stale and
869 * do_timer() never invoked. Keep track of the fact that it
23a8d888 870 * was the one which had the do_timer() duty last.
79bf2bb3 871 */
157d29e1
TG
872 if (cpu == tick_do_timer_cpu) {
873 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
874 ts->do_timer_last = 1;
875 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
157d29e1 876 ts->do_timer_last = 0;
157d29e1 877 }
27185016 878
157d29e1 879 /* Skip reprogram of event if its not changed */
411fe24e
FW
880 if (ts->tick_stopped && (expires == ts->next_tick)) {
881 /* Sanity check: make sure clockevent is actually programmed */
d4af6d93 882 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
23a8d888 883 return;
411fe24e
FW
884
885 WARN_ON_ONCE(1);
886 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
887 basemono, ts->next_tick, dev->next_event,
888 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
ce6cf9a1 889 }
84bf1bcc 890
157d29e1
TG
891 /*
892 * nohz_stop_sched_tick can be called several times before
893 * the nohz_restart_sched_tick is called. This happens when
894 * interrupts arrive which do not cause a reschedule. In the
895 * first call we save the current tick time, so we can restart
896 * the scheduler tick in nohz_restart_sched_tick.
897 */
898 if (!ts->tick_stopped) {
3c85d6db 899 calc_load_nohz_start();
62cb1188 900 quiet_vmstat();
d3ed7824 901
157d29e1
TG
902 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
903 ts->tick_stopped = 1;
e6e6cc22 904 trace_tick_stop(1, TICK_DEP_MASK_NONE);
157d29e1 905 }
eaad084b 906
411fe24e
FW
907 ts->next_tick = tick;
908
157d29e1 909 /*
c1ad348b
TG
910 * If the expiration time == KTIME_MAX, then we simply stop
911 * the tick timer.
157d29e1 912 */
c1ad348b 913 if (unlikely(expires == KTIME_MAX)) {
157d29e1
TG
914 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
915 hrtimer_cancel(&ts->sched_timer);
23a8d888 916 return;
79bf2bb3 917 }
0ff53d09 918
1f71addd 919 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
902a9f9c
SAS
920 hrtimer_start(&ts->sched_timer, tick,
921 HRTIMER_MODE_ABS_PINNED_HARD);
1f71addd
TG
922 } else {
923 hrtimer_set_expires(&ts->sched_timer, tick);
c1ad348b 924 tick_program_event(tick, 1);
1f71addd 925 }
280f0677
FW
926}
927
23a8d888
RW
928static void tick_nohz_retain_tick(struct tick_sched *ts)
929{
930 ts->timer_expires_base = 0;
931}
932
933#ifdef CONFIG_NO_HZ_FULL
934static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
935{
936 if (tick_nohz_next_event(ts, cpu))
937 tick_nohz_stop_tick(ts, cpu);
938 else
939 tick_nohz_retain_tick(ts);
940}
941#endif /* CONFIG_NO_HZ_FULL */
942
1f41906a 943static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
59d2c7ca
FW
944{
945 /* Update jiffies first */
946 tick_do_update_jiffies64(now);
59d2c7ca 947
a683f390
TG
948 /*
949 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
950 * the clock forward checks in the enqueue path:
951 */
952 timer_clear_idle();
953
3c85d6db 954 calc_load_nohz_stop();
03e0d461 955 touch_softlockup_watchdog_sched();
59d2c7ca
FW
956 /*
957 * Cancel the scheduled timer and restore the tick
958 */
959 ts->tick_stopped = 0;
59d2c7ca
FW
960 tick_nohz_restart(ts, now);
961}
73738a95 962
a5183862
YY
963static void __tick_nohz_full_update_tick(struct tick_sched *ts,
964 ktime_t now)
5811d996
FW
965{
966#ifdef CONFIG_NO_HZ_FULL
e9a2eb40 967 int cpu = smp_processor_id();
5811d996 968
a5183862
YY
969 if (can_stop_full_tick(cpu, ts))
970 tick_nohz_stop_sched_tick(ts, cpu);
971 else if (ts->tick_stopped)
972 tick_nohz_restart_sched_tick(ts, now);
973#endif
974}
975
976static void tick_nohz_full_update_tick(struct tick_sched *ts)
977{
978 if (!tick_nohz_full_cpu(smp_processor_id()))
e9a2eb40 979 return;
5811d996 980
e9a2eb40
AS
981 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
982 return;
5811d996 983
a5183862 984 __tick_nohz_full_update_tick(ts, ktime_get());
5811d996
FW
985}
986
5b39939a
FW
987static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
988{
989 /*
0de7611a 990 * If this CPU is offline and it is the one which updates
5b39939a 991 * jiffies, then give up the assignment and let it be taken by
0de7611a 992 * the CPU which runs the tick timer next. If we don't drop
5b39939a
FW
993 * this here the jiffies might be stale and do_timer() never
994 * invoked.
995 */
996 if (unlikely(!cpu_online(cpu))) {
997 if (cpu == tick_do_timer_cpu)
998 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
411fe24e
FW
999 /*
1000 * Make sure the CPU doesn't get fooled by obsolete tick
1001 * deadline if it comes back online later.
1002 */
1003 ts->next_tick = 0;
f7ea0fd6 1004 return false;
5b39939a
FW
1005 }
1006
23a8d888 1007 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
5b39939a
FW
1008 return false;
1009
1010 if (need_resched())
1011 return false;
1012
d59e0ba1 1013 if (unlikely(local_softirq_pending())) {
5b39939a
FW
1014 static int ratelimit;
1015
47c218dc 1016 if (ratelimit < 10 && !local_bh_blocked() &&
803b0eba 1017 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
bca37119 1018 pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
cfea7d7e 1019 (unsigned int) local_softirq_pending());
5b39939a
FW
1020 ratelimit++;
1021 }
1022 return false;
1023 }
1024
460775df 1025 if (tick_nohz_full_enabled()) {
a382bf93
FW
1026 /*
1027 * Keep the tick alive to guarantee timekeeping progression
1028 * if there are full dynticks CPUs around
1029 */
1030 if (tick_do_timer_cpu == cpu)
1031 return false;
08ae95f4
NP
1032
1033 /* Should not happen for nohz-full */
1034 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
a382bf93
FW
1035 return false;
1036 }
1037
5b39939a
FW
1038 return true;
1039}
1040
0e776768 1041static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
19f5f736 1042{
0e776768 1043 ktime_t expires;
5b39939a 1044 int cpu = smp_processor_id();
19f5f736 1045
554c8aa8
RW
1046 /*
1047 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1048 * tick timer expiration time is known already.
1049 */
1050 if (ts->timer_expires_base)
1051 expires = ts->timer_expires;
1052 else if (can_stop_idle_tick(cpu, ts))
1053 expires = tick_nohz_next_event(ts, cpu);
1054 else
1055 return;
23a8d888
RW
1056
1057 ts->idle_calls++;
08d07259 1058
23a8d888 1059 if (expires > 0LL) {
5b39939a
FW
1060 int was_stopped = ts->tick_stopped;
1061
23a8d888 1062 tick_nohz_stop_tick(ts, cpu);
84bf1bcc 1063
23a8d888
RW
1064 ts->idle_sleeps++;
1065 ts->idle_expires = expires;
5b39939a 1066
a0db971e 1067 if (!was_stopped && ts->tick_stopped) {
5b39939a 1068 ts->idle_jiffies = ts->last_jiffies;
a0db971e
FW
1069 nohz_balance_enter_idle(cpu);
1070 }
23a8d888
RW
1071 } else {
1072 tick_nohz_retain_tick(ts);
5b39939a 1073 }
280f0677
FW
1074}
1075
1076/**
0e776768 1077 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
280f0677
FW
1078 *
1079 * When the next event is more than a tick into the future, stop the idle tick
0e776768
RW
1080 */
1081void tick_nohz_idle_stop_tick(void)
1082{
1083 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1084}
1085
554c8aa8
RW
1086void tick_nohz_idle_retain_tick(void)
1087{
1088 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1089 /*
1090 * Undo the effect of get_next_timer_interrupt() called from
1091 * tick_nohz_next_event().
1092 */
1093 timer_clear_idle();
1094}
1095
0e776768
RW
1096/**
1097 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
2bbb6817 1098 *
0e776768 1099 * Called when we start the idle loop.
280f0677 1100 */
1268fbc7 1101void tick_nohz_idle_enter(void)
280f0677
FW
1102{
1103 struct tick_sched *ts;
1104
ebf3adba 1105 lockdep_assert_irqs_enabled();
0db49b72 1106
1268fbc7
FW
1107 local_irq_disable();
1108
22127e93 1109 ts = this_cpu_ptr(&tick_cpu_sched);
23a8d888
RW
1110
1111 WARN_ON_ONCE(ts->timer_expires_base);
1112
280f0677 1113 ts->inidle = 1;
0e776768 1114 tick_nohz_start_idle(ts);
1268fbc7
FW
1115
1116 local_irq_enable();
280f0677
FW
1117}
1118
1119/**
1120 * tick_nohz_irq_exit - update next tick event from interrupt exit
1121 *
1122 * When an interrupt fires while we are idle and it doesn't cause
1123 * a reschedule, it may still add, modify or delete a timer, enqueue
1124 * an RCU callback, etc...
1125 * So we need to re-calculate and reprogram the next tick event.
1126 */
1127void tick_nohz_irq_exit(void)
1128{
22127e93 1129 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
280f0677 1130
14851912 1131 if (ts->inidle)
0e776768 1132 tick_nohz_start_idle(ts);
14851912 1133 else
73738a95 1134 tick_nohz_full_update_tick(ts);
79bf2bb3
TG
1135}
1136
4f86d3a8 1137/**
45f1ff59
RW
1138 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1139 */
1140bool tick_nohz_idle_got_tick(void)
1141{
1142 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1143
2bc629a6
FW
1144 if (ts->got_idle_tick) {
1145 ts->got_idle_tick = 0;
45f1ff59
RW
1146 return true;
1147 }
1148 return false;
1149}
1150
6f9b83ac
UH
1151/**
1152 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1153 * or the tick, whatever that expires first. Note that, if the tick has been
1154 * stopped, it returns the next hrtimer.
1155 *
1156 * Called from power state control code with interrupts disabled
1157 */
1158ktime_t tick_nohz_get_next_hrtimer(void)
1159{
1160 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1161}
1162
4f86d3a8 1163/**
554c8aa8 1164 * tick_nohz_get_sleep_length - return the expected length of the current sleep
296bb1e5 1165 * @delta_next: duration until the next event if the tick cannot be stopped
4f86d3a8 1166 *
4c81cb7e
RW
1167 * Called from power state control code with interrupts disabled.
1168 *
1169 * The return value of this function and/or the value returned by it through the
1170 * @delta_next pointer can be negative which must be taken into account by its
1171 * callers.
4f86d3a8 1172 */
296bb1e5 1173ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
4f86d3a8 1174{
554c8aa8 1175 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
22127e93 1176 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
554c8aa8
RW
1177 int cpu = smp_processor_id();
1178 /*
1179 * The idle entry time is expected to be a sufficient approximation of
1180 * the current time at this point.
1181 */
1182 ktime_t now = ts->idle_entrytime;
1183 ktime_t next_event;
1184
1185 WARN_ON_ONCE(!ts->inidle);
1186
296bb1e5
RW
1187 *delta_next = ktime_sub(dev->next_event, now);
1188
554c8aa8 1189 if (!can_stop_idle_tick(cpu, ts))
296bb1e5 1190 return *delta_next;
554c8aa8
RW
1191
1192 next_event = tick_nohz_next_event(ts, cpu);
1193 if (!next_event)
296bb1e5 1194 return *delta_next;
554c8aa8
RW
1195
1196 /*
1197 * If the next highres timer to expire is earlier than next_event, the
1198 * idle governor needs to know that.
1199 */
1200 next_event = min_t(u64, next_event,
1201 hrtimer_next_event_without(&ts->sched_timer));
4f86d3a8 1202
554c8aa8 1203 return ktime_sub(next_event, now);
4f86d3a8
LB
1204}
1205
466a2b42
JF
1206/**
1207 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1208 * for a particular CPU.
1209 *
1210 * Called from the schedutil frequency scaling governor in scheduler context.
1211 */
1212unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1213{
1214 struct tick_sched *ts = tick_get_tick_sched(cpu);
1215
1216 return ts->idle_calls;
1217}
1218
b7eaf1aa
RW
1219/**
1220 * tick_nohz_get_idle_calls - return the current idle calls counter value
1221 *
1222 * Called from the schedutil frequency scaling governor in scheduler context.
1223 */
1224unsigned long tick_nohz_get_idle_calls(void)
1225{
1226 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1227
1228 return ts->idle_calls;
1229}
1230
96c9b903
YY
1231static void tick_nohz_account_idle_time(struct tick_sched *ts,
1232 ktime_t now)
2ac0d98f 1233{
2ac0d98f 1234 unsigned long ticks;
3f4724ea 1235
96c9b903
YY
1236 ts->idle_exittime = now;
1237
e44fcb4b 1238 if (vtime_accounting_enabled_this_cpu())
3f4724ea 1239 return;
79bf2bb3
TG
1240 /*
1241 * We stopped the tick in idle. Update process times would miss the
1242 * time we slept as update_process_times does only a 1 tick
1243 * accounting. Enforce that this is accounted to idle !
1244 */
1245 ticks = jiffies - ts->idle_jiffies;
1246 /*
1247 * We might be one off. Do not randomly account a huge number of ticks!
1248 */
79741dd3
MS
1249 if (ticks && ticks < LONG_MAX)
1250 account_idle_ticks(ticks);
19f5f736
FW
1251}
1252
a5183862 1253void tick_nohz_idle_restart_tick(void)
2aaf709a 1254{
a5183862
YY
1255 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1256
1257 if (ts->tick_stopped) {
96c9b903
YY
1258 ktime_t now = ktime_get();
1259 tick_nohz_restart_sched_tick(ts, now);
1260 tick_nohz_account_idle_time(ts, now);
a5183862 1261 }
2aaf709a
RW
1262}
1263
a5183862 1264static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
2aaf709a 1265{
a5183862
YY
1266 if (tick_nohz_full_cpu(smp_processor_id()))
1267 __tick_nohz_full_update_tick(ts, now);
1268 else
1269 tick_nohz_restart_sched_tick(ts, now);
2aaf709a 1270
96c9b903 1271 tick_nohz_account_idle_time(ts, now);
2aaf709a
RW
1272}
1273
79bf2bb3 1274/**
280f0677 1275 * tick_nohz_idle_exit - restart the idle tick from the idle task
79bf2bb3
TG
1276 *
1277 * Restart the idle tick when the CPU is woken up from idle
280f0677
FW
1278 * This also exit the RCU extended quiescent state. The CPU
1279 * can use RCU again after this function is called.
79bf2bb3 1280 */
280f0677 1281void tick_nohz_idle_exit(void)
79bf2bb3 1282{
4a32fea9 1283 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
bbe9a70a 1284 bool idle_active, tick_stopped;
6378ddb5 1285 ktime_t now;
79bf2bb3 1286
6378ddb5 1287 local_irq_disable();
2bbb6817 1288
15f827be 1289 WARN_ON_ONCE(!ts->inidle);
23a8d888 1290 WARN_ON_ONCE(ts->timer_expires_base);
15f827be
FW
1291
1292 ts->inidle = 0;
bbe9a70a
AB
1293 idle_active = ts->idle_active;
1294 tick_stopped = ts->tick_stopped;
15f827be 1295
bbe9a70a 1296 if (idle_active || tick_stopped)
eed3b9cf
MS
1297 now = ktime_get();
1298
bbe9a70a 1299 if (idle_active)
e8fcaa5c 1300 tick_nohz_stop_idle(ts, now);
6378ddb5 1301
bbe9a70a 1302 if (tick_stopped)
a5183862 1303 tick_nohz_idle_update_tick(ts, now);
79bf2bb3 1304
79bf2bb3
TG
1305 local_irq_enable();
1306}
1307
79bf2bb3
TG
1308/*
1309 * The nohz low res interrupt handler
1310 */
1311static void tick_nohz_handler(struct clock_event_device *dev)
1312{
22127e93 1313 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1314 struct pt_regs *regs = get_irq_regs();
1315 ktime_t now = ktime_get();
1316
2456e855 1317 dev->next_event = KTIME_MAX;
79bf2bb3 1318
ff7de620 1319 tick_sched_do_timer(ts, now);
9e8f559b 1320 tick_sched_handle(ts, regs);
79bf2bb3 1321
b5e995e6
VK
1322 /* No need to reprogram if we are running tickless */
1323 if (unlikely(ts->tick_stopped))
1324 return;
1325
b9965449 1326 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
0ff53d09 1327 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
79bf2bb3
TG
1328}
1329
bc7a34b8
TG
1330static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1331{
1332 if (!tick_nohz_enabled)
1333 return;
1334 ts->nohz_mode = mode;
1335 /* One update is enough */
1336 if (!test_and_set_bit(0, &tick_nohz_active))
ae67bada 1337 timers_update_nohz();
bc7a34b8
TG
1338}
1339
79bf2bb3
TG
1340/**
1341 * tick_nohz_switch_to_nohz - switch to nohz mode
1342 */
1343static void tick_nohz_switch_to_nohz(void)
1344{
22127e93 1345 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1346 ktime_t next;
1347
27630532 1348 if (!tick_nohz_enabled)
79bf2bb3
TG
1349 return;
1350
6b442bc8 1351 if (tick_switch_to_oneshot(tick_nohz_handler))
79bf2bb3 1352 return;
6b442bc8 1353
79bf2bb3
TG
1354 /*
1355 * Recycle the hrtimer in ts, so we can share the
1356 * hrtimer_forward with the highres code.
1357 */
71fed982 1358 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
79bf2bb3
TG
1359 /* Get the next period */
1360 next = tick_init_jiffy_update();
1361
0ff53d09 1362 hrtimer_set_expires(&ts->sched_timer, next);
b9965449 1363 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1ca8ec53 1364 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
bc7a34b8 1365 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
79bf2bb3
TG
1366}
1367
5acac1be 1368static inline void tick_nohz_irq_enter(void)
eed3b9cf 1369{
4a32fea9 1370 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
eed3b9cf
MS
1371 ktime_t now;
1372
1373 if (!ts->idle_active && !ts->tick_stopped)
1374 return;
1375 now = ktime_get();
1376 if (ts->idle_active)
e8fcaa5c 1377 tick_nohz_stop_idle(ts, now);
ff006732 1378 if (ts->tick_stopped)
eed3b9cf 1379 tick_nohz_update_jiffies(now);
eed3b9cf
MS
1380}
1381
79bf2bb3
TG
1382#else
1383
1384static inline void tick_nohz_switch_to_nohz(void) { }
5acac1be 1385static inline void tick_nohz_irq_enter(void) { }
bc7a34b8 1386static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
79bf2bb3 1387
3451d024 1388#endif /* CONFIG_NO_HZ_COMMON */
79bf2bb3 1389
719254fa
TG
1390/*
1391 * Called from irq_enter to notify about the possible interruption of idle()
1392 */
5acac1be 1393void tick_irq_enter(void)
719254fa 1394{
e8fcaa5c 1395 tick_check_oneshot_broadcast_this_cpu();
5acac1be 1396 tick_nohz_irq_enter();
719254fa
TG
1397}
1398
79bf2bb3
TG
1399/*
1400 * High resolution timer specific code
1401 */
1402#ifdef CONFIG_HIGH_RES_TIMERS
1403/*
4c9dc641 1404 * We rearm the timer until we get disabled by the idle code.
351f181f 1405 * Called with interrupts disabled.
79bf2bb3
TG
1406 */
1407static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1408{
1409 struct tick_sched *ts =
1410 container_of(timer, struct tick_sched, sched_timer);
79bf2bb3
TG
1411 struct pt_regs *regs = get_irq_regs();
1412 ktime_t now = ktime_get();
d3ed7824 1413
ff7de620 1414 tick_sched_do_timer(ts, now);
79bf2bb3
TG
1415
1416 /*
1417 * Do not call, when we are not in irq context and have
1418 * no valid regs pointer
1419 */
9e8f559b
FW
1420 if (regs)
1421 tick_sched_handle(ts, regs);
7c259045
FW
1422 else
1423 ts->next_tick = 0;
79bf2bb3 1424
2a16fc93
VK
1425 /* No need to reprogram if we are in idle or full dynticks mode */
1426 if (unlikely(ts->tick_stopped))
1427 return HRTIMER_NORESTART;
1428
b9965449 1429 hrtimer_forward(timer, now, TICK_NSEC);
79bf2bb3
TG
1430
1431 return HRTIMER_RESTART;
1432}
1433
5307c955
MG
1434static int sched_skew_tick;
1435
62cf20b3
TG
1436static int __init skew_tick(char *str)
1437{
1438 get_option(&str, &sched_skew_tick);
1439
1440 return 0;
1441}
1442early_param("skew_tick", skew_tick);
1443
79bf2bb3
TG
1444/**
1445 * tick_setup_sched_timer - setup the tick emulation timer
1446 */
1447void tick_setup_sched_timer(void)
1448{
22127e93 1449 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1450 ktime_t now = ktime_get();
1451
1452 /*
1453 * Emulate tick processing via per-CPU hrtimers:
1454 */
902a9f9c 1455 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
79bf2bb3 1456 ts->sched_timer.function = tick_sched_timer;
79bf2bb3 1457
0de7611a 1458 /* Get the next period (per-CPU) */
cc584b21 1459 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
79bf2bb3 1460
9c3f9e28 1461 /* Offset the tick to avert jiffies_lock contention. */
5307c955 1462 if (sched_skew_tick) {
b9965449 1463 u64 offset = TICK_NSEC >> 1;
5307c955
MG
1464 do_div(offset, num_possible_cpus());
1465 offset *= smp_processor_id();
1466 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1467 }
1468
b9965449 1469 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
902a9f9c 1470 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
bc7a34b8 1471 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
79bf2bb3 1472}
3c4fbe5e 1473#endif /* HIGH_RES_TIMERS */
79bf2bb3 1474
3451d024 1475#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1476void tick_cancel_sched_timer(int cpu)
1477{
1478 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1479
3c4fbe5e 1480# ifdef CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1481 if (ts->sched_timer.base)
1482 hrtimer_cancel(&ts->sched_timer);
3c4fbe5e 1483# endif
a7901766 1484
4b0c0f29 1485 memset(ts, 0, sizeof(*ts));
79bf2bb3 1486}
3c4fbe5e 1487#endif
79bf2bb3
TG
1488
1489/**
1490 * Async notification about clocksource changes
1491 */
1492void tick_clock_notify(void)
1493{
1494 int cpu;
1495
1496 for_each_possible_cpu(cpu)
1497 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1498}
1499
1500/*
1501 * Async notification about clock event changes
1502 */
1503void tick_oneshot_notify(void)
1504{
22127e93 1505 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1506
1507 set_bit(0, &ts->check_clocks);
1508}
1509
1510/**
1511 * Check, if a change happened, which makes oneshot possible.
1512 *
1513 * Called cyclic from the hrtimer softirq (driven by the timer
1514 * softirq) allow_nohz signals, that we can switch into low-res nohz
1515 * mode, because high resolution timers are disabled (either compile
6b442bc8 1516 * or runtime). Called with interrupts disabled.
79bf2bb3
TG
1517 */
1518int tick_check_oneshot_change(int allow_nohz)
1519{
22127e93 1520 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1521
1522 if (!test_and_clear_bit(0, &ts->check_clocks))
1523 return 0;
1524
1525 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1526 return 0;
1527
cf4fc6cb 1528 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
79bf2bb3
TG
1529 return 0;
1530
1531 if (!allow_nohz)
1532 return 1;
1533
1534 tick_nohz_switch_to_nohz();
1535 return 0;
1536}