]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/time.c
time: Move compat_time()/stime() to native
[mirror_ubuntu-artful-kernel.git] / kernel / time / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
6fa6c3b1 12 *
1da177e4 13 * 1993-09-02 Philip Gladstone
0a0fca9d 14 * Created file with time related functions from sched/core.c and adjtimex()
1da177e4
LT
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
9984de1a 30#include <linux/export.h>
1da177e4 31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
189374ae 33#include <linux/timekeeper_internal.h>
1da177e4 34#include <linux/errno.h>
1da177e4
LT
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
71abb3af 38#include <linux/math64.h>
e3d5a27d 39#include <linux/ptrace.h>
1da177e4 40
7c0f6ba6 41#include <linux/uaccess.h>
3a4d44b6 42#include <linux/compat.h>
1da177e4
LT
43#include <asm/unistd.h>
44
0a227985 45#include <generated/timeconst.h>
8b094cd0 46#include "timekeeping.h"
bdc80787 47
6fa6c3b1 48/*
1da177e4
LT
49 * The timezone where the local system is located. Used as a default by some
50 * programs who obtain this value by using gettimeofday.
51 */
52struct timezone sys_tz;
53
54EXPORT_SYMBOL(sys_tz);
55
56#ifdef __ARCH_WANT_SYS_TIME
57
58/*
59 * sys_time() can be implemented in user-level using
60 * sys_gettimeofday(). Is this for backwards compatibility? If so,
61 * why not move it into the appropriate arch directory (for those
62 * architectures that need it).
63 */
58fd3aa2 64SYSCALL_DEFINE1(time, time_t __user *, tloc)
1da177e4 65{
f20bf612 66 time_t i = get_seconds();
1da177e4
LT
67
68 if (tloc) {
20082208 69 if (put_user(i,tloc))
e3d5a27d 70 return -EFAULT;
1da177e4 71 }
e3d5a27d 72 force_successful_syscall_return();
1da177e4
LT
73 return i;
74}
75
76/*
77 * sys_stime() can be implemented in user-level using
78 * sys_settimeofday(). Is this for backwards compatibility? If so,
79 * why not move it into the appropriate arch directory (for those
80 * architectures that need it).
81 */
6fa6c3b1 82
58fd3aa2 83SYSCALL_DEFINE1(stime, time_t __user *, tptr)
1da177e4
LT
84{
85 struct timespec tv;
86 int err;
87
88 if (get_user(tv.tv_sec, tptr))
89 return -EFAULT;
90
91 tv.tv_nsec = 0;
92
93 err = security_settime(&tv, NULL);
94 if (err)
95 return err;
96
97 do_settimeofday(&tv);
98 return 0;
99}
100
101#endif /* __ARCH_WANT_SYS_TIME */
102
b180db2c
AV
103#ifdef CONFIG_COMPAT
104#ifdef __ARCH_WANT_COMPAT_SYS_TIME
105
106/* compat_time_t is a 32 bit "long" and needs to get converted. */
107COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
108{
109 struct timeval tv;
110 compat_time_t i;
111
112 do_gettimeofday(&tv);
113 i = tv.tv_sec;
114
115 if (tloc) {
116 if (put_user(i,tloc))
117 return -EFAULT;
118 }
119 force_successful_syscall_return();
120 return i;
121}
122
123COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
124{
125 struct timespec tv;
126 int err;
127
128 if (get_user(tv.tv_sec, tptr))
129 return -EFAULT;
130
131 tv.tv_nsec = 0;
132
133 err = security_settime(&tv, NULL);
134 if (err)
135 return err;
136
137 do_settimeofday(&tv);
138 return 0;
139}
140
141#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
142#endif
143
58fd3aa2
HC
144SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
145 struct timezone __user *, tz)
1da177e4
LT
146{
147 if (likely(tv != NULL)) {
148 struct timeval ktv;
149 do_gettimeofday(&ktv);
150 if (copy_to_user(tv, &ktv, sizeof(ktv)))
151 return -EFAULT;
152 }
153 if (unlikely(tz != NULL)) {
154 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
155 return -EFAULT;
156 }
157 return 0;
158}
159
84e345e4
PB
160/*
161 * Indicates if there is an offset between the system clock and the hardware
162 * clock/persistent clock/rtc.
163 */
164int persistent_clock_is_local;
165
1da177e4
LT
166/*
167 * Adjust the time obtained from the CMOS to be UTC time instead of
168 * local time.
6fa6c3b1 169 *
1da177e4
LT
170 * This is ugly, but preferable to the alternatives. Otherwise we
171 * would either need to write a program to do it in /etc/rc (and risk
6fa6c3b1 172 * confusion if the program gets run more than once; it would also be
1da177e4
LT
173 * hard to make the program warp the clock precisely n hours) or
174 * compile in the timezone information into the kernel. Bad, bad....
175 *
bdc80787 176 * - TYT, 1992-01-01
1da177e4
LT
177 *
178 * The best thing to do is to keep the CMOS clock in universal time (UTC)
179 * as real UNIX machines always do it. This avoids all headaches about
180 * daylight saving times and warping kernel clocks.
181 */
77933d72 182static inline void warp_clock(void)
1da177e4 183{
c30bd099
DZ
184 if (sys_tz.tz_minuteswest != 0) {
185 struct timespec adjust;
bd45b7a3 186
84e345e4 187 persistent_clock_is_local = 1;
7859e404
JS
188 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
189 adjust.tv_nsec = 0;
190 timekeeping_inject_offset(&adjust);
c30bd099 191 }
1da177e4
LT
192}
193
194/*
195 * In case for some reason the CMOS clock has not already been running
196 * in UTC, but in some local time: The first time we set the timezone,
197 * we will warp the clock so that it is ticking UTC time instead of
198 * local time. Presumably, if someone is setting the timezone then we
199 * are running in an environment where the programs understand about
200 * timezones. This should be done at boot time in the /etc/rc script,
201 * as soon as possible, so that the clock can be set right. Otherwise,
202 * various programs will get confused when the clock gets warped.
203 */
204
86d34732 205int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
1da177e4
LT
206{
207 static int firsttime = 1;
208 int error = 0;
209
86d34732 210 if (tv && !timespec64_valid(tv))
718bcceb
TG
211 return -EINVAL;
212
86d34732 213 error = security_settime64(tv, tz);
1da177e4
LT
214 if (error)
215 return error;
216
217 if (tz) {
6f7d7984
SL
218 /* Verify we're witin the +-15 hrs range */
219 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
220 return -EINVAL;
221
1da177e4 222 sys_tz = *tz;
2c622148 223 update_vsyscall_tz();
1da177e4
LT
224 if (firsttime) {
225 firsttime = 0;
226 if (!tv)
227 warp_clock();
228 }
229 }
230 if (tv)
86d34732 231 return do_settimeofday64(tv);
1da177e4
LT
232 return 0;
233}
234
58fd3aa2
HC
235SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
236 struct timezone __user *, tz)
1da177e4 237{
2ac00f17 238 struct timespec64 new_ts;
1da177e4 239 struct timeval user_tv;
1da177e4
LT
240 struct timezone new_tz;
241
242 if (tv) {
243 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
244 return -EFAULT;
6ada1fc0
SL
245
246 if (!timeval_valid(&user_tv))
247 return -EINVAL;
248
1da177e4
LT
249 new_ts.tv_sec = user_tv.tv_sec;
250 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
251 }
252 if (tz) {
253 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
254 return -EFAULT;
255 }
256
2ac00f17 257 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
1da177e4
LT
258}
259
58fd3aa2 260SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
1da177e4
LT
261{
262 struct timex txc; /* Local copy of parameter */
263 int ret;
264
265 /* Copy the user data space into the kernel copy
266 * structure. But bear in mind that the structures
267 * may change
268 */
3a4d44b6 269 if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
1da177e4
LT
270 return -EFAULT;
271 ret = do_adjtimex(&txc);
272 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
273}
274
3a4d44b6
AV
275#ifdef CONFIG_COMPAT
276
277COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
278{
279 struct timex txc;
280 int err, ret;
281
282 err = compat_get_timex(&txc, utp);
283 if (err)
284 return err;
285
286 ret = do_adjtimex(&txc);
287
288 err = compat_put_timex(utp, &txc);
289 if (err)
290 return err;
291
292 return ret;
293}
294#endif
295
753e9c5c
ED
296/*
297 * Convert jiffies to milliseconds and back.
298 *
299 * Avoid unnecessary multiplications/divisions in the
300 * two most common HZ cases:
301 */
af3b5628 302unsigned int jiffies_to_msecs(const unsigned long j)
753e9c5c
ED
303{
304#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
305 return (MSEC_PER_SEC / HZ) * j;
306#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
307 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
308#else
bdc80787 309# if BITS_PER_LONG == 32
b9095fd8 310 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
bdc80787
PA
311# else
312 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
313# endif
753e9c5c
ED
314#endif
315}
316EXPORT_SYMBOL(jiffies_to_msecs);
317
af3b5628 318unsigned int jiffies_to_usecs(const unsigned long j)
753e9c5c 319{
e0758676
FW
320 /*
321 * Hz usually doesn't go much further MSEC_PER_SEC.
322 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
323 */
324 BUILD_BUG_ON(HZ > USEC_PER_SEC);
325
326#if !(USEC_PER_SEC % HZ)
753e9c5c 327 return (USEC_PER_SEC / HZ) * j;
753e9c5c 328#else
bdc80787 329# if BITS_PER_LONG == 32
b9095fd8 330 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
331# else
332 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
333# endif
753e9c5c
ED
334#endif
335}
336EXPORT_SYMBOL(jiffies_to_usecs);
337
1da177e4 338/**
8ba8e95e 339 * timespec_trunc - Truncate timespec to a granularity
1da177e4 340 * @t: Timespec
8ba8e95e 341 * @gran: Granularity in ns.
1da177e4 342 *
de4a95fa
KB
343 * Truncate a timespec to a granularity. Always rounds down. gran must
344 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
1da177e4
LT
345 */
346struct timespec timespec_trunc(struct timespec t, unsigned gran)
347{
de4a95fa
KB
348 /* Avoid division in the common cases 1 ns and 1 s. */
349 if (gran == 1) {
1da177e4 350 /* nothing */
de4a95fa 351 } else if (gran == NSEC_PER_SEC) {
1da177e4 352 t.tv_nsec = 0;
de4a95fa 353 } else if (gran > 1 && gran < NSEC_PER_SEC) {
1da177e4 354 t.tv_nsec -= t.tv_nsec % gran;
de4a95fa
KB
355 } else {
356 WARN(1, "illegal file time granularity: %u", gran);
1da177e4
LT
357 }
358 return t;
359}
360EXPORT_SYMBOL(timespec_trunc);
361
90b6ce9c 362/*
363 * mktime64 - Converts date to seconds.
364 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
753be622
TG
365 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
366 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
367 *
368 * [For the Julian calendar (which was used in Russia before 1917,
369 * Britain & colonies before 1752, anywhere else before 1582,
370 * and is still in use by some communities) leave out the
371 * -year/100+year/400 terms, and add 10.]
372 *
373 * This algorithm was first published by Gauss (I think).
ede5147d
DH
374 *
375 * A leap second can be indicated by calling this function with sec as
376 * 60 (allowable under ISO 8601). The leap second is treated the same
377 * as the following second since they don't exist in UNIX time.
378 *
379 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
380 * tomorrow - (allowable under ISO 8601) is supported.
753be622 381 */
90b6ce9c 382time64_t mktime64(const unsigned int year0, const unsigned int mon0,
383 const unsigned int day, const unsigned int hour,
384 const unsigned int min, const unsigned int sec)
753be622 385{
f4818900
IM
386 unsigned int mon = mon0, year = year0;
387
388 /* 1..12 -> 11,12,1..10 */
389 if (0 >= (int) (mon -= 2)) {
390 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
391 year -= 1;
392 }
393
90b6ce9c 394 return ((((time64_t)
753be622
TG
395 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
396 year*365 - 719499
ede5147d 397 )*24 + hour /* now have hours - midnight tomorrow handled here */
753be622
TG
398 )*60 + min /* now have minutes */
399 )*60 + sec; /* finally seconds */
400}
90b6ce9c 401EXPORT_SYMBOL(mktime64);
199e7056 402
753be622
TG
403/**
404 * set_normalized_timespec - set timespec sec and nsec parts and normalize
405 *
406 * @ts: pointer to timespec variable to be set
407 * @sec: seconds to set
408 * @nsec: nanoseconds to set
409 *
410 * Set seconds and nanoseconds field of a timespec variable and
411 * normalize to the timespec storage format
412 *
413 * Note: The tv_nsec part is always in the range of
bdc80787 414 * 0 <= tv_nsec < NSEC_PER_SEC
753be622
TG
415 * For negative values only the tv_sec field is negative !
416 */
12e09337 417void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
753be622
TG
418{
419 while (nsec >= NSEC_PER_SEC) {
12e09337
TG
420 /*
421 * The following asm() prevents the compiler from
422 * optimising this loop into a modulo operation. See
423 * also __iter_div_u64_rem() in include/linux/time.h
424 */
425 asm("" : "+rm"(nsec));
753be622
TG
426 nsec -= NSEC_PER_SEC;
427 ++sec;
428 }
429 while (nsec < 0) {
12e09337 430 asm("" : "+rm"(nsec));
753be622
TG
431 nsec += NSEC_PER_SEC;
432 --sec;
433 }
434 ts->tv_sec = sec;
435 ts->tv_nsec = nsec;
436}
7c3f944e 437EXPORT_SYMBOL(set_normalized_timespec);
753be622 438
f8f46da3
TG
439/**
440 * ns_to_timespec - Convert nanoseconds to timespec
441 * @nsec: the nanoseconds value to be converted
442 *
443 * Returns the timespec representation of the nsec parameter.
444 */
df869b63 445struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
446{
447 struct timespec ts;
f8bd2258 448 s32 rem;
f8f46da3 449
88fc3897
GA
450 if (!nsec)
451 return (struct timespec) {0, 0};
452
f8bd2258
RZ
453 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
454 if (unlikely(rem < 0)) {
455 ts.tv_sec--;
456 rem += NSEC_PER_SEC;
457 }
458 ts.tv_nsec = rem;
f8f46da3
TG
459
460 return ts;
461}
85795d64 462EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
463
464/**
465 * ns_to_timeval - Convert nanoseconds to timeval
466 * @nsec: the nanoseconds value to be converted
467 *
468 * Returns the timeval representation of the nsec parameter.
469 */
df869b63 470struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
471{
472 struct timespec ts = ns_to_timespec(nsec);
473 struct timeval tv;
474
475 tv.tv_sec = ts.tv_sec;
476 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
477
478 return tv;
479}
b7aa0bf7 480EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 481
49cd6f86
JS
482#if BITS_PER_LONG == 32
483/**
484 * set_normalized_timespec - set timespec sec and nsec parts and normalize
485 *
486 * @ts: pointer to timespec variable to be set
487 * @sec: seconds to set
488 * @nsec: nanoseconds to set
489 *
490 * Set seconds and nanoseconds field of a timespec variable and
491 * normalize to the timespec storage format
492 *
493 * Note: The tv_nsec part is always in the range of
494 * 0 <= tv_nsec < NSEC_PER_SEC
495 * For negative values only the tv_sec field is negative !
496 */
497void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
498{
499 while (nsec >= NSEC_PER_SEC) {
500 /*
501 * The following asm() prevents the compiler from
502 * optimising this loop into a modulo operation. See
503 * also __iter_div_u64_rem() in include/linux/time.h
504 */
505 asm("" : "+rm"(nsec));
506 nsec -= NSEC_PER_SEC;
507 ++sec;
508 }
509 while (nsec < 0) {
510 asm("" : "+rm"(nsec));
511 nsec += NSEC_PER_SEC;
512 --sec;
513 }
514 ts->tv_sec = sec;
515 ts->tv_nsec = nsec;
516}
517EXPORT_SYMBOL(set_normalized_timespec64);
518
519/**
520 * ns_to_timespec64 - Convert nanoseconds to timespec64
521 * @nsec: the nanoseconds value to be converted
522 *
523 * Returns the timespec64 representation of the nsec parameter.
524 */
525struct timespec64 ns_to_timespec64(const s64 nsec)
526{
527 struct timespec64 ts;
528 s32 rem;
529
530 if (!nsec)
531 return (struct timespec64) {0, 0};
532
533 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
534 if (unlikely(rem < 0)) {
535 ts.tv_sec--;
536 rem += NSEC_PER_SEC;
537 }
538 ts.tv_nsec = rem;
539
540 return ts;
541}
542EXPORT_SYMBOL(ns_to_timespec64);
543#endif
ca42aaf0
NMG
544/**
545 * msecs_to_jiffies: - convert milliseconds to jiffies
546 * @m: time in milliseconds
547 *
548 * conversion is done as follows:
41cf5445
IM
549 *
550 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
551 *
552 * - 'too large' values [that would result in larger than
553 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
554 *
555 * - all other values are converted to jiffies by either multiplying
ca42aaf0
NMG
556 * the input value by a factor or dividing it with a factor and
557 * handling any 32-bit overflows.
558 * for the details see __msecs_to_jiffies()
41cf5445 559 *
ca42aaf0
NMG
560 * msecs_to_jiffies() checks for the passed in value being a constant
561 * via __builtin_constant_p() allowing gcc to eliminate most of the
562 * code, __msecs_to_jiffies() is called if the value passed does not
563 * allow constant folding and the actual conversion must be done at
564 * runtime.
565 * the _msecs_to_jiffies helpers are the HZ dependent conversion
566 * routines found in include/linux/jiffies.h
41cf5445 567 */
ca42aaf0 568unsigned long __msecs_to_jiffies(const unsigned int m)
8b9365d7 569{
41cf5445
IM
570 /*
571 * Negative value, means infinite timeout:
572 */
573 if ((int)m < 0)
8b9365d7 574 return MAX_JIFFY_OFFSET;
ca42aaf0 575 return _msecs_to_jiffies(m);
8b9365d7 576}
ca42aaf0 577EXPORT_SYMBOL(__msecs_to_jiffies);
8b9365d7 578
ae60d6a0 579unsigned long __usecs_to_jiffies(const unsigned int u)
8b9365d7
IM
580{
581 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
582 return MAX_JIFFY_OFFSET;
ae60d6a0 583 return _usecs_to_jiffies(u);
8b9365d7 584}
ae60d6a0 585EXPORT_SYMBOL(__usecs_to_jiffies);
8b9365d7
IM
586
587/*
588 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
589 * that a remainder subtract here would not do the right thing as the
590 * resolution values don't fall on second boundries. I.e. the line:
591 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
d78c9300
AH
592 * Note that due to the small error in the multiplier here, this
593 * rounding is incorrect for sufficiently large values of tv_nsec, but
594 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
595 * OK.
8b9365d7
IM
596 *
597 * Rather, we just shift the bits off the right.
598 *
599 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
600 * value to a scaled second value.
601 */
d78c9300 602static unsigned long
9ca30850 603__timespec64_to_jiffies(u64 sec, long nsec)
8b9365d7 604{
d78c9300 605 nsec = nsec + TICK_NSEC - 1;
8b9365d7
IM
606
607 if (sec >= MAX_SEC_IN_JIFFIES){
608 sec = MAX_SEC_IN_JIFFIES;
609 nsec = 0;
610 }
9ca30850 611 return ((sec * SEC_CONVERSION) +
8b9365d7
IM
612 (((u64)nsec * NSEC_CONVERSION) >>
613 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
614
615}
d78c9300 616
9ca30850
BW
617static unsigned long
618__timespec_to_jiffies(unsigned long sec, long nsec)
d78c9300 619{
9ca30850 620 return __timespec64_to_jiffies((u64)sec, nsec);
d78c9300
AH
621}
622
9ca30850
BW
623unsigned long
624timespec64_to_jiffies(const struct timespec64 *value)
625{
626 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
627}
628EXPORT_SYMBOL(timespec64_to_jiffies);
8b9365d7
IM
629
630void
9ca30850 631jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
8b9365d7
IM
632{
633 /*
634 * Convert jiffies to nanoseconds and separate with
635 * one divide.
636 */
f8bd2258
RZ
637 u32 rem;
638 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
639 NSEC_PER_SEC, &rem);
640 value->tv_nsec = rem;
8b9365d7 641}
9ca30850 642EXPORT_SYMBOL(jiffies_to_timespec64);
8b9365d7 643
d78c9300
AH
644/*
645 * We could use a similar algorithm to timespec_to_jiffies (with a
646 * different multiplier for usec instead of nsec). But this has a
647 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
648 * usec value, since it's not necessarily integral.
649 *
650 * We could instead round in the intermediate scaled representation
651 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
652 * perilous: the scaling introduces a small positive error, which
653 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
654 * units to the intermediate before shifting) leads to accidental
655 * overflow and overestimates.
8b9365d7 656 *
d78c9300
AH
657 * At the cost of one additional multiplication by a constant, just
658 * use the timespec implementation.
8b9365d7
IM
659 */
660unsigned long
661timeval_to_jiffies(const struct timeval *value)
662{
d78c9300
AH
663 return __timespec_to_jiffies(value->tv_sec,
664 value->tv_usec * NSEC_PER_USEC);
8b9365d7 665}
456a09dc 666EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
667
668void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
669{
670 /*
671 * Convert jiffies to nanoseconds and separate with
672 * one divide.
673 */
f8bd2258 674 u32 rem;
8b9365d7 675
f8bd2258
RZ
676 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
677 NSEC_PER_SEC, &rem);
678 value->tv_usec = rem / NSEC_PER_USEC;
8b9365d7 679}
456a09dc 680EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
681
682/*
683 * Convert jiffies/jiffies_64 to clock_t and back.
684 */
cbbc719f 685clock_t jiffies_to_clock_t(unsigned long x)
8b9365d7
IM
686{
687#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
688# if HZ < USER_HZ
689 return x * (USER_HZ / HZ);
690# else
8b9365d7 691 return x / (HZ / USER_HZ);
6ffc787a 692# endif
8b9365d7 693#else
71abb3af 694 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
695#endif
696}
697EXPORT_SYMBOL(jiffies_to_clock_t);
698
699unsigned long clock_t_to_jiffies(unsigned long x)
700{
701#if (HZ % USER_HZ)==0
702 if (x >= ~0UL / (HZ / USER_HZ))
703 return ~0UL;
704 return x * (HZ / USER_HZ);
705#else
8b9365d7
IM
706 /* Don't worry about loss of precision here .. */
707 if (x >= ~0UL / HZ * USER_HZ)
708 return ~0UL;
709
710 /* .. but do try to contain it here */
71abb3af 711 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
712#endif
713}
714EXPORT_SYMBOL(clock_t_to_jiffies);
715
716u64 jiffies_64_to_clock_t(u64 x)
717{
718#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 719# if HZ < USER_HZ
71abb3af 720 x = div_u64(x * USER_HZ, HZ);
ec03d707 721# elif HZ > USER_HZ
71abb3af 722 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
723# else
724 /* Nothing to do */
6ffc787a 725# endif
8b9365d7
IM
726#else
727 /*
728 * There are better ways that don't overflow early,
729 * but even this doesn't overflow in hundreds of years
730 * in 64 bits, so..
731 */
71abb3af 732 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
733#endif
734 return x;
735}
8b9365d7
IM
736EXPORT_SYMBOL(jiffies_64_to_clock_t);
737
738u64 nsec_to_clock_t(u64 x)
739{
740#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 741 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 742#elif (USER_HZ % 512) == 0
71abb3af 743 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
744#else
745 /*
746 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
747 * overflow after 64.99 years.
748 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
749 */
71abb3af 750 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 751#endif
8b9365d7
IM
752}
753
07e5f5e3
FW
754u64 jiffies64_to_nsecs(u64 j)
755{
756#if !(NSEC_PER_SEC % HZ)
757 return (NSEC_PER_SEC / HZ) * j;
758# else
759 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
760#endif
761}
762EXPORT_SYMBOL(jiffies64_to_nsecs);
763
b7b20df9 764/**
a1dabb6b 765 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
b7b20df9
HS
766 *
767 * @n: nsecs in u64
768 *
769 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
770 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
771 * for scheduler, not for use in device drivers to calculate timeout value.
772 *
773 * note:
774 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
775 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
776 */
a1dabb6b 777u64 nsecs_to_jiffies64(u64 n)
b7b20df9
HS
778{
779#if (NSEC_PER_SEC % HZ) == 0
780 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
781 return div_u64(n, NSEC_PER_SEC / HZ);
782#elif (HZ % 512) == 0
783 /* overflow after 292 years if HZ = 1024 */
784 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
785#else
786 /*
787 * Generic case - optimized for cases where HZ is a multiple of 3.
788 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
789 */
790 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
791#endif
792}
7bd0e226 793EXPORT_SYMBOL(nsecs_to_jiffies64);
b7b20df9 794
a1dabb6b
VP
795/**
796 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
797 *
798 * @n: nsecs in u64
799 *
800 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
801 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
802 * for scheduler, not for use in device drivers to calculate timeout value.
803 *
804 * note:
805 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
806 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
807 */
808unsigned long nsecs_to_jiffies(u64 n)
809{
810 return (unsigned long)nsecs_to_jiffies64(n);
811}
d560fed6 812EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
a1dabb6b 813
df0cc053
TG
814/*
815 * Add two timespec values and do a safety check for overflow.
816 * It's assumed that both values are valid (>= 0)
817 */
818struct timespec timespec_add_safe(const struct timespec lhs,
819 const struct timespec rhs)
820{
821 struct timespec res;
822
823 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
824 lhs.tv_nsec + rhs.tv_nsec);
825
826 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
827 res.tv_sec = TIME_T_MAX;
828
829 return res;
830}
bc2c53e5 831
bc2c53e5
DD
832/*
833 * Add two timespec64 values and do a safety check for overflow.
834 * It's assumed that both values are valid (>= 0).
835 * And, each timespec64 is in normalized form.
836 */
837struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
838 const struct timespec64 rhs)
839{
840 struct timespec64 res;
841
469e857f 842 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
bc2c53e5
DD
843 lhs.tv_nsec + rhs.tv_nsec);
844
845 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
846 res.tv_sec = TIME64_MAX;
847 res.tv_nsec = 0;
848 }
849
850 return res;
851}