]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/timekeeping.c
Merge tag 'char-misc-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[mirror_ubuntu-jammy-kernel.git] / kernel / time / timekeeping.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
8524070b 2/*
58c5fc2b
TG
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
8524070b 5 */
d7b4202e 6#include <linux/timekeeper_internal.h>
8524070b
JS
7#include <linux/module.h>
8#include <linux/interrupt.h>
9#include <linux/percpu.h>
10#include <linux/init.h>
11#include <linux/mm.h>
38b8d208 12#include <linux/nmi.h>
d43c36dc 13#include <linux/sched.h>
4f17722c 14#include <linux/sched/loadavg.h>
3eca9937 15#include <linux/sched/clock.h>
e1a85b2c 16#include <linux/syscore_ops.h>
8524070b
JS
17#include <linux/clocksource.h>
18#include <linux/jiffies.h>
19#include <linux/time.h>
20#include <linux/tick.h>
75c5158f 21#include <linux/stop_machine.h>
e0b306fe 22#include <linux/pvclock_gtod.h>
52f5684c 23#include <linux/compiler.h>
2d87a067 24#include <linux/audit.h>
8524070b 25
eb93e4d9 26#include "tick-internal.h"
aa6f9c59 27#include "ntp_internal.h"
5c83545f 28#include "timekeeping_internal.h"
155ec602 29
04397fe9
DV
30#define TK_CLEAR_NTP (1 << 0)
31#define TK_MIRROR (1 << 1)
780427f0 32#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 33
b061c7a5
ML
34enum timekeeping_adv_mode {
35 /* Update timekeeper when a tick has passed */
36 TK_ADV_TICK,
37
38 /* Update timekeeper on a direct frequency change */
39 TK_ADV_FREQ
40};
41
b923f124 42DEFINE_RAW_SPINLOCK(timekeeper_lock);
025e82bc 43
3fdb14fd
TG
44/*
45 * The most important data for readout fits into a single 64 byte
46 * cache line.
47 */
48static struct {
025e82bc 49 seqcount_raw_spinlock_t seq;
3fdb14fd 50 struct timekeeper timekeeper;
ce10a5b3 51} tk_core ____cacheline_aligned = {
025e82bc 52 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
ce10a5b3 53};
3fdb14fd 54
48cdc135 55static struct timekeeper shadow_timekeeper;
155ec602 56
71419b30
TG
57/* flag for if timekeeping is suspended */
58int __read_mostly timekeeping_suspended;
59
4396e058
TG
60/**
61 * struct tk_fast - NMI safe timekeeper
62 * @seq: Sequence counter for protecting updates. The lowest bit
63 * is the index for the tk_read_base array
64 * @base: tk_read_base array. Access is indexed by the lowest bit of
65 * @seq.
66 *
67 * See @update_fast_timekeeper() below.
68 */
69struct tk_fast {
249d0538 70 seqcount_latch_t seq;
4396e058
TG
71 struct tk_read_base base[2];
72};
73
5df32107
PB
74/* Suspend-time cycles value for halted fast timekeeper. */
75static u64 cycles_at_suspend;
76
77static u64 dummy_clock_read(struct clocksource *cs)
78{
71419b30
TG
79 if (timekeeping_suspended)
80 return cycles_at_suspend;
81 return local_clock();
5df32107
PB
82}
83
84static struct clocksource dummy_clock = {
85 .read = dummy_clock_read,
86};
87
71419b30
TG
88/*
89 * Boot time initialization which allows local_clock() to be utilized
90 * during early boot when clocksources are not available. local_clock()
91 * returns nanoseconds already so no conversion is required, hence mult=1
92 * and shift=0. When the first proper clocksource is installed then
93 * the fast time keepers are updated with the correct values.
94 */
95#define FAST_TK_INIT \
96 { \
97 .clock = &dummy_clock, \
98 .mask = CLOCKSOURCE_MASK(64), \
99 .mult = 1, \
100 .shift = 0, \
101 }
102
5df32107 103static struct tk_fast tk_fast_mono ____cacheline_aligned = {
249d0538 104 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
71419b30
TG
105 .base[0] = FAST_TK_INIT,
106 .base[1] = FAST_TK_INIT,
5df32107
PB
107};
108
109static struct tk_fast tk_fast_raw ____cacheline_aligned = {
249d0538 110 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
71419b30
TG
111 .base[0] = FAST_TK_INIT,
112 .base[1] = FAST_TK_INIT,
5df32107 113};
4396e058 114
1e75fa8b
JS
115static inline void tk_normalize_xtime(struct timekeeper *tk)
116{
876e7881
PZ
117 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
118 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
119 tk->xtime_sec++;
120 }
fc6eead7
JS
121 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
122 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
123 tk->raw_sec++;
124 }
1e75fa8b
JS
125}
126
985e6950 127static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
c905fae4
TG
128{
129 struct timespec64 ts;
130
131 ts.tv_sec = tk->xtime_sec;
876e7881 132 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
133 return ts;
134}
135
7d489d15 136static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
137{
138 tk->xtime_sec = ts->tv_sec;
876e7881 139 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
140}
141
7d489d15 142static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
143{
144 tk->xtime_sec += ts->tv_sec;
876e7881 145 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 146 tk_normalize_xtime(tk);
1e75fa8b 147}
8fcce546 148
7d489d15 149static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 150{
7d489d15 151 struct timespec64 tmp;
6d0ef903
JS
152
153 /*
154 * Verify consistency of: offset_real = -wall_to_monotonic
155 * before modifying anything
156 */
7d489d15 157 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 158 -tk->wall_to_monotonic.tv_nsec);
2456e855 159 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
6d0ef903 160 tk->wall_to_monotonic = wtm;
7d489d15
JS
161 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
162 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 163 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
164}
165
47da70d3 166static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 167{
a3ed0e43 168 tk->offs_boot = ktime_add(tk->offs_boot, delta);
b99328a6
TG
169 /*
170 * Timespec representation for VDSO update to avoid 64bit division
171 * on every update.
172 */
173 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
6d0ef903
JS
174}
175
ceea5e37
JS
176/*
177 * tk_clock_read - atomic clocksource read() helper
178 *
179 * This helper is necessary to use in the read paths because, while the
025e82bc 180 * seqcount ensures we don't return a bad value while structures are updated,
ceea5e37
JS
181 * it doesn't protect from potential crashes. There is the possibility that
182 * the tkr's clocksource may change between the read reference, and the
183 * clock reference passed to the read function. This can cause crashes if
184 * the wrong clocksource is passed to the wrong read function.
185 * This isn't necessary to use when holding the timekeeper_lock or doing
186 * a read of the fast-timekeeper tkrs (which is protected by its own locking
187 * and update logic).
188 */
985e6950 189static inline u64 tk_clock_read(const struct tk_read_base *tkr)
ceea5e37
JS
190{
191 struct clocksource *clock = READ_ONCE(tkr->clock);
192
193 return clock->read(clock);
194}
195
3c17ad19 196#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 197#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 198
a5a1d1c2 199static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
3c17ad19
JS
200{
201
a5a1d1c2 202 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
876e7881 203 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
204
205 if (offset > max_cycles) {
a558cd02 206 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 207 offset, name, max_cycles);
a558cd02 208 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
209 } else {
210 if (offset > (max_cycles >> 1)) {
fc4fa6e1 211 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
3c17ad19
JS
212 offset, name, max_cycles >> 1);
213 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
214 }
215 }
4ca22c26 216
57d05a93
JS
217 if (tk->underflow_seen) {
218 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
219 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
220 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
221 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 222 tk->last_warning = jiffies;
4ca22c26 223 }
57d05a93 224 tk->underflow_seen = 0;
4ca22c26
JS
225 }
226
57d05a93
JS
227 if (tk->overflow_seen) {
228 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
229 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
230 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
231 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 232 tk->last_warning = jiffies;
4ca22c26 233 }
57d05a93 234 tk->overflow_seen = 0;
4ca22c26 235 }
3c17ad19 236}
a558cd02 237
985e6950 238static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
a558cd02 239{
57d05a93 240 struct timekeeper *tk = &tk_core.timekeeper;
a5a1d1c2 241 u64 now, last, mask, max, delta;
4ca22c26 242 unsigned int seq;
a558cd02 243
4ca22c26 244 /*
025e82bc 245 * Since we're called holding a seqcount, the data may shift
4ca22c26
JS
246 * under us while we're doing the calculation. This can cause
247 * false positives, since we'd note a problem but throw the
025e82bc 248 * results away. So nest another seqcount here to atomically
4ca22c26
JS
249 * grab the points we are checking with.
250 */
251 do {
252 seq = read_seqcount_begin(&tk_core.seq);
ceea5e37 253 now = tk_clock_read(tkr);
4ca22c26
JS
254 last = tkr->cycle_last;
255 mask = tkr->mask;
256 max = tkr->clock->max_cycles;
257 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 258
4ca22c26 259 delta = clocksource_delta(now, last, mask);
a558cd02 260
057b87e3
JS
261 /*
262 * Try to catch underflows by checking if we are seeing small
263 * mask-relative negative values.
264 */
4ca22c26 265 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 266 tk->underflow_seen = 1;
057b87e3 267 delta = 0;
4ca22c26 268 }
057b87e3 269
a558cd02 270 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 271 if (unlikely(delta > max)) {
57d05a93 272 tk->overflow_seen = 1;
a558cd02 273 delta = tkr->clock->max_cycles;
4ca22c26 274 }
a558cd02
JS
275
276 return delta;
277}
3c17ad19 278#else
a5a1d1c2 279static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
3c17ad19
JS
280{
281}
985e6950 282static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
a558cd02 283{
a5a1d1c2 284 u64 cycle_now, delta;
a558cd02
JS
285
286 /* read clocksource */
ceea5e37 287 cycle_now = tk_clock_read(tkr);
a558cd02
JS
288
289 /* calculate the delta since the last update_wall_time */
290 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
291
292 return delta;
293}
3c17ad19
JS
294#endif
295
155ec602 296/**
d26e4fe0 297 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 298 *
d26e4fe0 299 * @tk: The target timekeeper to setup.
155ec602
MS
300 * @clock: Pointer to clocksource.
301 *
302 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
303 * pair and interval request.
304 *
305 * Unless you're the timekeeping code, you should not be using this!
306 */
f726a697 307static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602 308{
a5a1d1c2 309 u64 interval;
a386b5af 310 u64 tmp, ntpinterval;
1e75fa8b 311 struct clocksource *old_clock;
155ec602 312
2c756feb 313 ++tk->cs_was_changed_seq;
876e7881
PZ
314 old_clock = tk->tkr_mono.clock;
315 tk->tkr_mono.clock = clock;
876e7881 316 tk->tkr_mono.mask = clock->mask;
ceea5e37 317 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
155ec602 318
4a4ad80d 319 tk->tkr_raw.clock = clock;
4a4ad80d
PZ
320 tk->tkr_raw.mask = clock->mask;
321 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
322
155ec602
MS
323 /* Do the ns -> cycle conversion first, using original mult */
324 tmp = NTP_INTERVAL_LENGTH;
325 tmp <<= clock->shift;
a386b5af 326 ntpinterval = tmp;
0a544198
MS
327 tmp += clock->mult/2;
328 do_div(tmp, clock->mult);
155ec602
MS
329 if (tmp == 0)
330 tmp = 1;
331
a5a1d1c2 332 interval = (u64) tmp;
f726a697 333 tk->cycle_interval = interval;
155ec602
MS
334
335 /* Go back from cycles -> shifted ns */
cbd99e3b 336 tk->xtime_interval = interval * clock->mult;
f726a697 337 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
3d88d56c 338 tk->raw_interval = interval * clock->mult;
155ec602 339
1e75fa8b
JS
340 /* if changing clocks, convert xtime_nsec shift units */
341 if (old_clock) {
342 int shift_change = clock->shift - old_clock->shift;
fc6eead7 343 if (shift_change < 0) {
876e7881 344 tk->tkr_mono.xtime_nsec >>= -shift_change;
fc6eead7
JS
345 tk->tkr_raw.xtime_nsec >>= -shift_change;
346 } else {
876e7881 347 tk->tkr_mono.xtime_nsec <<= shift_change;
fc6eead7
JS
348 tk->tkr_raw.xtime_nsec <<= shift_change;
349 }
1e75fa8b 350 }
4a4ad80d 351
876e7881 352 tk->tkr_mono.shift = clock->shift;
4a4ad80d 353 tk->tkr_raw.shift = clock->shift;
155ec602 354
f726a697
JS
355 tk->ntp_error = 0;
356 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 357 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
358
359 /*
360 * The timekeeper keeps its own mult values for the currently
361 * active clocksource. These value will be adjusted via NTP
362 * to counteract clock drifting.
363 */
876e7881 364 tk->tkr_mono.mult = clock->mult;
4a4ad80d 365 tk->tkr_raw.mult = clock->mult;
dc491596 366 tk->ntp_err_mult = 0;
78b98e3c 367 tk->skip_second_overflow = 0;
155ec602 368}
8524070b 369
2ba2a305 370/* Timekeeper helper functions. */
7b1f6207 371
985e6950 372static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
6bd58f09 373{
9c164572 374 u64 nsec;
6bd58f09
CH
375
376 nsec = delta * tkr->mult + tkr->xtime_nsec;
377 nsec >>= tkr->shift;
378
77f6c0b8 379 return nsec;
6bd58f09
CH
380}
381
985e6950 382static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
2ba2a305 383{
a5a1d1c2 384 u64 delta;
2ba2a305 385
a558cd02 386 delta = timekeeping_get_delta(tkr);
6bd58f09
CH
387 return timekeeping_delta_to_ns(tkr, delta);
388}
2ba2a305 389
985e6950 390static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
6bd58f09 391{
a5a1d1c2 392 u64 delta;
f2a5a085 393
6bd58f09
CH
394 /* calculate the delta since the last update_wall_time */
395 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
396 return timekeeping_delta_to_ns(tkr, delta);
2ba2a305
MS
397}
398
4396e058
TG
399/**
400 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 401 * @tkr: Timekeeping readout base from which we take the update
e025b031 402 * @tkf: Pointer to NMI safe timekeeper
4396e058
TG
403 *
404 * We want to use this from any context including NMI and tracing /
405 * instrumenting the timekeeping code itself.
406 *
6695b92a 407 * Employ the latch technique; see @raw_write_seqcount_latch.
4396e058
TG
408 *
409 * So if a NMI hits the update of base[0] then it will use base[1]
410 * which is still consistent. In the worst case this can result is a
411 * slightly wrong timestamp (a few nanoseconds). See
412 * @ktime_get_mono_fast_ns.
413 */
985e6950
OM
414static void update_fast_timekeeper(const struct tk_read_base *tkr,
415 struct tk_fast *tkf)
4396e058 416{
4498e746 417 struct tk_read_base *base = tkf->base;
4396e058
TG
418
419 /* Force readers off to base[1] */
4498e746 420 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
421
422 /* Update base[0] */
affe3e85 423 memcpy(base, tkr, sizeof(*base));
4396e058
TG
424
425 /* Force readers back to base[0] */
4498e746 426 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
427
428 /* Update base[1] */
429 memcpy(base + 1, base, sizeof(*base));
430}
431
c1ce406e
TG
432static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
433{
434 struct tk_read_base *tkr;
435 unsigned int seq;
436 u64 now;
437
438 do {
439 seq = raw_read_seqcount_latch(&tkf->seq);
440 tkr = tkf->base + (seq & 0x01);
441 now = ktime_to_ns(tkr->base);
442
443 now += timekeeping_delta_to_ns(tkr,
444 clocksource_delta(
445 tk_clock_read(tkr),
446 tkr->cycle_last,
447 tkr->mask));
448 } while (read_seqcount_latch_retry(&tkf->seq, seq));
449
450 return now;
451}
452
4396e058
TG
453/**
454 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
455 *
456 * This timestamp is not guaranteed to be monotonic across an update.
457 * The timestamp is calculated by:
458 *
459 * now = base_mono + clock_delta * slope
460 *
461 * So if the update lowers the slope, readers who are forced to the
462 * not yet updated second array are still using the old steeper slope.
463 *
464 * tmono
465 * ^
466 * | o n
467 * | o n
468 * | u
469 * | o
470 * |o
471 * |12345678---> reader order
472 *
473 * o = old slope
474 * u = update
475 * n = new slope
476 *
477 * So reader 6 will observe time going backwards versus reader 5.
478 *
c1ce406e 479 * While other CPUs are likely to be able to observe that, the only way
4396e058
TG
480 * for a CPU local observation is when an NMI hits in the middle of
481 * the update. Timestamps taken from that NMI context might be ahead
482 * of the following timestamps. Callers need to be aware of that and
483 * deal with it.
484 */
4498e746
PZ
485u64 ktime_get_mono_fast_ns(void)
486{
487 return __ktime_get_fast_ns(&tk_fast_mono);
488}
4396e058
TG
489EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
490
c1ce406e
TG
491/**
492 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
493 *
494 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
495 * conversion factor is not affected by NTP/PTP correction.
496 */
f09cb9a1
PZ
497u64 ktime_get_raw_fast_ns(void)
498{
499 return __ktime_get_fast_ns(&tk_fast_raw);
500}
501EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
502
a3ed0e43
TG
503/**
504 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
505 *
506 * To keep it NMI safe since we're accessing from tracing, we're not using a
507 * separate timekeeper with updates to monotonic clock and boot offset
025e82bc 508 * protected with seqcounts. This has the following minor side effects:
a3ed0e43
TG
509 *
510 * (1) Its possible that a timestamp be taken after the boot offset is updated
511 * but before the timekeeper is updated. If this happens, the new boot offset
512 * is added to the old timekeeping making the clock appear to update slightly
513 * earlier:
514 * CPU 0 CPU 1
515 * timekeeping_inject_sleeptime64()
516 * __timekeeping_inject_sleeptime(tk, delta);
517 * timestamp();
518 * timekeeping_update(tk, TK_CLEAR_NTP...);
519 *
520 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
521 * partially updated. Since the tk->offs_boot update is a rare event, this
522 * should be a rare occurrence which postprocessing should be able to handle.
c1ce406e
TG
523 *
524 * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns()
525 * apply as well.
a3ed0e43
TG
526 */
527u64 notrace ktime_get_boot_fast_ns(void)
528{
529 struct timekeeper *tk = &tk_core.timekeeper;
530
531 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
532}
533EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
534
e2d977c9 535static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
4c3711d7
TG
536{
537 struct tk_read_base *tkr;
e2d977c9 538 u64 basem, baser, delta;
4c3711d7 539 unsigned int seq;
4c3711d7
TG
540
541 do {
542 seq = raw_read_seqcount_latch(&tkf->seq);
543 tkr = tkf->base + (seq & 0x01);
e2d977c9
TG
544 basem = ktime_to_ns(tkr->base);
545 baser = ktime_to_ns(tkr->base_real);
4c3711d7 546
e2d977c9
TG
547 delta = timekeeping_delta_to_ns(tkr,
548 clocksource_delta(tk_clock_read(tkr),
549 tkr->cycle_last, tkr->mask));
249d0538 550 } while (read_seqcount_latch_retry(&tkf->seq, seq));
4c3711d7 551
e2d977c9
TG
552 if (mono)
553 *mono = basem + delta;
554 return baser + delta;
4c3711d7
TG
555}
556
557/**
558 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
c1ce406e
TG
559 *
560 * See ktime_get_fast_ns() for documentation of the time stamp ordering.
4c3711d7
TG
561 */
562u64 ktime_get_real_fast_ns(void)
563{
e2d977c9 564 return __ktime_get_real_fast(&tk_fast_mono, NULL);
4c3711d7 565}
df27067e 566EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
4c3711d7 567
e2d977c9
TG
568/**
569 * ktime_get_fast_timestamps: - NMI safe timestamps
570 * @snapshot: Pointer to timestamp storage
571 *
572 * Stores clock monotonic, boottime and realtime timestamps.
573 *
574 * Boot time is a racy access on 32bit systems if the sleep time injection
575 * happens late during resume and not in timekeeping_resume(). That could
576 * be avoided by expanding struct tk_read_base with boot offset for 32bit
577 * and adding more overhead to the update. As this is a hard to observe
578 * once per resume event which can be filtered with reasonable effort using
579 * the accurate mono/real timestamps, it's probably not worth the trouble.
580 *
581 * Aside of that it might be possible on 32 and 64 bit to observe the
582 * following when the sleep time injection happens late:
583 *
584 * CPU 0 CPU 1
585 * timekeeping_resume()
586 * ktime_get_fast_timestamps()
587 * mono, real = __ktime_get_real_fast()
588 * inject_sleep_time()
589 * update boot offset
590 * boot = mono + bootoffset;
591 *
592 * That means that boot time already has the sleep time adjustment, but
593 * real time does not. On the next readout both are in sync again.
594 *
595 * Preventing this for 64bit is not really feasible without destroying the
596 * careful cache layout of the timekeeper because the sequence count and
597 * struct tk_read_base would then need two cache lines instead of one.
598 *
599 * Access to the time keeper clock source is disabled accross the innermost
600 * steps of suspend/resume. The accessors still work, but the timestamps
601 * are frozen until time keeping is resumed which happens very early.
602 *
603 * For regular suspend/resume there is no observable difference vs. sched
604 * clock, but it might affect some of the nasty low level debug printks.
605 *
606 * OTOH, access to sched clock is not guaranteed accross suspend/resume on
607 * all systems either so it depends on the hardware in use.
608 *
609 * If that turns out to be a real problem then this could be mitigated by
610 * using sched clock in a similar way as during early boot. But it's not as
611 * trivial as on early boot because it needs some careful protection
612 * against the clock monotonic timestamp jumping backwards on resume.
613 */
614void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
615{
616 struct timekeeper *tk = &tk_core.timekeeper;
617
618 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
619 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
620}
621
060407ae
RW
622/**
623 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
624 * @tk: Timekeeper to snapshot.
625 *
626 * It generally is unsafe to access the clocksource after timekeeping has been
627 * suspended, so take a snapshot of the readout base of @tk and use it as the
628 * fast timekeeper's readout base while suspended. It will return the same
629 * number of cycles every time until timekeeping is resumed at which time the
630 * proper readout base for the fast timekeeper will be restored automatically.
631 */
985e6950 632static void halt_fast_timekeeper(const struct timekeeper *tk)
060407ae
RW
633{
634 static struct tk_read_base tkr_dummy;
985e6950 635 const struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
636
637 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
ceea5e37
JS
638 cycles_at_suspend = tk_clock_read(tkr);
639 tkr_dummy.clock = &dummy_clock;
4c3711d7 640 tkr_dummy.base_real = tkr->base + tk->offs_real;
4498e746 641 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
642
643 tkr = &tk->tkr_raw;
644 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
ceea5e37 645 tkr_dummy.clock = &dummy_clock;
f09cb9a1 646 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
647}
648
e0b306fe
MT
649static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
650
780427f0 651static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 652{
780427f0 653 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
654}
655
656/**
657 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
f27f7c3f 658 * @nb: Pointer to the notifier block to register
e0b306fe
MT
659 */
660int pvclock_gtod_register_notifier(struct notifier_block *nb)
661{
3fdb14fd 662 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
663 unsigned long flags;
664 int ret;
665
9a7a71b1 666 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 667 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 668 update_pvclock_gtod(tk, true);
9a7a71b1 669 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
670
671 return ret;
672}
673EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
674
675/**
676 * pvclock_gtod_unregister_notifier - unregister a pvclock
677 * timedata update listener
f27f7c3f 678 * @nb: Pointer to the notifier block to unregister
e0b306fe
MT
679 */
680int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
681{
e0b306fe
MT
682 unsigned long flags;
683 int ret;
684
9a7a71b1 685 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 686 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 687 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
688
689 return ret;
690}
691EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
692
833f32d7
JS
693/*
694 * tk_update_leap_state - helper to update the next_leap_ktime
695 */
696static inline void tk_update_leap_state(struct timekeeper *tk)
697{
698 tk->next_leap_ktime = ntp_get_next_leap();
2456e855 699 if (tk->next_leap_ktime != KTIME_MAX)
833f32d7
JS
700 /* Convert to monotonic time */
701 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
702}
703
7c032df5
TG
704/*
705 * Update the ktime_t based scalar nsec members of the timekeeper
706 */
707static inline void tk_update_ktime_data(struct timekeeper *tk)
708{
9e3680b1
HS
709 u64 seconds;
710 u32 nsec;
7c032df5
TG
711
712 /*
713 * The xtime based monotonic readout is:
714 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
715 * The ktime based monotonic readout is:
716 * nsec = base_mono + now();
717 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
718 */
9e3680b1
HS
719 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
720 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 721 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2 722
9e3680b1
HS
723 /*
724 * The sum of the nanoseconds portions of xtime and
725 * wall_to_monotonic can be greater/equal one second. Take
726 * this into account before updating tk->ktime_sec.
727 */
876e7881 728 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
729 if (nsec >= NSEC_PER_SEC)
730 seconds++;
731 tk->ktime_sec = seconds;
fc6eead7
JS
732
733 /* Update the monotonic raw base */
0bcdc098 734 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
7c032df5
TG
735}
736
9a7a71b1 737/* must hold timekeeper_lock */
04397fe9 738static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 739{
04397fe9 740 if (action & TK_CLEAR_NTP) {
f726a697 741 tk->ntp_error = 0;
cc06268c
TG
742 ntp_clear();
743 }
48cdc135 744
833f32d7 745 tk_update_leap_state(tk);
7c032df5
TG
746 tk_update_ktime_data(tk);
747
9bf2419f
TG
748 update_vsyscall(tk);
749 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
750
4c3711d7 751 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
4498e746 752 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 753 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
754
755 if (action & TK_CLOCK_WAS_SET)
756 tk->clock_was_set_seq++;
d1518326
JS
757 /*
758 * The mirroring of the data to the shadow-timekeeper needs
759 * to happen last here to ensure we don't over-write the
760 * timekeeper structure on the next update with stale data
761 */
762 if (action & TK_MIRROR)
763 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
764 sizeof(tk_core.timekeeper));
cc06268c
TG
765}
766
8524070b 767/**
155ec602 768 * timekeeping_forward_now - update clock to the current time
6e5a9190 769 * @tk: Pointer to the timekeeper to update
8524070b 770 *
9a055117
RZ
771 * Forward the current clock to update its state since the last call to
772 * update_wall_time(). This is useful before significant clock changes,
773 * as it avoids having to deal with this time offset explicitly.
8524070b 774 */
f726a697 775static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 776{
a5a1d1c2 777 u64 cycle_now, delta;
8524070b 778
ceea5e37 779 cycle_now = tk_clock_read(&tk->tkr_mono);
876e7881
PZ
780 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
781 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 782 tk->tkr_raw.cycle_last = cycle_now;
8524070b 783
876e7881 784 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
fc6eead7
JS
785 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
786
fc6eead7 787 tk_normalize_xtime(tk);
8524070b
JS
788}
789
790/**
edca71fe 791 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
8524070b
JS
792 * @ts: pointer to the timespec to be set
793 *
edca71fe 794 * Returns the time of day in a timespec64 (WARN if suspended).
8524070b 795 */
edca71fe 796void ktime_get_real_ts64(struct timespec64 *ts)
8524070b 797{
3fdb14fd 798 struct timekeeper *tk = &tk_core.timekeeper;
e1e41b6c 799 unsigned int seq;
acc89612 800 u64 nsecs;
8524070b 801
edca71fe
AB
802 WARN_ON(timekeeping_suspended);
803
8524070b 804 do {
3fdb14fd 805 seq = read_seqcount_begin(&tk_core.seq);
8524070b 806
4e250fdd 807 ts->tv_sec = tk->xtime_sec;
876e7881 808 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 809
3fdb14fd 810 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 811
ec145bab 812 ts->tv_nsec = 0;
d6d29896 813 timespec64_add_ns(ts, nsecs);
8524070b 814}
edca71fe 815EXPORT_SYMBOL(ktime_get_real_ts64);
8524070b 816
951ed4d3
MS
817ktime_t ktime_get(void)
818{
3fdb14fd 819 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 820 unsigned int seq;
a016a5bd 821 ktime_t base;
acc89612 822 u64 nsecs;
951ed4d3
MS
823
824 WARN_ON(timekeeping_suspended);
825
826 do {
3fdb14fd 827 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
828 base = tk->tkr_mono.base;
829 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 830
3fdb14fd 831 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 832
a016a5bd 833 return ktime_add_ns(base, nsecs);
951ed4d3
MS
834}
835EXPORT_SYMBOL_GPL(ktime_get);
836
6374f912
HG
837u32 ktime_get_resolution_ns(void)
838{
839 struct timekeeper *tk = &tk_core.timekeeper;
840 unsigned int seq;
841 u32 nsecs;
842
843 WARN_ON(timekeeping_suspended);
844
845 do {
846 seq = read_seqcount_begin(&tk_core.seq);
847 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
848 } while (read_seqcount_retry(&tk_core.seq, seq));
849
850 return nsecs;
851}
852EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
853
0077dc60
TG
854static ktime_t *offsets[TK_OFFS_MAX] = {
855 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
a3ed0e43 856 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
0077dc60
TG
857 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
858};
859
860ktime_t ktime_get_with_offset(enum tk_offsets offs)
861{
862 struct timekeeper *tk = &tk_core.timekeeper;
863 unsigned int seq;
864 ktime_t base, *offset = offsets[offs];
acc89612 865 u64 nsecs;
0077dc60
TG
866
867 WARN_ON(timekeeping_suspended);
868
869 do {
870 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
871 base = ktime_add(tk->tkr_mono.base, *offset);
872 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
873
874 } while (read_seqcount_retry(&tk_core.seq, seq));
875
876 return ktime_add_ns(base, nsecs);
877
878}
879EXPORT_SYMBOL_GPL(ktime_get_with_offset);
880
b9ff604c
AB
881ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
882{
883 struct timekeeper *tk = &tk_core.timekeeper;
884 unsigned int seq;
885 ktime_t base, *offset = offsets[offs];
e3ff9c36 886 u64 nsecs;
b9ff604c
AB
887
888 WARN_ON(timekeeping_suspended);
889
890 do {
891 seq = read_seqcount_begin(&tk_core.seq);
892 base = ktime_add(tk->tkr_mono.base, *offset);
e3ff9c36 893 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
b9ff604c
AB
894
895 } while (read_seqcount_retry(&tk_core.seq, seq));
896
0354c1a3 897 return ktime_add_ns(base, nsecs);
b9ff604c
AB
898}
899EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
900
9a6b5197
TG
901/**
902 * ktime_mono_to_any() - convert mononotic time to any other time
903 * @tmono: time to convert.
904 * @offs: which offset to use
905 */
906ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
907{
908 ktime_t *offset = offsets[offs];
e1e41b6c 909 unsigned int seq;
9a6b5197
TG
910 ktime_t tconv;
911
912 do {
913 seq = read_seqcount_begin(&tk_core.seq);
914 tconv = ktime_add(tmono, *offset);
915 } while (read_seqcount_retry(&tk_core.seq, seq));
916
917 return tconv;
918}
919EXPORT_SYMBOL_GPL(ktime_mono_to_any);
920
f519b1a2
TG
921/**
922 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
923 */
924ktime_t ktime_get_raw(void)
925{
926 struct timekeeper *tk = &tk_core.timekeeper;
927 unsigned int seq;
928 ktime_t base;
acc89612 929 u64 nsecs;
f519b1a2
TG
930
931 do {
932 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
933 base = tk->tkr_raw.base;
934 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
935
936 } while (read_seqcount_retry(&tk_core.seq, seq));
937
938 return ktime_add_ns(base, nsecs);
939}
940EXPORT_SYMBOL_GPL(ktime_get_raw);
941
951ed4d3 942/**
d6d29896 943 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
944 * @ts: pointer to timespec variable
945 *
946 * The function calculates the monotonic clock from the realtime
947 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 948 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 949 */
d6d29896 950void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 951{
3fdb14fd 952 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 953 struct timespec64 tomono;
951ed4d3 954 unsigned int seq;
acc89612 955 u64 nsec;
951ed4d3
MS
956
957 WARN_ON(timekeeping_suspended);
958
959 do {
3fdb14fd 960 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 961 ts->tv_sec = tk->xtime_sec;
876e7881 962 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 963 tomono = tk->wall_to_monotonic;
951ed4d3 964
3fdb14fd 965 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 966
d6d29896
TG
967 ts->tv_sec += tomono.tv_sec;
968 ts->tv_nsec = 0;
969 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 970}
d6d29896 971EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 972
9e3680b1
HS
973/**
974 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
975 *
976 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
977 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
978 * works on both 32 and 64 bit systems. On 32 bit systems the readout
979 * covers ~136 years of uptime which should be enough to prevent
980 * premature wrap arounds.
981 */
982time64_t ktime_get_seconds(void)
983{
984 struct timekeeper *tk = &tk_core.timekeeper;
985
986 WARN_ON(timekeeping_suspended);
987 return tk->ktime_sec;
988}
989EXPORT_SYMBOL_GPL(ktime_get_seconds);
990
dbe7aa62
HS
991/**
992 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
993 *
aba428a0 994 * Returns the wall clock seconds since 1970.
dbe7aa62
HS
995 *
996 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
997 * 32bit systems the access must be protected with the sequence
998 * counter to provide "atomic" access to the 64bit tk->xtime_sec
999 * value.
1000 */
1001time64_t ktime_get_real_seconds(void)
1002{
1003 struct timekeeper *tk = &tk_core.timekeeper;
1004 time64_t seconds;
1005 unsigned int seq;
1006
1007 if (IS_ENABLED(CONFIG_64BIT))
1008 return tk->xtime_sec;
1009
1010 do {
1011 seq = read_seqcount_begin(&tk_core.seq);
1012 seconds = tk->xtime_sec;
1013
1014 } while (read_seqcount_retry(&tk_core.seq, seq));
1015
1016 return seconds;
1017}
1018EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1019
dee36654
D
1020/**
1021 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1022 * but without the sequence counter protect. This internal function
1023 * is called just when timekeeping lock is already held.
1024 */
865d3a9a 1025noinstr time64_t __ktime_get_real_seconds(void)
dee36654
D
1026{
1027 struct timekeeper *tk = &tk_core.timekeeper;
1028
1029 return tk->xtime_sec;
1030}
1031
9da0f49c
CH
1032/**
1033 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1034 * @systime_snapshot: pointer to struct receiving the system time snapshot
1035 */
1036void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1037{
1038 struct timekeeper *tk = &tk_core.timekeeper;
e1e41b6c 1039 unsigned int seq;
9da0f49c
CH
1040 ktime_t base_raw;
1041 ktime_t base_real;
acc89612
TG
1042 u64 nsec_raw;
1043 u64 nsec_real;
a5a1d1c2 1044 u64 now;
9da0f49c 1045
ba26621e
CH
1046 WARN_ON_ONCE(timekeeping_suspended);
1047
9da0f49c
CH
1048 do {
1049 seq = read_seqcount_begin(&tk_core.seq);
ceea5e37 1050 now = tk_clock_read(&tk->tkr_mono);
2c756feb
CH
1051 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1052 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
9da0f49c
CH
1053 base_real = ktime_add(tk->tkr_mono.base,
1054 tk_core.timekeeper.offs_real);
1055 base_raw = tk->tkr_raw.base;
1056 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1057 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1058 } while (read_seqcount_retry(&tk_core.seq, seq));
1059
1060 systime_snapshot->cycles = now;
1061 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1062 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1063}
1064EXPORT_SYMBOL_GPL(ktime_get_snapshot);
dee36654 1065
2c756feb
CH
1066/* Scale base by mult/div checking for overflow */
1067static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1068{
1069 u64 tmp, rem;
1070
1071 tmp = div64_u64_rem(*base, div, &rem);
1072
1073 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1074 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1075 return -EOVERFLOW;
1076 tmp *= mult;
2c756feb 1077
4cbbc3a0 1078 rem = div64_u64(rem * mult, div);
2c756feb
CH
1079 *base = tmp + rem;
1080 return 0;
1081}
1082
1083/**
1084 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1085 * @history: Snapshot representing start of history
1086 * @partial_history_cycles: Cycle offset into history (fractional part)
1087 * @total_history_cycles: Total history length in cycles
1088 * @discontinuity: True indicates clock was set on history period
1089 * @ts: Cross timestamp that should be adjusted using
1090 * partial/total ratio
1091 *
1092 * Helper function used by get_device_system_crosststamp() to correct the
1093 * crosstimestamp corresponding to the start of the current interval to the
1094 * system counter value (timestamp point) provided by the driver. The
1095 * total_history_* quantities are the total history starting at the provided
1096 * reference point and ending at the start of the current interval. The cycle
1097 * count between the driver timestamp point and the start of the current
1098 * interval is partial_history_cycles.
1099 */
1100static int adjust_historical_crosststamp(struct system_time_snapshot *history,
a5a1d1c2
TG
1101 u64 partial_history_cycles,
1102 u64 total_history_cycles,
2c756feb
CH
1103 bool discontinuity,
1104 struct system_device_crosststamp *ts)
1105{
1106 struct timekeeper *tk = &tk_core.timekeeper;
1107 u64 corr_raw, corr_real;
1108 bool interp_forward;
1109 int ret;
1110
1111 if (total_history_cycles == 0 || partial_history_cycles == 0)
1112 return 0;
1113
1114 /* Interpolate shortest distance from beginning or end of history */
5fc63f95 1115 interp_forward = partial_history_cycles > total_history_cycles / 2;
2c756feb
CH
1116 partial_history_cycles = interp_forward ?
1117 total_history_cycles - partial_history_cycles :
1118 partial_history_cycles;
1119
1120 /*
1121 * Scale the monotonic raw time delta by:
1122 * partial_history_cycles / total_history_cycles
1123 */
1124 corr_raw = (u64)ktime_to_ns(
1125 ktime_sub(ts->sys_monoraw, history->raw));
1126 ret = scale64_check_overflow(partial_history_cycles,
1127 total_history_cycles, &corr_raw);
1128 if (ret)
1129 return ret;
1130
1131 /*
1132 * If there is a discontinuity in the history, scale monotonic raw
1133 * correction by:
1134 * mult(real)/mult(raw) yielding the realtime correction
1135 * Otherwise, calculate the realtime correction similar to monotonic
1136 * raw calculation
1137 */
1138 if (discontinuity) {
1139 corr_real = mul_u64_u32_div
1140 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1141 } else {
1142 corr_real = (u64)ktime_to_ns(
1143 ktime_sub(ts->sys_realtime, history->real));
1144 ret = scale64_check_overflow(partial_history_cycles,
1145 total_history_cycles, &corr_real);
1146 if (ret)
1147 return ret;
1148 }
1149
1150 /* Fixup monotonic raw and real time time values */
1151 if (interp_forward) {
1152 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1153 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1154 } else {
1155 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1156 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1157 }
1158
1159 return 0;
1160}
1161
1162/*
1163 * cycle_between - true if test occurs chronologically between before and after
1164 */
a5a1d1c2 1165static bool cycle_between(u64 before, u64 test, u64 after)
2c756feb
CH
1166{
1167 if (test > before && test < after)
1168 return true;
1169 if (test < before && before > after)
1170 return true;
1171 return false;
1172}
1173
8006c245
CH
1174/**
1175 * get_device_system_crosststamp - Synchronously capture system/device timestamp
2c756feb 1176 * @get_time_fn: Callback to get simultaneous device time and
8006c245 1177 * system counter from the device driver
2c756feb
CH
1178 * @ctx: Context passed to get_time_fn()
1179 * @history_begin: Historical reference point used to interpolate system
1180 * time when counter provided by the driver is before the current interval
8006c245
CH
1181 * @xtstamp: Receives simultaneously captured system and device time
1182 *
1183 * Reads a timestamp from a device and correlates it to system time
1184 */
1185int get_device_system_crosststamp(int (*get_time_fn)
1186 (ktime_t *device_time,
1187 struct system_counterval_t *sys_counterval,
1188 void *ctx),
1189 void *ctx,
2c756feb 1190 struct system_time_snapshot *history_begin,
8006c245
CH
1191 struct system_device_crosststamp *xtstamp)
1192{
1193 struct system_counterval_t system_counterval;
1194 struct timekeeper *tk = &tk_core.timekeeper;
a5a1d1c2 1195 u64 cycles, now, interval_start;
6436257b 1196 unsigned int clock_was_set_seq = 0;
8006c245 1197 ktime_t base_real, base_raw;
acc89612 1198 u64 nsec_real, nsec_raw;
2c756feb 1199 u8 cs_was_changed_seq;
e1e41b6c 1200 unsigned int seq;
2c756feb 1201 bool do_interp;
8006c245
CH
1202 int ret;
1203
1204 do {
1205 seq = read_seqcount_begin(&tk_core.seq);
1206 /*
1207 * Try to synchronously capture device time and a system
1208 * counter value calling back into the device driver
1209 */
1210 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1211 if (ret)
1212 return ret;
1213
1214 /*
1215 * Verify that the clocksource associated with the captured
1216 * system counter value is the same as the currently installed
1217 * timekeeper clocksource
1218 */
1219 if (tk->tkr_mono.clock != system_counterval.cs)
1220 return -ENODEV;
2c756feb
CH
1221 cycles = system_counterval.cycles;
1222
1223 /*
1224 * Check whether the system counter value provided by the
1225 * device driver is on the current timekeeping interval.
1226 */
ceea5e37 1227 now = tk_clock_read(&tk->tkr_mono);
2c756feb
CH
1228 interval_start = tk->tkr_mono.cycle_last;
1229 if (!cycle_between(interval_start, cycles, now)) {
1230 clock_was_set_seq = tk->clock_was_set_seq;
1231 cs_was_changed_seq = tk->cs_was_changed_seq;
1232 cycles = interval_start;
1233 do_interp = true;
1234 } else {
1235 do_interp = false;
1236 }
8006c245
CH
1237
1238 base_real = ktime_add(tk->tkr_mono.base,
1239 tk_core.timekeeper.offs_real);
1240 base_raw = tk->tkr_raw.base;
1241
1242 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1243 system_counterval.cycles);
1244 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1245 system_counterval.cycles);
1246 } while (read_seqcount_retry(&tk_core.seq, seq));
1247
1248 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1249 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
2c756feb
CH
1250
1251 /*
1252 * Interpolate if necessary, adjusting back from the start of the
1253 * current interval
1254 */
1255 if (do_interp) {
a5a1d1c2 1256 u64 partial_history_cycles, total_history_cycles;
2c756feb
CH
1257 bool discontinuity;
1258
1259 /*
1260 * Check that the counter value occurs after the provided
1261 * history reference and that the history doesn't cross a
1262 * clocksource change
1263 */
1264 if (!history_begin ||
1265 !cycle_between(history_begin->cycles,
1266 system_counterval.cycles, cycles) ||
1267 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1268 return -EINVAL;
1269 partial_history_cycles = cycles - system_counterval.cycles;
1270 total_history_cycles = cycles - history_begin->cycles;
1271 discontinuity =
1272 history_begin->clock_was_set_seq != clock_was_set_seq;
1273
1274 ret = adjust_historical_crosststamp(history_begin,
1275 partial_history_cycles,
1276 total_history_cycles,
1277 discontinuity, xtstamp);
1278 if (ret)
1279 return ret;
1280 }
1281
8006c245
CH
1282 return 0;
1283}
1284EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1285
8524070b 1286/**
21f7eca5 1287 * do_settimeofday64 - Sets the time of day.
1288 * @ts: pointer to the timespec64 variable containing the new time
8524070b
JS
1289 *
1290 * Sets the time of day to the new time and update NTP and notify hrtimers
1291 */
21f7eca5 1292int do_settimeofday64(const struct timespec64 *ts)
8524070b 1293{
3fdb14fd 1294 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 1295 struct timespec64 ts_delta, xt;
92c1d3ed 1296 unsigned long flags;
e1d7ba87 1297 int ret = 0;
8524070b 1298
7a8e61f8 1299 if (!timespec64_valid_settod(ts))
8524070b
JS
1300 return -EINVAL;
1301
9a7a71b1 1302 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1303 write_seqcount_begin(&tk_core.seq);
8524070b 1304
4e250fdd 1305 timekeeping_forward_now(tk);
9a055117 1306
4e250fdd 1307 xt = tk_xtime(tk);
21f7eca5 1308 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1309 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 1310
e1d7ba87
WY
1311 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1312 ret = -EINVAL;
1313 goto out;
1314 }
1315
7d489d15 1316 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 1317
21f7eca5 1318 tk_set_xtime(tk, ts);
e1d7ba87 1319out:
780427f0 1320 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 1321
3fdb14fd 1322 write_seqcount_end(&tk_core.seq);
9a7a71b1 1323 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1324
1325 /* signal hrtimers about time change */
1326 clock_was_set();
1327
2d87a067
OM
1328 if (!ret)
1329 audit_tk_injoffset(ts_delta);
1330
e1d7ba87 1331 return ret;
8524070b 1332}
21f7eca5 1333EXPORT_SYMBOL(do_settimeofday64);
8524070b 1334
c528f7c6
JS
1335/**
1336 * timekeeping_inject_offset - Adds or subtracts from the current time.
6e5a9190 1337 * @ts: Pointer to the timespec variable containing the offset
c528f7c6
JS
1338 *
1339 * Adds or subtracts an offset value from the current time.
1340 */
985e6950 1341static int timekeeping_inject_offset(const struct timespec64 *ts)
c528f7c6 1342{
3fdb14fd 1343 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1344 unsigned long flags;
1572fa03 1345 struct timespec64 tmp;
4e8b1452 1346 int ret = 0;
c528f7c6 1347
1572fa03 1348 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
c528f7c6
JS
1349 return -EINVAL;
1350
9a7a71b1 1351 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1352 write_seqcount_begin(&tk_core.seq);
c528f7c6 1353
4e250fdd 1354 timekeeping_forward_now(tk);
c528f7c6 1355
4e8b1452 1356 /* Make sure the proposed value is valid */
1572fa03
AB
1357 tmp = timespec64_add(tk_xtime(tk), *ts);
1358 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
7a8e61f8 1359 !timespec64_valid_settod(&tmp)) {
4e8b1452
JS
1360 ret = -EINVAL;
1361 goto error;
1362 }
1e75fa8b 1363
1572fa03
AB
1364 tk_xtime_add(tk, ts);
1365 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
c528f7c6 1366
4e8b1452 1367error: /* even if we error out, we forwarded the time, so call update */
780427f0 1368 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 1369
3fdb14fd 1370 write_seqcount_end(&tk_core.seq);
9a7a71b1 1371 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
1372
1373 /* signal hrtimers about time change */
1374 clock_was_set();
1375
4e8b1452 1376 return ret;
c528f7c6 1377}
e0956dcc
AB
1378
1379/*
1380 * Indicates if there is an offset between the system clock and the hardware
1381 * clock/persistent clock/rtc.
1382 */
1383int persistent_clock_is_local;
1384
1385/*
1386 * Adjust the time obtained from the CMOS to be UTC time instead of
1387 * local time.
1388 *
1389 * This is ugly, but preferable to the alternatives. Otherwise we
1390 * would either need to write a program to do it in /etc/rc (and risk
1391 * confusion if the program gets run more than once; it would also be
1392 * hard to make the program warp the clock precisely n hours) or
1393 * compile in the timezone information into the kernel. Bad, bad....
1394 *
1395 * - TYT, 1992-01-01
1396 *
1397 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1398 * as real UNIX machines always do it. This avoids all headaches about
1399 * daylight saving times and warping kernel clocks.
1400 */
1401void timekeeping_warp_clock(void)
1402{
1403 if (sys_tz.tz_minuteswest != 0) {
1572fa03 1404 struct timespec64 adjust;
e0956dcc
AB
1405
1406 persistent_clock_is_local = 1;
1407 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1408 adjust.tv_nsec = 0;
1409 timekeeping_inject_offset(&adjust);
1410 }
1411}
c528f7c6 1412
199d280c 1413/*
40d9f827 1414 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
cc244dda 1415 */
dd5d70e8 1416static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1417{
1418 tk->tai_offset = tai_offset;
04005f60 1419 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1420}
1421
199d280c 1422/*
8524070b
JS
1423 * change_clocksource - Swaps clocksources if a new one is available
1424 *
1425 * Accumulates current time interval and initializes new clocksource
1426 */
75c5158f 1427static int change_clocksource(void *data)
8524070b 1428{
3fdb14fd 1429 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1430 struct clocksource *new, *old;
f695cf94 1431 unsigned long flags;
8524070b 1432
75c5158f 1433 new = (struct clocksource *) data;
8524070b 1434
9a7a71b1 1435 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1436 write_seqcount_begin(&tk_core.seq);
f695cf94 1437
4e250fdd 1438 timekeeping_forward_now(tk);
09ac369c
TG
1439 /*
1440 * If the cs is in module, get a module reference. Succeeds
1441 * for built-in code (owner == NULL) as well.
1442 */
1443 if (try_module_get(new->owner)) {
1444 if (!new->enable || new->enable(new) == 0) {
876e7881 1445 old = tk->tkr_mono.clock;
09ac369c
TG
1446 tk_setup_internals(tk, new);
1447 if (old->disable)
1448 old->disable(old);
1449 module_put(old->owner);
1450 } else {
1451 module_put(new->owner);
1452 }
75c5158f 1453 }
780427f0 1454 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1455
3fdb14fd 1456 write_seqcount_end(&tk_core.seq);
9a7a71b1 1457 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1458
75c5158f
MS
1459 return 0;
1460}
8524070b 1461
75c5158f
MS
1462/**
1463 * timekeeping_notify - Install a new clock source
1464 * @clock: pointer to the clock source
1465 *
1466 * This function is called from clocksource.c after a new, better clock
1467 * source has been registered. The caller holds the clocksource_mutex.
1468 */
ba919d1c 1469int timekeeping_notify(struct clocksource *clock)
75c5158f 1470{
3fdb14fd 1471 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1472
876e7881 1473 if (tk->tkr_mono.clock == clock)
ba919d1c 1474 return 0;
75c5158f 1475 stop_machine(change_clocksource, clock, NULL);
8524070b 1476 tick_clock_notify();
876e7881 1477 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1478}
75c5158f 1479
2d42244a 1480/**
fb7fcc96 1481 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
cdba2ec5 1482 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1483 *
1484 * Returns the raw monotonic time (completely un-modified by ntp)
1485 */
fb7fcc96 1486void ktime_get_raw_ts64(struct timespec64 *ts)
2d42244a 1487{
3fdb14fd 1488 struct timekeeper *tk = &tk_core.timekeeper;
e1e41b6c 1489 unsigned int seq;
acc89612 1490 u64 nsecs;
2d42244a
JS
1491
1492 do {
3fdb14fd 1493 seq = read_seqcount_begin(&tk_core.seq);
fc6eead7 1494 ts->tv_sec = tk->raw_sec;
4a4ad80d 1495 nsecs = timekeeping_get_ns(&tk->tkr_raw);
2d42244a 1496
3fdb14fd 1497 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1498
fc6eead7
JS
1499 ts->tv_nsec = 0;
1500 timespec64_add_ns(ts, nsecs);
2d42244a 1501}
fb7fcc96 1502EXPORT_SYMBOL(ktime_get_raw_ts64);
cdba2ec5 1503
2d42244a 1504
8524070b 1505/**
cf4fc6cb 1506 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1507 */
cf4fc6cb 1508int timekeeping_valid_for_hres(void)
8524070b 1509{
3fdb14fd 1510 struct timekeeper *tk = &tk_core.timekeeper;
e1e41b6c 1511 unsigned int seq;
8524070b
JS
1512 int ret;
1513
1514 do {
3fdb14fd 1515 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1516
876e7881 1517 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1518
3fdb14fd 1519 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b
JS
1520
1521 return ret;
1522}
1523
98962465
JH
1524/**
1525 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1526 */
1527u64 timekeeping_max_deferment(void)
1528{
3fdb14fd 1529 struct timekeeper *tk = &tk_core.timekeeper;
e1e41b6c 1530 unsigned int seq;
70471f2f 1531 u64 ret;
42e71e81 1532
70471f2f 1533 do {
3fdb14fd 1534 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1535
876e7881 1536 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1537
3fdb14fd 1538 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1539
1540 return ret;
98962465
JH
1541}
1542
8524070b 1543/**
92661788 1544 * read_persistent_clock64 - Return time from the persistent clock.
6e5a9190 1545 * @ts: Pointer to the storage for the readout value
8524070b
JS
1546 *
1547 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1548 * Reads the time from the battery backed persistent clock.
1549 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b
JS
1550 *
1551 * XXX - Do be sure to remove it once all arches implement it.
1552 */
92661788 1553void __weak read_persistent_clock64(struct timespec64 *ts)
8524070b 1554{
d4f587c6
MS
1555 ts->tv_sec = 0;
1556 ts->tv_nsec = 0;
8524070b
JS
1557}
1558
23970e38 1559/**
3eca9937
PT
1560 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1561 * from the boot.
23970e38
MS
1562 *
1563 * Weak dummy function for arches that do not yet support it.
29efc461
AS
1564 * @wall_time: - current time as returned by persistent clock
1565 * @boot_offset: - offset that is defined as wall_time - boot_time
1566 *
4b1b7f80
PT
1567 * The default function calculates offset based on the current value of
1568 * local_clock(). This way architectures that support sched_clock() but don't
1569 * support dedicated boot time clock will provide the best estimate of the
1570 * boot time.
23970e38 1571 */
3eca9937
PT
1572void __weak __init
1573read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1574 struct timespec64 *boot_offset)
23970e38 1575{
3eca9937 1576 read_persistent_clock64(wall_time);
4b1b7f80 1577 *boot_offset = ns_to_timespec64(local_clock());
23970e38
MS
1578}
1579
f473e5f4
MO
1580/*
1581 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1582 *
1583 * The flag starts of false and is only set when a suspend reaches
1584 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1585 * timekeeper clocksource is not stopping across suspend and has been
1586 * used to update sleep time. If the timekeeper clocksource has stopped
1587 * then the flag stays true and is used by the RTC resume code to decide
1588 * whether sleeptime must be injected and if so the flag gets false then.
1589 *
1590 * If a suspend fails before reaching timekeeping_resume() then the flag
1591 * stays false and prevents erroneous sleeptime injection.
1592 */
1593static bool suspend_timing_needed;
0fa88cb4
XP
1594
1595/* Flag for if there is a persistent clock on this platform */
1596static bool persistent_clock_exists;
1597
8524070b
JS
1598/*
1599 * timekeeping_init - Initializes the clocksource and common timekeeping values
1600 */
1601void __init timekeeping_init(void)
1602{
3eca9937 1603 struct timespec64 wall_time, boot_offset, wall_to_mono;
3fdb14fd 1604 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1605 struct clocksource *clock;
8524070b 1606 unsigned long flags;
4e8b1452 1607
3eca9937 1608 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
7a8e61f8 1609 if (timespec64_valid_settod(&wall_time) &&
3eca9937
PT
1610 timespec64_to_ns(&wall_time) > 0) {
1611 persistent_clock_exists = true;
684ad537 1612 } else if (timespec64_to_ns(&wall_time) != 0) {
3eca9937
PT
1613 pr_warn("Persistent clock returned invalid value");
1614 wall_time = (struct timespec64){0};
4e8b1452 1615 }
8524070b 1616
3eca9937
PT
1617 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1618 boot_offset = (struct timespec64){0};
1619
1620 /*
1621 * We want set wall_to_mono, so the following is true:
1622 * wall time + wall_to_mono = boot time
1623 */
1624 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1625
9a7a71b1 1626 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1627 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1628 ntp_init();
1629
f1b82746 1630 clock = clocksource_default_clock();
a0f7d48b
MS
1631 if (clock->enable)
1632 clock->enable(clock);
4e250fdd 1633 tk_setup_internals(tk, clock);
8524070b 1634
3eca9937 1635 tk_set_xtime(tk, &wall_time);
fc6eead7 1636 tk->raw_sec = 0;
1e75fa8b 1637
3eca9937 1638 tk_set_wall_to_mono(tk, wall_to_mono);
6d0ef903 1639
56fd16ca 1640 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
48cdc135 1641
3fdb14fd 1642 write_seqcount_end(&tk_core.seq);
9a7a71b1 1643 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1644}
1645
264bb3f7 1646/* time in seconds when suspend began for persistent clock */
7d489d15 1647static struct timespec64 timekeeping_suspend_time;
8524070b 1648
304529b1
JS
1649/**
1650 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
6e5a9190
AS
1651 * @tk: Pointer to the timekeeper to be updated
1652 * @delta: Pointer to the delta value in timespec64 format
304529b1
JS
1653 *
1654 * Takes a timespec offset measuring a suspend interval and properly
1655 * adds the sleep offset to the timekeeping variables.
1656 */
f726a697 1657static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
985e6950 1658 const struct timespec64 *delta)
304529b1 1659{
7d489d15 1660 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1661 printk_deferred(KERN_WARNING
1662 "__timekeeping_inject_sleeptime: Invalid "
1663 "sleep delta value!\n");
cb5de2f8
JS
1664 return;
1665 }
f726a697 1666 tk_xtime_add(tk, delta);
a3ed0e43 1667 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1668 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1669 tk_debug_account_sleep_time(delta);
304529b1
JS
1670}
1671
7f298139 1672#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1673/**
1674 * We have three kinds of time sources to use for sleep time
1675 * injection, the preference order is:
1676 * 1) non-stop clocksource
1677 * 2) persistent clock (ie: RTC accessible when irqs are off)
1678 * 3) RTC
1679 *
1680 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1681 * If system has neither 1) nor 2), 3) will be used finally.
1682 *
1683 *
1684 * If timekeeping has injected sleeptime via either 1) or 2),
1685 * 3) becomes needless, so in this case we don't need to call
1686 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1687 * means.
1688 */
1689bool timekeeping_rtc_skipresume(void)
1690{
f473e5f4 1691 return !suspend_timing_needed;
0fa88cb4
XP
1692}
1693
1694/**
1695 * 1) can be determined whether to use or not only when doing
1696 * timekeeping_resume() which is invoked after rtc_suspend(),
1697 * so we can't skip rtc_suspend() surely if system has 1).
1698 *
1699 * But if system has 2), 2) will definitely be used, so in this
1700 * case we don't need to call rtc_suspend(), and this is what
1701 * timekeeping_rtc_skipsuspend() means.
1702 */
1703bool timekeeping_rtc_skipsuspend(void)
1704{
1705 return persistent_clock_exists;
1706}
1707
304529b1 1708/**
04d90890 1709 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1710 * @delta: pointer to a timespec64 delta value
304529b1 1711 *
2ee96632 1712 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1713 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1714 * and also don't have an effective nonstop clocksource.
304529b1
JS
1715 *
1716 * This function should only be called by rtc_resume(), and allows
1717 * a suspend offset to be injected into the timekeeping values.
1718 */
985e6950 1719void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
304529b1 1720{
3fdb14fd 1721 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1722 unsigned long flags;
304529b1 1723
9a7a71b1 1724 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1725 write_seqcount_begin(&tk_core.seq);
70471f2f 1726
f473e5f4
MO
1727 suspend_timing_needed = false;
1728
4e250fdd 1729 timekeeping_forward_now(tk);
304529b1 1730
04d90890 1731 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1732
780427f0 1733 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1734
3fdb14fd 1735 write_seqcount_end(&tk_core.seq);
9a7a71b1 1736 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1737
1738 /* signal hrtimers about time change */
1739 clock_was_set();
1740}
7f298139 1741#endif
304529b1 1742
8524070b
JS
1743/**
1744 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1745 */
124cf911 1746void timekeeping_resume(void)
8524070b 1747{
3fdb14fd 1748 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1749 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1750 unsigned long flags;
7d489d15 1751 struct timespec64 ts_new, ts_delta;
39232ed5 1752 u64 cycle_now, nsec;
f473e5f4 1753 bool inject_sleeptime = false;
d4f587c6 1754
2ee96632 1755 read_persistent_clock64(&ts_new);
8524070b 1756
adc78e6b 1757 clockevents_resume();
d10ff3fb
TG
1758 clocksource_resume();
1759
9a7a71b1 1760 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1761 write_seqcount_begin(&tk_core.seq);
8524070b 1762
e445cf1c
FT
1763 /*
1764 * After system resumes, we need to calculate the suspended time and
1765 * compensate it for the OS time. There are 3 sources that could be
1766 * used: Nonstop clocksource during suspend, persistent clock and rtc
1767 * device.
1768 *
1769 * One specific platform may have 1 or 2 or all of them, and the
1770 * preference will be:
1771 * suspend-nonstop clocksource -> persistent clock -> rtc
1772 * The less preferred source will only be tried if there is no better
1773 * usable source. The rtc part is handled separately in rtc core code.
1774 */
ceea5e37 1775 cycle_now = tk_clock_read(&tk->tkr_mono);
39232ed5
BW
1776 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1777 if (nsec > 0) {
7d489d15 1778 ts_delta = ns_to_timespec64(nsec);
f473e5f4 1779 inject_sleeptime = true;
7d489d15
JS
1780 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1781 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
f473e5f4 1782 inject_sleeptime = true;
8524070b 1783 }
e445cf1c 1784
f473e5f4
MO
1785 if (inject_sleeptime) {
1786 suspend_timing_needed = false;
e445cf1c 1787 __timekeeping_inject_sleeptime(tk, &ts_delta);
f473e5f4 1788 }
e445cf1c
FT
1789
1790 /* Re-base the last cycle value */
876e7881 1791 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1792 tk->tkr_raw.cycle_last = cycle_now;
1793
4e250fdd 1794 tk->ntp_error = 0;
8524070b 1795 timekeeping_suspended = 0;
780427f0 1796 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1797 write_seqcount_end(&tk_core.seq);
9a7a71b1 1798 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1799
1800 touch_softlockup_watchdog();
1801
4ffee521 1802 tick_resume();
b12a03ce 1803 hrtimers_resume();
8524070b
JS
1804}
1805
124cf911 1806int timekeeping_suspend(void)
8524070b 1807{
3fdb14fd 1808 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1809 unsigned long flags;
7d489d15
JS
1810 struct timespec64 delta, delta_delta;
1811 static struct timespec64 old_delta;
39232ed5
BW
1812 struct clocksource *curr_clock;
1813 u64 cycle_now;
8524070b 1814
2ee96632 1815 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1816
0d6bd995
ZM
1817 /*
1818 * On some systems the persistent_clock can not be detected at
1819 * timekeeping_init by its return value, so if we see a valid
1820 * value returned, update the persistent_clock_exists flag.
1821 */
1822 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1823 persistent_clock_exists = true;
0d6bd995 1824
f473e5f4
MO
1825 suspend_timing_needed = true;
1826
9a7a71b1 1827 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1828 write_seqcount_begin(&tk_core.seq);
4e250fdd 1829 timekeeping_forward_now(tk);
8524070b 1830 timekeeping_suspended = 1;
cb33217b 1831
39232ed5
BW
1832 /*
1833 * Since we've called forward_now, cycle_last stores the value
1834 * just read from the current clocksource. Save this to potentially
1835 * use in suspend timing.
1836 */
1837 curr_clock = tk->tkr_mono.clock;
1838 cycle_now = tk->tkr_mono.cycle_last;
1839 clocksource_start_suspend_timing(curr_clock, cycle_now);
1840
0fa88cb4 1841 if (persistent_clock_exists) {
cb33217b 1842 /*
264bb3f7
XP
1843 * To avoid drift caused by repeated suspend/resumes,
1844 * which each can add ~1 second drift error,
1845 * try to compensate so the difference in system time
1846 * and persistent_clock time stays close to constant.
cb33217b 1847 */
264bb3f7
XP
1848 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1849 delta_delta = timespec64_sub(delta, old_delta);
1850 if (abs(delta_delta.tv_sec) >= 2) {
1851 /*
1852 * if delta_delta is too large, assume time correction
1853 * has occurred and set old_delta to the current delta.
1854 */
1855 old_delta = delta;
1856 } else {
1857 /* Otherwise try to adjust old_system to compensate */
1858 timekeeping_suspend_time =
1859 timespec64_add(timekeeping_suspend_time, delta_delta);
1860 }
cb33217b 1861 }
330a1617
JS
1862
1863 timekeeping_update(tk, TK_MIRROR);
060407ae 1864 halt_fast_timekeeper(tk);
3fdb14fd 1865 write_seqcount_end(&tk_core.seq);
9a7a71b1 1866 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1867
4ffee521 1868 tick_suspend();
c54a42b1 1869 clocksource_suspend();
adc78e6b 1870 clockevents_suspend();
8524070b
JS
1871
1872 return 0;
1873}
1874
1875/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1876static struct syscore_ops timekeeping_syscore_ops = {
8524070b
JS
1877 .resume = timekeeping_resume,
1878 .suspend = timekeeping_suspend,
8524070b
JS
1879};
1880
e1a85b2c 1881static int __init timekeeping_init_ops(void)
8524070b 1882{
e1a85b2c
RW
1883 register_syscore_ops(&timekeeping_syscore_ops);
1884 return 0;
8524070b 1885}
e1a85b2c 1886device_initcall(timekeeping_init_ops);
8524070b
JS
1887
1888/*
dc491596 1889 * Apply a multiplier adjustment to the timekeeper
8524070b 1890 */
dc491596
JS
1891static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1892 s64 offset,
78b98e3c 1893 s32 mult_adj)
8524070b 1894{
dc491596 1895 s64 interval = tk->cycle_interval;
8524070b 1896
78b98e3c
ML
1897 if (mult_adj == 0) {
1898 return;
1899 } else if (mult_adj == -1) {
dc491596 1900 interval = -interval;
78b98e3c
ML
1901 offset = -offset;
1902 } else if (mult_adj != 1) {
1903 interval *= mult_adj;
1904 offset *= mult_adj;
1d17d174 1905 }
8524070b 1906
c2bc1111
JS
1907 /*
1908 * So the following can be confusing.
1909 *
dc491596 1910 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1911 *
dc491596 1912 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1913 * have been appropriately scaled so the math is the same.
1914 *
1915 * The basic idea here is that we're increasing the multiplier
1916 * by one, this causes the xtime_interval to be incremented by
1917 * one cycle_interval. This is because:
1918 * xtime_interval = cycle_interval * mult
1919 * So if mult is being incremented by one:
1920 * xtime_interval = cycle_interval * (mult + 1)
1921 * Its the same as:
1922 * xtime_interval = (cycle_interval * mult) + cycle_interval
1923 * Which can be shortened to:
1924 * xtime_interval += cycle_interval
1925 *
1926 * So offset stores the non-accumulated cycles. Thus the current
1927 * time (in shifted nanoseconds) is:
1928 * now = (offset * adj) + xtime_nsec
1929 * Now, even though we're adjusting the clock frequency, we have
1930 * to keep time consistent. In other words, we can't jump back
1931 * in time, and we also want to avoid jumping forward in time.
1932 *
1933 * So given the same offset value, we need the time to be the same
1934 * both before and after the freq adjustment.
1935 * now = (offset * adj_1) + xtime_nsec_1
1936 * now = (offset * adj_2) + xtime_nsec_2
1937 * So:
1938 * (offset * adj_1) + xtime_nsec_1 =
1939 * (offset * adj_2) + xtime_nsec_2
1940 * And we know:
1941 * adj_2 = adj_1 + 1
1942 * So:
1943 * (offset * adj_1) + xtime_nsec_1 =
1944 * (offset * (adj_1+1)) + xtime_nsec_2
1945 * (offset * adj_1) + xtime_nsec_1 =
1946 * (offset * adj_1) + offset + xtime_nsec_2
1947 * Canceling the sides:
1948 * xtime_nsec_1 = offset + xtime_nsec_2
1949 * Which gives us:
1950 * xtime_nsec_2 = xtime_nsec_1 - offset
1951 * Which simplfies to:
1952 * xtime_nsec -= offset
c2bc1111 1953 */
876e7881 1954 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1955 /* NTP adjustment caused clocksource mult overflow */
1956 WARN_ON_ONCE(1);
1957 return;
1958 }
1959
876e7881 1960 tk->tkr_mono.mult += mult_adj;
f726a697 1961 tk->xtime_interval += interval;
876e7881 1962 tk->tkr_mono.xtime_nsec -= offset;
dc491596
JS
1963}
1964
1965/*
78b98e3c
ML
1966 * Adjust the timekeeper's multiplier to the correct frequency
1967 * and also to reduce the accumulated error value.
dc491596 1968 */
78b98e3c 1969static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
dc491596 1970{
78b98e3c 1971 u32 mult;
dc491596 1972
ec02b076 1973 /*
78b98e3c
ML
1974 * Determine the multiplier from the current NTP tick length.
1975 * Avoid expensive division when the tick length doesn't change.
ec02b076 1976 */
78b98e3c
ML
1977 if (likely(tk->ntp_tick == ntp_tick_length())) {
1978 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1979 } else {
1980 tk->ntp_tick = ntp_tick_length();
1981 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1982 tk->xtime_remainder, tk->cycle_interval);
ec02b076 1983 }
dc491596 1984
78b98e3c
ML
1985 /*
1986 * If the clock is behind the NTP time, increase the multiplier by 1
1987 * to catch up with it. If it's ahead and there was a remainder in the
1988 * tick division, the clock will slow down. Otherwise it will stay
1989 * ahead until the tick length changes to a non-divisible value.
1990 */
1991 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1992 mult += tk->ntp_err_mult;
dc491596 1993
78b98e3c 1994 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
dc491596 1995
876e7881
PZ
1996 if (unlikely(tk->tkr_mono.clock->maxadj &&
1997 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1998 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1999 printk_once(KERN_WARNING
2000 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
2001 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2002 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 2003 }
2a8c0883
JS
2004
2005 /*
2006 * It may be possible that when we entered this function, xtime_nsec
2007 * was very small. Further, if we're slightly speeding the clocksource
2008 * in the code above, its possible the required corrective factor to
2009 * xtime_nsec could cause it to underflow.
2010 *
78b98e3c
ML
2011 * Now, since we have already accumulated the second and the NTP
2012 * subsystem has been notified via second_overflow(), we need to skip
2013 * the next update.
2a8c0883 2014 */
876e7881 2015 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
78b98e3c
ML
2016 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2017 tk->tkr_mono.shift;
2018 tk->xtime_sec--;
2019 tk->skip_second_overflow = 1;
2a8c0883 2020 }
8524070b
JS
2021}
2022
199d280c 2023/*
1f4f9487
JS
2024 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2025 *
571af55a 2026 * Helper function that accumulates the nsecs greater than a second
1f4f9487
JS
2027 * from the xtime_nsec field to the xtime_secs field.
2028 * It also calls into the NTP code to handle leapsecond processing.
1f4f9487 2029 */
780427f0 2030static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 2031{
876e7881 2032 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 2033 unsigned int clock_set = 0;
1f4f9487 2034
876e7881 2035 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
2036 int leap;
2037
876e7881 2038 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
2039 tk->xtime_sec++;
2040
78b98e3c
ML
2041 /*
2042 * Skip NTP update if this second was accumulated before,
2043 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2044 */
2045 if (unlikely(tk->skip_second_overflow)) {
2046 tk->skip_second_overflow = 0;
2047 continue;
2048 }
2049
1f4f9487
JS
2050 /* Figure out if its a leap sec and apply if needed */
2051 leap = second_overflow(tk->xtime_sec);
6d0ef903 2052 if (unlikely(leap)) {
7d489d15 2053 struct timespec64 ts;
6d0ef903
JS
2054
2055 tk->xtime_sec += leap;
1f4f9487 2056
6d0ef903
JS
2057 ts.tv_sec = leap;
2058 ts.tv_nsec = 0;
2059 tk_set_wall_to_mono(tk,
7d489d15 2060 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 2061
cc244dda
JS
2062 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2063
5258d3f2 2064 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 2065 }
1f4f9487 2066 }
5258d3f2 2067 return clock_set;
1f4f9487
JS
2068}
2069
199d280c 2070/*
a092ff0f
JS
2071 * logarithmic_accumulation - shifted accumulation of cycles
2072 *
2073 * This functions accumulates a shifted interval of cycles into
b0294f30 2074 * a shifted interval nanoseconds. Allows for O(log) accumulation
a092ff0f
JS
2075 * loop.
2076 *
2077 * Returns the unconsumed cycles.
2078 */
a5a1d1c2
TG
2079static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2080 u32 shift, unsigned int *clock_set)
a092ff0f 2081{
a5a1d1c2 2082 u64 interval = tk->cycle_interval << shift;
3d88d56c 2083 u64 snsec_per_sec;
a092ff0f 2084
571af55a 2085 /* If the offset is smaller than a shifted interval, do nothing */
23a9537a 2086 if (offset < interval)
a092ff0f
JS
2087 return offset;
2088
2089 /* Accumulate one shifted interval */
23a9537a 2090 offset -= interval;
876e7881 2091 tk->tkr_mono.cycle_last += interval;
4a4ad80d 2092 tk->tkr_raw.cycle_last += interval;
a092ff0f 2093
876e7881 2094 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 2095 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 2096
deda2e81 2097 /* Accumulate raw time */
3d88d56c
JS
2098 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2099 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2100 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2101 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
fc6eead7 2102 tk->raw_sec++;
a092ff0f
JS
2103 }
2104
2105 /* Accumulate error between NTP and clock interval */
375f45b5 2106 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
2107 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2108 (tk->ntp_error_shift + shift);
a092ff0f
JS
2109
2110 return offset;
2111}
2112
b061c7a5
ML
2113/*
2114 * timekeeping_advance - Updates the timekeeper to the current time and
2115 * current NTP tick length
8524070b 2116 */
b061c7a5 2117static void timekeeping_advance(enum timekeeping_adv_mode mode)
8524070b 2118{
3fdb14fd 2119 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 2120 struct timekeeper *tk = &shadow_timekeeper;
a5a1d1c2 2121 u64 offset;
a092ff0f 2122 int shift = 0, maxshift;
5258d3f2 2123 unsigned int clock_set = 0;
70471f2f
JS
2124 unsigned long flags;
2125
9a7a71b1 2126 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b
JS
2127
2128 /* Make sure we're fully resumed: */
2129 if (unlikely(timekeeping_suspended))
70471f2f 2130 goto out;
8524070b 2131
ceea5e37 2132 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
876e7881 2133 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 2134
bf2ac312 2135 /* Check if there's really nothing to do */
b061c7a5 2136 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
bf2ac312
JS
2137 goto out;
2138
3c17ad19 2139 /* Do some additional sanity checking */
a529bea8 2140 timekeeping_check_update(tk, offset);
3c17ad19 2141
a092ff0f
JS
2142 /*
2143 * With NO_HZ we may have to accumulate many cycle_intervals
2144 * (think "ticks") worth of time at once. To do this efficiently,
2145 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 2146 * that is smaller than the offset. We then accumulate that
a092ff0f
JS
2147 * chunk in one go, and then try to consume the next smaller
2148 * doubled multiple.
8524070b 2149 */
4e250fdd 2150 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 2151 shift = max(0, shift);
88b28adf 2152 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 2153 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 2154 shift = min(shift, maxshift);
4e250fdd 2155 while (offset >= tk->cycle_interval) {
5258d3f2
JS
2156 offset = logarithmic_accumulation(tk, offset, shift,
2157 &clock_set);
4e250fdd 2158 if (offset < tk->cycle_interval<<shift)
830ec045 2159 shift--;
8524070b
JS
2160 }
2161
78b98e3c 2162 /* Adjust the multiplier to correct NTP error */
4e250fdd 2163 timekeeping_adjust(tk, offset);
8524070b 2164
6a867a39
JS
2165 /*
2166 * Finally, make sure that after the rounding
1e75fa8b 2167 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 2168 */
5258d3f2 2169 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 2170
3fdb14fd 2171 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
2172 /*
2173 * Update the real timekeeper.
2174 *
2175 * We could avoid this memcpy by switching pointers, but that
2176 * requires changes to all other timekeeper usage sites as
2177 * well, i.e. move the timekeeper pointer getter into the
2178 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 2179 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
2180 * updating.
2181 */
906c5557 2182 timekeeping_update(tk, clock_set);
48cdc135 2183 memcpy(real_tk, tk, sizeof(*tk));
906c5557 2184 /* The memcpy must come last. Do not put anything here! */
3fdb14fd 2185 write_seqcount_end(&tk_core.seq);
ca4523cd 2186out:
9a7a71b1 2187 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 2188 if (clock_set)
cab5e127
JS
2189 /* Have to call _delayed version, since in irq context*/
2190 clock_was_set_delayed();
8524070b 2191}
7c3f1a57 2192
b061c7a5
ML
2193/**
2194 * update_wall_time - Uses the current clocksource to increment the wall time
2195 *
2196 */
2197void update_wall_time(void)
2198{
2199 timekeeping_advance(TK_ADV_TICK);
2200}
2201
7c3f1a57 2202/**
d08c0cdd
JS
2203 * getboottime64 - Return the real time of system boot.
2204 * @ts: pointer to the timespec64 to be set
7c3f1a57 2205 *
d08c0cdd 2206 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
2207 *
2208 * This is based on the wall_to_monotonic offset and the total suspend
2209 * time. Calls to settimeofday will affect the value returned (which
2210 * basically means that however wrong your real time clock is at boot time,
2211 * you get the right time here).
2212 */
d08c0cdd 2213void getboottime64(struct timespec64 *ts)
7c3f1a57 2214{
3fdb14fd 2215 struct timekeeper *tk = &tk_core.timekeeper;
a3ed0e43 2216 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
02cba159 2217
d08c0cdd 2218 *ts = ktime_to_timespec64(t);
7c3f1a57 2219}
d08c0cdd 2220EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 2221
fb7fcc96 2222void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2c6b47de 2223{
3fdb14fd 2224 struct timekeeper *tk = &tk_core.timekeeper;
e1e41b6c 2225 unsigned int seq;
2c6b47de
JS
2226
2227 do {
3fdb14fd 2228 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2229
fb7fcc96 2230 *ts = tk_xtime(tk);
3fdb14fd 2231 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 2232}
fb7fcc96 2233EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
da15cfda 2234
fb7fcc96 2235void ktime_get_coarse_ts64(struct timespec64 *ts)
da15cfda 2236{
3fdb14fd 2237 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2238 struct timespec64 now, mono;
e1e41b6c 2239 unsigned int seq;
da15cfda
JS
2240
2241 do {
3fdb14fd 2242 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2243
4e250fdd
JS
2244 now = tk_xtime(tk);
2245 mono = tk->wall_to_monotonic;
3fdb14fd 2246 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 2247
fb7fcc96 2248 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
da15cfda 2249 now.tv_nsec + mono.tv_nsec);
da15cfda 2250}
fb7fcc96 2251EXPORT_SYMBOL(ktime_get_coarse_ts64);
871cf1e5
TH
2252
2253/*
d6ad4187 2254 * Must hold jiffies_lock
871cf1e5
TH
2255 */
2256void do_timer(unsigned long ticks)
2257{
2258 jiffies_64 += ticks;
46132e3a 2259 calc_global_load();
871cf1e5 2260}
48cf76f7 2261
f6c06abf 2262/**
76f41088 2263 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 2264 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf 2265 * @offs_real: pointer to storage for monotonic -> realtime offset
a3ed0e43 2266 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 2267 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 2268 *
868a3e91
TG
2269 * Returns current monotonic time and updates the offsets if the
2270 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2271 * different.
2272 *
b7bc50e4 2273 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 2274 */
868a3e91 2275ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
a3ed0e43 2276 ktime_t *offs_boot, ktime_t *offs_tai)
f6c06abf 2277{
3fdb14fd 2278 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 2279 unsigned int seq;
a37c0aad
TG
2280 ktime_t base;
2281 u64 nsecs;
f6c06abf
TG
2282
2283 do {
3fdb14fd 2284 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 2285
876e7881
PZ
2286 base = tk->tkr_mono.base;
2287 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833f32d7
JS
2288 base = ktime_add_ns(base, nsecs);
2289
868a3e91
TG
2290 if (*cwsseq != tk->clock_was_set_seq) {
2291 *cwsseq = tk->clock_was_set_seq;
2292 *offs_real = tk->offs_real;
a3ed0e43 2293 *offs_boot = tk->offs_boot;
868a3e91
TG
2294 *offs_tai = tk->offs_tai;
2295 }
833f32d7
JS
2296
2297 /* Handle leapsecond insertion adjustments */
2456e855 2298 if (unlikely(base >= tk->next_leap_ktime))
833f32d7
JS
2299 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2300
3fdb14fd 2301 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 2302
833f32d7 2303 return base;
f6c06abf 2304}
f6c06abf 2305
199d280c 2306/*
1572fa03 2307 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
e0956dcc 2308 */
ead25417 2309static int timekeeping_validate_timex(const struct __kernel_timex *txc)
e0956dcc
AB
2310{
2311 if (txc->modes & ADJ_ADJTIME) {
2312 /* singleshot must not be used with any other mode bits */
2313 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2314 return -EINVAL;
2315 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2316 !capable(CAP_SYS_TIME))
2317 return -EPERM;
2318 } else {
2319 /* In order to modify anything, you gotta be super-user! */
2320 if (txc->modes && !capable(CAP_SYS_TIME))
2321 return -EPERM;
2322 /*
2323 * if the quartz is off by more than 10% then
2324 * something is VERY wrong!
2325 */
2326 if (txc->modes & ADJ_TICK &&
2327 (txc->tick < 900000/USER_HZ ||
2328 txc->tick > 1100000/USER_HZ))
2329 return -EINVAL;
2330 }
2331
2332 if (txc->modes & ADJ_SETOFFSET) {
2333 /* In order to inject time, you gotta be super-user! */
2334 if (!capable(CAP_SYS_TIME))
2335 return -EPERM;
2336
1572fa03
AB
2337 /*
2338 * Validate if a timespec/timeval used to inject a time
2339 * offset is valid. Offsets can be postive or negative, so
2340 * we don't check tv_sec. The value of the timeval/timespec
2341 * is the sum of its fields,but *NOTE*:
2342 * The field tv_usec/tv_nsec must always be non-negative and
2343 * we can't have more nanoseconds/microseconds than a second.
2344 */
2345 if (txc->time.tv_usec < 0)
2346 return -EINVAL;
e0956dcc 2347
1572fa03
AB
2348 if (txc->modes & ADJ_NANO) {
2349 if (txc->time.tv_usec >= NSEC_PER_SEC)
e0956dcc 2350 return -EINVAL;
e0956dcc 2351 } else {
1572fa03 2352 if (txc->time.tv_usec >= USEC_PER_SEC)
e0956dcc
AB
2353 return -EINVAL;
2354 }
2355 }
2356
2357 /*
2358 * Check for potential multiplication overflows that can
2359 * only happen on 64-bit systems:
2360 */
2361 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2362 if (LLONG_MIN / PPM_SCALE > txc->freq)
2363 return -EINVAL;
2364 if (LLONG_MAX / PPM_SCALE < txc->freq)
2365 return -EINVAL;
2366 }
2367
2368 return 0;
2369}
2370
2371
aa6f9c59
JS
2372/**
2373 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2374 */
ead25417 2375int do_adjtimex(struct __kernel_timex *txc)
aa6f9c59 2376{
3fdb14fd 2377 struct timekeeper *tk = &tk_core.timekeeper;
7e8eda73 2378 struct audit_ntp_data ad;
06c017fd 2379 unsigned long flags;
7d489d15 2380 struct timespec64 ts;
4e8f8b34 2381 s32 orig_tai, tai;
e4085693
JS
2382 int ret;
2383
2384 /* Validate the data before disabling interrupts */
1572fa03 2385 ret = timekeeping_validate_timex(txc);
e4085693
JS
2386 if (ret)
2387 return ret;
2388
cef90377 2389 if (txc->modes & ADJ_SETOFFSET) {
1572fa03 2390 struct timespec64 delta;
cef90377
JS
2391 delta.tv_sec = txc->time.tv_sec;
2392 delta.tv_nsec = txc->time.tv_usec;
2393 if (!(txc->modes & ADJ_NANO))
2394 delta.tv_nsec *= 1000;
2395 ret = timekeeping_inject_offset(&delta);
2396 if (ret)
2397 return ret;
2d87a067
OM
2398
2399 audit_tk_injoffset(delta);
cef90377
JS
2400 }
2401
7e8eda73
OM
2402 audit_ntp_init(&ad);
2403
d30faff9 2404 ktime_get_real_ts64(&ts);
87ace39b 2405
06c017fd 2406 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2407 write_seqcount_begin(&tk_core.seq);
06c017fd 2408
4e8f8b34 2409 orig_tai = tai = tk->tai_offset;
7e8eda73 2410 ret = __do_adjtimex(txc, &ts, &tai, &ad);
aa6f9c59 2411
4e8f8b34
JS
2412 if (tai != orig_tai) {
2413 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2414 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2415 }
833f32d7
JS
2416 tk_update_leap_state(tk);
2417
3fdb14fd 2418 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2419 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2420
7e8eda73
OM
2421 audit_ntp_log(&ad);
2422
b061c7a5
ML
2423 /* Update the multiplier immediately if frequency was set directly */
2424 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2425 timekeeping_advance(TK_ADV_FREQ);
2426
6fdda9a9
JS
2427 if (tai != orig_tai)
2428 clock_was_set();
2429
7bd36014
JS
2430 ntp_notify_cmos_timer();
2431
87ace39b
JS
2432 return ret;
2433}
aa6f9c59
JS
2434
2435#ifdef CONFIG_NTP_PPS
2436/**
2437 * hardpps() - Accessor function to NTP __hardpps function
2438 */
7ec88e4b 2439void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
aa6f9c59 2440{
06c017fd
JS
2441 unsigned long flags;
2442
2443 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2444 write_seqcount_begin(&tk_core.seq);
06c017fd 2445
aa6f9c59 2446 __hardpps(phase_ts, raw_ts);
06c017fd 2447
3fdb14fd 2448 write_seqcount_end(&tk_core.seq);
06c017fd 2449 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2450}
2451EXPORT_SYMBOL(hardpps);
a2d81803 2452#endif /* CONFIG_NTP_PPS */