]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/timekeeping.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[mirror_ubuntu-artful-kernel.git] / kernel / time / timekeeping.c
CommitLineData
8524070b
JS
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b
JS
12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b
JS
19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
8fcce546
JS
63/* flag for if timekeeping is suspended */
64int __read_mostly timekeeping_suspended;
65
31ade306
FT
66/* Flag for if there is a persistent clock on this platform */
67bool __read_mostly persistent_clock_exist = false;
68
1e75fa8b
JS
69static inline void tk_normalize_xtime(struct timekeeper *tk)
70{
d28ede83
TG
71 while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
1e75fa8b
JS
73 tk->xtime_sec++;
74 }
75}
76
c905fae4
TG
77static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78{
79 struct timespec64 ts;
80
81 ts.tv_sec = tk->xtime_sec;
d28ede83 82 ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
c905fae4
TG
83 return ts;
84}
85
7d489d15 86static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
87{
88 tk->xtime_sec = ts->tv_sec;
d28ede83 89 tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
1e75fa8b
JS
90}
91
7d489d15 92static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
93{
94 tk->xtime_sec += ts->tv_sec;
d28ede83 95 tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
784ffcbb 96 tk_normalize_xtime(tk);
1e75fa8b 97}
8fcce546 98
7d489d15 99static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 100{
7d489d15 101 struct timespec64 tmp;
6d0ef903
JS
102
103 /*
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
106 */
7d489d15 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 108 -tk->wall_to_monotonic.tv_nsec);
7d489d15 109 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 110 tk->wall_to_monotonic = wtm;
7d489d15
JS
111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
114}
115
47da70d3 116static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 117{
47da70d3 118 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
119}
120
155ec602 121/**
d26e4fe0 122 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 123 *
d26e4fe0 124 * @tk: The target timekeeper to setup.
155ec602
MS
125 * @clock: Pointer to clocksource.
126 *
127 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128 * pair and interval request.
129 *
130 * Unless you're the timekeeping code, you should not be using this!
131 */
f726a697 132static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
133{
134 cycle_t interval;
a386b5af 135 u64 tmp, ntpinterval;
1e75fa8b 136 struct clocksource *old_clock;
155ec602 137
d28ede83
TG
138 old_clock = tk->tkr.clock;
139 tk->tkr.clock = clock;
140 tk->tkr.read = clock->read;
141 tk->tkr.mask = clock->mask;
142 tk->tkr.cycle_last = tk->tkr.read(clock);
155ec602
MS
143
144 /* Do the ns -> cycle conversion first, using original mult */
145 tmp = NTP_INTERVAL_LENGTH;
146 tmp <<= clock->shift;
a386b5af 147 ntpinterval = tmp;
0a544198
MS
148 tmp += clock->mult/2;
149 do_div(tmp, clock->mult);
155ec602
MS
150 if (tmp == 0)
151 tmp = 1;
152
153 interval = (cycle_t) tmp;
f726a697 154 tk->cycle_interval = interval;
155ec602
MS
155
156 /* Go back from cycles -> shifted ns */
f726a697
JS
157 tk->xtime_interval = (u64) interval * clock->mult;
158 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159 tk->raw_interval =
0a544198 160 ((u64) interval * clock->mult) >> clock->shift;
155ec602 161
1e75fa8b
JS
162 /* if changing clocks, convert xtime_nsec shift units */
163 if (old_clock) {
164 int shift_change = clock->shift - old_clock->shift;
165 if (shift_change < 0)
d28ede83 166 tk->tkr.xtime_nsec >>= -shift_change;
1e75fa8b 167 else
d28ede83 168 tk->tkr.xtime_nsec <<= shift_change;
1e75fa8b 169 }
d28ede83 170 tk->tkr.shift = clock->shift;
155ec602 171
f726a697
JS
172 tk->ntp_error = 0;
173 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 174 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
175
176 /*
177 * The timekeeper keeps its own mult values for the currently
178 * active clocksource. These value will be adjusted via NTP
179 * to counteract clock drifting.
180 */
d28ede83 181 tk->tkr.mult = clock->mult;
dc491596 182 tk->ntp_err_mult = 0;
155ec602 183}
8524070b 184
2ba2a305 185/* Timekeeper helper functions. */
7b1f6207
SW
186
187#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
188static u32 default_arch_gettimeoffset(void) { return 0; }
189u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 190#else
e06fde37 191static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
192#endif
193
0e5ac3a8 194static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 195{
3a978377 196 cycle_t cycle_now, delta;
1e75fa8b 197 s64 nsec;
2ba2a305
MS
198
199 /* read clocksource: */
0e5ac3a8 200 cycle_now = tkr->read(tkr->clock);
2ba2a305
MS
201
202 /* calculate the delta since the last update_wall_time: */
0e5ac3a8 203 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
2ba2a305 204
0e5ac3a8
TG
205 nsec = delta * tkr->mult + tkr->xtime_nsec;
206 nsec >>= tkr->shift;
f2a5a085 207
7b1f6207 208 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 209 return nsec + arch_gettimeoffset();
2ba2a305
MS
210}
211
f726a697 212static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
2ba2a305 213{
d28ede83 214 struct clocksource *clock = tk->tkr.clock;
3a978377 215 cycle_t cycle_now, delta;
f2a5a085 216 s64 nsec;
2ba2a305
MS
217
218 /* read clocksource: */
d28ede83 219 cycle_now = tk->tkr.read(clock);
2ba2a305
MS
220
221 /* calculate the delta since the last update_wall_time: */
d28ede83 222 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
2ba2a305 223
f2a5a085 224 /* convert delta to nanoseconds. */
3a978377 225 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
f2a5a085 226
7b1f6207 227 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 228 return nsec + arch_gettimeoffset();
2ba2a305
MS
229}
230
4396e058
TG
231/**
232 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233 * @tk: The timekeeper from which we take the update
234 * @tkf: The fast timekeeper to update
235 * @tbase: The time base for the fast timekeeper (mono/raw)
236 *
237 * We want to use this from any context including NMI and tracing /
238 * instrumenting the timekeeping code itself.
239 *
240 * So we handle this differently than the other timekeeping accessor
241 * functions which retry when the sequence count has changed. The
242 * update side does:
243 *
244 * smp_wmb(); <- Ensure that the last base[1] update is visible
245 * tkf->seq++;
246 * smp_wmb(); <- Ensure that the seqcount update is visible
247 * update(tkf->base[0], tk);
248 * smp_wmb(); <- Ensure that the base[0] update is visible
249 * tkf->seq++;
250 * smp_wmb(); <- Ensure that the seqcount update is visible
251 * update(tkf->base[1], tk);
252 *
253 * The reader side does:
254 *
255 * do {
256 * seq = tkf->seq;
257 * smp_rmb();
258 * idx = seq & 0x01;
259 * now = now(tkf->base[idx]);
260 * smp_rmb();
261 * } while (seq != tkf->seq)
262 *
263 * As long as we update base[0] readers are forced off to
264 * base[1]. Once base[0] is updated readers are redirected to base[0]
265 * and the base[1] update takes place.
266 *
267 * So if a NMI hits the update of base[0] then it will use base[1]
268 * which is still consistent. In the worst case this can result is a
269 * slightly wrong timestamp (a few nanoseconds). See
270 * @ktime_get_mono_fast_ns.
271 */
272static void update_fast_timekeeper(struct timekeeper *tk)
273{
274 struct tk_read_base *base = tk_fast_mono.base;
275
276 /* Force readers off to base[1] */
277 raw_write_seqcount_latch(&tk_fast_mono.seq);
278
279 /* Update base[0] */
280 memcpy(base, &tk->tkr, sizeof(*base));
281
282 /* Force readers back to base[0] */
283 raw_write_seqcount_latch(&tk_fast_mono.seq);
284
285 /* Update base[1] */
286 memcpy(base + 1, base, sizeof(*base));
287}
288
289/**
290 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
291 *
292 * This timestamp is not guaranteed to be monotonic across an update.
293 * The timestamp is calculated by:
294 *
295 * now = base_mono + clock_delta * slope
296 *
297 * So if the update lowers the slope, readers who are forced to the
298 * not yet updated second array are still using the old steeper slope.
299 *
300 * tmono
301 * ^
302 * | o n
303 * | o n
304 * | u
305 * | o
306 * |o
307 * |12345678---> reader order
308 *
309 * o = old slope
310 * u = update
311 * n = new slope
312 *
313 * So reader 6 will observe time going backwards versus reader 5.
314 *
315 * While other CPUs are likely to be able observe that, the only way
316 * for a CPU local observation is when an NMI hits in the middle of
317 * the update. Timestamps taken from that NMI context might be ahead
318 * of the following timestamps. Callers need to be aware of that and
319 * deal with it.
320 */
321u64 notrace ktime_get_mono_fast_ns(void)
322{
323 struct tk_read_base *tkr;
324 unsigned int seq;
325 u64 now;
326
327 do {
328 seq = raw_read_seqcount(&tk_fast_mono.seq);
329 tkr = tk_fast_mono.base + (seq & 0x01);
330 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
331
332 } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
333 return now;
334}
335EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
336
c905fae4
TG
337#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
338
339static inline void update_vsyscall(struct timekeeper *tk)
340{
0680eb1f 341 struct timespec xt, wm;
c905fae4 342
e2dff1ec 343 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f
JS
344 wm = timespec64_to_timespec(tk->wall_to_monotonic);
345 update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
d28ede83 346 tk->tkr.cycle_last);
c905fae4
TG
347}
348
349static inline void old_vsyscall_fixup(struct timekeeper *tk)
350{
351 s64 remainder;
352
353 /*
354 * Store only full nanoseconds into xtime_nsec after rounding
355 * it up and add the remainder to the error difference.
356 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
357 * by truncating the remainder in vsyscalls. However, it causes
358 * additional work to be done in timekeeping_adjust(). Once
359 * the vsyscall implementations are converted to use xtime_nsec
360 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
361 * users are removed, this can be killed.
362 */
d28ede83
TG
363 remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
364 tk->tkr.xtime_nsec -= remainder;
365 tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
c905fae4 366 tk->ntp_error += remainder << tk->ntp_error_shift;
d28ede83 367 tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
c905fae4
TG
368}
369#else
370#define old_vsyscall_fixup(tk)
371#endif
372
e0b306fe
MT
373static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
374
780427f0 375static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 376{
780427f0 377 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
378}
379
380/**
381 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
382 */
383int pvclock_gtod_register_notifier(struct notifier_block *nb)
384{
3fdb14fd 385 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
386 unsigned long flags;
387 int ret;
388
9a7a71b1 389 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 390 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 391 update_pvclock_gtod(tk, true);
9a7a71b1 392 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
393
394 return ret;
395}
396EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
397
398/**
399 * pvclock_gtod_unregister_notifier - unregister a pvclock
400 * timedata update listener
e0b306fe
MT
401 */
402int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
403{
e0b306fe
MT
404 unsigned long flags;
405 int ret;
406
9a7a71b1 407 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 408 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 409 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
410
411 return ret;
412}
413EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
414
7c032df5
TG
415/*
416 * Update the ktime_t based scalar nsec members of the timekeeper
417 */
418static inline void tk_update_ktime_data(struct timekeeper *tk)
419{
420 s64 nsec;
421
422 /*
423 * The xtime based monotonic readout is:
424 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
425 * The ktime based monotonic readout is:
426 * nsec = base_mono + now();
427 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
428 */
429 nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
430 nsec *= NSEC_PER_SEC;
431 nsec += tk->wall_to_monotonic.tv_nsec;
d28ede83 432 tk->tkr.base_mono = ns_to_ktime(nsec);
f519b1a2
TG
433
434 /* Update the monotonic raw base */
435 tk->base_raw = timespec64_to_ktime(tk->raw_time);
7c032df5
TG
436}
437
9a7a71b1 438/* must hold timekeeper_lock */
04397fe9 439static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 440{
04397fe9 441 if (action & TK_CLEAR_NTP) {
f726a697 442 tk->ntp_error = 0;
cc06268c
TG
443 ntp_clear();
444 }
48cdc135 445
7c032df5
TG
446 tk_update_ktime_data(tk);
447
9bf2419f
TG
448 update_vsyscall(tk);
449 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
450
04397fe9 451 if (action & TK_MIRROR)
3fdb14fd
TG
452 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
453 sizeof(tk_core.timekeeper));
4396e058
TG
454
455 update_fast_timekeeper(tk);
cc06268c
TG
456}
457
8524070b 458/**
155ec602 459 * timekeeping_forward_now - update clock to the current time
8524070b 460 *
9a055117
RZ
461 * Forward the current clock to update its state since the last call to
462 * update_wall_time(). This is useful before significant clock changes,
463 * as it avoids having to deal with this time offset explicitly.
8524070b 464 */
f726a697 465static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 466{
d28ede83 467 struct clocksource *clock = tk->tkr.clock;
3a978377 468 cycle_t cycle_now, delta;
9a055117 469 s64 nsec;
8524070b 470
d28ede83
TG
471 cycle_now = tk->tkr.read(clock);
472 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
473 tk->tkr.cycle_last = cycle_now;
8524070b 474
d28ede83 475 tk->tkr.xtime_nsec += delta * tk->tkr.mult;
7d27558c 476
7b1f6207 477 /* If arch requires, add in get_arch_timeoffset() */
d28ede83 478 tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
7d27558c 479
f726a697 480 tk_normalize_xtime(tk);
2d42244a 481
3a978377 482 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
7d489d15 483 timespec64_add_ns(&tk->raw_time, nsec);
8524070b
JS
484}
485
486/**
d6d29896 487 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b
JS
488 * @ts: pointer to the timespec to be set
489 *
1e817fb6
KC
490 * Updates the time of day in the timespec.
491 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 492 */
d6d29896 493int __getnstimeofday64(struct timespec64 *ts)
8524070b 494{
3fdb14fd 495 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 496 unsigned long seq;
1e75fa8b 497 s64 nsecs = 0;
8524070b
JS
498
499 do {
3fdb14fd 500 seq = read_seqcount_begin(&tk_core.seq);
8524070b 501
4e250fdd 502 ts->tv_sec = tk->xtime_sec;
0e5ac3a8 503 nsecs = timekeeping_get_ns(&tk->tkr);
8524070b 504
3fdb14fd 505 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 506
ec145bab 507 ts->tv_nsec = 0;
d6d29896 508 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
509
510 /*
511 * Do not bail out early, in case there were callers still using
512 * the value, even in the face of the WARN_ON.
513 */
514 if (unlikely(timekeeping_suspended))
515 return -EAGAIN;
516 return 0;
517}
d6d29896 518EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
519
520/**
d6d29896 521 * getnstimeofday64 - Returns the time of day in a timespec64.
1e817fb6
KC
522 * @ts: pointer to the timespec to be set
523 *
524 * Returns the time of day in a timespec (WARN if suspended).
525 */
d6d29896 526void getnstimeofday64(struct timespec64 *ts)
1e817fb6 527{
d6d29896 528 WARN_ON(__getnstimeofday64(ts));
8524070b 529}
d6d29896 530EXPORT_SYMBOL(getnstimeofday64);
8524070b 531
951ed4d3
MS
532ktime_t ktime_get(void)
533{
3fdb14fd 534 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 535 unsigned int seq;
a016a5bd
TG
536 ktime_t base;
537 s64 nsecs;
951ed4d3
MS
538
539 WARN_ON(timekeeping_suspended);
540
541 do {
3fdb14fd 542 seq = read_seqcount_begin(&tk_core.seq);
d28ede83 543 base = tk->tkr.base_mono;
0e5ac3a8 544 nsecs = timekeeping_get_ns(&tk->tkr);
951ed4d3 545
3fdb14fd 546 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 547
a016a5bd 548 return ktime_add_ns(base, nsecs);
951ed4d3
MS
549}
550EXPORT_SYMBOL_GPL(ktime_get);
551
0077dc60
TG
552static ktime_t *offsets[TK_OFFS_MAX] = {
553 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
554 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
555 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
556};
557
558ktime_t ktime_get_with_offset(enum tk_offsets offs)
559{
560 struct timekeeper *tk = &tk_core.timekeeper;
561 unsigned int seq;
562 ktime_t base, *offset = offsets[offs];
563 s64 nsecs;
564
565 WARN_ON(timekeeping_suspended);
566
567 do {
568 seq = read_seqcount_begin(&tk_core.seq);
d28ede83 569 base = ktime_add(tk->tkr.base_mono, *offset);
0e5ac3a8 570 nsecs = timekeeping_get_ns(&tk->tkr);
0077dc60
TG
571
572 } while (read_seqcount_retry(&tk_core.seq, seq));
573
574 return ktime_add_ns(base, nsecs);
575
576}
577EXPORT_SYMBOL_GPL(ktime_get_with_offset);
578
9a6b5197
TG
579/**
580 * ktime_mono_to_any() - convert mononotic time to any other time
581 * @tmono: time to convert.
582 * @offs: which offset to use
583 */
584ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
585{
586 ktime_t *offset = offsets[offs];
587 unsigned long seq;
588 ktime_t tconv;
589
590 do {
591 seq = read_seqcount_begin(&tk_core.seq);
592 tconv = ktime_add(tmono, *offset);
593 } while (read_seqcount_retry(&tk_core.seq, seq));
594
595 return tconv;
596}
597EXPORT_SYMBOL_GPL(ktime_mono_to_any);
598
f519b1a2
TG
599/**
600 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
601 */
602ktime_t ktime_get_raw(void)
603{
604 struct timekeeper *tk = &tk_core.timekeeper;
605 unsigned int seq;
606 ktime_t base;
607 s64 nsecs;
608
609 do {
610 seq = read_seqcount_begin(&tk_core.seq);
611 base = tk->base_raw;
612 nsecs = timekeeping_get_ns_raw(tk);
613
614 } while (read_seqcount_retry(&tk_core.seq, seq));
615
616 return ktime_add_ns(base, nsecs);
617}
618EXPORT_SYMBOL_GPL(ktime_get_raw);
619
951ed4d3 620/**
d6d29896 621 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
622 * @ts: pointer to timespec variable
623 *
624 * The function calculates the monotonic clock from the realtime
625 * clock and the wall_to_monotonic offset and stores the result
626 * in normalized timespec format in the variable pointed to by @ts.
627 */
d6d29896 628void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 629{
3fdb14fd 630 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 631 struct timespec64 tomono;
ec145bab 632 s64 nsec;
951ed4d3 633 unsigned int seq;
951ed4d3
MS
634
635 WARN_ON(timekeeping_suspended);
636
637 do {
3fdb14fd 638 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 639 ts->tv_sec = tk->xtime_sec;
0e5ac3a8 640 nsec = timekeeping_get_ns(&tk->tkr);
4e250fdd 641 tomono = tk->wall_to_monotonic;
951ed4d3 642
3fdb14fd 643 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 644
d6d29896
TG
645 ts->tv_sec += tomono.tv_sec;
646 ts->tv_nsec = 0;
647 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 648}
d6d29896 649EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 650
e2c18e49
AG
651#ifdef CONFIG_NTP_PPS
652
653/**
654 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
655 * @ts_raw: pointer to the timespec to be set to raw monotonic time
656 * @ts_real: pointer to the timespec to be set to the time of day
657 *
658 * This function reads both the time of day and raw monotonic time at the
659 * same time atomically and stores the resulting timestamps in timespec
660 * format.
661 */
662void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
663{
3fdb14fd 664 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
665 unsigned long seq;
666 s64 nsecs_raw, nsecs_real;
667
668 WARN_ON_ONCE(timekeeping_suspended);
669
670 do {
3fdb14fd 671 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 672
7d489d15 673 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 674 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 675 ts_real->tv_nsec = 0;
e2c18e49 676
4e250fdd 677 nsecs_raw = timekeeping_get_ns_raw(tk);
0e5ac3a8 678 nsecs_real = timekeeping_get_ns(&tk->tkr);
e2c18e49 679
3fdb14fd 680 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
681
682 timespec_add_ns(ts_raw, nsecs_raw);
683 timespec_add_ns(ts_real, nsecs_real);
684}
685EXPORT_SYMBOL(getnstime_raw_and_real);
686
687#endif /* CONFIG_NTP_PPS */
688
8524070b
JS
689/**
690 * do_gettimeofday - Returns the time of day in a timeval
691 * @tv: pointer to the timeval to be set
692 *
efd9ac86 693 * NOTE: Users should be converted to using getnstimeofday()
8524070b
JS
694 */
695void do_gettimeofday(struct timeval *tv)
696{
d6d29896 697 struct timespec64 now;
8524070b 698
d6d29896 699 getnstimeofday64(&now);
8524070b
JS
700 tv->tv_sec = now.tv_sec;
701 tv->tv_usec = now.tv_nsec/1000;
702}
8524070b 703EXPORT_SYMBOL(do_gettimeofday);
d239f49d 704
8524070b
JS
705/**
706 * do_settimeofday - Sets the time of day
707 * @tv: pointer to the timespec variable containing the new time
708 *
709 * Sets the time of day to the new time and update NTP and notify hrtimers
710 */
1e6d7679 711int do_settimeofday(const struct timespec *tv)
8524070b 712{
3fdb14fd 713 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 714 struct timespec64 ts_delta, xt, tmp;
92c1d3ed 715 unsigned long flags;
8524070b 716
cee58483 717 if (!timespec_valid_strict(tv))
8524070b
JS
718 return -EINVAL;
719
9a7a71b1 720 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 721 write_seqcount_begin(&tk_core.seq);
8524070b 722
4e250fdd 723 timekeeping_forward_now(tk);
9a055117 724
4e250fdd 725 xt = tk_xtime(tk);
1e75fa8b
JS
726 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
727 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
728
7d489d15 729 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 730
7d489d15
JS
731 tmp = timespec_to_timespec64(*tv);
732 tk_set_xtime(tk, &tmp);
1e75fa8b 733
780427f0 734 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 735
3fdb14fd 736 write_seqcount_end(&tk_core.seq);
9a7a71b1 737 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
738
739 /* signal hrtimers about time change */
740 clock_was_set();
741
742 return 0;
743}
8524070b
JS
744EXPORT_SYMBOL(do_settimeofday);
745
c528f7c6
JS
746/**
747 * timekeeping_inject_offset - Adds or subtracts from the current time.
748 * @tv: pointer to the timespec variable containing the offset
749 *
750 * Adds or subtracts an offset value from the current time.
751 */
752int timekeeping_inject_offset(struct timespec *ts)
753{
3fdb14fd 754 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 755 unsigned long flags;
7d489d15 756 struct timespec64 ts64, tmp;
4e8b1452 757 int ret = 0;
c528f7c6
JS
758
759 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
760 return -EINVAL;
761
7d489d15
JS
762 ts64 = timespec_to_timespec64(*ts);
763
9a7a71b1 764 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 765 write_seqcount_begin(&tk_core.seq);
c528f7c6 766
4e250fdd 767 timekeeping_forward_now(tk);
c528f7c6 768
4e8b1452 769 /* Make sure the proposed value is valid */
7d489d15
JS
770 tmp = timespec64_add(tk_xtime(tk), ts64);
771 if (!timespec64_valid_strict(&tmp)) {
4e8b1452
JS
772 ret = -EINVAL;
773 goto error;
774 }
1e75fa8b 775
7d489d15
JS
776 tk_xtime_add(tk, &ts64);
777 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 778
4e8b1452 779error: /* even if we error out, we forwarded the time, so call update */
780427f0 780 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 781
3fdb14fd 782 write_seqcount_end(&tk_core.seq);
9a7a71b1 783 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
784
785 /* signal hrtimers about time change */
786 clock_was_set();
787
4e8b1452 788 return ret;
c528f7c6
JS
789}
790EXPORT_SYMBOL(timekeeping_inject_offset);
791
cc244dda
JS
792
793/**
794 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
795 *
796 */
797s32 timekeeping_get_tai_offset(void)
798{
3fdb14fd 799 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
800 unsigned int seq;
801 s32 ret;
802
803 do {
3fdb14fd 804 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 805 ret = tk->tai_offset;
3fdb14fd 806 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
807
808 return ret;
809}
810
811/**
812 * __timekeeping_set_tai_offset - Lock free worker function
813 *
814 */
dd5d70e8 815static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
816{
817 tk->tai_offset = tai_offset;
04005f60 818 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
819}
820
821/**
822 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
823 *
824 */
825void timekeeping_set_tai_offset(s32 tai_offset)
826{
3fdb14fd 827 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
828 unsigned long flags;
829
9a7a71b1 830 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 831 write_seqcount_begin(&tk_core.seq);
cc244dda 832 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 833 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 834 write_seqcount_end(&tk_core.seq);
9a7a71b1 835 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 836 clock_was_set();
cc244dda
JS
837}
838
8524070b
JS
839/**
840 * change_clocksource - Swaps clocksources if a new one is available
841 *
842 * Accumulates current time interval and initializes new clocksource
843 */
75c5158f 844static int change_clocksource(void *data)
8524070b 845{
3fdb14fd 846 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 847 struct clocksource *new, *old;
f695cf94 848 unsigned long flags;
8524070b 849
75c5158f 850 new = (struct clocksource *) data;
8524070b 851
9a7a71b1 852 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 853 write_seqcount_begin(&tk_core.seq);
f695cf94 854
4e250fdd 855 timekeeping_forward_now(tk);
09ac369c
TG
856 /*
857 * If the cs is in module, get a module reference. Succeeds
858 * for built-in code (owner == NULL) as well.
859 */
860 if (try_module_get(new->owner)) {
861 if (!new->enable || new->enable(new) == 0) {
d28ede83 862 old = tk->tkr.clock;
09ac369c
TG
863 tk_setup_internals(tk, new);
864 if (old->disable)
865 old->disable(old);
866 module_put(old->owner);
867 } else {
868 module_put(new->owner);
869 }
75c5158f 870 }
780427f0 871 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 872
3fdb14fd 873 write_seqcount_end(&tk_core.seq);
9a7a71b1 874 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 875
75c5158f
MS
876 return 0;
877}
8524070b 878
75c5158f
MS
879/**
880 * timekeeping_notify - Install a new clock source
881 * @clock: pointer to the clock source
882 *
883 * This function is called from clocksource.c after a new, better clock
884 * source has been registered. The caller holds the clocksource_mutex.
885 */
ba919d1c 886int timekeeping_notify(struct clocksource *clock)
75c5158f 887{
3fdb14fd 888 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 889
d28ede83 890 if (tk->tkr.clock == clock)
ba919d1c 891 return 0;
75c5158f 892 stop_machine(change_clocksource, clock, NULL);
8524070b 893 tick_clock_notify();
d28ede83 894 return tk->tkr.clock == clock ? 0 : -1;
8524070b 895}
75c5158f 896
2d42244a
JS
897/**
898 * getrawmonotonic - Returns the raw monotonic time in a timespec
899 * @ts: pointer to the timespec to be set
900 *
901 * Returns the raw monotonic time (completely un-modified by ntp)
902 */
903void getrawmonotonic(struct timespec *ts)
904{
3fdb14fd 905 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 906 struct timespec64 ts64;
2d42244a
JS
907 unsigned long seq;
908 s64 nsecs;
2d42244a
JS
909
910 do {
3fdb14fd 911 seq = read_seqcount_begin(&tk_core.seq);
4e250fdd 912 nsecs = timekeeping_get_ns_raw(tk);
7d489d15 913 ts64 = tk->raw_time;
2d42244a 914
3fdb14fd 915 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 916
7d489d15
JS
917 timespec64_add_ns(&ts64, nsecs);
918 *ts = timespec64_to_timespec(ts64);
2d42244a
JS
919}
920EXPORT_SYMBOL(getrawmonotonic);
921
8524070b 922/**
cf4fc6cb 923 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 924 */
cf4fc6cb 925int timekeeping_valid_for_hres(void)
8524070b 926{
3fdb14fd 927 struct timekeeper *tk = &tk_core.timekeeper;
8524070b
JS
928 unsigned long seq;
929 int ret;
930
931 do {
3fdb14fd 932 seq = read_seqcount_begin(&tk_core.seq);
8524070b 933
d28ede83 934 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 935
3fdb14fd 936 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b
JS
937
938 return ret;
939}
940
98962465
JH
941/**
942 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
943 */
944u64 timekeeping_max_deferment(void)
945{
3fdb14fd 946 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
947 unsigned long seq;
948 u64 ret;
42e71e81 949
70471f2f 950 do {
3fdb14fd 951 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 952
d28ede83 953 ret = tk->tkr.clock->max_idle_ns;
70471f2f 954
3fdb14fd 955 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
956
957 return ret;
98962465
JH
958}
959
8524070b 960/**
d4f587c6 961 * read_persistent_clock - Return time from the persistent clock.
8524070b
JS
962 *
963 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
964 * Reads the time from the battery backed persistent clock.
965 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b
JS
966 *
967 * XXX - Do be sure to remove it once all arches implement it.
968 */
52f5684c 969void __weak read_persistent_clock(struct timespec *ts)
8524070b 970{
d4f587c6
MS
971 ts->tv_sec = 0;
972 ts->tv_nsec = 0;
8524070b
JS
973}
974
23970e38
MS
975/**
976 * read_boot_clock - Return time of the system start.
977 *
978 * Weak dummy function for arches that do not yet support it.
979 * Function to read the exact time the system has been started.
980 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
981 *
982 * XXX - Do be sure to remove it once all arches implement it.
983 */
52f5684c 984void __weak read_boot_clock(struct timespec *ts)
23970e38
MS
985{
986 ts->tv_sec = 0;
987 ts->tv_nsec = 0;
988}
989
8524070b
JS
990/*
991 * timekeeping_init - Initializes the clocksource and common timekeeping values
992 */
993void __init timekeeping_init(void)
994{
3fdb14fd 995 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 996 struct clocksource *clock;
8524070b 997 unsigned long flags;
7d489d15
JS
998 struct timespec64 now, boot, tmp;
999 struct timespec ts;
31ade306 1000
7d489d15
JS
1001 read_persistent_clock(&ts);
1002 now = timespec_to_timespec64(ts);
1003 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1004 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1005 " Check your CMOS/BIOS settings.\n");
1006 now.tv_sec = 0;
1007 now.tv_nsec = 0;
31ade306
FT
1008 } else if (now.tv_sec || now.tv_nsec)
1009 persistent_clock_exist = true;
4e8b1452 1010
7d489d15
JS
1011 read_boot_clock(&ts);
1012 boot = timespec_to_timespec64(ts);
1013 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1014 pr_warn("WARNING: Boot clock returned invalid value!\n"
1015 " Check your CMOS/BIOS settings.\n");
1016 boot.tv_sec = 0;
1017 boot.tv_nsec = 0;
1018 }
8524070b 1019
9a7a71b1 1020 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1021 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1022 ntp_init();
1023
f1b82746 1024 clock = clocksource_default_clock();
a0f7d48b
MS
1025 if (clock->enable)
1026 clock->enable(clock);
4e250fdd 1027 tk_setup_internals(tk, clock);
8524070b 1028
4e250fdd
JS
1029 tk_set_xtime(tk, &now);
1030 tk->raw_time.tv_sec = 0;
1031 tk->raw_time.tv_nsec = 0;
f519b1a2 1032 tk->base_raw.tv64 = 0;
1e75fa8b 1033 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1034 boot = tk_xtime(tk);
1e75fa8b 1035
7d489d15 1036 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1037 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1038
f111adfd 1039 timekeeping_update(tk, TK_MIRROR);
48cdc135 1040
3fdb14fd 1041 write_seqcount_end(&tk_core.seq);
9a7a71b1 1042 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1043}
1044
8524070b 1045/* time in seconds when suspend began */
7d489d15 1046static struct timespec64 timekeeping_suspend_time;
8524070b 1047
304529b1
JS
1048/**
1049 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1050 * @delta: pointer to a timespec delta value
1051 *
1052 * Takes a timespec offset measuring a suspend interval and properly
1053 * adds the sleep offset to the timekeeping variables.
1054 */
f726a697 1055static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1056 struct timespec64 *delta)
304529b1 1057{
7d489d15 1058 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1059 printk_deferred(KERN_WARNING
1060 "__timekeeping_inject_sleeptime: Invalid "
1061 "sleep delta value!\n");
cb5de2f8
JS
1062 return;
1063 }
f726a697 1064 tk_xtime_add(tk, delta);
7d489d15 1065 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1066 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1067 tk_debug_account_sleep_time(delta);
304529b1
JS
1068}
1069
304529b1
JS
1070/**
1071 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
1072 * @delta: pointer to a timespec delta value
1073 *
1074 * This hook is for architectures that cannot support read_persistent_clock
1075 * because their RTC/persistent clock is only accessible when irqs are enabled.
1076 *
1077 * This function should only be called by rtc_resume(), and allows
1078 * a suspend offset to be injected into the timekeeping values.
1079 */
1080void timekeeping_inject_sleeptime(struct timespec *delta)
1081{
3fdb14fd 1082 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1083 struct timespec64 tmp;
92c1d3ed 1084 unsigned long flags;
304529b1 1085
31ade306
FT
1086 /*
1087 * Make sure we don't set the clock twice, as timekeeping_resume()
1088 * already did it
1089 */
1090 if (has_persistent_clock())
304529b1
JS
1091 return;
1092
9a7a71b1 1093 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1094 write_seqcount_begin(&tk_core.seq);
70471f2f 1095
4e250fdd 1096 timekeeping_forward_now(tk);
304529b1 1097
7d489d15
JS
1098 tmp = timespec_to_timespec64(*delta);
1099 __timekeeping_inject_sleeptime(tk, &tmp);
304529b1 1100
780427f0 1101 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1102
3fdb14fd 1103 write_seqcount_end(&tk_core.seq);
9a7a71b1 1104 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1105
1106 /* signal hrtimers about time change */
1107 clock_was_set();
1108}
1109
8524070b
JS
1110/**
1111 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b
JS
1112 *
1113 * This is for the generic clocksource timekeeping.
1114 * xtime/wall_to_monotonic/jiffies/etc are
1115 * still managed by arch specific suspend/resume code.
1116 */
e1a85b2c 1117static void timekeeping_resume(void)
8524070b 1118{
3fdb14fd 1119 struct timekeeper *tk = &tk_core.timekeeper;
d28ede83 1120 struct clocksource *clock = tk->tkr.clock;
92c1d3ed 1121 unsigned long flags;
7d489d15
JS
1122 struct timespec64 ts_new, ts_delta;
1123 struct timespec tmp;
e445cf1c
FT
1124 cycle_t cycle_now, cycle_delta;
1125 bool suspendtime_found = false;
d4f587c6 1126
7d489d15
JS
1127 read_persistent_clock(&tmp);
1128 ts_new = timespec_to_timespec64(tmp);
8524070b 1129
adc78e6b 1130 clockevents_resume();
d10ff3fb
TG
1131 clocksource_resume();
1132
9a7a71b1 1133 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1134 write_seqcount_begin(&tk_core.seq);
8524070b 1135
e445cf1c
FT
1136 /*
1137 * After system resumes, we need to calculate the suspended time and
1138 * compensate it for the OS time. There are 3 sources that could be
1139 * used: Nonstop clocksource during suspend, persistent clock and rtc
1140 * device.
1141 *
1142 * One specific platform may have 1 or 2 or all of them, and the
1143 * preference will be:
1144 * suspend-nonstop clocksource -> persistent clock -> rtc
1145 * The less preferred source will only be tried if there is no better
1146 * usable source. The rtc part is handled separately in rtc core code.
1147 */
d28ede83 1148 cycle_now = tk->tkr.read(clock);
e445cf1c 1149 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
d28ede83 1150 cycle_now > tk->tkr.cycle_last) {
e445cf1c
FT
1151 u64 num, max = ULLONG_MAX;
1152 u32 mult = clock->mult;
1153 u32 shift = clock->shift;
1154 s64 nsec = 0;
1155
d28ede83
TG
1156 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1157 tk->tkr.mask);
e445cf1c
FT
1158
1159 /*
1160 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1161 * suspended time is too long. In that case we need do the
1162 * 64 bits math carefully
1163 */
1164 do_div(max, mult);
1165 if (cycle_delta > max) {
1166 num = div64_u64(cycle_delta, max);
1167 nsec = (((u64) max * mult) >> shift) * num;
1168 cycle_delta -= num * max;
1169 }
1170 nsec += ((u64) cycle_delta * mult) >> shift;
1171
7d489d15 1172 ts_delta = ns_to_timespec64(nsec);
e445cf1c 1173 suspendtime_found = true;
7d489d15
JS
1174 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1175 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
e445cf1c 1176 suspendtime_found = true;
8524070b 1177 }
e445cf1c
FT
1178
1179 if (suspendtime_found)
1180 __timekeeping_inject_sleeptime(tk, &ts_delta);
1181
1182 /* Re-base the last cycle value */
d28ede83 1183 tk->tkr.cycle_last = cycle_now;
4e250fdd 1184 tk->ntp_error = 0;
8524070b 1185 timekeeping_suspended = 0;
780427f0 1186 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1187 write_seqcount_end(&tk_core.seq);
9a7a71b1 1188 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1189
1190 touch_softlockup_watchdog();
1191
1192 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1193
1194 /* Resume hrtimers */
b12a03ce 1195 hrtimers_resume();
8524070b
JS
1196}
1197
e1a85b2c 1198static int timekeeping_suspend(void)
8524070b 1199{
3fdb14fd 1200 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1201 unsigned long flags;
7d489d15
JS
1202 struct timespec64 delta, delta_delta;
1203 static struct timespec64 old_delta;
1204 struct timespec tmp;
8524070b 1205
7d489d15
JS
1206 read_persistent_clock(&tmp);
1207 timekeeping_suspend_time = timespec_to_timespec64(tmp);
3be90950 1208
0d6bd995
ZM
1209 /*
1210 * On some systems the persistent_clock can not be detected at
1211 * timekeeping_init by its return value, so if we see a valid
1212 * value returned, update the persistent_clock_exists flag.
1213 */
1214 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1215 persistent_clock_exist = true;
1216
9a7a71b1 1217 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1218 write_seqcount_begin(&tk_core.seq);
4e250fdd 1219 timekeeping_forward_now(tk);
8524070b 1220 timekeeping_suspended = 1;
cb33217b
JS
1221
1222 /*
1223 * To avoid drift caused by repeated suspend/resumes,
1224 * which each can add ~1 second drift error,
1225 * try to compensate so the difference in system time
1226 * and persistent_clock time stays close to constant.
1227 */
7d489d15
JS
1228 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1229 delta_delta = timespec64_sub(delta, old_delta);
cb33217b
JS
1230 if (abs(delta_delta.tv_sec) >= 2) {
1231 /*
1232 * if delta_delta is too large, assume time correction
1233 * has occured and set old_delta to the current delta.
1234 */
1235 old_delta = delta;
1236 } else {
1237 /* Otherwise try to adjust old_system to compensate */
1238 timekeeping_suspend_time =
7d489d15 1239 timespec64_add(timekeeping_suspend_time, delta_delta);
cb33217b 1240 }
330a1617
JS
1241
1242 timekeeping_update(tk, TK_MIRROR);
3fdb14fd 1243 write_seqcount_end(&tk_core.seq);
9a7a71b1 1244 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1245
1246 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 1247 clocksource_suspend();
adc78e6b 1248 clockevents_suspend();
8524070b
JS
1249
1250 return 0;
1251}
1252
1253/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1254static struct syscore_ops timekeeping_syscore_ops = {
8524070b
JS
1255 .resume = timekeeping_resume,
1256 .suspend = timekeeping_suspend,
8524070b
JS
1257};
1258
e1a85b2c 1259static int __init timekeeping_init_ops(void)
8524070b 1260{
e1a85b2c
RW
1261 register_syscore_ops(&timekeeping_syscore_ops);
1262 return 0;
8524070b 1263}
e1a85b2c 1264device_initcall(timekeeping_init_ops);
8524070b
JS
1265
1266/*
dc491596 1267 * Apply a multiplier adjustment to the timekeeper
8524070b 1268 */
dc491596
JS
1269static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1270 s64 offset,
1271 bool negative,
1272 int adj_scale)
8524070b 1273{
dc491596
JS
1274 s64 interval = tk->cycle_interval;
1275 s32 mult_adj = 1;
8524070b 1276
dc491596
JS
1277 if (negative) {
1278 mult_adj = -mult_adj;
1279 interval = -interval;
1280 offset = -offset;
1d17d174 1281 }
dc491596
JS
1282 mult_adj <<= adj_scale;
1283 interval <<= adj_scale;
1284 offset <<= adj_scale;
8524070b 1285
c2bc1111
JS
1286 /*
1287 * So the following can be confusing.
1288 *
dc491596 1289 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1290 *
dc491596 1291 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1292 * have been appropriately scaled so the math is the same.
1293 *
1294 * The basic idea here is that we're increasing the multiplier
1295 * by one, this causes the xtime_interval to be incremented by
1296 * one cycle_interval. This is because:
1297 * xtime_interval = cycle_interval * mult
1298 * So if mult is being incremented by one:
1299 * xtime_interval = cycle_interval * (mult + 1)
1300 * Its the same as:
1301 * xtime_interval = (cycle_interval * mult) + cycle_interval
1302 * Which can be shortened to:
1303 * xtime_interval += cycle_interval
1304 *
1305 * So offset stores the non-accumulated cycles. Thus the current
1306 * time (in shifted nanoseconds) is:
1307 * now = (offset * adj) + xtime_nsec
1308 * Now, even though we're adjusting the clock frequency, we have
1309 * to keep time consistent. In other words, we can't jump back
1310 * in time, and we also want to avoid jumping forward in time.
1311 *
1312 * So given the same offset value, we need the time to be the same
1313 * both before and after the freq adjustment.
1314 * now = (offset * adj_1) + xtime_nsec_1
1315 * now = (offset * adj_2) + xtime_nsec_2
1316 * So:
1317 * (offset * adj_1) + xtime_nsec_1 =
1318 * (offset * adj_2) + xtime_nsec_2
1319 * And we know:
1320 * adj_2 = adj_1 + 1
1321 * So:
1322 * (offset * adj_1) + xtime_nsec_1 =
1323 * (offset * (adj_1+1)) + xtime_nsec_2
1324 * (offset * adj_1) + xtime_nsec_1 =
1325 * (offset * adj_1) + offset + xtime_nsec_2
1326 * Canceling the sides:
1327 * xtime_nsec_1 = offset + xtime_nsec_2
1328 * Which gives us:
1329 * xtime_nsec_2 = xtime_nsec_1 - offset
1330 * Which simplfies to:
1331 * xtime_nsec -= offset
1332 *
1333 * XXX - TODO: Doc ntp_error calculation.
1334 */
dc491596 1335 tk->tkr.mult += mult_adj;
f726a697 1336 tk->xtime_interval += interval;
d28ede83 1337 tk->tkr.xtime_nsec -= offset;
f726a697 1338 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1339}
1340
1341/*
1342 * Calculate the multiplier adjustment needed to match the frequency
1343 * specified by NTP
1344 */
1345static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1346 s64 offset)
1347{
1348 s64 interval = tk->cycle_interval;
1349 s64 xinterval = tk->xtime_interval;
1350 s64 tick_error;
1351 bool negative;
1352 u32 adj;
1353
1354 /* Remove any current error adj from freq calculation */
1355 if (tk->ntp_err_mult)
1356 xinterval -= tk->cycle_interval;
1357
375f45b5
JS
1358 tk->ntp_tick = ntp_tick_length();
1359
dc491596
JS
1360 /* Calculate current error per tick */
1361 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1362 tick_error -= (xinterval + tk->xtime_remainder);
1363
1364 /* Don't worry about correcting it if its small */
1365 if (likely((tick_error >= 0) && (tick_error <= interval)))
1366 return;
1367
1368 /* preserve the direction of correction */
1369 negative = (tick_error < 0);
1370
1371 /* Sort out the magnitude of the correction */
1372 tick_error = abs(tick_error);
1373 for (adj = 0; tick_error > interval; adj++)
1374 tick_error >>= 1;
1375
1376 /* scale the corrections */
1377 timekeeping_apply_adjustment(tk, offset, negative, adj);
1378}
1379
1380/*
1381 * Adjust the timekeeper's multiplier to the correct frequency
1382 * and also to reduce the accumulated error value.
1383 */
1384static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1385{
1386 /* Correct for the current frequency error */
1387 timekeeping_freqadjust(tk, offset);
1388
1389 /* Next make a small adjustment to fix any cumulative error */
1390 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1391 tk->ntp_err_mult = 1;
1392 timekeeping_apply_adjustment(tk, offset, 0, 0);
1393 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1394 /* Undo any existing error adjustment */
1395 timekeeping_apply_adjustment(tk, offset, 1, 0);
1396 tk->ntp_err_mult = 0;
1397 }
1398
1399 if (unlikely(tk->tkr.clock->maxadj &&
1400 (tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
1401 printk_once(KERN_WARNING
1402 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1403 tk->tkr.clock->name, (long)tk->tkr.mult,
1404 (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1405 }
2a8c0883
JS
1406
1407 /*
1408 * It may be possible that when we entered this function, xtime_nsec
1409 * was very small. Further, if we're slightly speeding the clocksource
1410 * in the code above, its possible the required corrective factor to
1411 * xtime_nsec could cause it to underflow.
1412 *
1413 * Now, since we already accumulated the second, cannot simply roll
1414 * the accumulated second back, since the NTP subsystem has been
1415 * notified via second_overflow. So instead we push xtime_nsec forward
1416 * by the amount we underflowed, and add that amount into the error.
1417 *
1418 * We'll correct this error next time through this function, when
1419 * xtime_nsec is not as small.
1420 */
d28ede83
TG
1421 if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1422 s64 neg = -(s64)tk->tkr.xtime_nsec;
1423 tk->tkr.xtime_nsec = 0;
f726a697 1424 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1425 }
8524070b
JS
1426}
1427
1f4f9487
JS
1428/**
1429 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1430 *
1431 * Helper function that accumulates a the nsecs greater then a second
1432 * from the xtime_nsec field to the xtime_secs field.
1433 * It also calls into the NTP code to handle leapsecond processing.
1434 *
1435 */
780427f0 1436static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1437{
d28ede83 1438 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
5258d3f2 1439 unsigned int clock_set = 0;
1f4f9487 1440
d28ede83 1441 while (tk->tkr.xtime_nsec >= nsecps) {
1f4f9487
JS
1442 int leap;
1443
d28ede83 1444 tk->tkr.xtime_nsec -= nsecps;
1f4f9487
JS
1445 tk->xtime_sec++;
1446
1447 /* Figure out if its a leap sec and apply if needed */
1448 leap = second_overflow(tk->xtime_sec);
6d0ef903 1449 if (unlikely(leap)) {
7d489d15 1450 struct timespec64 ts;
6d0ef903
JS
1451
1452 tk->xtime_sec += leap;
1f4f9487 1453
6d0ef903
JS
1454 ts.tv_sec = leap;
1455 ts.tv_nsec = 0;
1456 tk_set_wall_to_mono(tk,
7d489d15 1457 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1458
cc244dda
JS
1459 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1460
5258d3f2 1461 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1462 }
1f4f9487 1463 }
5258d3f2 1464 return clock_set;
1f4f9487
JS
1465}
1466
a092ff0f
JS
1467/**
1468 * logarithmic_accumulation - shifted accumulation of cycles
1469 *
1470 * This functions accumulates a shifted interval of cycles into
1471 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1472 * loop.
1473 *
1474 * Returns the unconsumed cycles.
1475 */
f726a697 1476static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1477 u32 shift,
1478 unsigned int *clock_set)
a092ff0f 1479{
23a9537a 1480 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1481 u64 raw_nsecs;
a092ff0f 1482
f726a697 1483 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1484 if (offset < interval)
a092ff0f
JS
1485 return offset;
1486
1487 /* Accumulate one shifted interval */
23a9537a 1488 offset -= interval;
d28ede83 1489 tk->tkr.cycle_last += interval;
a092ff0f 1490
d28ede83 1491 tk->tkr.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1492 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1493
deda2e81 1494 /* Accumulate raw time */
5b3900cd 1495 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1496 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1497 if (raw_nsecs >= NSEC_PER_SEC) {
1498 u64 raw_secs = raw_nsecs;
1499 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1500 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1501 }
f726a697 1502 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f
JS
1503
1504 /* Accumulate error between NTP and clock interval */
375f45b5 1505 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1506 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1507 (tk->ntp_error_shift + shift);
a092ff0f
JS
1508
1509 return offset;
1510}
1511
8524070b
JS
1512/**
1513 * update_wall_time - Uses the current clocksource to increment the wall time
1514 *
8524070b 1515 */
47a1b796 1516void update_wall_time(void)
8524070b 1517{
3fdb14fd 1518 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1519 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1520 cycle_t offset;
a092ff0f 1521 int shift = 0, maxshift;
5258d3f2 1522 unsigned int clock_set = 0;
70471f2f
JS
1523 unsigned long flags;
1524
9a7a71b1 1525 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b
JS
1526
1527 /* Make sure we're fully resumed: */
1528 if (unlikely(timekeeping_suspended))
70471f2f 1529 goto out;
8524070b 1530
592913ec 1531#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1532 offset = real_tk->cycle_interval;
592913ec 1533#else
d28ede83
TG
1534 offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1535 tk->tkr.cycle_last, tk->tkr.mask);
8524070b 1536#endif
8524070b 1537
bf2ac312 1538 /* Check if there's really nothing to do */
48cdc135 1539 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1540 goto out;
1541
a092ff0f
JS
1542 /*
1543 * With NO_HZ we may have to accumulate many cycle_intervals
1544 * (think "ticks") worth of time at once. To do this efficiently,
1545 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1546 * that is smaller than the offset. We then accumulate that
a092ff0f
JS
1547 * chunk in one go, and then try to consume the next smaller
1548 * doubled multiple.
8524070b 1549 */
4e250fdd 1550 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1551 shift = max(0, shift);
88b28adf 1552 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1553 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1554 shift = min(shift, maxshift);
4e250fdd 1555 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1556 offset = logarithmic_accumulation(tk, offset, shift,
1557 &clock_set);
4e250fdd 1558 if (offset < tk->cycle_interval<<shift)
830ec045 1559 shift--;
8524070b
JS
1560 }
1561
1562 /* correct the clock when NTP error is too big */
4e250fdd 1563 timekeeping_adjust(tk, offset);
8524070b 1564
6a867a39 1565 /*
92bb1fcf
JS
1566 * XXX This can be killed once everyone converts
1567 * to the new update_vsyscall.
1568 */
1569 old_vsyscall_fixup(tk);
8524070b 1570
6a867a39
JS
1571 /*
1572 * Finally, make sure that after the rounding
1e75fa8b 1573 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1574 */
5258d3f2 1575 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1576
3fdb14fd 1577 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1578 /*
1579 * Update the real timekeeper.
1580 *
1581 * We could avoid this memcpy by switching pointers, but that
1582 * requires changes to all other timekeeper usage sites as
1583 * well, i.e. move the timekeeper pointer getter into the
1584 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1585 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1586 * updating.
1587 */
1588 memcpy(real_tk, tk, sizeof(*tk));
5258d3f2 1589 timekeeping_update(real_tk, clock_set);
3fdb14fd 1590 write_seqcount_end(&tk_core.seq);
ca4523cd 1591out:
9a7a71b1 1592 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1593 if (clock_set)
cab5e127
JS
1594 /* Have to call _delayed version, since in irq context*/
1595 clock_was_set_delayed();
8524070b 1596}
7c3f1a57
TJ
1597
1598/**
1599 * getboottime - Return the real time of system boot.
1600 * @ts: pointer to the timespec to be set
1601 *
abb3a4ea 1602 * Returns the wall-time of boot in a timespec.
7c3f1a57
TJ
1603 *
1604 * This is based on the wall_to_monotonic offset and the total suspend
1605 * time. Calls to settimeofday will affect the value returned (which
1606 * basically means that however wrong your real time clock is at boot time,
1607 * you get the right time here).
1608 */
1609void getboottime(struct timespec *ts)
1610{
3fdb14fd 1611 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1612 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1613
1614 *ts = ktime_to_timespec(t);
7c3f1a57 1615}
c93d89f3 1616EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57 1617
17c38b74
JS
1618unsigned long get_seconds(void)
1619{
3fdb14fd 1620 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1621
1622 return tk->xtime_sec;
17c38b74
JS
1623}
1624EXPORT_SYMBOL(get_seconds);
1625
da15cfda
JS
1626struct timespec __current_kernel_time(void)
1627{
3fdb14fd 1628 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1629
7d489d15 1630 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1631}
17c38b74 1632
2c6b47de
JS
1633struct timespec current_kernel_time(void)
1634{
3fdb14fd 1635 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1636 struct timespec64 now;
2c6b47de
JS
1637 unsigned long seq;
1638
1639 do {
3fdb14fd 1640 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1641
4e250fdd 1642 now = tk_xtime(tk);
3fdb14fd 1643 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1644
7d489d15 1645 return timespec64_to_timespec(now);
2c6b47de 1646}
2c6b47de 1647EXPORT_SYMBOL(current_kernel_time);
da15cfda
JS
1648
1649struct timespec get_monotonic_coarse(void)
1650{
3fdb14fd 1651 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1652 struct timespec64 now, mono;
da15cfda
JS
1653 unsigned long seq;
1654
1655 do {
3fdb14fd 1656 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1657
4e250fdd
JS
1658 now = tk_xtime(tk);
1659 mono = tk->wall_to_monotonic;
3fdb14fd 1660 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1661
7d489d15 1662 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1663 now.tv_nsec + mono.tv_nsec);
7d489d15
JS
1664
1665 return timespec64_to_timespec(now);
da15cfda 1666}
871cf1e5
TH
1667
1668/*
d6ad4187 1669 * Must hold jiffies_lock
871cf1e5
TH
1670 */
1671void do_timer(unsigned long ticks)
1672{
1673 jiffies_64 += ticks;
871cf1e5
TH
1674 calc_global_load(ticks);
1675}
48cf76f7
TH
1676
1677/**
76f41088
JS
1678 * ktime_get_update_offsets_tick - hrtimer helper
1679 * @offs_real: pointer to storage for monotonic -> realtime offset
1680 * @offs_boot: pointer to storage for monotonic -> boottime offset
1681 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1682 *
1683 * Returns monotonic time at last tick and various offsets
48cf76f7 1684 */
76f41088
JS
1685ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1686 ktime_t *offs_tai)
48cf76f7 1687{
3fdb14fd 1688 struct timekeeper *tk = &tk_core.timekeeper;
76f41088 1689 unsigned int seq;
48064f5f
TG
1690 ktime_t base;
1691 u64 nsecs;
48cf76f7
TH
1692
1693 do {
3fdb14fd 1694 seq = read_seqcount_begin(&tk_core.seq);
76f41088 1695
d28ede83
TG
1696 base = tk->tkr.base_mono;
1697 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
48064f5f 1698
76f41088
JS
1699 *offs_real = tk->offs_real;
1700 *offs_boot = tk->offs_boot;
1701 *offs_tai = tk->offs_tai;
3fdb14fd 1702 } while (read_seqcount_retry(&tk_core.seq, seq));
76f41088 1703
48064f5f 1704 return ktime_add_ns(base, nsecs);
48cf76f7 1705}
f0af911a 1706
f6c06abf
TG
1707#ifdef CONFIG_HIGH_RES_TIMERS
1708/**
76f41088 1709 * ktime_get_update_offsets_now - hrtimer helper
f6c06abf
TG
1710 * @offs_real: pointer to storage for monotonic -> realtime offset
1711 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1712 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf
TG
1713 *
1714 * Returns current monotonic time and updates the offsets
b7bc50e4 1715 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1716 */
76f41088 1717ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
90adda98 1718 ktime_t *offs_tai)
f6c06abf 1719{
3fdb14fd 1720 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1721 unsigned int seq;
a37c0aad
TG
1722 ktime_t base;
1723 u64 nsecs;
f6c06abf
TG
1724
1725 do {
3fdb14fd 1726 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1727
d28ede83 1728 base = tk->tkr.base_mono;
0e5ac3a8 1729 nsecs = timekeeping_get_ns(&tk->tkr);
f6c06abf 1730
4e250fdd
JS
1731 *offs_real = tk->offs_real;
1732 *offs_boot = tk->offs_boot;
90adda98 1733 *offs_tai = tk->offs_tai;
3fdb14fd 1734 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1735
a37c0aad 1736 return ktime_add_ns(base, nsecs);
f6c06abf
TG
1737}
1738#endif
1739
aa6f9c59
JS
1740/**
1741 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1742 */
1743int do_adjtimex(struct timex *txc)
1744{
3fdb14fd 1745 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1746 unsigned long flags;
7d489d15 1747 struct timespec64 ts;
4e8f8b34 1748 s32 orig_tai, tai;
e4085693
JS
1749 int ret;
1750
1751 /* Validate the data before disabling interrupts */
1752 ret = ntp_validate_timex(txc);
1753 if (ret)
1754 return ret;
1755
cef90377
JS
1756 if (txc->modes & ADJ_SETOFFSET) {
1757 struct timespec delta;
1758 delta.tv_sec = txc->time.tv_sec;
1759 delta.tv_nsec = txc->time.tv_usec;
1760 if (!(txc->modes & ADJ_NANO))
1761 delta.tv_nsec *= 1000;
1762 ret = timekeeping_inject_offset(&delta);
1763 if (ret)
1764 return ret;
1765 }
1766
d6d29896 1767 getnstimeofday64(&ts);
87ace39b 1768
06c017fd 1769 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1770 write_seqcount_begin(&tk_core.seq);
06c017fd 1771
4e8f8b34 1772 orig_tai = tai = tk->tai_offset;
87ace39b 1773 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 1774
4e8f8b34
JS
1775 if (tai != orig_tai) {
1776 __timekeeping_set_tai_offset(tk, tai);
f55c0760 1777 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 1778 }
3fdb14fd 1779 write_seqcount_end(&tk_core.seq);
06c017fd
JS
1780 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1781
6fdda9a9
JS
1782 if (tai != orig_tai)
1783 clock_was_set();
1784
7bd36014
JS
1785 ntp_notify_cmos_timer();
1786
87ace39b
JS
1787 return ret;
1788}
aa6f9c59
JS
1789
1790#ifdef CONFIG_NTP_PPS
1791/**
1792 * hardpps() - Accessor function to NTP __hardpps function
1793 */
1794void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1795{
06c017fd
JS
1796 unsigned long flags;
1797
1798 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1799 write_seqcount_begin(&tk_core.seq);
06c017fd 1800
aa6f9c59 1801 __hardpps(phase_ts, raw_ts);
06c017fd 1802
3fdb14fd 1803 write_seqcount_end(&tk_core.seq);
06c017fd 1804 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
1805}
1806EXPORT_SYMBOL(hardpps);
1807#endif
1808
f0af911a
TH
1809/**
1810 * xtime_update() - advances the timekeeping infrastructure
1811 * @ticks: number of ticks, that have elapsed since the last call.
1812 *
1813 * Must be called with interrupts disabled.
1814 */
1815void xtime_update(unsigned long ticks)
1816{
d6ad4187 1817 write_seqlock(&jiffies_lock);
f0af911a 1818 do_timer(ticks);
d6ad4187 1819 write_sequnlock(&jiffies_lock);
47a1b796 1820 update_wall_time();
f0af911a 1821}