]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/time/timekeeping.c
time: Move xtime_nsec adjustment underflow handling timekeeping_adjust
[mirror_ubuntu-zesty-kernel.git] / kernel / time / timekeeping.c
CommitLineData
8524070b
JS
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/module.h>
12#include <linux/interrupt.h>
13#include <linux/percpu.h>
14#include <linux/init.h>
15#include <linux/mm.h>
d43c36dc 16#include <linux/sched.h>
e1a85b2c 17#include <linux/syscore_ops.h>
8524070b
JS
18#include <linux/clocksource.h>
19#include <linux/jiffies.h>
20#include <linux/time.h>
21#include <linux/tick.h>
75c5158f 22#include <linux/stop_machine.h>
8524070b 23
155ec602
MS
24/* Structure holding internal timekeeping values. */
25struct timekeeper {
26 /* Current clocksource used for timekeeping. */
42e71e81 27 struct clocksource *clock;
058892e6 28 /* NTP adjusted clock multiplier */
42e71e81 29 u32 mult;
23ce7211 30 /* The shift value of the current clocksource. */
fee84c43 31 u32 shift;
155ec602 32 /* Number of clock cycles in one NTP interval. */
42e71e81 33 cycle_t cycle_interval;
155ec602 34 /* Number of clock shifted nano seconds in one NTP interval. */
42e71e81 35 u64 xtime_interval;
a386b5af 36 /* shifted nano seconds left over when rounding cycle_interval */
42e71e81 37 s64 xtime_remainder;
155ec602 38 /* Raw nano seconds accumulated per NTP interval. */
42e71e81 39 u32 raw_interval;
155ec602 40
1e75fa8b
JS
41 /* Current CLOCK_REALTIME time in seconds */
42 u64 xtime_sec;
43 /* Clock shifted nano seconds */
42e71e81 44 u64 xtime_nsec;
1e75fa8b 45
155ec602
MS
46 /* Difference between accumulated time and NTP time in ntp
47 * shifted nano seconds. */
42e71e81 48 s64 ntp_error;
23ce7211
MS
49 /* Shift conversion between clock shifted nano seconds and
50 * ntp shifted nano seconds. */
fee84c43 51 u32 ntp_error_shift;
00c5fb77 52
d9f7217a
JS
53 /*
54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
56 * at zero at system boot time, so wall_to_monotonic will be negative,
57 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 * the usual normalization.
59 *
60 * wall_to_monotonic is moved after resume from suspend for the
61 * monotonic time not to jump. We need to add total_sleep_time to
62 * wall_to_monotonic to get the real boot based time offset.
63 *
64 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 * used instead.
66 */
42e71e81 67 struct timespec wall_to_monotonic;
00c5fb77 68 /* time spent in suspend */
42e71e81 69 struct timespec total_sleep_time;
01f71b47 70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
42e71e81 71 struct timespec raw_time;
5b9fe759 72 /* Offset clock monotonic -> clock realtime */
42e71e81 73 ktime_t offs_real;
5b9fe759 74 /* Offset clock monotonic -> clock boottime */
42e71e81 75 ktime_t offs_boot;
70471f2f 76 /* Seqlock for all timekeeper values */
42e71e81 77 seqlock_t lock;
155ec602
MS
78};
79
afa14e7c 80static struct timekeeper timekeeper;
155ec602 81
8fcce546
JS
82/*
83 * This read-write spinlock protects us from races in SMP while
84 * playing with xtime.
85 */
86__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
87
8fcce546
JS
88/* flag for if timekeeping is suspended */
89int __read_mostly timekeeping_suspended;
90
1e75fa8b
JS
91static inline void tk_normalize_xtime(struct timekeeper *tk)
92{
93 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
94 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
95 tk->xtime_sec++;
96 }
97}
98
99static struct timespec tk_xtime(struct timekeeper *tk)
100{
101 struct timespec ts;
102
103 ts.tv_sec = tk->xtime_sec;
104 ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
105 return ts;
106}
8fcce546 107
1e75fa8b
JS
108static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
109{
110 tk->xtime_sec = ts->tv_sec;
111 tk->xtime_nsec = ts->tv_nsec << tk->shift;
112}
113
114static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
115{
116 tk->xtime_sec += ts->tv_sec;
117 tk->xtime_nsec += ts->tv_nsec << tk->shift;
118}
8fcce546 119
155ec602
MS
120/**
121 * timekeeper_setup_internals - Set up internals to use clocksource clock.
122 *
123 * @clock: Pointer to clocksource.
124 *
125 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
126 * pair and interval request.
127 *
128 * Unless you're the timekeeping code, you should not be using this!
129 */
130static void timekeeper_setup_internals(struct clocksource *clock)
131{
132 cycle_t interval;
a386b5af 133 u64 tmp, ntpinterval;
1e75fa8b 134 struct clocksource *old_clock;
155ec602 135
1e75fa8b 136 old_clock = timekeeper.clock;
155ec602
MS
137 timekeeper.clock = clock;
138 clock->cycle_last = clock->read(clock);
139
140 /* Do the ns -> cycle conversion first, using original mult */
141 tmp = NTP_INTERVAL_LENGTH;
142 tmp <<= clock->shift;
a386b5af 143 ntpinterval = tmp;
0a544198
MS
144 tmp += clock->mult/2;
145 do_div(tmp, clock->mult);
155ec602
MS
146 if (tmp == 0)
147 tmp = 1;
148
149 interval = (cycle_t) tmp;
150 timekeeper.cycle_interval = interval;
151
152 /* Go back from cycles -> shifted ns */
153 timekeeper.xtime_interval = (u64) interval * clock->mult;
a386b5af 154 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
155ec602 155 timekeeper.raw_interval =
0a544198 156 ((u64) interval * clock->mult) >> clock->shift;
155ec602 157
1e75fa8b
JS
158 /* if changing clocks, convert xtime_nsec shift units */
159 if (old_clock) {
160 int shift_change = clock->shift - old_clock->shift;
161 if (shift_change < 0)
162 timekeeper.xtime_nsec >>= -shift_change;
163 else
164 timekeeper.xtime_nsec <<= shift_change;
165 }
23ce7211 166 timekeeper.shift = clock->shift;
155ec602
MS
167
168 timekeeper.ntp_error = 0;
23ce7211 169 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
0a544198
MS
170
171 /*
172 * The timekeeper keeps its own mult values for the currently
173 * active clocksource. These value will be adjusted via NTP
174 * to counteract clock drifting.
175 */
176 timekeeper.mult = clock->mult;
155ec602 177}
8524070b 178
2ba2a305
MS
179/* Timekeeper helper functions. */
180static inline s64 timekeeping_get_ns(void)
181{
182 cycle_t cycle_now, cycle_delta;
183 struct clocksource *clock;
1e75fa8b 184 s64 nsec;
2ba2a305
MS
185
186 /* read clocksource: */
187 clock = timekeeper.clock;
188 cycle_now = clock->read(clock);
189
190 /* calculate the delta since the last update_wall_time: */
191 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
192
1e75fa8b 193 nsec = cycle_delta * timekeeper.mult + timekeeper.xtime_nsec;
f2a5a085
JS
194 nsec >>= timekeeper.shift;
195
196 /* If arch requires, add in gettimeoffset() */
197 return nsec + arch_gettimeoffset();
2ba2a305
MS
198}
199
200static inline s64 timekeeping_get_ns_raw(void)
201{
202 cycle_t cycle_now, cycle_delta;
203 struct clocksource *clock;
f2a5a085 204 s64 nsec;
2ba2a305
MS
205
206 /* read clocksource: */
207 clock = timekeeper.clock;
208 cycle_now = clock->read(clock);
209
210 /* calculate the delta since the last update_wall_time: */
211 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
212
f2a5a085
JS
213 /* convert delta to nanoseconds. */
214 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
215
216 /* If arch requires, add in gettimeoffset() */
217 return nsec + arch_gettimeoffset();
2ba2a305
MS
218}
219
5b9fe759
TG
220static void update_rt_offset(void)
221{
222 struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic;
223
224 set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
225 timekeeper.offs_real = timespec_to_ktime(tmp);
226}
227
cc06268c
TG
228/* must hold write on timekeeper.lock */
229static void timekeeping_update(bool clearntp)
230{
1e75fa8b
JS
231 struct timespec xt;
232
cc06268c
TG
233 if (clearntp) {
234 timekeeper.ntp_error = 0;
235 ntp_clear();
236 }
5b9fe759 237 update_rt_offset();
1e75fa8b
JS
238 xt = tk_xtime(&timekeeper);
239 update_vsyscall(&xt, &timekeeper.wall_to_monotonic,
cc06268c
TG
240 timekeeper.clock, timekeeper.mult);
241}
242
243
8524070b 244/**
155ec602 245 * timekeeping_forward_now - update clock to the current time
8524070b 246 *
9a055117
RZ
247 * Forward the current clock to update its state since the last call to
248 * update_wall_time(). This is useful before significant clock changes,
249 * as it avoids having to deal with this time offset explicitly.
8524070b 250 */
155ec602 251static void timekeeping_forward_now(void)
8524070b
JS
252{
253 cycle_t cycle_now, cycle_delta;
155ec602 254 struct clocksource *clock;
9a055117 255 s64 nsec;
8524070b 256
155ec602 257 clock = timekeeper.clock;
a0f7d48b 258 cycle_now = clock->read(clock);
8524070b 259 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
9a055117 260 clock->cycle_last = cycle_now;
8524070b 261
1e75fa8b 262 timekeeper.xtime_nsec += cycle_delta * timekeeper.mult;
7d27558c
JS
263
264 /* If arch requires, add in gettimeoffset() */
1e75fa8b 265 timekeeper.xtime_nsec += arch_gettimeoffset() << timekeeper.shift;
7d27558c 266
1e75fa8b 267 tk_normalize_xtime(&timekeeper);
2d42244a 268
0a544198 269 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
01f71b47 270 timespec_add_ns(&timekeeper.raw_time, nsec);
8524070b
JS
271}
272
273/**
efd9ac86 274 * getnstimeofday - Returns the time of day in a timespec
8524070b
JS
275 * @ts: pointer to the timespec to be set
276 *
efd9ac86 277 * Returns the time of day in a timespec.
8524070b 278 */
efd9ac86 279void getnstimeofday(struct timespec *ts)
8524070b
JS
280{
281 unsigned long seq;
1e75fa8b 282 s64 nsecs = 0;
8524070b 283
1c5745aa
TG
284 WARN_ON(timekeeping_suspended);
285
8524070b 286 do {
70471f2f 287 seq = read_seqbegin(&timekeeper.lock);
8524070b 288
1e75fa8b
JS
289 ts->tv_sec = timekeeper.xtime_sec;
290 ts->tv_nsec = timekeeping_get_ns();
8524070b 291
70471f2f 292 } while (read_seqretry(&timekeeper.lock, seq));
8524070b
JS
293
294 timespec_add_ns(ts, nsecs);
295}
8524070b
JS
296EXPORT_SYMBOL(getnstimeofday);
297
951ed4d3
MS
298ktime_t ktime_get(void)
299{
951ed4d3
MS
300 unsigned int seq;
301 s64 secs, nsecs;
302
303 WARN_ON(timekeeping_suspended);
304
305 do {
70471f2f 306 seq = read_seqbegin(&timekeeper.lock);
1e75fa8b 307 secs = timekeeper.xtime_sec +
8ff2cb92 308 timekeeper.wall_to_monotonic.tv_sec;
1e75fa8b 309 nsecs = timekeeping_get_ns() +
8ff2cb92 310 timekeeper.wall_to_monotonic.tv_nsec;
951ed4d3 311
70471f2f 312 } while (read_seqretry(&timekeeper.lock, seq));
951ed4d3
MS
313 /*
314 * Use ktime_set/ktime_add_ns to create a proper ktime on
315 * 32-bit architectures without CONFIG_KTIME_SCALAR.
316 */
317 return ktime_add_ns(ktime_set(secs, 0), nsecs);
318}
319EXPORT_SYMBOL_GPL(ktime_get);
320
321/**
322 * ktime_get_ts - get the monotonic clock in timespec format
323 * @ts: pointer to timespec variable
324 *
325 * The function calculates the monotonic clock from the realtime
326 * clock and the wall_to_monotonic offset and stores the result
327 * in normalized timespec format in the variable pointed to by @ts.
328 */
329void ktime_get_ts(struct timespec *ts)
330{
951ed4d3
MS
331 struct timespec tomono;
332 unsigned int seq;
951ed4d3
MS
333
334 WARN_ON(timekeeping_suspended);
335
336 do {
70471f2f 337 seq = read_seqbegin(&timekeeper.lock);
1e75fa8b
JS
338 ts->tv_sec = timekeeper.xtime_sec;
339 ts->tv_nsec = timekeeping_get_ns();
d9f7217a 340 tomono = timekeeper.wall_to_monotonic;
951ed4d3 341
70471f2f 342 } while (read_seqretry(&timekeeper.lock, seq));
951ed4d3
MS
343
344 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
1e75fa8b 345 ts->tv_nsec + tomono.tv_nsec);
951ed4d3
MS
346}
347EXPORT_SYMBOL_GPL(ktime_get_ts);
348
e2c18e49
AG
349#ifdef CONFIG_NTP_PPS
350
351/**
352 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
353 * @ts_raw: pointer to the timespec to be set to raw monotonic time
354 * @ts_real: pointer to the timespec to be set to the time of day
355 *
356 * This function reads both the time of day and raw monotonic time at the
357 * same time atomically and stores the resulting timestamps in timespec
358 * format.
359 */
360void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
361{
362 unsigned long seq;
363 s64 nsecs_raw, nsecs_real;
364
365 WARN_ON_ONCE(timekeeping_suspended);
366
367 do {
70471f2f 368 seq = read_seqbegin(&timekeeper.lock);
e2c18e49 369
01f71b47 370 *ts_raw = timekeeper.raw_time;
1e75fa8b
JS
371 ts_real->tv_sec = timekeeper.xtime_sec;
372 ts_real->tv_nsec = 0;
e2c18e49
AG
373
374 nsecs_raw = timekeeping_get_ns_raw();
375 nsecs_real = timekeeping_get_ns();
376
70471f2f 377 } while (read_seqretry(&timekeeper.lock, seq));
e2c18e49
AG
378
379 timespec_add_ns(ts_raw, nsecs_raw);
380 timespec_add_ns(ts_real, nsecs_real);
381}
382EXPORT_SYMBOL(getnstime_raw_and_real);
383
384#endif /* CONFIG_NTP_PPS */
385
8524070b
JS
386/**
387 * do_gettimeofday - Returns the time of day in a timeval
388 * @tv: pointer to the timeval to be set
389 *
efd9ac86 390 * NOTE: Users should be converted to using getnstimeofday()
8524070b
JS
391 */
392void do_gettimeofday(struct timeval *tv)
393{
394 struct timespec now;
395
efd9ac86 396 getnstimeofday(&now);
8524070b
JS
397 tv->tv_sec = now.tv_sec;
398 tv->tv_usec = now.tv_nsec/1000;
399}
8524070b 400EXPORT_SYMBOL(do_gettimeofday);
d239f49d 401
8524070b
JS
402/**
403 * do_settimeofday - Sets the time of day
404 * @tv: pointer to the timespec variable containing the new time
405 *
406 * Sets the time of day to the new time and update NTP and notify hrtimers
407 */
1e6d7679 408int do_settimeofday(const struct timespec *tv)
8524070b 409{
1e75fa8b 410 struct timespec ts_delta, xt;
92c1d3ed 411 unsigned long flags;
8524070b
JS
412
413 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
414 return -EINVAL;
415
92c1d3ed 416 write_seqlock_irqsave(&timekeeper.lock, flags);
8524070b 417
155ec602 418 timekeeping_forward_now();
9a055117 419
1e75fa8b
JS
420 xt = tk_xtime(&timekeeper);
421 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
422 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
423
d9f7217a
JS
424 timekeeper.wall_to_monotonic =
425 timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
8524070b 426
1e75fa8b
JS
427 tk_set_xtime(&timekeeper, tv);
428
cc06268c 429 timekeeping_update(true);
8524070b 430
92c1d3ed 431 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b
JS
432
433 /* signal hrtimers about time change */
434 clock_was_set();
435
436 return 0;
437}
8524070b
JS
438EXPORT_SYMBOL(do_settimeofday);
439
c528f7c6
JS
440
441/**
442 * timekeeping_inject_offset - Adds or subtracts from the current time.
443 * @tv: pointer to the timespec variable containing the offset
444 *
445 * Adds or subtracts an offset value from the current time.
446 */
447int timekeeping_inject_offset(struct timespec *ts)
448{
92c1d3ed 449 unsigned long flags;
c528f7c6
JS
450
451 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
452 return -EINVAL;
453
92c1d3ed 454 write_seqlock_irqsave(&timekeeper.lock, flags);
c528f7c6
JS
455
456 timekeeping_forward_now();
457
1e75fa8b
JS
458
459 tk_xtime_add(&timekeeper, ts);
d9f7217a
JS
460 timekeeper.wall_to_monotonic =
461 timespec_sub(timekeeper.wall_to_monotonic, *ts);
c528f7c6 462
cc06268c 463 timekeeping_update(true);
c528f7c6 464
92c1d3ed 465 write_sequnlock_irqrestore(&timekeeper.lock, flags);
c528f7c6
JS
466
467 /* signal hrtimers about time change */
468 clock_was_set();
469
470 return 0;
471}
472EXPORT_SYMBOL(timekeeping_inject_offset);
473
8524070b
JS
474/**
475 * change_clocksource - Swaps clocksources if a new one is available
476 *
477 * Accumulates current time interval and initializes new clocksource
478 */
75c5158f 479static int change_clocksource(void *data)
8524070b 480{
4614e6ad 481 struct clocksource *new, *old;
f695cf94 482 unsigned long flags;
8524070b 483
75c5158f 484 new = (struct clocksource *) data;
8524070b 485
f695cf94
JS
486 write_seqlock_irqsave(&timekeeper.lock, flags);
487
155ec602 488 timekeeping_forward_now();
75c5158f
MS
489 if (!new->enable || new->enable(new) == 0) {
490 old = timekeeper.clock;
491 timekeeper_setup_internals(new);
492 if (old->disable)
493 old->disable(old);
494 }
f695cf94
JS
495 timekeeping_update(true);
496
497 write_sequnlock_irqrestore(&timekeeper.lock, flags);
498
75c5158f
MS
499 return 0;
500}
8524070b 501
75c5158f
MS
502/**
503 * timekeeping_notify - Install a new clock source
504 * @clock: pointer to the clock source
505 *
506 * This function is called from clocksource.c after a new, better clock
507 * source has been registered. The caller holds the clocksource_mutex.
508 */
509void timekeeping_notify(struct clocksource *clock)
510{
511 if (timekeeper.clock == clock)
4614e6ad 512 return;
75c5158f 513 stop_machine(change_clocksource, clock, NULL);
8524070b 514 tick_clock_notify();
8524070b 515}
75c5158f 516
a40f262c
TG
517/**
518 * ktime_get_real - get the real (wall-) time in ktime_t format
519 *
520 * returns the time in ktime_t format
521 */
522ktime_t ktime_get_real(void)
523{
524 struct timespec now;
525
526 getnstimeofday(&now);
527
528 return timespec_to_ktime(now);
529}
530EXPORT_SYMBOL_GPL(ktime_get_real);
8524070b 531
2d42244a
JS
532/**
533 * getrawmonotonic - Returns the raw monotonic time in a timespec
534 * @ts: pointer to the timespec to be set
535 *
536 * Returns the raw monotonic time (completely un-modified by ntp)
537 */
538void getrawmonotonic(struct timespec *ts)
539{
540 unsigned long seq;
541 s64 nsecs;
2d42244a
JS
542
543 do {
70471f2f 544 seq = read_seqbegin(&timekeeper.lock);
2ba2a305 545 nsecs = timekeeping_get_ns_raw();
01f71b47 546 *ts = timekeeper.raw_time;
2d42244a 547
70471f2f 548 } while (read_seqretry(&timekeeper.lock, seq));
2d42244a
JS
549
550 timespec_add_ns(ts, nsecs);
551}
552EXPORT_SYMBOL(getrawmonotonic);
553
554
8524070b 555/**
cf4fc6cb 556 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 557 */
cf4fc6cb 558int timekeeping_valid_for_hres(void)
8524070b
JS
559{
560 unsigned long seq;
561 int ret;
562
563 do {
70471f2f 564 seq = read_seqbegin(&timekeeper.lock);
8524070b 565
155ec602 566 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 567
70471f2f 568 } while (read_seqretry(&timekeeper.lock, seq));
8524070b
JS
569
570 return ret;
571}
572
98962465
JH
573/**
574 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
575 */
576u64 timekeeping_max_deferment(void)
577{
70471f2f
JS
578 unsigned long seq;
579 u64 ret;
42e71e81 580
70471f2f
JS
581 do {
582 seq = read_seqbegin(&timekeeper.lock);
583
584 ret = timekeeper.clock->max_idle_ns;
585
586 } while (read_seqretry(&timekeeper.lock, seq));
587
588 return ret;
98962465
JH
589}
590
8524070b 591/**
d4f587c6 592 * read_persistent_clock - Return time from the persistent clock.
8524070b
JS
593 *
594 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
595 * Reads the time from the battery backed persistent clock.
596 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b
JS
597 *
598 * XXX - Do be sure to remove it once all arches implement it.
599 */
d4f587c6 600void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
8524070b 601{
d4f587c6
MS
602 ts->tv_sec = 0;
603 ts->tv_nsec = 0;
8524070b
JS
604}
605
23970e38
MS
606/**
607 * read_boot_clock - Return time of the system start.
608 *
609 * Weak dummy function for arches that do not yet support it.
610 * Function to read the exact time the system has been started.
611 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
612 *
613 * XXX - Do be sure to remove it once all arches implement it.
614 */
615void __attribute__((weak)) read_boot_clock(struct timespec *ts)
616{
617 ts->tv_sec = 0;
618 ts->tv_nsec = 0;
619}
620
8524070b
JS
621/*
622 * timekeeping_init - Initializes the clocksource and common timekeeping values
623 */
624void __init timekeeping_init(void)
625{
155ec602 626 struct clocksource *clock;
8524070b 627 unsigned long flags;
23970e38 628 struct timespec now, boot;
d4f587c6
MS
629
630 read_persistent_clock(&now);
23970e38 631 read_boot_clock(&boot);
8524070b 632
70471f2f 633 seqlock_init(&timekeeper.lock);
8524070b 634
7dffa3c6 635 ntp_init();
8524070b 636
70471f2f 637 write_seqlock_irqsave(&timekeeper.lock, flags);
f1b82746 638 clock = clocksource_default_clock();
a0f7d48b
MS
639 if (clock->enable)
640 clock->enable(clock);
155ec602 641 timekeeper_setup_internals(clock);
8524070b 642
1e75fa8b 643 tk_set_xtime(&timekeeper, &now);
01f71b47
JS
644 timekeeper.raw_time.tv_sec = 0;
645 timekeeper.raw_time.tv_nsec = 0;
1e75fa8b
JS
646 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
647 boot = tk_xtime(&timekeeper);
648
d9f7217a 649 set_normalized_timespec(&timekeeper.wall_to_monotonic,
23970e38 650 -boot.tv_sec, -boot.tv_nsec);
5b9fe759 651 update_rt_offset();
00c5fb77
JS
652 timekeeper.total_sleep_time.tv_sec = 0;
653 timekeeper.total_sleep_time.tv_nsec = 0;
70471f2f 654 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b
JS
655}
656
8524070b 657/* time in seconds when suspend began */
d4f587c6 658static struct timespec timekeeping_suspend_time;
8524070b 659
5b9fe759
TG
660static void update_sleep_time(struct timespec t)
661{
662 timekeeper.total_sleep_time = t;
663 timekeeper.offs_boot = timespec_to_ktime(t);
664}
665
304529b1
JS
666/**
667 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
668 * @delta: pointer to a timespec delta value
669 *
670 * Takes a timespec offset measuring a suspend interval and properly
671 * adds the sleep offset to the timekeeping variables.
672 */
673static void __timekeeping_inject_sleeptime(struct timespec *delta)
674{
cb5de2f8 675 if (!timespec_valid(delta)) {
cbaa5152 676 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
cb5de2f8
JS
677 "sleep delta value!\n");
678 return;
679 }
680
1e75fa8b 681 tk_xtime_add(&timekeeper, delta);
d9f7217a
JS
682 timekeeper.wall_to_monotonic =
683 timespec_sub(timekeeper.wall_to_monotonic, *delta);
5b9fe759 684 update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta));
304529b1
JS
685}
686
687
688/**
689 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
690 * @delta: pointer to a timespec delta value
691 *
692 * This hook is for architectures that cannot support read_persistent_clock
693 * because their RTC/persistent clock is only accessible when irqs are enabled.
694 *
695 * This function should only be called by rtc_resume(), and allows
696 * a suspend offset to be injected into the timekeeping values.
697 */
698void timekeeping_inject_sleeptime(struct timespec *delta)
699{
92c1d3ed 700 unsigned long flags;
304529b1
JS
701 struct timespec ts;
702
703 /* Make sure we don't set the clock twice */
704 read_persistent_clock(&ts);
705 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
706 return;
707
92c1d3ed 708 write_seqlock_irqsave(&timekeeper.lock, flags);
70471f2f 709
304529b1
JS
710 timekeeping_forward_now();
711
712 __timekeeping_inject_sleeptime(delta);
713
cc06268c 714 timekeeping_update(true);
304529b1 715
92c1d3ed 716 write_sequnlock_irqrestore(&timekeeper.lock, flags);
304529b1
JS
717
718 /* signal hrtimers about time change */
719 clock_was_set();
720}
721
722
8524070b
JS
723/**
724 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b
JS
725 *
726 * This is for the generic clocksource timekeeping.
727 * xtime/wall_to_monotonic/jiffies/etc are
728 * still managed by arch specific suspend/resume code.
729 */
e1a85b2c 730static void timekeeping_resume(void)
8524070b 731{
92c1d3ed 732 unsigned long flags;
d4f587c6
MS
733 struct timespec ts;
734
735 read_persistent_clock(&ts);
8524070b 736
d10ff3fb
TG
737 clocksource_resume();
738
92c1d3ed 739 write_seqlock_irqsave(&timekeeper.lock, flags);
8524070b 740
d4f587c6
MS
741 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
742 ts = timespec_sub(ts, timekeeping_suspend_time);
304529b1 743 __timekeeping_inject_sleeptime(&ts);
8524070b
JS
744 }
745 /* re-base the last cycle value */
155ec602
MS
746 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
747 timekeeper.ntp_error = 0;
8524070b 748 timekeeping_suspended = 0;
92c1d3ed 749 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b
JS
750
751 touch_softlockup_watchdog();
752
753 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
754
755 /* Resume hrtimers */
b12a03ce 756 hrtimers_resume();
8524070b
JS
757}
758
e1a85b2c 759static int timekeeping_suspend(void)
8524070b 760{
92c1d3ed 761 unsigned long flags;
cb33217b
JS
762 struct timespec delta, delta_delta;
763 static struct timespec old_delta;
8524070b 764
d4f587c6 765 read_persistent_clock(&timekeeping_suspend_time);
3be90950 766
92c1d3ed 767 write_seqlock_irqsave(&timekeeper.lock, flags);
155ec602 768 timekeeping_forward_now();
8524070b 769 timekeeping_suspended = 1;
cb33217b
JS
770
771 /*
772 * To avoid drift caused by repeated suspend/resumes,
773 * which each can add ~1 second drift error,
774 * try to compensate so the difference in system time
775 * and persistent_clock time stays close to constant.
776 */
1e75fa8b 777 delta = timespec_sub(tk_xtime(&timekeeper), timekeeping_suspend_time);
cb33217b
JS
778 delta_delta = timespec_sub(delta, old_delta);
779 if (abs(delta_delta.tv_sec) >= 2) {
780 /*
781 * if delta_delta is too large, assume time correction
782 * has occured and set old_delta to the current delta.
783 */
784 old_delta = delta;
785 } else {
786 /* Otherwise try to adjust old_system to compensate */
787 timekeeping_suspend_time =
788 timespec_add(timekeeping_suspend_time, delta_delta);
789 }
92c1d3ed 790 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b
JS
791
792 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 793 clocksource_suspend();
8524070b
JS
794
795 return 0;
796}
797
798/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 799static struct syscore_ops timekeeping_syscore_ops = {
8524070b
JS
800 .resume = timekeeping_resume,
801 .suspend = timekeeping_suspend,
8524070b
JS
802};
803
e1a85b2c 804static int __init timekeeping_init_ops(void)
8524070b 805{
e1a85b2c
RW
806 register_syscore_ops(&timekeeping_syscore_ops);
807 return 0;
8524070b
JS
808}
809
e1a85b2c 810device_initcall(timekeeping_init_ops);
8524070b
JS
811
812/*
813 * If the error is already larger, we look ahead even further
814 * to compensate for late or lost adjustments.
815 */
155ec602 816static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
8524070b
JS
817 s64 *offset)
818{
819 s64 tick_error, i;
820 u32 look_ahead, adj;
821 s32 error2, mult;
822
823 /*
824 * Use the current error value to determine how much to look ahead.
825 * The larger the error the slower we adjust for it to avoid problems
826 * with losing too many ticks, otherwise we would overadjust and
827 * produce an even larger error. The smaller the adjustment the
828 * faster we try to adjust for it, as lost ticks can do less harm
3eb05676 829 * here. This is tuned so that an error of about 1 msec is adjusted
8524070b
JS
830 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
831 */
155ec602 832 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
8524070b
JS
833 error2 = abs(error2);
834 for (look_ahead = 0; error2 > 0; look_ahead++)
835 error2 >>= 2;
836
837 /*
838 * Now calculate the error in (1 << look_ahead) ticks, but first
839 * remove the single look ahead already included in the error.
840 */
ea7cf49a 841 tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
155ec602 842 tick_error -= timekeeper.xtime_interval >> 1;
8524070b
JS
843 error = ((error - tick_error) >> look_ahead) + tick_error;
844
845 /* Finally calculate the adjustment shift value. */
846 i = *interval;
847 mult = 1;
848 if (error < 0) {
849 error = -error;
850 *interval = -*interval;
851 *offset = -*offset;
852 mult = -1;
853 }
854 for (adj = 0; error > i; adj++)
855 error >>= 1;
856
857 *interval <<= adj;
858 *offset <<= adj;
859 return mult << adj;
860}
861
862/*
863 * Adjust the multiplier to reduce the error value,
864 * this is optimized for the most common adjustments of -1,0,1,
865 * for other values we can do a bit more work.
866 */
155ec602 867static void timekeeping_adjust(s64 offset)
8524070b 868{
155ec602 869 s64 error, interval = timekeeper.cycle_interval;
8524070b
JS
870 int adj;
871
c2bc1111 872 /*
88b28adf 873 * The point of this is to check if the error is greater than half
c2bc1111
JS
874 * an interval.
875 *
876 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
877 *
878 * Note we subtract one in the shift, so that error is really error*2.
3f86f28f
JS
879 * This "saves" dividing(shifting) interval twice, but keeps the
880 * (error > interval) comparison as still measuring if error is
88b28adf 881 * larger than half an interval.
c2bc1111 882 *
3f86f28f 883 * Note: It does not "save" on aggravation when reading the code.
c2bc1111 884 */
23ce7211 885 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
8524070b 886 if (error > interval) {
c2bc1111
JS
887 /*
888 * We now divide error by 4(via shift), which checks if
88b28adf 889 * the error is greater than twice the interval.
c2bc1111
JS
890 * If it is greater, we need a bigadjust, if its smaller,
891 * we can adjust by 1.
892 */
8524070b 893 error >>= 2;
c2bc1111
JS
894 /*
895 * XXX - In update_wall_time, we round up to the next
896 * nanosecond, and store the amount rounded up into
897 * the error. This causes the likely below to be unlikely.
898 *
3f86f28f 899 * The proper fix is to avoid rounding up by using
c2bc1111
JS
900 * the high precision timekeeper.xtime_nsec instead of
901 * xtime.tv_nsec everywhere. Fixing this will take some
902 * time.
903 */
8524070b
JS
904 if (likely(error <= interval))
905 adj = 1;
906 else
155ec602 907 adj = timekeeping_bigadjust(error, &interval, &offset);
8524070b 908 } else if (error < -interval) {
c2bc1111 909 /* See comment above, this is just switched for the negative */
8524070b
JS
910 error >>= 2;
911 if (likely(error >= -interval)) {
912 adj = -1;
913 interval = -interval;
914 offset = -offset;
915 } else
155ec602 916 adj = timekeeping_bigadjust(error, &interval, &offset);
c2bc1111 917 } else /* No adjustment needed */
8524070b
JS
918 return;
919
e919cfd4
JS
920 if (unlikely(timekeeper.clock->maxadj &&
921 (timekeeper.mult + adj >
922 timekeeper.clock->mult + timekeeper.clock->maxadj))) {
923 printk_once(KERN_WARNING
924 "Adjusting %s more than 11%% (%ld vs %ld)\n",
d65670a7
JS
925 timekeeper.clock->name, (long)timekeeper.mult + adj,
926 (long)timekeeper.clock->mult +
927 timekeeper.clock->maxadj);
e919cfd4 928 }
c2bc1111
JS
929 /*
930 * So the following can be confusing.
931 *
932 * To keep things simple, lets assume adj == 1 for now.
933 *
934 * When adj != 1, remember that the interval and offset values
935 * have been appropriately scaled so the math is the same.
936 *
937 * The basic idea here is that we're increasing the multiplier
938 * by one, this causes the xtime_interval to be incremented by
939 * one cycle_interval. This is because:
940 * xtime_interval = cycle_interval * mult
941 * So if mult is being incremented by one:
942 * xtime_interval = cycle_interval * (mult + 1)
943 * Its the same as:
944 * xtime_interval = (cycle_interval * mult) + cycle_interval
945 * Which can be shortened to:
946 * xtime_interval += cycle_interval
947 *
948 * So offset stores the non-accumulated cycles. Thus the current
949 * time (in shifted nanoseconds) is:
950 * now = (offset * adj) + xtime_nsec
951 * Now, even though we're adjusting the clock frequency, we have
952 * to keep time consistent. In other words, we can't jump back
953 * in time, and we also want to avoid jumping forward in time.
954 *
955 * So given the same offset value, we need the time to be the same
956 * both before and after the freq adjustment.
957 * now = (offset * adj_1) + xtime_nsec_1
958 * now = (offset * adj_2) + xtime_nsec_2
959 * So:
960 * (offset * adj_1) + xtime_nsec_1 =
961 * (offset * adj_2) + xtime_nsec_2
962 * And we know:
963 * adj_2 = adj_1 + 1
964 * So:
965 * (offset * adj_1) + xtime_nsec_1 =
966 * (offset * (adj_1+1)) + xtime_nsec_2
967 * (offset * adj_1) + xtime_nsec_1 =
968 * (offset * adj_1) + offset + xtime_nsec_2
969 * Canceling the sides:
970 * xtime_nsec_1 = offset + xtime_nsec_2
971 * Which gives us:
972 * xtime_nsec_2 = xtime_nsec_1 - offset
973 * Which simplfies to:
974 * xtime_nsec -= offset
975 *
976 * XXX - TODO: Doc ntp_error calculation.
977 */
0a544198 978 timekeeper.mult += adj;
155ec602
MS
979 timekeeper.xtime_interval += interval;
980 timekeeper.xtime_nsec -= offset;
981 timekeeper.ntp_error -= (interval - offset) <<
23ce7211 982 timekeeper.ntp_error_shift;
2a8c0883
JS
983
984 /*
985 * It may be possible that when we entered this function, xtime_nsec
986 * was very small. Further, if we're slightly speeding the clocksource
987 * in the code above, its possible the required corrective factor to
988 * xtime_nsec could cause it to underflow.
989 *
990 * Now, since we already accumulated the second, cannot simply roll
991 * the accumulated second back, since the NTP subsystem has been
992 * notified via second_overflow. So instead we push xtime_nsec forward
993 * by the amount we underflowed, and add that amount into the error.
994 *
995 * We'll correct this error next time through this function, when
996 * xtime_nsec is not as small.
997 */
998 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
999 s64 neg = -(s64)timekeeper.xtime_nsec;
1000 timekeeper.xtime_nsec = 0;
1001 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1002 }
1003
8524070b
JS
1004}
1005
83f57a11 1006
1f4f9487
JS
1007/**
1008 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1009 *
1010 * Helper function that accumulates a the nsecs greater then a second
1011 * from the xtime_nsec field to the xtime_secs field.
1012 * It also calls into the NTP code to handle leapsecond processing.
1013 *
1014 */
1015static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
1016{
1017 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1018
1019 while (tk->xtime_nsec >= nsecps) {
1020 int leap;
1021
1022 tk->xtime_nsec -= nsecps;
1023 tk->xtime_sec++;
1024
1025 /* Figure out if its a leap sec and apply if needed */
1026 leap = second_overflow(tk->xtime_sec);
1027 tk->xtime_sec += leap;
1028 tk->wall_to_monotonic.tv_sec -= leap;
1029 if (leap)
1030 clock_was_set_delayed();
1031
1032 }
1033}
1034
1035
a092ff0f
JS
1036/**
1037 * logarithmic_accumulation - shifted accumulation of cycles
1038 *
1039 * This functions accumulates a shifted interval of cycles into
1040 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1041 * loop.
1042 *
1043 * Returns the unconsumed cycles.
1044 */
fee84c43 1045static cycle_t logarithmic_accumulation(cycle_t offset, u32 shift)
a092ff0f 1046{
deda2e81 1047 u64 raw_nsecs;
a092ff0f 1048
88b28adf 1049 /* If the offset is smaller than a shifted interval, do nothing */
a092ff0f
JS
1050 if (offset < timekeeper.cycle_interval<<shift)
1051 return offset;
1052
1053 /* Accumulate one shifted interval */
1054 offset -= timekeeper.cycle_interval << shift;
1055 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
1056
1057 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
1f4f9487
JS
1058
1059 accumulate_nsecs_to_secs(&timekeeper);
a092ff0f 1060
deda2e81
JW
1061 /* Accumulate raw time */
1062 raw_nsecs = timekeeper.raw_interval << shift;
01f71b47 1063 raw_nsecs += timekeeper.raw_time.tv_nsec;
c7dcf87a
JS
1064 if (raw_nsecs >= NSEC_PER_SEC) {
1065 u64 raw_secs = raw_nsecs;
1066 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
01f71b47 1067 timekeeper.raw_time.tv_sec += raw_secs;
a092ff0f 1068 }
01f71b47 1069 timekeeper.raw_time.tv_nsec = raw_nsecs;
a092ff0f
JS
1070
1071 /* Accumulate error between NTP and clock interval */
ea7cf49a 1072 timekeeper.ntp_error += ntp_tick_length() << shift;
a386b5af
KP
1073 timekeeper.ntp_error -=
1074 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
a092ff0f
JS
1075 (timekeeper.ntp_error_shift + shift);
1076
1077 return offset;
1078}
1079
83f57a11 1080
8524070b
JS
1081/**
1082 * update_wall_time - Uses the current clocksource to increment the wall time
1083 *
8524070b 1084 */
871cf1e5 1085static void update_wall_time(void)
8524070b 1086{
155ec602 1087 struct clocksource *clock;
8524070b 1088 cycle_t offset;
a092ff0f 1089 int shift = 0, maxshift;
70471f2f 1090 unsigned long flags;
1e75fa8b 1091 s64 remainder;
70471f2f
JS
1092
1093 write_seqlock_irqsave(&timekeeper.lock, flags);
8524070b
JS
1094
1095 /* Make sure we're fully resumed: */
1096 if (unlikely(timekeeping_suspended))
70471f2f 1097 goto out;
8524070b 1098
155ec602 1099 clock = timekeeper.clock;
592913ec
JS
1100
1101#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
155ec602 1102 offset = timekeeper.cycle_interval;
592913ec
JS
1103#else
1104 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
8524070b 1105#endif
8524070b 1106
a092ff0f
JS
1107 /*
1108 * With NO_HZ we may have to accumulate many cycle_intervals
1109 * (think "ticks") worth of time at once. To do this efficiently,
1110 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1111 * that is smaller than the offset. We then accumulate that
a092ff0f
JS
1112 * chunk in one go, and then try to consume the next smaller
1113 * doubled multiple.
8524070b 1114 */
a092ff0f
JS
1115 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1116 shift = max(0, shift);
88b28adf 1117 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1118 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1119 shift = min(shift, maxshift);
155ec602 1120 while (offset >= timekeeper.cycle_interval) {
a092ff0f 1121 offset = logarithmic_accumulation(offset, shift);
830ec045
JS
1122 if(offset < timekeeper.cycle_interval<<shift)
1123 shift--;
8524070b
JS
1124 }
1125
1126 /* correct the clock when NTP error is too big */
155ec602 1127 timekeeping_adjust(offset);
8524070b 1128
6c9bacb4 1129
6a867a39 1130 /*
1e75fa8b
JS
1131 * Store only full nanoseconds into xtime_nsec after rounding
1132 * it up and add the remainder to the error difference.
1133 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
1134 * by truncating the remainder in vsyscalls. However, it causes
1135 * additional work to be done in timekeeping_adjust(). Once
1136 * the vsyscall implementations are converted to use xtime_nsec
1137 * (shifted nanoseconds), this can be killed.
1138 */
1139 remainder = timekeeper.xtime_nsec & ((1 << timekeeper.shift) - 1);
1140 timekeeper.xtime_nsec -= remainder;
1141 timekeeper.xtime_nsec += 1 << timekeeper.shift;
1142 timekeeper.ntp_error += remainder << timekeeper.ntp_error_shift;
8524070b 1143
6a867a39
JS
1144 /*
1145 * Finally, make sure that after the rounding
1e75fa8b 1146 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1147 */
1f4f9487 1148 accumulate_nsecs_to_secs(&timekeeper);
83f57a11 1149
cc06268c 1150 timekeeping_update(false);
70471f2f
JS
1151
1152out:
1153 write_sequnlock_irqrestore(&timekeeper.lock, flags);
1154
8524070b 1155}
7c3f1a57
TJ
1156
1157/**
1158 * getboottime - Return the real time of system boot.
1159 * @ts: pointer to the timespec to be set
1160 *
abb3a4ea 1161 * Returns the wall-time of boot in a timespec.
7c3f1a57
TJ
1162 *
1163 * This is based on the wall_to_monotonic offset and the total suspend
1164 * time. Calls to settimeofday will affect the value returned (which
1165 * basically means that however wrong your real time clock is at boot time,
1166 * you get the right time here).
1167 */
1168void getboottime(struct timespec *ts)
1169{
36d47481 1170 struct timespec boottime = {
d9f7217a 1171 .tv_sec = timekeeper.wall_to_monotonic.tv_sec +
00c5fb77 1172 timekeeper.total_sleep_time.tv_sec,
d9f7217a 1173 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
00c5fb77 1174 timekeeper.total_sleep_time.tv_nsec
36d47481 1175 };
d4f587c6 1176
d4f587c6 1177 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
7c3f1a57 1178}
c93d89f3 1179EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57 1180
abb3a4ea
JS
1181
1182/**
1183 * get_monotonic_boottime - Returns monotonic time since boot
1184 * @ts: pointer to the timespec to be set
1185 *
1186 * Returns the monotonic time since boot in a timespec.
1187 *
1188 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1189 * includes the time spent in suspend.
1190 */
1191void get_monotonic_boottime(struct timespec *ts)
1192{
1193 struct timespec tomono, sleep;
1194 unsigned int seq;
abb3a4ea
JS
1195
1196 WARN_ON(timekeeping_suspended);
1197
1198 do {
70471f2f 1199 seq = read_seqbegin(&timekeeper.lock);
1e75fa8b
JS
1200 ts->tv_sec = timekeeper.xtime_sec;
1201 ts->tv_nsec = timekeeping_get_ns();
d9f7217a 1202 tomono = timekeeper.wall_to_monotonic;
00c5fb77 1203 sleep = timekeeper.total_sleep_time;
abb3a4ea 1204
70471f2f 1205 } while (read_seqretry(&timekeeper.lock, seq));
abb3a4ea
JS
1206
1207 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1e75fa8b 1208 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec);
abb3a4ea
JS
1209}
1210EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1211
1212/**
1213 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1214 *
1215 * Returns the monotonic time since boot in a ktime
1216 *
1217 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1218 * includes the time spent in suspend.
1219 */
1220ktime_t ktime_get_boottime(void)
1221{
1222 struct timespec ts;
1223
1224 get_monotonic_boottime(&ts);
1225 return timespec_to_ktime(ts);
1226}
1227EXPORT_SYMBOL_GPL(ktime_get_boottime);
1228
7c3f1a57
TJ
1229/**
1230 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1231 * @ts: pointer to the timespec to be converted
1232 */
1233void monotonic_to_bootbased(struct timespec *ts)
1234{
00c5fb77 1235 *ts = timespec_add(*ts, timekeeper.total_sleep_time);
7c3f1a57 1236}
c93d89f3 1237EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
2c6b47de 1238
17c38b74
JS
1239unsigned long get_seconds(void)
1240{
1e75fa8b 1241 return timekeeper.xtime_sec;
17c38b74
JS
1242}
1243EXPORT_SYMBOL(get_seconds);
1244
da15cfda
JS
1245struct timespec __current_kernel_time(void)
1246{
1e75fa8b 1247 return tk_xtime(&timekeeper);
da15cfda 1248}
17c38b74 1249
2c6b47de
JS
1250struct timespec current_kernel_time(void)
1251{
1252 struct timespec now;
1253 unsigned long seq;
1254
1255 do {
70471f2f 1256 seq = read_seqbegin(&timekeeper.lock);
83f57a11 1257
1e75fa8b 1258 now = tk_xtime(&timekeeper);
70471f2f 1259 } while (read_seqretry(&timekeeper.lock, seq));
2c6b47de
JS
1260
1261 return now;
1262}
2c6b47de 1263EXPORT_SYMBOL(current_kernel_time);
da15cfda
JS
1264
1265struct timespec get_monotonic_coarse(void)
1266{
1267 struct timespec now, mono;
1268 unsigned long seq;
1269
1270 do {
70471f2f 1271 seq = read_seqbegin(&timekeeper.lock);
83f57a11 1272
1e75fa8b 1273 now = tk_xtime(&timekeeper);
d9f7217a 1274 mono = timekeeper.wall_to_monotonic;
70471f2f 1275 } while (read_seqretry(&timekeeper.lock, seq));
da15cfda
JS
1276
1277 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1278 now.tv_nsec + mono.tv_nsec);
1279 return now;
1280}
871cf1e5
TH
1281
1282/*
1283 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1284 * without sampling the sequence number in xtime_lock.
1285 * jiffies is defined in the linker script...
1286 */
1287void do_timer(unsigned long ticks)
1288{
1289 jiffies_64 += ticks;
1290 update_wall_time();
1291 calc_global_load(ticks);
1292}
48cf76f7
TH
1293
1294/**
314ac371
JS
1295 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1296 * and sleep offsets.
48cf76f7
TH
1297 * @xtim: pointer to timespec to be set with xtime
1298 * @wtom: pointer to timespec to be set with wall_to_monotonic
314ac371 1299 * @sleep: pointer to timespec to be set with time in suspend
48cf76f7 1300 */
314ac371
JS
1301void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1302 struct timespec *wtom, struct timespec *sleep)
48cf76f7
TH
1303{
1304 unsigned long seq;
1305
1306 do {
70471f2f 1307 seq = read_seqbegin(&timekeeper.lock);
1e75fa8b 1308 *xtim = tk_xtime(&timekeeper);
d9f7217a 1309 *wtom = timekeeper.wall_to_monotonic;
00c5fb77 1310 *sleep = timekeeper.total_sleep_time;
70471f2f 1311 } while (read_seqretry(&timekeeper.lock, seq));
48cf76f7 1312}
f0af911a 1313
f6c06abf
TG
1314#ifdef CONFIG_HIGH_RES_TIMERS
1315/**
1316 * ktime_get_update_offsets - hrtimer helper
1317 * @offs_real: pointer to storage for monotonic -> realtime offset
1318 * @offs_boot: pointer to storage for monotonic -> boottime offset
1319 *
1320 * Returns current monotonic time and updates the offsets
1321 * Called from hrtimer_interupt() or retrigger_next_event()
1322 */
1323ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1324{
1325 ktime_t now;
1326 unsigned int seq;
1327 u64 secs, nsecs;
1328
1329 do {
1330 seq = read_seqbegin(&timekeeper.lock);
1331
1e75fa8b
JS
1332 secs = timekeeper.xtime_sec;
1333 nsecs = timekeeping_get_ns();
f6c06abf
TG
1334
1335 *offs_real = timekeeper.offs_real;
1336 *offs_boot = timekeeper.offs_boot;
1337 } while (read_seqretry(&timekeeper.lock, seq));
1338
1339 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1340 now = ktime_sub(now, *offs_real);
1341 return now;
1342}
1343#endif
1344
99ee5315
TG
1345/**
1346 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1347 */
1348ktime_t ktime_get_monotonic_offset(void)
1349{
1350 unsigned long seq;
1351 struct timespec wtom;
1352
1353 do {
70471f2f 1354 seq = read_seqbegin(&timekeeper.lock);
d9f7217a 1355 wtom = timekeeper.wall_to_monotonic;
70471f2f
JS
1356 } while (read_seqretry(&timekeeper.lock, seq));
1357
99ee5315
TG
1358 return timespec_to_ktime(wtom);
1359}
a80b83b7
JS
1360EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1361
99ee5315 1362
f0af911a
TH
1363/**
1364 * xtime_update() - advances the timekeeping infrastructure
1365 * @ticks: number of ticks, that have elapsed since the last call.
1366 *
1367 * Must be called with interrupts disabled.
1368 */
1369void xtime_update(unsigned long ticks)
1370{
1371 write_seqlock(&xtime_lock);
1372 do_timer(ticks);
1373 write_sequnlock(&xtime_lock);
1374}