]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/time/timekeeping.c
alarmtimer: Add tracepoints for alarm timers
[mirror_ubuntu-zesty-kernel.git] / kernel / time / timekeeping.c
CommitLineData
8524070b
JS
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b
JS
12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b
JS
19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
f09cb9a1 62static struct tk_fast tk_fast_raw ____cacheline_aligned;
4396e058 63
8fcce546
JS
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
1e75fa8b
JS
67static inline void tk_normalize_xtime(struct timekeeper *tk)
68{
876e7881
PZ
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
71 tk->xtime_sec++;
72 }
73}
74
c905fae4
TG
75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76{
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
876e7881 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
81 return ts;
82}
83
7d489d15 84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
85{
86 tk->xtime_sec = ts->tv_sec;
876e7881 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
88}
89
7d489d15 90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
91{
92 tk->xtime_sec += ts->tv_sec;
876e7881 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 94 tk_normalize_xtime(tk);
1e75fa8b 95}
8fcce546 96
7d489d15 97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 98{
7d489d15 99 struct timespec64 tmp;
6d0ef903
JS
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
7d489d15 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 106 -tk->wall_to_monotonic.tv_nsec);
7d489d15 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 108 tk->wall_to_monotonic = wtm;
7d489d15
JS
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
112}
113
47da70d3 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 115{
47da70d3 116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
117}
118
3c17ad19 119#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 121
3c17ad19
JS
122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123{
124
876e7881
PZ
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
127
128 if (offset > max_cycles) {
a558cd02 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 130 offset, name, max_cycles);
a558cd02 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
132 } else {
133 if (offset > (max_cycles >> 1)) {
fc4fa6e1 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
3c17ad19
JS
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
4ca22c26 139
57d05a93
JS
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 145 tk->last_warning = jiffies;
4ca22c26 146 }
57d05a93 147 tk->underflow_seen = 0;
4ca22c26
JS
148 }
149
57d05a93
JS
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 155 tk->last_warning = jiffies;
4ca22c26 156 }
57d05a93 157 tk->overflow_seen = 0;
4ca22c26 158 }
3c17ad19 159}
a558cd02
JS
160
161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162{
57d05a93 163 struct timekeeper *tk = &tk_core.timekeeper;
4ca22c26
JS
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
a558cd02 166
4ca22c26
JS
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 181
4ca22c26 182 delta = clocksource_delta(now, last, mask);
a558cd02 183
057b87e3
JS
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
4ca22c26 188 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 189 tk->underflow_seen = 1;
057b87e3 190 delta = 0;
4ca22c26 191 }
057b87e3 192
a558cd02 193 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 194 if (unlikely(delta > max)) {
57d05a93 195 tk->overflow_seen = 1;
a558cd02 196 delta = tkr->clock->max_cycles;
4ca22c26 197 }
a558cd02
JS
198
199 return delta;
200}
3c17ad19
JS
201#else
202static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203{
204}
a558cd02
JS
205static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206{
207 cycle_t cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216}
3c17ad19
JS
217#endif
218
155ec602 219/**
d26e4fe0 220 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 221 *
d26e4fe0 222 * @tk: The target timekeeper to setup.
155ec602
MS
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
f726a697 230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
231{
232 cycle_t interval;
a386b5af 233 u64 tmp, ntpinterval;
1e75fa8b 234 struct clocksource *old_clock;
155ec602 235
2c756feb 236 ++tk->cs_was_changed_seq;
876e7881
PZ
237 old_clock = tk->tkr_mono.clock;
238 tk->tkr_mono.clock = clock;
239 tk->tkr_mono.read = clock->read;
240 tk->tkr_mono.mask = clock->mask;
241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
155ec602 242
4a4ad80d
PZ
243 tk->tkr_raw.clock = clock;
244 tk->tkr_raw.read = clock->read;
245 tk->tkr_raw.mask = clock->mask;
246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
155ec602
MS
248 /* Do the ns -> cycle conversion first, using original mult */
249 tmp = NTP_INTERVAL_LENGTH;
250 tmp <<= clock->shift;
a386b5af 251 ntpinterval = tmp;
0a544198
MS
252 tmp += clock->mult/2;
253 do_div(tmp, clock->mult);
155ec602
MS
254 if (tmp == 0)
255 tmp = 1;
256
257 interval = (cycle_t) tmp;
f726a697 258 tk->cycle_interval = interval;
155ec602
MS
259
260 /* Go back from cycles -> shifted ns */
f726a697
JS
261 tk->xtime_interval = (u64) interval * clock->mult;
262 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 tk->raw_interval =
0a544198 264 ((u64) interval * clock->mult) >> clock->shift;
155ec602 265
1e75fa8b
JS
266 /* if changing clocks, convert xtime_nsec shift units */
267 if (old_clock) {
268 int shift_change = clock->shift - old_clock->shift;
269 if (shift_change < 0)
876e7881 270 tk->tkr_mono.xtime_nsec >>= -shift_change;
1e75fa8b 271 else
876e7881 272 tk->tkr_mono.xtime_nsec <<= shift_change;
1e75fa8b 273 }
4a4ad80d
PZ
274 tk->tkr_raw.xtime_nsec = 0;
275
876e7881 276 tk->tkr_mono.shift = clock->shift;
4a4ad80d 277 tk->tkr_raw.shift = clock->shift;
155ec602 278
f726a697
JS
279 tk->ntp_error = 0;
280 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 281 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
282
283 /*
284 * The timekeeper keeps its own mult values for the currently
285 * active clocksource. These value will be adjusted via NTP
286 * to counteract clock drifting.
287 */
876e7881 288 tk->tkr_mono.mult = clock->mult;
4a4ad80d 289 tk->tkr_raw.mult = clock->mult;
dc491596 290 tk->ntp_err_mult = 0;
155ec602 291}
8524070b 292
2ba2a305 293/* Timekeeper helper functions. */
7b1f6207
SW
294
295#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
296static u32 default_arch_gettimeoffset(void) { return 0; }
297u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 298#else
e06fde37 299static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
300#endif
301
6bd58f09
CH
302static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 cycle_t delta)
304{
305 s64 nsec;
306
307 nsec = delta * tkr->mult + tkr->xtime_nsec;
308 nsec >>= tkr->shift;
309
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec + arch_gettimeoffset();
312}
313
0e5ac3a8 314static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 315{
a558cd02 316 cycle_t delta;
2ba2a305 317
a558cd02 318 delta = timekeeping_get_delta(tkr);
6bd58f09
CH
319 return timekeeping_delta_to_ns(tkr, delta);
320}
2ba2a305 321
6bd58f09
CH
322static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323 cycle_t cycles)
324{
325 cycle_t delta;
f2a5a085 326
6bd58f09
CH
327 /* calculate the delta since the last update_wall_time */
328 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329 return timekeeping_delta_to_ns(tkr, delta);
2ba2a305
MS
330}
331
4396e058
TG
332/**
333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 334 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
335 *
336 * We want to use this from any context including NMI and tracing /
337 * instrumenting the timekeeping code itself.
338 *
6695b92a 339 * Employ the latch technique; see @raw_write_seqcount_latch.
4396e058
TG
340 *
341 * So if a NMI hits the update of base[0] then it will use base[1]
342 * which is still consistent. In the worst case this can result is a
343 * slightly wrong timestamp (a few nanoseconds). See
344 * @ktime_get_mono_fast_ns.
345 */
4498e746 346static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 347{
4498e746 348 struct tk_read_base *base = tkf->base;
4396e058
TG
349
350 /* Force readers off to base[1] */
4498e746 351 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
352
353 /* Update base[0] */
affe3e85 354 memcpy(base, tkr, sizeof(*base));
4396e058
TG
355
356 /* Force readers back to base[0] */
4498e746 357 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
358
359 /* Update base[1] */
360 memcpy(base + 1, base, sizeof(*base));
361}
362
363/**
364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365 *
366 * This timestamp is not guaranteed to be monotonic across an update.
367 * The timestamp is calculated by:
368 *
369 * now = base_mono + clock_delta * slope
370 *
371 * So if the update lowers the slope, readers who are forced to the
372 * not yet updated second array are still using the old steeper slope.
373 *
374 * tmono
375 * ^
376 * | o n
377 * | o n
378 * | u
379 * | o
380 * |o
381 * |12345678---> reader order
382 *
383 * o = old slope
384 * u = update
385 * n = new slope
386 *
387 * So reader 6 will observe time going backwards versus reader 5.
388 *
389 * While other CPUs are likely to be able observe that, the only way
390 * for a CPU local observation is when an NMI hits in the middle of
391 * the update. Timestamps taken from that NMI context might be ahead
392 * of the following timestamps. Callers need to be aware of that and
393 * deal with it.
394 */
4498e746 395static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
396{
397 struct tk_read_base *tkr;
398 unsigned int seq;
399 u64 now;
400
401 do {
7fc26327 402 seq = raw_read_seqcount_latch(&tkf->seq);
4498e746 403 tkr = tkf->base + (seq & 0x01);
27727df2
JS
404 now = ktime_to_ns(tkr->base);
405
58bfea95
JS
406 now += timekeeping_delta_to_ns(tkr,
407 clocksource_delta(
408 tkr->read(tkr->clock),
409 tkr->cycle_last,
410 tkr->mask));
4498e746 411 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 412
4396e058
TG
413 return now;
414}
4498e746
PZ
415
416u64 ktime_get_mono_fast_ns(void)
417{
418 return __ktime_get_fast_ns(&tk_fast_mono);
419}
4396e058
TG
420EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
421
f09cb9a1
PZ
422u64 ktime_get_raw_fast_ns(void)
423{
424 return __ktime_get_fast_ns(&tk_fast_raw);
425}
426EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
427
948a5312
JF
428/**
429 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
430 *
431 * To keep it NMI safe since we're accessing from tracing, we're not using a
432 * separate timekeeper with updates to monotonic clock and boot offset
433 * protected with seqlocks. This has the following minor side effects:
434 *
435 * (1) Its possible that a timestamp be taken after the boot offset is updated
436 * but before the timekeeper is updated. If this happens, the new boot offset
437 * is added to the old timekeeping making the clock appear to update slightly
438 * earlier:
439 * CPU 0 CPU 1
440 * timekeeping_inject_sleeptime64()
441 * __timekeeping_inject_sleeptime(tk, delta);
442 * timestamp();
443 * timekeeping_update(tk, TK_CLEAR_NTP...);
444 *
445 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
446 * partially updated. Since the tk->offs_boot update is a rare event, this
447 * should be a rare occurrence which postprocessing should be able to handle.
448 */
449u64 notrace ktime_get_boot_fast_ns(void)
450{
451 struct timekeeper *tk = &tk_core.timekeeper;
452
453 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
454}
455EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
456
060407ae
RW
457/* Suspend-time cycles value for halted fast timekeeper. */
458static cycle_t cycles_at_suspend;
459
460static cycle_t dummy_clock_read(struct clocksource *cs)
461{
462 return cycles_at_suspend;
463}
464
465/**
466 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
467 * @tk: Timekeeper to snapshot.
468 *
469 * It generally is unsafe to access the clocksource after timekeeping has been
470 * suspended, so take a snapshot of the readout base of @tk and use it as the
471 * fast timekeeper's readout base while suspended. It will return the same
472 * number of cycles every time until timekeeping is resumed at which time the
473 * proper readout base for the fast timekeeper will be restored automatically.
474 */
475static void halt_fast_timekeeper(struct timekeeper *tk)
476{
477 static struct tk_read_base tkr_dummy;
876e7881 478 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
479
480 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
481 cycles_at_suspend = tkr->read(tkr->clock);
482 tkr_dummy.read = dummy_clock_read;
4498e746 483 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
484
485 tkr = &tk->tkr_raw;
486 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
487 tkr_dummy.read = dummy_clock_read;
488 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
489}
490
c905fae4
TG
491#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
492
493static inline void update_vsyscall(struct timekeeper *tk)
494{
0680eb1f 495 struct timespec xt, wm;
c905fae4 496
e2dff1ec 497 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f 498 wm = timespec64_to_timespec(tk->wall_to_monotonic);
876e7881
PZ
499 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
500 tk->tkr_mono.cycle_last);
c905fae4
TG
501}
502
503static inline void old_vsyscall_fixup(struct timekeeper *tk)
504{
505 s64 remainder;
506
507 /*
508 * Store only full nanoseconds into xtime_nsec after rounding
509 * it up and add the remainder to the error difference.
510 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
511 * by truncating the remainder in vsyscalls. However, it causes
512 * additional work to be done in timekeeping_adjust(). Once
513 * the vsyscall implementations are converted to use xtime_nsec
514 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
515 * users are removed, this can be killed.
516 */
876e7881 517 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
0209b937
TG
518 if (remainder != 0) {
519 tk->tkr_mono.xtime_nsec -= remainder;
520 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
521 tk->ntp_error += remainder << tk->ntp_error_shift;
522 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
523 }
c905fae4
TG
524}
525#else
526#define old_vsyscall_fixup(tk)
527#endif
528
e0b306fe
MT
529static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
530
780427f0 531static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 532{
780427f0 533 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
534}
535
536/**
537 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
538 */
539int pvclock_gtod_register_notifier(struct notifier_block *nb)
540{
3fdb14fd 541 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
542 unsigned long flags;
543 int ret;
544
9a7a71b1 545 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 546 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 547 update_pvclock_gtod(tk, true);
9a7a71b1 548 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
549
550 return ret;
551}
552EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
553
554/**
555 * pvclock_gtod_unregister_notifier - unregister a pvclock
556 * timedata update listener
e0b306fe
MT
557 */
558int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
559{
e0b306fe
MT
560 unsigned long flags;
561 int ret;
562
9a7a71b1 563 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 564 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 565 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
566
567 return ret;
568}
569EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
570
833f32d7
JS
571/*
572 * tk_update_leap_state - helper to update the next_leap_ktime
573 */
574static inline void tk_update_leap_state(struct timekeeper *tk)
575{
576 tk->next_leap_ktime = ntp_get_next_leap();
577 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
578 /* Convert to monotonic time */
579 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
580}
581
7c032df5
TG
582/*
583 * Update the ktime_t based scalar nsec members of the timekeeper
584 */
585static inline void tk_update_ktime_data(struct timekeeper *tk)
586{
9e3680b1
HS
587 u64 seconds;
588 u32 nsec;
7c032df5
TG
589
590 /*
591 * The xtime based monotonic readout is:
592 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
593 * The ktime based monotonic readout is:
594 * nsec = base_mono + now();
595 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
596 */
9e3680b1
HS
597 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
598 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 599 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
600
601 /* Update the monotonic raw base */
4a4ad80d 602 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
603
604 /*
605 * The sum of the nanoseconds portions of xtime and
606 * wall_to_monotonic can be greater/equal one second. Take
607 * this into account before updating tk->ktime_sec.
608 */
876e7881 609 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
610 if (nsec >= NSEC_PER_SEC)
611 seconds++;
612 tk->ktime_sec = seconds;
7c032df5
TG
613}
614
9a7a71b1 615/* must hold timekeeper_lock */
04397fe9 616static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 617{
04397fe9 618 if (action & TK_CLEAR_NTP) {
f726a697 619 tk->ntp_error = 0;
cc06268c
TG
620 ntp_clear();
621 }
48cdc135 622
833f32d7 623 tk_update_leap_state(tk);
7c032df5
TG
624 tk_update_ktime_data(tk);
625
9bf2419f
TG
626 update_vsyscall(tk);
627 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
628
4498e746 629 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 630 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
631
632 if (action & TK_CLOCK_WAS_SET)
633 tk->clock_was_set_seq++;
d1518326
JS
634 /*
635 * The mirroring of the data to the shadow-timekeeper needs
636 * to happen last here to ensure we don't over-write the
637 * timekeeper structure on the next update with stale data
638 */
639 if (action & TK_MIRROR)
640 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
641 sizeof(tk_core.timekeeper));
cc06268c
TG
642}
643
8524070b 644/**
155ec602 645 * timekeeping_forward_now - update clock to the current time
8524070b 646 *
9a055117
RZ
647 * Forward the current clock to update its state since the last call to
648 * update_wall_time(). This is useful before significant clock changes,
649 * as it avoids having to deal with this time offset explicitly.
8524070b 650 */
f726a697 651static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 652{
876e7881 653 struct clocksource *clock = tk->tkr_mono.clock;
3a978377 654 cycle_t cycle_now, delta;
9a055117 655 s64 nsec;
8524070b 656
876e7881
PZ
657 cycle_now = tk->tkr_mono.read(clock);
658 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
659 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 660 tk->tkr_raw.cycle_last = cycle_now;
8524070b 661
876e7881 662 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 663
7b1f6207 664 /* If arch requires, add in get_arch_timeoffset() */
876e7881 665 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 666
f726a697 667 tk_normalize_xtime(tk);
2d42244a 668
4a4ad80d 669 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
7d489d15 670 timespec64_add_ns(&tk->raw_time, nsec);
8524070b
JS
671}
672
673/**
d6d29896 674 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b
JS
675 * @ts: pointer to the timespec to be set
676 *
1e817fb6
KC
677 * Updates the time of day in the timespec.
678 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 679 */
d6d29896 680int __getnstimeofday64(struct timespec64 *ts)
8524070b 681{
3fdb14fd 682 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 683 unsigned long seq;
1e75fa8b 684 s64 nsecs = 0;
8524070b
JS
685
686 do {
3fdb14fd 687 seq = read_seqcount_begin(&tk_core.seq);
8524070b 688
4e250fdd 689 ts->tv_sec = tk->xtime_sec;
876e7881 690 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 691
3fdb14fd 692 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 693
ec145bab 694 ts->tv_nsec = 0;
d6d29896 695 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
696
697 /*
698 * Do not bail out early, in case there were callers still using
699 * the value, even in the face of the WARN_ON.
700 */
701 if (unlikely(timekeeping_suspended))
702 return -EAGAIN;
703 return 0;
704}
d6d29896 705EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
706
707/**
d6d29896 708 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 709 * @ts: pointer to the timespec64 to be set
1e817fb6 710 *
5322e4c2 711 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 712 */
d6d29896 713void getnstimeofday64(struct timespec64 *ts)
1e817fb6 714{
d6d29896 715 WARN_ON(__getnstimeofday64(ts));
8524070b 716}
d6d29896 717EXPORT_SYMBOL(getnstimeofday64);
8524070b 718
951ed4d3
MS
719ktime_t ktime_get(void)
720{
3fdb14fd 721 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 722 unsigned int seq;
a016a5bd
TG
723 ktime_t base;
724 s64 nsecs;
951ed4d3
MS
725
726 WARN_ON(timekeeping_suspended);
727
728 do {
3fdb14fd 729 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
730 base = tk->tkr_mono.base;
731 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 732
3fdb14fd 733 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 734
a016a5bd 735 return ktime_add_ns(base, nsecs);
951ed4d3
MS
736}
737EXPORT_SYMBOL_GPL(ktime_get);
738
6374f912
HG
739u32 ktime_get_resolution_ns(void)
740{
741 struct timekeeper *tk = &tk_core.timekeeper;
742 unsigned int seq;
743 u32 nsecs;
744
745 WARN_ON(timekeeping_suspended);
746
747 do {
748 seq = read_seqcount_begin(&tk_core.seq);
749 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
750 } while (read_seqcount_retry(&tk_core.seq, seq));
751
752 return nsecs;
753}
754EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
755
0077dc60
TG
756static ktime_t *offsets[TK_OFFS_MAX] = {
757 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
758 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
759 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
760};
761
762ktime_t ktime_get_with_offset(enum tk_offsets offs)
763{
764 struct timekeeper *tk = &tk_core.timekeeper;
765 unsigned int seq;
766 ktime_t base, *offset = offsets[offs];
767 s64 nsecs;
768
769 WARN_ON(timekeeping_suspended);
770
771 do {
772 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
773 base = ktime_add(tk->tkr_mono.base, *offset);
774 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
775
776 } while (read_seqcount_retry(&tk_core.seq, seq));
777
778 return ktime_add_ns(base, nsecs);
779
780}
781EXPORT_SYMBOL_GPL(ktime_get_with_offset);
782
9a6b5197
TG
783/**
784 * ktime_mono_to_any() - convert mononotic time to any other time
785 * @tmono: time to convert.
786 * @offs: which offset to use
787 */
788ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
789{
790 ktime_t *offset = offsets[offs];
791 unsigned long seq;
792 ktime_t tconv;
793
794 do {
795 seq = read_seqcount_begin(&tk_core.seq);
796 tconv = ktime_add(tmono, *offset);
797 } while (read_seqcount_retry(&tk_core.seq, seq));
798
799 return tconv;
800}
801EXPORT_SYMBOL_GPL(ktime_mono_to_any);
802
f519b1a2
TG
803/**
804 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
805 */
806ktime_t ktime_get_raw(void)
807{
808 struct timekeeper *tk = &tk_core.timekeeper;
809 unsigned int seq;
810 ktime_t base;
811 s64 nsecs;
812
813 do {
814 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
815 base = tk->tkr_raw.base;
816 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
817
818 } while (read_seqcount_retry(&tk_core.seq, seq));
819
820 return ktime_add_ns(base, nsecs);
821}
822EXPORT_SYMBOL_GPL(ktime_get_raw);
823
951ed4d3 824/**
d6d29896 825 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
826 * @ts: pointer to timespec variable
827 *
828 * The function calculates the monotonic clock from the realtime
829 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 830 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 831 */
d6d29896 832void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 833{
3fdb14fd 834 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 835 struct timespec64 tomono;
ec145bab 836 s64 nsec;
951ed4d3 837 unsigned int seq;
951ed4d3
MS
838
839 WARN_ON(timekeeping_suspended);
840
841 do {
3fdb14fd 842 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 843 ts->tv_sec = tk->xtime_sec;
876e7881 844 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 845 tomono = tk->wall_to_monotonic;
951ed4d3 846
3fdb14fd 847 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 848
d6d29896
TG
849 ts->tv_sec += tomono.tv_sec;
850 ts->tv_nsec = 0;
851 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 852}
d6d29896 853EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 854
9e3680b1
HS
855/**
856 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
857 *
858 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
859 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
860 * works on both 32 and 64 bit systems. On 32 bit systems the readout
861 * covers ~136 years of uptime which should be enough to prevent
862 * premature wrap arounds.
863 */
864time64_t ktime_get_seconds(void)
865{
866 struct timekeeper *tk = &tk_core.timekeeper;
867
868 WARN_ON(timekeeping_suspended);
869 return tk->ktime_sec;
870}
871EXPORT_SYMBOL_GPL(ktime_get_seconds);
872
dbe7aa62
HS
873/**
874 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
875 *
876 * Returns the wall clock seconds since 1970. This replaces the
877 * get_seconds() interface which is not y2038 safe on 32bit systems.
878 *
879 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
880 * 32bit systems the access must be protected with the sequence
881 * counter to provide "atomic" access to the 64bit tk->xtime_sec
882 * value.
883 */
884time64_t ktime_get_real_seconds(void)
885{
886 struct timekeeper *tk = &tk_core.timekeeper;
887 time64_t seconds;
888 unsigned int seq;
889
890 if (IS_ENABLED(CONFIG_64BIT))
891 return tk->xtime_sec;
892
893 do {
894 seq = read_seqcount_begin(&tk_core.seq);
895 seconds = tk->xtime_sec;
896
897 } while (read_seqcount_retry(&tk_core.seq, seq));
898
899 return seconds;
900}
901EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
902
dee36654
D
903/**
904 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
905 * but without the sequence counter protect. This internal function
906 * is called just when timekeeping lock is already held.
907 */
908time64_t __ktime_get_real_seconds(void)
909{
910 struct timekeeper *tk = &tk_core.timekeeper;
911
912 return tk->xtime_sec;
913}
914
9da0f49c
CH
915/**
916 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
917 * @systime_snapshot: pointer to struct receiving the system time snapshot
918 */
919void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
920{
921 struct timekeeper *tk = &tk_core.timekeeper;
922 unsigned long seq;
923 ktime_t base_raw;
924 ktime_t base_real;
925 s64 nsec_raw;
926 s64 nsec_real;
927 cycle_t now;
928
ba26621e
CH
929 WARN_ON_ONCE(timekeeping_suspended);
930
9da0f49c
CH
931 do {
932 seq = read_seqcount_begin(&tk_core.seq);
933
934 now = tk->tkr_mono.read(tk->tkr_mono.clock);
2c756feb
CH
935 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
936 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
9da0f49c
CH
937 base_real = ktime_add(tk->tkr_mono.base,
938 tk_core.timekeeper.offs_real);
939 base_raw = tk->tkr_raw.base;
940 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
941 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
942 } while (read_seqcount_retry(&tk_core.seq, seq));
943
944 systime_snapshot->cycles = now;
945 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
946 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
947}
948EXPORT_SYMBOL_GPL(ktime_get_snapshot);
dee36654 949
2c756feb
CH
950/* Scale base by mult/div checking for overflow */
951static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
952{
953 u64 tmp, rem;
954
955 tmp = div64_u64_rem(*base, div, &rem);
956
957 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
958 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
959 return -EOVERFLOW;
960 tmp *= mult;
961 rem *= mult;
962
963 do_div(rem, div);
964 *base = tmp + rem;
965 return 0;
966}
967
968/**
969 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
970 * @history: Snapshot representing start of history
971 * @partial_history_cycles: Cycle offset into history (fractional part)
972 * @total_history_cycles: Total history length in cycles
973 * @discontinuity: True indicates clock was set on history period
974 * @ts: Cross timestamp that should be adjusted using
975 * partial/total ratio
976 *
977 * Helper function used by get_device_system_crosststamp() to correct the
978 * crosstimestamp corresponding to the start of the current interval to the
979 * system counter value (timestamp point) provided by the driver. The
980 * total_history_* quantities are the total history starting at the provided
981 * reference point and ending at the start of the current interval. The cycle
982 * count between the driver timestamp point and the start of the current
983 * interval is partial_history_cycles.
984 */
985static int adjust_historical_crosststamp(struct system_time_snapshot *history,
986 cycle_t partial_history_cycles,
987 cycle_t total_history_cycles,
988 bool discontinuity,
989 struct system_device_crosststamp *ts)
990{
991 struct timekeeper *tk = &tk_core.timekeeper;
992 u64 corr_raw, corr_real;
993 bool interp_forward;
994 int ret;
995
996 if (total_history_cycles == 0 || partial_history_cycles == 0)
997 return 0;
998
999 /* Interpolate shortest distance from beginning or end of history */
1000 interp_forward = partial_history_cycles > total_history_cycles/2 ?
1001 true : false;
1002 partial_history_cycles = interp_forward ?
1003 total_history_cycles - partial_history_cycles :
1004 partial_history_cycles;
1005
1006 /*
1007 * Scale the monotonic raw time delta by:
1008 * partial_history_cycles / total_history_cycles
1009 */
1010 corr_raw = (u64)ktime_to_ns(
1011 ktime_sub(ts->sys_monoraw, history->raw));
1012 ret = scale64_check_overflow(partial_history_cycles,
1013 total_history_cycles, &corr_raw);
1014 if (ret)
1015 return ret;
1016
1017 /*
1018 * If there is a discontinuity in the history, scale monotonic raw
1019 * correction by:
1020 * mult(real)/mult(raw) yielding the realtime correction
1021 * Otherwise, calculate the realtime correction similar to monotonic
1022 * raw calculation
1023 */
1024 if (discontinuity) {
1025 corr_real = mul_u64_u32_div
1026 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1027 } else {
1028 corr_real = (u64)ktime_to_ns(
1029 ktime_sub(ts->sys_realtime, history->real));
1030 ret = scale64_check_overflow(partial_history_cycles,
1031 total_history_cycles, &corr_real);
1032 if (ret)
1033 return ret;
1034 }
1035
1036 /* Fixup monotonic raw and real time time values */
1037 if (interp_forward) {
1038 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1039 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1040 } else {
1041 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1042 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1043 }
1044
1045 return 0;
1046}
1047
1048/*
1049 * cycle_between - true if test occurs chronologically between before and after
1050 */
1051static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1052{
1053 if (test > before && test < after)
1054 return true;
1055 if (test < before && before > after)
1056 return true;
1057 return false;
1058}
1059
8006c245
CH
1060/**
1061 * get_device_system_crosststamp - Synchronously capture system/device timestamp
2c756feb 1062 * @get_time_fn: Callback to get simultaneous device time and
8006c245 1063 * system counter from the device driver
2c756feb
CH
1064 * @ctx: Context passed to get_time_fn()
1065 * @history_begin: Historical reference point used to interpolate system
1066 * time when counter provided by the driver is before the current interval
8006c245
CH
1067 * @xtstamp: Receives simultaneously captured system and device time
1068 *
1069 * Reads a timestamp from a device and correlates it to system time
1070 */
1071int get_device_system_crosststamp(int (*get_time_fn)
1072 (ktime_t *device_time,
1073 struct system_counterval_t *sys_counterval,
1074 void *ctx),
1075 void *ctx,
2c756feb 1076 struct system_time_snapshot *history_begin,
8006c245
CH
1077 struct system_device_crosststamp *xtstamp)
1078{
1079 struct system_counterval_t system_counterval;
1080 struct timekeeper *tk = &tk_core.timekeeper;
2c756feb 1081 cycle_t cycles, now, interval_start;
6436257b 1082 unsigned int clock_was_set_seq = 0;
8006c245
CH
1083 ktime_t base_real, base_raw;
1084 s64 nsec_real, nsec_raw;
2c756feb 1085 u8 cs_was_changed_seq;
8006c245 1086 unsigned long seq;
2c756feb 1087 bool do_interp;
8006c245
CH
1088 int ret;
1089
1090 do {
1091 seq = read_seqcount_begin(&tk_core.seq);
1092 /*
1093 * Try to synchronously capture device time and a system
1094 * counter value calling back into the device driver
1095 */
1096 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1097 if (ret)
1098 return ret;
1099
1100 /*
1101 * Verify that the clocksource associated with the captured
1102 * system counter value is the same as the currently installed
1103 * timekeeper clocksource
1104 */
1105 if (tk->tkr_mono.clock != system_counterval.cs)
1106 return -ENODEV;
2c756feb
CH
1107 cycles = system_counterval.cycles;
1108
1109 /*
1110 * Check whether the system counter value provided by the
1111 * device driver is on the current timekeeping interval.
1112 */
1113 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1114 interval_start = tk->tkr_mono.cycle_last;
1115 if (!cycle_between(interval_start, cycles, now)) {
1116 clock_was_set_seq = tk->clock_was_set_seq;
1117 cs_was_changed_seq = tk->cs_was_changed_seq;
1118 cycles = interval_start;
1119 do_interp = true;
1120 } else {
1121 do_interp = false;
1122 }
8006c245
CH
1123
1124 base_real = ktime_add(tk->tkr_mono.base,
1125 tk_core.timekeeper.offs_real);
1126 base_raw = tk->tkr_raw.base;
1127
1128 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1129 system_counterval.cycles);
1130 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1131 system_counterval.cycles);
1132 } while (read_seqcount_retry(&tk_core.seq, seq));
1133
1134 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1135 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
2c756feb
CH
1136
1137 /*
1138 * Interpolate if necessary, adjusting back from the start of the
1139 * current interval
1140 */
1141 if (do_interp) {
1142 cycle_t partial_history_cycles, total_history_cycles;
1143 bool discontinuity;
1144
1145 /*
1146 * Check that the counter value occurs after the provided
1147 * history reference and that the history doesn't cross a
1148 * clocksource change
1149 */
1150 if (!history_begin ||
1151 !cycle_between(history_begin->cycles,
1152 system_counterval.cycles, cycles) ||
1153 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1154 return -EINVAL;
1155 partial_history_cycles = cycles - system_counterval.cycles;
1156 total_history_cycles = cycles - history_begin->cycles;
1157 discontinuity =
1158 history_begin->clock_was_set_seq != clock_was_set_seq;
1159
1160 ret = adjust_historical_crosststamp(history_begin,
1161 partial_history_cycles,
1162 total_history_cycles,
1163 discontinuity, xtstamp);
1164 if (ret)
1165 return ret;
1166 }
1167
8006c245
CH
1168 return 0;
1169}
1170EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1171
8524070b
JS
1172/**
1173 * do_gettimeofday - Returns the time of day in a timeval
1174 * @tv: pointer to the timeval to be set
1175 *
efd9ac86 1176 * NOTE: Users should be converted to using getnstimeofday()
8524070b
JS
1177 */
1178void do_gettimeofday(struct timeval *tv)
1179{
d6d29896 1180 struct timespec64 now;
8524070b 1181
d6d29896 1182 getnstimeofday64(&now);
8524070b
JS
1183 tv->tv_sec = now.tv_sec;
1184 tv->tv_usec = now.tv_nsec/1000;
1185}
8524070b 1186EXPORT_SYMBOL(do_gettimeofday);
d239f49d 1187
8524070b 1188/**
21f7eca5 1189 * do_settimeofday64 - Sets the time of day.
1190 * @ts: pointer to the timespec64 variable containing the new time
8524070b
JS
1191 *
1192 * Sets the time of day to the new time and update NTP and notify hrtimers
1193 */
21f7eca5 1194int do_settimeofday64(const struct timespec64 *ts)
8524070b 1195{
3fdb14fd 1196 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 1197 struct timespec64 ts_delta, xt;
92c1d3ed 1198 unsigned long flags;
e1d7ba87 1199 int ret = 0;
8524070b 1200
21f7eca5 1201 if (!timespec64_valid_strict(ts))
8524070b
JS
1202 return -EINVAL;
1203
9a7a71b1 1204 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1205 write_seqcount_begin(&tk_core.seq);
8524070b 1206
4e250fdd 1207 timekeeping_forward_now(tk);
9a055117 1208
4e250fdd 1209 xt = tk_xtime(tk);
21f7eca5 1210 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1211 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 1212
e1d7ba87
WY
1213 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1214 ret = -EINVAL;
1215 goto out;
1216 }
1217
7d489d15 1218 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 1219
21f7eca5 1220 tk_set_xtime(tk, ts);
e1d7ba87 1221out:
780427f0 1222 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 1223
3fdb14fd 1224 write_seqcount_end(&tk_core.seq);
9a7a71b1 1225 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1226
1227 /* signal hrtimers about time change */
1228 clock_was_set();
1229
e1d7ba87 1230 return ret;
8524070b 1231}
21f7eca5 1232EXPORT_SYMBOL(do_settimeofday64);
8524070b 1233
c528f7c6
JS
1234/**
1235 * timekeeping_inject_offset - Adds or subtracts from the current time.
1236 * @tv: pointer to the timespec variable containing the offset
1237 *
1238 * Adds or subtracts an offset value from the current time.
1239 */
1240int timekeeping_inject_offset(struct timespec *ts)
1241{
3fdb14fd 1242 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1243 unsigned long flags;
7d489d15 1244 struct timespec64 ts64, tmp;
4e8b1452 1245 int ret = 0;
c528f7c6 1246
37cf4dc3 1247 if (!timespec_inject_offset_valid(ts))
c528f7c6
JS
1248 return -EINVAL;
1249
7d489d15
JS
1250 ts64 = timespec_to_timespec64(*ts);
1251
9a7a71b1 1252 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1253 write_seqcount_begin(&tk_core.seq);
c528f7c6 1254
4e250fdd 1255 timekeeping_forward_now(tk);
c528f7c6 1256
4e8b1452 1257 /* Make sure the proposed value is valid */
7d489d15 1258 tmp = timespec64_add(tk_xtime(tk), ts64);
e1d7ba87
WY
1259 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1260 !timespec64_valid_strict(&tmp)) {
4e8b1452
JS
1261 ret = -EINVAL;
1262 goto error;
1263 }
1e75fa8b 1264
7d489d15
JS
1265 tk_xtime_add(tk, &ts64);
1266 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 1267
4e8b1452 1268error: /* even if we error out, we forwarded the time, so call update */
780427f0 1269 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 1270
3fdb14fd 1271 write_seqcount_end(&tk_core.seq);
9a7a71b1 1272 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
1273
1274 /* signal hrtimers about time change */
1275 clock_was_set();
1276
4e8b1452 1277 return ret;
c528f7c6
JS
1278}
1279EXPORT_SYMBOL(timekeeping_inject_offset);
1280
cc244dda
JS
1281
1282/**
1283 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1284 *
1285 */
1286s32 timekeeping_get_tai_offset(void)
1287{
3fdb14fd 1288 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1289 unsigned int seq;
1290 s32 ret;
1291
1292 do {
3fdb14fd 1293 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 1294 ret = tk->tai_offset;
3fdb14fd 1295 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
1296
1297 return ret;
1298}
1299
1300/**
1301 * __timekeeping_set_tai_offset - Lock free worker function
1302 *
1303 */
dd5d70e8 1304static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1305{
1306 tk->tai_offset = tai_offset;
04005f60 1307 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1308}
1309
1310/**
1311 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1312 *
1313 */
1314void timekeeping_set_tai_offset(s32 tai_offset)
1315{
3fdb14fd 1316 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1317 unsigned long flags;
1318
9a7a71b1 1319 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1320 write_seqcount_begin(&tk_core.seq);
cc244dda 1321 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 1322 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1323 write_seqcount_end(&tk_core.seq);
9a7a71b1 1324 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 1325 clock_was_set();
cc244dda
JS
1326}
1327
8524070b
JS
1328/**
1329 * change_clocksource - Swaps clocksources if a new one is available
1330 *
1331 * Accumulates current time interval and initializes new clocksource
1332 */
75c5158f 1333static int change_clocksource(void *data)
8524070b 1334{
3fdb14fd 1335 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1336 struct clocksource *new, *old;
f695cf94 1337 unsigned long flags;
8524070b 1338
75c5158f 1339 new = (struct clocksource *) data;
8524070b 1340
9a7a71b1 1341 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1342 write_seqcount_begin(&tk_core.seq);
f695cf94 1343
4e250fdd 1344 timekeeping_forward_now(tk);
09ac369c
TG
1345 /*
1346 * If the cs is in module, get a module reference. Succeeds
1347 * for built-in code (owner == NULL) as well.
1348 */
1349 if (try_module_get(new->owner)) {
1350 if (!new->enable || new->enable(new) == 0) {
876e7881 1351 old = tk->tkr_mono.clock;
09ac369c
TG
1352 tk_setup_internals(tk, new);
1353 if (old->disable)
1354 old->disable(old);
1355 module_put(old->owner);
1356 } else {
1357 module_put(new->owner);
1358 }
75c5158f 1359 }
780427f0 1360 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1361
3fdb14fd 1362 write_seqcount_end(&tk_core.seq);
9a7a71b1 1363 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1364
75c5158f
MS
1365 return 0;
1366}
8524070b 1367
75c5158f
MS
1368/**
1369 * timekeeping_notify - Install a new clock source
1370 * @clock: pointer to the clock source
1371 *
1372 * This function is called from clocksource.c after a new, better clock
1373 * source has been registered. The caller holds the clocksource_mutex.
1374 */
ba919d1c 1375int timekeeping_notify(struct clocksource *clock)
75c5158f 1376{
3fdb14fd 1377 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1378
876e7881 1379 if (tk->tkr_mono.clock == clock)
ba919d1c 1380 return 0;
75c5158f 1381 stop_machine(change_clocksource, clock, NULL);
8524070b 1382 tick_clock_notify();
876e7881 1383 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1384}
75c5158f 1385
2d42244a 1386/**
cdba2ec5
JS
1387 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1388 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1389 *
1390 * Returns the raw monotonic time (completely un-modified by ntp)
1391 */
cdba2ec5 1392void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1393{
3fdb14fd 1394 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1395 struct timespec64 ts64;
2d42244a
JS
1396 unsigned long seq;
1397 s64 nsecs;
2d42244a
JS
1398
1399 do {
3fdb14fd 1400 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d 1401 nsecs = timekeeping_get_ns(&tk->tkr_raw);
7d489d15 1402 ts64 = tk->raw_time;
2d42244a 1403
3fdb14fd 1404 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1405
7d489d15 1406 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1407 *ts = ts64;
2d42244a 1408}
cdba2ec5
JS
1409EXPORT_SYMBOL(getrawmonotonic64);
1410
2d42244a 1411
8524070b 1412/**
cf4fc6cb 1413 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1414 */
cf4fc6cb 1415int timekeeping_valid_for_hres(void)
8524070b 1416{
3fdb14fd 1417 struct timekeeper *tk = &tk_core.timekeeper;
8524070b
JS
1418 unsigned long seq;
1419 int ret;
1420
1421 do {
3fdb14fd 1422 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1423
876e7881 1424 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1425
3fdb14fd 1426 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b
JS
1427
1428 return ret;
1429}
1430
98962465
JH
1431/**
1432 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1433 */
1434u64 timekeeping_max_deferment(void)
1435{
3fdb14fd 1436 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1437 unsigned long seq;
1438 u64 ret;
42e71e81 1439
70471f2f 1440 do {
3fdb14fd 1441 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1442
876e7881 1443 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1444
3fdb14fd 1445 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1446
1447 return ret;
98962465
JH
1448}
1449
8524070b 1450/**
d4f587c6 1451 * read_persistent_clock - Return time from the persistent clock.
8524070b
JS
1452 *
1453 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1454 * Reads the time from the battery backed persistent clock.
1455 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b
JS
1456 *
1457 * XXX - Do be sure to remove it once all arches implement it.
1458 */
52f5684c 1459void __weak read_persistent_clock(struct timespec *ts)
8524070b 1460{
d4f587c6
MS
1461 ts->tv_sec = 0;
1462 ts->tv_nsec = 0;
8524070b
JS
1463}
1464
2ee96632
XP
1465void __weak read_persistent_clock64(struct timespec64 *ts64)
1466{
1467 struct timespec ts;
1468
1469 read_persistent_clock(&ts);
1470 *ts64 = timespec_to_timespec64(ts);
1471}
1472
23970e38 1473/**
e83d0a41 1474 * read_boot_clock64 - Return time of the system start.
23970e38
MS
1475 *
1476 * Weak dummy function for arches that do not yet support it.
1477 * Function to read the exact time the system has been started.
e83d0a41 1478 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
23970e38
MS
1479 *
1480 * XXX - Do be sure to remove it once all arches implement it.
1481 */
e83d0a41 1482void __weak read_boot_clock64(struct timespec64 *ts)
23970e38
MS
1483{
1484 ts->tv_sec = 0;
1485 ts->tv_nsec = 0;
1486}
1487
0fa88cb4
XP
1488/* Flag for if timekeeping_resume() has injected sleeptime */
1489static bool sleeptime_injected;
1490
1491/* Flag for if there is a persistent clock on this platform */
1492static bool persistent_clock_exists;
1493
8524070b
JS
1494/*
1495 * timekeeping_init - Initializes the clocksource and common timekeeping values
1496 */
1497void __init timekeeping_init(void)
1498{
3fdb14fd 1499 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1500 struct clocksource *clock;
8524070b 1501 unsigned long flags;
7d489d15 1502 struct timespec64 now, boot, tmp;
31ade306 1503
2ee96632 1504 read_persistent_clock64(&now);
7d489d15 1505 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1506 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1507 " Check your CMOS/BIOS settings.\n");
1508 now.tv_sec = 0;
1509 now.tv_nsec = 0;
31ade306 1510 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1511 persistent_clock_exists = true;
4e8b1452 1512
9a806ddb 1513 read_boot_clock64(&boot);
7d489d15 1514 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1515 pr_warn("WARNING: Boot clock returned invalid value!\n"
1516 " Check your CMOS/BIOS settings.\n");
1517 boot.tv_sec = 0;
1518 boot.tv_nsec = 0;
1519 }
8524070b 1520
9a7a71b1 1521 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1522 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1523 ntp_init();
1524
f1b82746 1525 clock = clocksource_default_clock();
a0f7d48b
MS
1526 if (clock->enable)
1527 clock->enable(clock);
4e250fdd 1528 tk_setup_internals(tk, clock);
8524070b 1529
4e250fdd
JS
1530 tk_set_xtime(tk, &now);
1531 tk->raw_time.tv_sec = 0;
1532 tk->raw_time.tv_nsec = 0;
1e75fa8b 1533 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1534 boot = tk_xtime(tk);
1e75fa8b 1535
7d489d15 1536 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1537 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1538
56fd16ca 1539 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
48cdc135 1540
3fdb14fd 1541 write_seqcount_end(&tk_core.seq);
9a7a71b1 1542 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1543}
1544
264bb3f7 1545/* time in seconds when suspend began for persistent clock */
7d489d15 1546static struct timespec64 timekeeping_suspend_time;
8524070b 1547
304529b1
JS
1548/**
1549 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1550 * @delta: pointer to a timespec delta value
1551 *
1552 * Takes a timespec offset measuring a suspend interval and properly
1553 * adds the sleep offset to the timekeeping variables.
1554 */
f726a697 1555static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1556 struct timespec64 *delta)
304529b1 1557{
7d489d15 1558 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1559 printk_deferred(KERN_WARNING
1560 "__timekeeping_inject_sleeptime: Invalid "
1561 "sleep delta value!\n");
cb5de2f8
JS
1562 return;
1563 }
f726a697 1564 tk_xtime_add(tk, delta);
7d489d15 1565 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1566 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1567 tk_debug_account_sleep_time(delta);
304529b1
JS
1568}
1569
7f298139 1570#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1571/**
1572 * We have three kinds of time sources to use for sleep time
1573 * injection, the preference order is:
1574 * 1) non-stop clocksource
1575 * 2) persistent clock (ie: RTC accessible when irqs are off)
1576 * 3) RTC
1577 *
1578 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1579 * If system has neither 1) nor 2), 3) will be used finally.
1580 *
1581 *
1582 * If timekeeping has injected sleeptime via either 1) or 2),
1583 * 3) becomes needless, so in this case we don't need to call
1584 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1585 * means.
1586 */
1587bool timekeeping_rtc_skipresume(void)
1588{
1589 return sleeptime_injected;
1590}
1591
1592/**
1593 * 1) can be determined whether to use or not only when doing
1594 * timekeeping_resume() which is invoked after rtc_suspend(),
1595 * so we can't skip rtc_suspend() surely if system has 1).
1596 *
1597 * But if system has 2), 2) will definitely be used, so in this
1598 * case we don't need to call rtc_suspend(), and this is what
1599 * timekeeping_rtc_skipsuspend() means.
1600 */
1601bool timekeeping_rtc_skipsuspend(void)
1602{
1603 return persistent_clock_exists;
1604}
1605
304529b1 1606/**
04d90890 1607 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1608 * @delta: pointer to a timespec64 delta value
304529b1 1609 *
2ee96632 1610 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1611 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1612 * and also don't have an effective nonstop clocksource.
304529b1
JS
1613 *
1614 * This function should only be called by rtc_resume(), and allows
1615 * a suspend offset to be injected into the timekeeping values.
1616 */
04d90890 1617void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1618{
3fdb14fd 1619 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1620 unsigned long flags;
304529b1 1621
9a7a71b1 1622 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1623 write_seqcount_begin(&tk_core.seq);
70471f2f 1624
4e250fdd 1625 timekeeping_forward_now(tk);
304529b1 1626
04d90890 1627 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1628
780427f0 1629 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1630
3fdb14fd 1631 write_seqcount_end(&tk_core.seq);
9a7a71b1 1632 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1633
1634 /* signal hrtimers about time change */
1635 clock_was_set();
1636}
7f298139 1637#endif
304529b1 1638
8524070b
JS
1639/**
1640 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1641 */
124cf911 1642void timekeeping_resume(void)
8524070b 1643{
3fdb14fd 1644 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1645 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1646 unsigned long flags;
7d489d15 1647 struct timespec64 ts_new, ts_delta;
e445cf1c 1648 cycle_t cycle_now, cycle_delta;
d4f587c6 1649
0fa88cb4 1650 sleeptime_injected = false;
2ee96632 1651 read_persistent_clock64(&ts_new);
8524070b 1652
adc78e6b 1653 clockevents_resume();
d10ff3fb
TG
1654 clocksource_resume();
1655
9a7a71b1 1656 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1657 write_seqcount_begin(&tk_core.seq);
8524070b 1658
e445cf1c
FT
1659 /*
1660 * After system resumes, we need to calculate the suspended time and
1661 * compensate it for the OS time. There are 3 sources that could be
1662 * used: Nonstop clocksource during suspend, persistent clock and rtc
1663 * device.
1664 *
1665 * One specific platform may have 1 or 2 or all of them, and the
1666 * preference will be:
1667 * suspend-nonstop clocksource -> persistent clock -> rtc
1668 * The less preferred source will only be tried if there is no better
1669 * usable source. The rtc part is handled separately in rtc core code.
1670 */
876e7881 1671 cycle_now = tk->tkr_mono.read(clock);
e445cf1c 1672 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1673 cycle_now > tk->tkr_mono.cycle_last) {
e445cf1c
FT
1674 u64 num, max = ULLONG_MAX;
1675 u32 mult = clock->mult;
1676 u32 shift = clock->shift;
1677 s64 nsec = 0;
1678
876e7881
PZ
1679 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1680 tk->tkr_mono.mask);
e445cf1c
FT
1681
1682 /*
1683 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1684 * suspended time is too long. In that case we need do the
1685 * 64 bits math carefully
1686 */
1687 do_div(max, mult);
1688 if (cycle_delta > max) {
1689 num = div64_u64(cycle_delta, max);
1690 nsec = (((u64) max * mult) >> shift) * num;
1691 cycle_delta -= num * max;
1692 }
1693 nsec += ((u64) cycle_delta * mult) >> shift;
1694
7d489d15 1695 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1696 sleeptime_injected = true;
7d489d15
JS
1697 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1698 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1699 sleeptime_injected = true;
8524070b 1700 }
e445cf1c 1701
0fa88cb4 1702 if (sleeptime_injected)
e445cf1c
FT
1703 __timekeeping_inject_sleeptime(tk, &ts_delta);
1704
1705 /* Re-base the last cycle value */
876e7881 1706 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1707 tk->tkr_raw.cycle_last = cycle_now;
1708
4e250fdd 1709 tk->ntp_error = 0;
8524070b 1710 timekeeping_suspended = 0;
780427f0 1711 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1712 write_seqcount_end(&tk_core.seq);
9a7a71b1 1713 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1714
1715 touch_softlockup_watchdog();
1716
4ffee521 1717 tick_resume();
b12a03ce 1718 hrtimers_resume();
8524070b
JS
1719}
1720
124cf911 1721int timekeeping_suspend(void)
8524070b 1722{
3fdb14fd 1723 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1724 unsigned long flags;
7d489d15
JS
1725 struct timespec64 delta, delta_delta;
1726 static struct timespec64 old_delta;
8524070b 1727
2ee96632 1728 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1729
0d6bd995
ZM
1730 /*
1731 * On some systems the persistent_clock can not be detected at
1732 * timekeeping_init by its return value, so if we see a valid
1733 * value returned, update the persistent_clock_exists flag.
1734 */
1735 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1736 persistent_clock_exists = true;
0d6bd995 1737
9a7a71b1 1738 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1739 write_seqcount_begin(&tk_core.seq);
4e250fdd 1740 timekeeping_forward_now(tk);
8524070b 1741 timekeeping_suspended = 1;
cb33217b 1742
0fa88cb4 1743 if (persistent_clock_exists) {
cb33217b 1744 /*
264bb3f7
XP
1745 * To avoid drift caused by repeated suspend/resumes,
1746 * which each can add ~1 second drift error,
1747 * try to compensate so the difference in system time
1748 * and persistent_clock time stays close to constant.
cb33217b 1749 */
264bb3f7
XP
1750 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1751 delta_delta = timespec64_sub(delta, old_delta);
1752 if (abs(delta_delta.tv_sec) >= 2) {
1753 /*
1754 * if delta_delta is too large, assume time correction
1755 * has occurred and set old_delta to the current delta.
1756 */
1757 old_delta = delta;
1758 } else {
1759 /* Otherwise try to adjust old_system to compensate */
1760 timekeeping_suspend_time =
1761 timespec64_add(timekeeping_suspend_time, delta_delta);
1762 }
cb33217b 1763 }
330a1617
JS
1764
1765 timekeeping_update(tk, TK_MIRROR);
060407ae 1766 halt_fast_timekeeper(tk);
3fdb14fd 1767 write_seqcount_end(&tk_core.seq);
9a7a71b1 1768 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1769
4ffee521 1770 tick_suspend();
c54a42b1 1771 clocksource_suspend();
adc78e6b 1772 clockevents_suspend();
8524070b
JS
1773
1774 return 0;
1775}
1776
1777/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1778static struct syscore_ops timekeeping_syscore_ops = {
8524070b
JS
1779 .resume = timekeeping_resume,
1780 .suspend = timekeeping_suspend,
8524070b
JS
1781};
1782
e1a85b2c 1783static int __init timekeeping_init_ops(void)
8524070b 1784{
e1a85b2c
RW
1785 register_syscore_ops(&timekeeping_syscore_ops);
1786 return 0;
8524070b 1787}
e1a85b2c 1788device_initcall(timekeeping_init_ops);
8524070b
JS
1789
1790/*
dc491596 1791 * Apply a multiplier adjustment to the timekeeper
8524070b 1792 */
dc491596
JS
1793static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1794 s64 offset,
1795 bool negative,
1796 int adj_scale)
8524070b 1797{
dc491596
JS
1798 s64 interval = tk->cycle_interval;
1799 s32 mult_adj = 1;
8524070b 1800
dc491596
JS
1801 if (negative) {
1802 mult_adj = -mult_adj;
1803 interval = -interval;
1804 offset = -offset;
1d17d174 1805 }
dc491596
JS
1806 mult_adj <<= adj_scale;
1807 interval <<= adj_scale;
1808 offset <<= adj_scale;
8524070b 1809
c2bc1111
JS
1810 /*
1811 * So the following can be confusing.
1812 *
dc491596 1813 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1814 *
dc491596 1815 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1816 * have been appropriately scaled so the math is the same.
1817 *
1818 * The basic idea here is that we're increasing the multiplier
1819 * by one, this causes the xtime_interval to be incremented by
1820 * one cycle_interval. This is because:
1821 * xtime_interval = cycle_interval * mult
1822 * So if mult is being incremented by one:
1823 * xtime_interval = cycle_interval * (mult + 1)
1824 * Its the same as:
1825 * xtime_interval = (cycle_interval * mult) + cycle_interval
1826 * Which can be shortened to:
1827 * xtime_interval += cycle_interval
1828 *
1829 * So offset stores the non-accumulated cycles. Thus the current
1830 * time (in shifted nanoseconds) is:
1831 * now = (offset * adj) + xtime_nsec
1832 * Now, even though we're adjusting the clock frequency, we have
1833 * to keep time consistent. In other words, we can't jump back
1834 * in time, and we also want to avoid jumping forward in time.
1835 *
1836 * So given the same offset value, we need the time to be the same
1837 * both before and after the freq adjustment.
1838 * now = (offset * adj_1) + xtime_nsec_1
1839 * now = (offset * adj_2) + xtime_nsec_2
1840 * So:
1841 * (offset * adj_1) + xtime_nsec_1 =
1842 * (offset * adj_2) + xtime_nsec_2
1843 * And we know:
1844 * adj_2 = adj_1 + 1
1845 * So:
1846 * (offset * adj_1) + xtime_nsec_1 =
1847 * (offset * (adj_1+1)) + xtime_nsec_2
1848 * (offset * adj_1) + xtime_nsec_1 =
1849 * (offset * adj_1) + offset + xtime_nsec_2
1850 * Canceling the sides:
1851 * xtime_nsec_1 = offset + xtime_nsec_2
1852 * Which gives us:
1853 * xtime_nsec_2 = xtime_nsec_1 - offset
1854 * Which simplfies to:
1855 * xtime_nsec -= offset
1856 *
1857 * XXX - TODO: Doc ntp_error calculation.
1858 */
876e7881 1859 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1860 /* NTP adjustment caused clocksource mult overflow */
1861 WARN_ON_ONCE(1);
1862 return;
1863 }
1864
876e7881 1865 tk->tkr_mono.mult += mult_adj;
f726a697 1866 tk->xtime_interval += interval;
876e7881 1867 tk->tkr_mono.xtime_nsec -= offset;
f726a697 1868 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1869}
1870
1871/*
1872 * Calculate the multiplier adjustment needed to match the frequency
1873 * specified by NTP
1874 */
1875static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1876 s64 offset)
1877{
1878 s64 interval = tk->cycle_interval;
1879 s64 xinterval = tk->xtime_interval;
ec02b076
JS
1880 u32 base = tk->tkr_mono.clock->mult;
1881 u32 max = tk->tkr_mono.clock->maxadj;
1882 u32 cur_adj = tk->tkr_mono.mult;
dc491596
JS
1883 s64 tick_error;
1884 bool negative;
ec02b076 1885 u32 adj_scale;
dc491596
JS
1886
1887 /* Remove any current error adj from freq calculation */
1888 if (tk->ntp_err_mult)
1889 xinterval -= tk->cycle_interval;
1890
375f45b5
JS
1891 tk->ntp_tick = ntp_tick_length();
1892
dc491596
JS
1893 /* Calculate current error per tick */
1894 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1895 tick_error -= (xinterval + tk->xtime_remainder);
1896
1897 /* Don't worry about correcting it if its small */
1898 if (likely((tick_error >= 0) && (tick_error <= interval)))
1899 return;
1900
1901 /* preserve the direction of correction */
1902 negative = (tick_error < 0);
1903
ec02b076
JS
1904 /* If any adjustment would pass the max, just return */
1905 if (negative && (cur_adj - 1) <= (base - max))
1906 return;
1907 if (!negative && (cur_adj + 1) >= (base + max))
1908 return;
1909 /*
1910 * Sort out the magnitude of the correction, but
1911 * avoid making so large a correction that we go
1912 * over the max adjustment.
1913 */
1914 adj_scale = 0;
79211c8e 1915 tick_error = abs(tick_error);
ec02b076
JS
1916 while (tick_error > interval) {
1917 u32 adj = 1 << (adj_scale + 1);
1918
1919 /* Check if adjustment gets us within 1 unit from the max */
1920 if (negative && (cur_adj - adj) <= (base - max))
1921 break;
1922 if (!negative && (cur_adj + adj) >= (base + max))
1923 break;
1924
1925 adj_scale++;
dc491596 1926 tick_error >>= 1;
ec02b076 1927 }
dc491596
JS
1928
1929 /* scale the corrections */
ec02b076 1930 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
dc491596
JS
1931}
1932
1933/*
1934 * Adjust the timekeeper's multiplier to the correct frequency
1935 * and also to reduce the accumulated error value.
1936 */
1937static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1938{
1939 /* Correct for the current frequency error */
1940 timekeeping_freqadjust(tk, offset);
1941
1942 /* Next make a small adjustment to fix any cumulative error */
1943 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1944 tk->ntp_err_mult = 1;
1945 timekeeping_apply_adjustment(tk, offset, 0, 0);
1946 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1947 /* Undo any existing error adjustment */
1948 timekeeping_apply_adjustment(tk, offset, 1, 0);
1949 tk->ntp_err_mult = 0;
1950 }
1951
876e7881
PZ
1952 if (unlikely(tk->tkr_mono.clock->maxadj &&
1953 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1954 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1955 printk_once(KERN_WARNING
1956 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1957 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1958 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1959 }
2a8c0883
JS
1960
1961 /*
1962 * It may be possible that when we entered this function, xtime_nsec
1963 * was very small. Further, if we're slightly speeding the clocksource
1964 * in the code above, its possible the required corrective factor to
1965 * xtime_nsec could cause it to underflow.
1966 *
1967 * Now, since we already accumulated the second, cannot simply roll
1968 * the accumulated second back, since the NTP subsystem has been
1969 * notified via second_overflow. So instead we push xtime_nsec forward
1970 * by the amount we underflowed, and add that amount into the error.
1971 *
1972 * We'll correct this error next time through this function, when
1973 * xtime_nsec is not as small.
1974 */
876e7881
PZ
1975 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1976 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1977 tk->tkr_mono.xtime_nsec = 0;
f726a697 1978 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1979 }
8524070b
JS
1980}
1981
1f4f9487
JS
1982/**
1983 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1984 *
571af55a 1985 * Helper function that accumulates the nsecs greater than a second
1f4f9487
JS
1986 * from the xtime_nsec field to the xtime_secs field.
1987 * It also calls into the NTP code to handle leapsecond processing.
1988 *
1989 */
780427f0 1990static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1991{
876e7881 1992 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1993 unsigned int clock_set = 0;
1f4f9487 1994
876e7881 1995 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1996 int leap;
1997
876e7881 1998 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1999 tk->xtime_sec++;
2000
2001 /* Figure out if its a leap sec and apply if needed */
2002 leap = second_overflow(tk->xtime_sec);
6d0ef903 2003 if (unlikely(leap)) {
7d489d15 2004 struct timespec64 ts;
6d0ef903
JS
2005
2006 tk->xtime_sec += leap;
1f4f9487 2007
6d0ef903
JS
2008 ts.tv_sec = leap;
2009 ts.tv_nsec = 0;
2010 tk_set_wall_to_mono(tk,
7d489d15 2011 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 2012
cc244dda
JS
2013 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2014
5258d3f2 2015 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 2016 }
1f4f9487 2017 }
5258d3f2 2018 return clock_set;
1f4f9487
JS
2019}
2020
a092ff0f
JS
2021/**
2022 * logarithmic_accumulation - shifted accumulation of cycles
2023 *
2024 * This functions accumulates a shifted interval of cycles into
2025 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2026 * loop.
2027 *
2028 * Returns the unconsumed cycles.
2029 */
f726a697 2030static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
2031 u32 shift,
2032 unsigned int *clock_set)
a092ff0f 2033{
23a9537a 2034 cycle_t interval = tk->cycle_interval << shift;
deda2e81 2035 u64 raw_nsecs;
a092ff0f 2036
571af55a 2037 /* If the offset is smaller than a shifted interval, do nothing */
23a9537a 2038 if (offset < interval)
a092ff0f
JS
2039 return offset;
2040
2041 /* Accumulate one shifted interval */
23a9537a 2042 offset -= interval;
876e7881 2043 tk->tkr_mono.cycle_last += interval;
4a4ad80d 2044 tk->tkr_raw.cycle_last += interval;
a092ff0f 2045
876e7881 2046 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 2047 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 2048
deda2e81 2049 /* Accumulate raw time */
5b3900cd 2050 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 2051 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
2052 if (raw_nsecs >= NSEC_PER_SEC) {
2053 u64 raw_secs = raw_nsecs;
2054 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 2055 tk->raw_time.tv_sec += raw_secs;
a092ff0f 2056 }
f726a697 2057 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f
JS
2058
2059 /* Accumulate error between NTP and clock interval */
375f45b5 2060 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
2061 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2062 (tk->ntp_error_shift + shift);
a092ff0f
JS
2063
2064 return offset;
2065}
2066
8524070b
JS
2067/**
2068 * update_wall_time - Uses the current clocksource to increment the wall time
2069 *
8524070b 2070 */
47a1b796 2071void update_wall_time(void)
8524070b 2072{
3fdb14fd 2073 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 2074 struct timekeeper *tk = &shadow_timekeeper;
8524070b 2075 cycle_t offset;
a092ff0f 2076 int shift = 0, maxshift;
5258d3f2 2077 unsigned int clock_set = 0;
70471f2f
JS
2078 unsigned long flags;
2079
9a7a71b1 2080 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b
JS
2081
2082 /* Make sure we're fully resumed: */
2083 if (unlikely(timekeeping_suspended))
70471f2f 2084 goto out;
8524070b 2085
592913ec 2086#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 2087 offset = real_tk->cycle_interval;
592913ec 2088#else
876e7881
PZ
2089 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2090 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 2091#endif
8524070b 2092
bf2ac312 2093 /* Check if there's really nothing to do */
48cdc135 2094 if (offset < real_tk->cycle_interval)
bf2ac312
JS
2095 goto out;
2096
3c17ad19
JS
2097 /* Do some additional sanity checking */
2098 timekeeping_check_update(real_tk, offset);
2099
a092ff0f
JS
2100 /*
2101 * With NO_HZ we may have to accumulate many cycle_intervals
2102 * (think "ticks") worth of time at once. To do this efficiently,
2103 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 2104 * that is smaller than the offset. We then accumulate that
a092ff0f
JS
2105 * chunk in one go, and then try to consume the next smaller
2106 * doubled multiple.
8524070b 2107 */
4e250fdd 2108 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 2109 shift = max(0, shift);
88b28adf 2110 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 2111 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 2112 shift = min(shift, maxshift);
4e250fdd 2113 while (offset >= tk->cycle_interval) {
5258d3f2
JS
2114 offset = logarithmic_accumulation(tk, offset, shift,
2115 &clock_set);
4e250fdd 2116 if (offset < tk->cycle_interval<<shift)
830ec045 2117 shift--;
8524070b
JS
2118 }
2119
2120 /* correct the clock when NTP error is too big */
4e250fdd 2121 timekeeping_adjust(tk, offset);
8524070b 2122
6a867a39 2123 /*
92bb1fcf
JS
2124 * XXX This can be killed once everyone converts
2125 * to the new update_vsyscall.
2126 */
2127 old_vsyscall_fixup(tk);
8524070b 2128
6a867a39
JS
2129 /*
2130 * Finally, make sure that after the rounding
1e75fa8b 2131 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 2132 */
5258d3f2 2133 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 2134
3fdb14fd 2135 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
2136 /*
2137 * Update the real timekeeper.
2138 *
2139 * We could avoid this memcpy by switching pointers, but that
2140 * requires changes to all other timekeeper usage sites as
2141 * well, i.e. move the timekeeper pointer getter into the
2142 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 2143 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
2144 * updating.
2145 */
906c5557 2146 timekeeping_update(tk, clock_set);
48cdc135 2147 memcpy(real_tk, tk, sizeof(*tk));
906c5557 2148 /* The memcpy must come last. Do not put anything here! */
3fdb14fd 2149 write_seqcount_end(&tk_core.seq);
ca4523cd 2150out:
9a7a71b1 2151 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 2152 if (clock_set)
cab5e127
JS
2153 /* Have to call _delayed version, since in irq context*/
2154 clock_was_set_delayed();
8524070b 2155}
7c3f1a57
TJ
2156
2157/**
d08c0cdd
JS
2158 * getboottime64 - Return the real time of system boot.
2159 * @ts: pointer to the timespec64 to be set
7c3f1a57 2160 *
d08c0cdd 2161 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
2162 *
2163 * This is based on the wall_to_monotonic offset and the total suspend
2164 * time. Calls to settimeofday will affect the value returned (which
2165 * basically means that however wrong your real time clock is at boot time,
2166 * you get the right time here).
2167 */
d08c0cdd 2168void getboottime64(struct timespec64 *ts)
7c3f1a57 2169{
3fdb14fd 2170 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
2171 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2172
d08c0cdd 2173 *ts = ktime_to_timespec64(t);
7c3f1a57 2174}
d08c0cdd 2175EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 2176
17c38b74
JS
2177unsigned long get_seconds(void)
2178{
3fdb14fd 2179 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
2180
2181 return tk->xtime_sec;
17c38b74
JS
2182}
2183EXPORT_SYMBOL(get_seconds);
2184
da15cfda
JS
2185struct timespec __current_kernel_time(void)
2186{
3fdb14fd 2187 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 2188
7d489d15 2189 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 2190}
17c38b74 2191
8758a240 2192struct timespec64 current_kernel_time64(void)
2c6b47de 2193{
3fdb14fd 2194 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2195 struct timespec64 now;
2c6b47de
JS
2196 unsigned long seq;
2197
2198 do {
3fdb14fd 2199 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2200
4e250fdd 2201 now = tk_xtime(tk);
3fdb14fd 2202 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 2203
8758a240 2204 return now;
2c6b47de 2205}
8758a240 2206EXPORT_SYMBOL(current_kernel_time64);
da15cfda 2207
334334b5 2208struct timespec64 get_monotonic_coarse64(void)
da15cfda 2209{
3fdb14fd 2210 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2211 struct timespec64 now, mono;
da15cfda
JS
2212 unsigned long seq;
2213
2214 do {
3fdb14fd 2215 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2216
4e250fdd
JS
2217 now = tk_xtime(tk);
2218 mono = tk->wall_to_monotonic;
3fdb14fd 2219 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 2220
7d489d15 2221 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 2222 now.tv_nsec + mono.tv_nsec);
7d489d15 2223
334334b5 2224 return now;
da15cfda 2225}
eaaa7ec7 2226EXPORT_SYMBOL(get_monotonic_coarse64);
871cf1e5
TH
2227
2228/*
d6ad4187 2229 * Must hold jiffies_lock
871cf1e5
TH
2230 */
2231void do_timer(unsigned long ticks)
2232{
2233 jiffies_64 += ticks;
871cf1e5
TH
2234 calc_global_load(ticks);
2235}
48cf76f7 2236
f6c06abf 2237/**
76f41088 2238 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 2239 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf
TG
2240 * @offs_real: pointer to storage for monotonic -> realtime offset
2241 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 2242 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 2243 *
868a3e91
TG
2244 * Returns current monotonic time and updates the offsets if the
2245 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2246 * different.
2247 *
b7bc50e4 2248 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 2249 */
868a3e91
TG
2250ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2251 ktime_t *offs_boot, ktime_t *offs_tai)
f6c06abf 2252{
3fdb14fd 2253 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 2254 unsigned int seq;
a37c0aad
TG
2255 ktime_t base;
2256 u64 nsecs;
f6c06abf
TG
2257
2258 do {
3fdb14fd 2259 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 2260
876e7881
PZ
2261 base = tk->tkr_mono.base;
2262 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833f32d7
JS
2263 base = ktime_add_ns(base, nsecs);
2264
868a3e91
TG
2265 if (*cwsseq != tk->clock_was_set_seq) {
2266 *cwsseq = tk->clock_was_set_seq;
2267 *offs_real = tk->offs_real;
2268 *offs_boot = tk->offs_boot;
2269 *offs_tai = tk->offs_tai;
2270 }
833f32d7
JS
2271
2272 /* Handle leapsecond insertion adjustments */
2273 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2274 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2275
3fdb14fd 2276 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 2277
833f32d7 2278 return base;
f6c06abf 2279}
f6c06abf 2280
aa6f9c59
JS
2281/**
2282 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2283 */
2284int do_adjtimex(struct timex *txc)
2285{
3fdb14fd 2286 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 2287 unsigned long flags;
7d489d15 2288 struct timespec64 ts;
4e8f8b34 2289 s32 orig_tai, tai;
e4085693
JS
2290 int ret;
2291
2292 /* Validate the data before disabling interrupts */
2293 ret = ntp_validate_timex(txc);
2294 if (ret)
2295 return ret;
2296
cef90377
JS
2297 if (txc->modes & ADJ_SETOFFSET) {
2298 struct timespec delta;
2299 delta.tv_sec = txc->time.tv_sec;
2300 delta.tv_nsec = txc->time.tv_usec;
2301 if (!(txc->modes & ADJ_NANO))
2302 delta.tv_nsec *= 1000;
2303 ret = timekeeping_inject_offset(&delta);
2304 if (ret)
2305 return ret;
2306 }
2307
d6d29896 2308 getnstimeofday64(&ts);
87ace39b 2309
06c017fd 2310 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2311 write_seqcount_begin(&tk_core.seq);
06c017fd 2312
4e8f8b34 2313 orig_tai = tai = tk->tai_offset;
87ace39b 2314 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2315
4e8f8b34
JS
2316 if (tai != orig_tai) {
2317 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2318 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2319 }
833f32d7
JS
2320 tk_update_leap_state(tk);
2321
3fdb14fd 2322 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2323 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2324
6fdda9a9
JS
2325 if (tai != orig_tai)
2326 clock_was_set();
2327
7bd36014
JS
2328 ntp_notify_cmos_timer();
2329
87ace39b
JS
2330 return ret;
2331}
aa6f9c59
JS
2332
2333#ifdef CONFIG_NTP_PPS
2334/**
2335 * hardpps() - Accessor function to NTP __hardpps function
2336 */
7ec88e4b 2337void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
aa6f9c59 2338{
06c017fd
JS
2339 unsigned long flags;
2340
2341 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2342 write_seqcount_begin(&tk_core.seq);
06c017fd 2343
aa6f9c59 2344 __hardpps(phase_ts, raw_ts);
06c017fd 2345
3fdb14fd 2346 write_seqcount_end(&tk_core.seq);
06c017fd 2347 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2348}
2349EXPORT_SYMBOL(hardpps);
2350#endif
2351
f0af911a
TH
2352/**
2353 * xtime_update() - advances the timekeeping infrastructure
2354 * @ticks: number of ticks, that have elapsed since the last call.
2355 *
2356 * Must be called with interrupts disabled.
2357 */
2358void xtime_update(unsigned long ticks)
2359{
d6ad4187 2360 write_seqlock(&jiffies_lock);
f0af911a 2361 do_timer(ticks);
d6ad4187 2362 write_sequnlock(&jiffies_lock);
47a1b796 2363 update_wall_time();
f0af911a 2364}