]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/time/timekeeping.c
s390: time: Provide read_boot_clock64() and read_persistent_clock64()
[mirror_ubuntu-zesty-kernel.git] / kernel / time / timekeeping.c
CommitLineData
8524070b
JS
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b
JS
12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b
JS
19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
f09cb9a1 62static struct tk_fast tk_fast_raw ____cacheline_aligned;
4396e058 63
8fcce546
JS
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
1e75fa8b
JS
67static inline void tk_normalize_xtime(struct timekeeper *tk)
68{
876e7881
PZ
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
71 tk->xtime_sec++;
72 }
73}
74
c905fae4
TG
75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76{
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
876e7881 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
81 return ts;
82}
83
7d489d15 84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
85{
86 tk->xtime_sec = ts->tv_sec;
876e7881 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
88}
89
7d489d15 90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
91{
92 tk->xtime_sec += ts->tv_sec;
876e7881 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 94 tk_normalize_xtime(tk);
1e75fa8b 95}
8fcce546 96
7d489d15 97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 98{
7d489d15 99 struct timespec64 tmp;
6d0ef903
JS
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
7d489d15 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 106 -tk->wall_to_monotonic.tv_nsec);
7d489d15 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 108 tk->wall_to_monotonic = wtm;
7d489d15
JS
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
112}
113
47da70d3 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 115{
47da70d3 116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
117}
118
3c17ad19 119#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 121
3c17ad19
JS
122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123{
124
876e7881
PZ
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
127
128 if (offset > max_cycles) {
a558cd02 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 130 offset, name, max_cycles);
a558cd02 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
4ca22c26 139
57d05a93
JS
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 145 tk->last_warning = jiffies;
4ca22c26 146 }
57d05a93 147 tk->underflow_seen = 0;
4ca22c26
JS
148 }
149
57d05a93
JS
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 155 tk->last_warning = jiffies;
4ca22c26 156 }
57d05a93 157 tk->overflow_seen = 0;
4ca22c26 158 }
3c17ad19 159}
a558cd02
JS
160
161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162{
57d05a93 163 struct timekeeper *tk = &tk_core.timekeeper;
4ca22c26
JS
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
a558cd02 166
4ca22c26
JS
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 181
4ca22c26 182 delta = clocksource_delta(now, last, mask);
a558cd02 183
057b87e3
JS
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
4ca22c26 188 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 189 tk->underflow_seen = 1;
057b87e3 190 delta = 0;
4ca22c26 191 }
057b87e3 192
a558cd02 193 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 194 if (unlikely(delta > max)) {
57d05a93 195 tk->overflow_seen = 1;
a558cd02 196 delta = tkr->clock->max_cycles;
4ca22c26 197 }
a558cd02
JS
198
199 return delta;
200}
3c17ad19
JS
201#else
202static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203{
204}
a558cd02
JS
205static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206{
207 cycle_t cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216}
3c17ad19
JS
217#endif
218
155ec602 219/**
d26e4fe0 220 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 221 *
d26e4fe0 222 * @tk: The target timekeeper to setup.
155ec602
MS
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
f726a697 230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
231{
232 cycle_t interval;
a386b5af 233 u64 tmp, ntpinterval;
1e75fa8b 234 struct clocksource *old_clock;
155ec602 235
876e7881
PZ
236 old_clock = tk->tkr_mono.clock;
237 tk->tkr_mono.clock = clock;
238 tk->tkr_mono.read = clock->read;
239 tk->tkr_mono.mask = clock->mask;
240 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
155ec602 241
4a4ad80d
PZ
242 tk->tkr_raw.clock = clock;
243 tk->tkr_raw.read = clock->read;
244 tk->tkr_raw.mask = clock->mask;
245 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246
155ec602
MS
247 /* Do the ns -> cycle conversion first, using original mult */
248 tmp = NTP_INTERVAL_LENGTH;
249 tmp <<= clock->shift;
a386b5af 250 ntpinterval = tmp;
0a544198
MS
251 tmp += clock->mult/2;
252 do_div(tmp, clock->mult);
155ec602
MS
253 if (tmp == 0)
254 tmp = 1;
255
256 interval = (cycle_t) tmp;
f726a697 257 tk->cycle_interval = interval;
155ec602
MS
258
259 /* Go back from cycles -> shifted ns */
f726a697
JS
260 tk->xtime_interval = (u64) interval * clock->mult;
261 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262 tk->raw_interval =
0a544198 263 ((u64) interval * clock->mult) >> clock->shift;
155ec602 264
1e75fa8b
JS
265 /* if changing clocks, convert xtime_nsec shift units */
266 if (old_clock) {
267 int shift_change = clock->shift - old_clock->shift;
268 if (shift_change < 0)
876e7881 269 tk->tkr_mono.xtime_nsec >>= -shift_change;
1e75fa8b 270 else
876e7881 271 tk->tkr_mono.xtime_nsec <<= shift_change;
1e75fa8b 272 }
4a4ad80d
PZ
273 tk->tkr_raw.xtime_nsec = 0;
274
876e7881 275 tk->tkr_mono.shift = clock->shift;
4a4ad80d 276 tk->tkr_raw.shift = clock->shift;
155ec602 277
f726a697
JS
278 tk->ntp_error = 0;
279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
281
282 /*
283 * The timekeeper keeps its own mult values for the currently
284 * active clocksource. These value will be adjusted via NTP
285 * to counteract clock drifting.
286 */
876e7881 287 tk->tkr_mono.mult = clock->mult;
4a4ad80d 288 tk->tkr_raw.mult = clock->mult;
dc491596 289 tk->ntp_err_mult = 0;
155ec602 290}
8524070b 291
2ba2a305 292/* Timekeeper helper functions. */
7b1f6207
SW
293
294#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
295static u32 default_arch_gettimeoffset(void) { return 0; }
296u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 297#else
e06fde37 298static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
299#endif
300
0e5ac3a8 301static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 302{
a558cd02 303 cycle_t delta;
1e75fa8b 304 s64 nsec;
2ba2a305 305
a558cd02 306 delta = timekeeping_get_delta(tkr);
2ba2a305 307
0e5ac3a8
TG
308 nsec = delta * tkr->mult + tkr->xtime_nsec;
309 nsec >>= tkr->shift;
f2a5a085 310
7b1f6207 311 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 312 return nsec + arch_gettimeoffset();
2ba2a305
MS
313}
314
4396e058
TG
315/**
316 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 317 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
318 *
319 * We want to use this from any context including NMI and tracing /
320 * instrumenting the timekeeping code itself.
321 *
322 * So we handle this differently than the other timekeeping accessor
323 * functions which retry when the sequence count has changed. The
324 * update side does:
325 *
326 * smp_wmb(); <- Ensure that the last base[1] update is visible
327 * tkf->seq++;
328 * smp_wmb(); <- Ensure that the seqcount update is visible
affe3e85 329 * update(tkf->base[0], tkr);
4396e058
TG
330 * smp_wmb(); <- Ensure that the base[0] update is visible
331 * tkf->seq++;
332 * smp_wmb(); <- Ensure that the seqcount update is visible
affe3e85 333 * update(tkf->base[1], tkr);
4396e058
TG
334 *
335 * The reader side does:
336 *
337 * do {
338 * seq = tkf->seq;
339 * smp_rmb();
340 * idx = seq & 0x01;
341 * now = now(tkf->base[idx]);
342 * smp_rmb();
343 * } while (seq != tkf->seq)
344 *
345 * As long as we update base[0] readers are forced off to
346 * base[1]. Once base[0] is updated readers are redirected to base[0]
347 * and the base[1] update takes place.
348 *
349 * So if a NMI hits the update of base[0] then it will use base[1]
350 * which is still consistent. In the worst case this can result is a
351 * slightly wrong timestamp (a few nanoseconds). See
352 * @ktime_get_mono_fast_ns.
353 */
4498e746 354static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 355{
4498e746 356 struct tk_read_base *base = tkf->base;
4396e058
TG
357
358 /* Force readers off to base[1] */
4498e746 359 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
360
361 /* Update base[0] */
affe3e85 362 memcpy(base, tkr, sizeof(*base));
4396e058
TG
363
364 /* Force readers back to base[0] */
4498e746 365 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
366
367 /* Update base[1] */
368 memcpy(base + 1, base, sizeof(*base));
369}
370
371/**
372 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
373 *
374 * This timestamp is not guaranteed to be monotonic across an update.
375 * The timestamp is calculated by:
376 *
377 * now = base_mono + clock_delta * slope
378 *
379 * So if the update lowers the slope, readers who are forced to the
380 * not yet updated second array are still using the old steeper slope.
381 *
382 * tmono
383 * ^
384 * | o n
385 * | o n
386 * | u
387 * | o
388 * |o
389 * |12345678---> reader order
390 *
391 * o = old slope
392 * u = update
393 * n = new slope
394 *
395 * So reader 6 will observe time going backwards versus reader 5.
396 *
397 * While other CPUs are likely to be able observe that, the only way
398 * for a CPU local observation is when an NMI hits in the middle of
399 * the update. Timestamps taken from that NMI context might be ahead
400 * of the following timestamps. Callers need to be aware of that and
401 * deal with it.
402 */
4498e746 403static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
404{
405 struct tk_read_base *tkr;
406 unsigned int seq;
407 u64 now;
408
409 do {
4498e746
PZ
410 seq = raw_read_seqcount(&tkf->seq);
411 tkr = tkf->base + (seq & 0x01);
876e7881 412 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
4498e746 413 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 414
4396e058
TG
415 return now;
416}
4498e746
PZ
417
418u64 ktime_get_mono_fast_ns(void)
419{
420 return __ktime_get_fast_ns(&tk_fast_mono);
421}
4396e058
TG
422EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
423
f09cb9a1
PZ
424u64 ktime_get_raw_fast_ns(void)
425{
426 return __ktime_get_fast_ns(&tk_fast_raw);
427}
428EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
429
060407ae
RW
430/* Suspend-time cycles value for halted fast timekeeper. */
431static cycle_t cycles_at_suspend;
432
433static cycle_t dummy_clock_read(struct clocksource *cs)
434{
435 return cycles_at_suspend;
436}
437
438/**
439 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
440 * @tk: Timekeeper to snapshot.
441 *
442 * It generally is unsafe to access the clocksource after timekeeping has been
443 * suspended, so take a snapshot of the readout base of @tk and use it as the
444 * fast timekeeper's readout base while suspended. It will return the same
445 * number of cycles every time until timekeeping is resumed at which time the
446 * proper readout base for the fast timekeeper will be restored automatically.
447 */
448static void halt_fast_timekeeper(struct timekeeper *tk)
449{
450 static struct tk_read_base tkr_dummy;
876e7881 451 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
452
453 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
454 cycles_at_suspend = tkr->read(tkr->clock);
455 tkr_dummy.read = dummy_clock_read;
4498e746 456 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
457
458 tkr = &tk->tkr_raw;
459 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
460 tkr_dummy.read = dummy_clock_read;
461 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
462}
463
c905fae4
TG
464#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
465
466static inline void update_vsyscall(struct timekeeper *tk)
467{
0680eb1f 468 struct timespec xt, wm;
c905fae4 469
e2dff1ec 470 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f 471 wm = timespec64_to_timespec(tk->wall_to_monotonic);
876e7881
PZ
472 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
473 tk->tkr_mono.cycle_last);
c905fae4
TG
474}
475
476static inline void old_vsyscall_fixup(struct timekeeper *tk)
477{
478 s64 remainder;
479
480 /*
481 * Store only full nanoseconds into xtime_nsec after rounding
482 * it up and add the remainder to the error difference.
483 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
484 * by truncating the remainder in vsyscalls. However, it causes
485 * additional work to be done in timekeeping_adjust(). Once
486 * the vsyscall implementations are converted to use xtime_nsec
487 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
488 * users are removed, this can be killed.
489 */
876e7881
PZ
490 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
491 tk->tkr_mono.xtime_nsec -= remainder;
492 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
c905fae4 493 tk->ntp_error += remainder << tk->ntp_error_shift;
876e7881 494 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
c905fae4
TG
495}
496#else
497#define old_vsyscall_fixup(tk)
498#endif
499
e0b306fe
MT
500static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
501
780427f0 502static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 503{
780427f0 504 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
505}
506
507/**
508 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
509 */
510int pvclock_gtod_register_notifier(struct notifier_block *nb)
511{
3fdb14fd 512 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
513 unsigned long flags;
514 int ret;
515
9a7a71b1 516 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 517 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 518 update_pvclock_gtod(tk, true);
9a7a71b1 519 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
520
521 return ret;
522}
523EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
524
525/**
526 * pvclock_gtod_unregister_notifier - unregister a pvclock
527 * timedata update listener
e0b306fe
MT
528 */
529int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
530{
e0b306fe
MT
531 unsigned long flags;
532 int ret;
533
9a7a71b1 534 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 535 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 536 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
537
538 return ret;
539}
540EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
541
7c032df5
TG
542/*
543 * Update the ktime_t based scalar nsec members of the timekeeper
544 */
545static inline void tk_update_ktime_data(struct timekeeper *tk)
546{
9e3680b1
HS
547 u64 seconds;
548 u32 nsec;
7c032df5
TG
549
550 /*
551 * The xtime based monotonic readout is:
552 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
553 * The ktime based monotonic readout is:
554 * nsec = base_mono + now();
555 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
556 */
9e3680b1
HS
557 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
558 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 559 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
560
561 /* Update the monotonic raw base */
4a4ad80d 562 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
563
564 /*
565 * The sum of the nanoseconds portions of xtime and
566 * wall_to_monotonic can be greater/equal one second. Take
567 * this into account before updating tk->ktime_sec.
568 */
876e7881 569 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
570 if (nsec >= NSEC_PER_SEC)
571 seconds++;
572 tk->ktime_sec = seconds;
7c032df5
TG
573}
574
9a7a71b1 575/* must hold timekeeper_lock */
04397fe9 576static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 577{
04397fe9 578 if (action & TK_CLEAR_NTP) {
f726a697 579 tk->ntp_error = 0;
cc06268c
TG
580 ntp_clear();
581 }
48cdc135 582
7c032df5
TG
583 tk_update_ktime_data(tk);
584
9bf2419f
TG
585 update_vsyscall(tk);
586 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
587
04397fe9 588 if (action & TK_MIRROR)
3fdb14fd
TG
589 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
590 sizeof(tk_core.timekeeper));
4396e058 591
4498e746 592 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 593 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
594
595 if (action & TK_CLOCK_WAS_SET)
596 tk->clock_was_set_seq++;
cc06268c
TG
597}
598
8524070b 599/**
155ec602 600 * timekeeping_forward_now - update clock to the current time
8524070b 601 *
9a055117
RZ
602 * Forward the current clock to update its state since the last call to
603 * update_wall_time(). This is useful before significant clock changes,
604 * as it avoids having to deal with this time offset explicitly.
8524070b 605 */
f726a697 606static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 607{
876e7881 608 struct clocksource *clock = tk->tkr_mono.clock;
3a978377 609 cycle_t cycle_now, delta;
9a055117 610 s64 nsec;
8524070b 611
876e7881
PZ
612 cycle_now = tk->tkr_mono.read(clock);
613 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
614 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 615 tk->tkr_raw.cycle_last = cycle_now;
8524070b 616
876e7881 617 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 618
7b1f6207 619 /* If arch requires, add in get_arch_timeoffset() */
876e7881 620 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 621
f726a697 622 tk_normalize_xtime(tk);
2d42244a 623
4a4ad80d 624 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
7d489d15 625 timespec64_add_ns(&tk->raw_time, nsec);
8524070b
JS
626}
627
628/**
d6d29896 629 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b
JS
630 * @ts: pointer to the timespec to be set
631 *
1e817fb6
KC
632 * Updates the time of day in the timespec.
633 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 634 */
d6d29896 635int __getnstimeofday64(struct timespec64 *ts)
8524070b 636{
3fdb14fd 637 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 638 unsigned long seq;
1e75fa8b 639 s64 nsecs = 0;
8524070b
JS
640
641 do {
3fdb14fd 642 seq = read_seqcount_begin(&tk_core.seq);
8524070b 643
4e250fdd 644 ts->tv_sec = tk->xtime_sec;
876e7881 645 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 646
3fdb14fd 647 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 648
ec145bab 649 ts->tv_nsec = 0;
d6d29896 650 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
651
652 /*
653 * Do not bail out early, in case there were callers still using
654 * the value, even in the face of the WARN_ON.
655 */
656 if (unlikely(timekeeping_suspended))
657 return -EAGAIN;
658 return 0;
659}
d6d29896 660EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
661
662/**
d6d29896 663 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 664 * @ts: pointer to the timespec64 to be set
1e817fb6 665 *
5322e4c2 666 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 667 */
d6d29896 668void getnstimeofday64(struct timespec64 *ts)
1e817fb6 669{
d6d29896 670 WARN_ON(__getnstimeofday64(ts));
8524070b 671}
d6d29896 672EXPORT_SYMBOL(getnstimeofday64);
8524070b 673
951ed4d3
MS
674ktime_t ktime_get(void)
675{
3fdb14fd 676 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 677 unsigned int seq;
a016a5bd
TG
678 ktime_t base;
679 s64 nsecs;
951ed4d3
MS
680
681 WARN_ON(timekeeping_suspended);
682
683 do {
3fdb14fd 684 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
685 base = tk->tkr_mono.base;
686 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 687
3fdb14fd 688 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 689
a016a5bd 690 return ktime_add_ns(base, nsecs);
951ed4d3
MS
691}
692EXPORT_SYMBOL_GPL(ktime_get);
693
6374f912
HG
694u32 ktime_get_resolution_ns(void)
695{
696 struct timekeeper *tk = &tk_core.timekeeper;
697 unsigned int seq;
698 u32 nsecs;
699
700 WARN_ON(timekeeping_suspended);
701
702 do {
703 seq = read_seqcount_begin(&tk_core.seq);
704 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
705 } while (read_seqcount_retry(&tk_core.seq, seq));
706
707 return nsecs;
708}
709EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
710
0077dc60
TG
711static ktime_t *offsets[TK_OFFS_MAX] = {
712 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
713 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
714 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
715};
716
717ktime_t ktime_get_with_offset(enum tk_offsets offs)
718{
719 struct timekeeper *tk = &tk_core.timekeeper;
720 unsigned int seq;
721 ktime_t base, *offset = offsets[offs];
722 s64 nsecs;
723
724 WARN_ON(timekeeping_suspended);
725
726 do {
727 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
728 base = ktime_add(tk->tkr_mono.base, *offset);
729 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
730
731 } while (read_seqcount_retry(&tk_core.seq, seq));
732
733 return ktime_add_ns(base, nsecs);
734
735}
736EXPORT_SYMBOL_GPL(ktime_get_with_offset);
737
9a6b5197
TG
738/**
739 * ktime_mono_to_any() - convert mononotic time to any other time
740 * @tmono: time to convert.
741 * @offs: which offset to use
742 */
743ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
744{
745 ktime_t *offset = offsets[offs];
746 unsigned long seq;
747 ktime_t tconv;
748
749 do {
750 seq = read_seqcount_begin(&tk_core.seq);
751 tconv = ktime_add(tmono, *offset);
752 } while (read_seqcount_retry(&tk_core.seq, seq));
753
754 return tconv;
755}
756EXPORT_SYMBOL_GPL(ktime_mono_to_any);
757
f519b1a2
TG
758/**
759 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
760 */
761ktime_t ktime_get_raw(void)
762{
763 struct timekeeper *tk = &tk_core.timekeeper;
764 unsigned int seq;
765 ktime_t base;
766 s64 nsecs;
767
768 do {
769 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
770 base = tk->tkr_raw.base;
771 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
772
773 } while (read_seqcount_retry(&tk_core.seq, seq));
774
775 return ktime_add_ns(base, nsecs);
776}
777EXPORT_SYMBOL_GPL(ktime_get_raw);
778
951ed4d3 779/**
d6d29896 780 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
781 * @ts: pointer to timespec variable
782 *
783 * The function calculates the monotonic clock from the realtime
784 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 785 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 786 */
d6d29896 787void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 788{
3fdb14fd 789 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 790 struct timespec64 tomono;
ec145bab 791 s64 nsec;
951ed4d3 792 unsigned int seq;
951ed4d3
MS
793
794 WARN_ON(timekeeping_suspended);
795
796 do {
3fdb14fd 797 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 798 ts->tv_sec = tk->xtime_sec;
876e7881 799 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 800 tomono = tk->wall_to_monotonic;
951ed4d3 801
3fdb14fd 802 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 803
d6d29896
TG
804 ts->tv_sec += tomono.tv_sec;
805 ts->tv_nsec = 0;
806 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 807}
d6d29896 808EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 809
9e3680b1
HS
810/**
811 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
812 *
813 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
814 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
815 * works on both 32 and 64 bit systems. On 32 bit systems the readout
816 * covers ~136 years of uptime which should be enough to prevent
817 * premature wrap arounds.
818 */
819time64_t ktime_get_seconds(void)
820{
821 struct timekeeper *tk = &tk_core.timekeeper;
822
823 WARN_ON(timekeeping_suspended);
824 return tk->ktime_sec;
825}
826EXPORT_SYMBOL_GPL(ktime_get_seconds);
827
dbe7aa62
HS
828/**
829 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
830 *
831 * Returns the wall clock seconds since 1970. This replaces the
832 * get_seconds() interface which is not y2038 safe on 32bit systems.
833 *
834 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
835 * 32bit systems the access must be protected with the sequence
836 * counter to provide "atomic" access to the 64bit tk->xtime_sec
837 * value.
838 */
839time64_t ktime_get_real_seconds(void)
840{
841 struct timekeeper *tk = &tk_core.timekeeper;
842 time64_t seconds;
843 unsigned int seq;
844
845 if (IS_ENABLED(CONFIG_64BIT))
846 return tk->xtime_sec;
847
848 do {
849 seq = read_seqcount_begin(&tk_core.seq);
850 seconds = tk->xtime_sec;
851
852 } while (read_seqcount_retry(&tk_core.seq, seq));
853
854 return seconds;
855}
856EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
857
e2c18e49
AG
858#ifdef CONFIG_NTP_PPS
859
860/**
861 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
862 * @ts_raw: pointer to the timespec to be set to raw monotonic time
863 * @ts_real: pointer to the timespec to be set to the time of day
864 *
865 * This function reads both the time of day and raw monotonic time at the
866 * same time atomically and stores the resulting timestamps in timespec
867 * format.
868 */
869void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
870{
3fdb14fd 871 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
872 unsigned long seq;
873 s64 nsecs_raw, nsecs_real;
874
875 WARN_ON_ONCE(timekeeping_suspended);
876
877 do {
3fdb14fd 878 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 879
7d489d15 880 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 881 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 882 ts_real->tv_nsec = 0;
e2c18e49 883
4a4ad80d 884 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
876e7881 885 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
e2c18e49 886
3fdb14fd 887 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
888
889 timespec_add_ns(ts_raw, nsecs_raw);
890 timespec_add_ns(ts_real, nsecs_real);
891}
892EXPORT_SYMBOL(getnstime_raw_and_real);
893
894#endif /* CONFIG_NTP_PPS */
895
8524070b
JS
896/**
897 * do_gettimeofday - Returns the time of day in a timeval
898 * @tv: pointer to the timeval to be set
899 *
efd9ac86 900 * NOTE: Users should be converted to using getnstimeofday()
8524070b
JS
901 */
902void do_gettimeofday(struct timeval *tv)
903{
d6d29896 904 struct timespec64 now;
8524070b 905
d6d29896 906 getnstimeofday64(&now);
8524070b
JS
907 tv->tv_sec = now.tv_sec;
908 tv->tv_usec = now.tv_nsec/1000;
909}
8524070b 910EXPORT_SYMBOL(do_gettimeofday);
d239f49d 911
8524070b 912/**
21f7eca5 913 * do_settimeofday64 - Sets the time of day.
914 * @ts: pointer to the timespec64 variable containing the new time
8524070b
JS
915 *
916 * Sets the time of day to the new time and update NTP and notify hrtimers
917 */
21f7eca5 918int do_settimeofday64(const struct timespec64 *ts)
8524070b 919{
3fdb14fd 920 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 921 struct timespec64 ts_delta, xt;
92c1d3ed 922 unsigned long flags;
8524070b 923
21f7eca5 924 if (!timespec64_valid_strict(ts))
8524070b
JS
925 return -EINVAL;
926
9a7a71b1 927 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 928 write_seqcount_begin(&tk_core.seq);
8524070b 929
4e250fdd 930 timekeeping_forward_now(tk);
9a055117 931
4e250fdd 932 xt = tk_xtime(tk);
21f7eca5 933 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
934 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 935
7d489d15 936 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 937
21f7eca5 938 tk_set_xtime(tk, ts);
1e75fa8b 939
780427f0 940 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 941
3fdb14fd 942 write_seqcount_end(&tk_core.seq);
9a7a71b1 943 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
944
945 /* signal hrtimers about time change */
946 clock_was_set();
947
948 return 0;
949}
21f7eca5 950EXPORT_SYMBOL(do_settimeofday64);
8524070b 951
c528f7c6
JS
952/**
953 * timekeeping_inject_offset - Adds or subtracts from the current time.
954 * @tv: pointer to the timespec variable containing the offset
955 *
956 * Adds or subtracts an offset value from the current time.
957 */
958int timekeeping_inject_offset(struct timespec *ts)
959{
3fdb14fd 960 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 961 unsigned long flags;
7d489d15 962 struct timespec64 ts64, tmp;
4e8b1452 963 int ret = 0;
c528f7c6
JS
964
965 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
966 return -EINVAL;
967
7d489d15
JS
968 ts64 = timespec_to_timespec64(*ts);
969
9a7a71b1 970 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 971 write_seqcount_begin(&tk_core.seq);
c528f7c6 972
4e250fdd 973 timekeeping_forward_now(tk);
c528f7c6 974
4e8b1452 975 /* Make sure the proposed value is valid */
7d489d15
JS
976 tmp = timespec64_add(tk_xtime(tk), ts64);
977 if (!timespec64_valid_strict(&tmp)) {
4e8b1452
JS
978 ret = -EINVAL;
979 goto error;
980 }
1e75fa8b 981
7d489d15
JS
982 tk_xtime_add(tk, &ts64);
983 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 984
4e8b1452 985error: /* even if we error out, we forwarded the time, so call update */
780427f0 986 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 987
3fdb14fd 988 write_seqcount_end(&tk_core.seq);
9a7a71b1 989 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
990
991 /* signal hrtimers about time change */
992 clock_was_set();
993
4e8b1452 994 return ret;
c528f7c6
JS
995}
996EXPORT_SYMBOL(timekeeping_inject_offset);
997
cc244dda
JS
998
999/**
1000 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1001 *
1002 */
1003s32 timekeeping_get_tai_offset(void)
1004{
3fdb14fd 1005 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1006 unsigned int seq;
1007 s32 ret;
1008
1009 do {
3fdb14fd 1010 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 1011 ret = tk->tai_offset;
3fdb14fd 1012 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
1013
1014 return ret;
1015}
1016
1017/**
1018 * __timekeeping_set_tai_offset - Lock free worker function
1019 *
1020 */
dd5d70e8 1021static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1022{
1023 tk->tai_offset = tai_offset;
04005f60 1024 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1025}
1026
1027/**
1028 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1029 *
1030 */
1031void timekeeping_set_tai_offset(s32 tai_offset)
1032{
3fdb14fd 1033 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1034 unsigned long flags;
1035
9a7a71b1 1036 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1037 write_seqcount_begin(&tk_core.seq);
cc244dda 1038 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 1039 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1040 write_seqcount_end(&tk_core.seq);
9a7a71b1 1041 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 1042 clock_was_set();
cc244dda
JS
1043}
1044
8524070b
JS
1045/**
1046 * change_clocksource - Swaps clocksources if a new one is available
1047 *
1048 * Accumulates current time interval and initializes new clocksource
1049 */
75c5158f 1050static int change_clocksource(void *data)
8524070b 1051{
3fdb14fd 1052 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1053 struct clocksource *new, *old;
f695cf94 1054 unsigned long flags;
8524070b 1055
75c5158f 1056 new = (struct clocksource *) data;
8524070b 1057
9a7a71b1 1058 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1059 write_seqcount_begin(&tk_core.seq);
f695cf94 1060
4e250fdd 1061 timekeeping_forward_now(tk);
09ac369c
TG
1062 /*
1063 * If the cs is in module, get a module reference. Succeeds
1064 * for built-in code (owner == NULL) as well.
1065 */
1066 if (try_module_get(new->owner)) {
1067 if (!new->enable || new->enable(new) == 0) {
876e7881 1068 old = tk->tkr_mono.clock;
09ac369c
TG
1069 tk_setup_internals(tk, new);
1070 if (old->disable)
1071 old->disable(old);
1072 module_put(old->owner);
1073 } else {
1074 module_put(new->owner);
1075 }
75c5158f 1076 }
780427f0 1077 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1078
3fdb14fd 1079 write_seqcount_end(&tk_core.seq);
9a7a71b1 1080 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1081
75c5158f
MS
1082 return 0;
1083}
8524070b 1084
75c5158f
MS
1085/**
1086 * timekeeping_notify - Install a new clock source
1087 * @clock: pointer to the clock source
1088 *
1089 * This function is called from clocksource.c after a new, better clock
1090 * source has been registered. The caller holds the clocksource_mutex.
1091 */
ba919d1c 1092int timekeeping_notify(struct clocksource *clock)
75c5158f 1093{
3fdb14fd 1094 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1095
876e7881 1096 if (tk->tkr_mono.clock == clock)
ba919d1c 1097 return 0;
75c5158f 1098 stop_machine(change_clocksource, clock, NULL);
8524070b 1099 tick_clock_notify();
876e7881 1100 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1101}
75c5158f 1102
2d42244a 1103/**
cdba2ec5
JS
1104 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1105 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1106 *
1107 * Returns the raw monotonic time (completely un-modified by ntp)
1108 */
cdba2ec5 1109void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1110{
3fdb14fd 1111 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1112 struct timespec64 ts64;
2d42244a
JS
1113 unsigned long seq;
1114 s64 nsecs;
2d42244a
JS
1115
1116 do {
3fdb14fd 1117 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d 1118 nsecs = timekeeping_get_ns(&tk->tkr_raw);
7d489d15 1119 ts64 = tk->raw_time;
2d42244a 1120
3fdb14fd 1121 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1122
7d489d15 1123 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1124 *ts = ts64;
2d42244a 1125}
cdba2ec5
JS
1126EXPORT_SYMBOL(getrawmonotonic64);
1127
2d42244a 1128
8524070b 1129/**
cf4fc6cb 1130 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1131 */
cf4fc6cb 1132int timekeeping_valid_for_hres(void)
8524070b 1133{
3fdb14fd 1134 struct timekeeper *tk = &tk_core.timekeeper;
8524070b
JS
1135 unsigned long seq;
1136 int ret;
1137
1138 do {
3fdb14fd 1139 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1140
876e7881 1141 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1142
3fdb14fd 1143 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b
JS
1144
1145 return ret;
1146}
1147
98962465
JH
1148/**
1149 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1150 */
1151u64 timekeeping_max_deferment(void)
1152{
3fdb14fd 1153 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1154 unsigned long seq;
1155 u64 ret;
42e71e81 1156
70471f2f 1157 do {
3fdb14fd 1158 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1159
876e7881 1160 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1161
3fdb14fd 1162 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1163
1164 return ret;
98962465
JH
1165}
1166
8524070b 1167/**
d4f587c6 1168 * read_persistent_clock - Return time from the persistent clock.
8524070b
JS
1169 *
1170 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1171 * Reads the time from the battery backed persistent clock.
1172 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b
JS
1173 *
1174 * XXX - Do be sure to remove it once all arches implement it.
1175 */
52f5684c 1176void __weak read_persistent_clock(struct timespec *ts)
8524070b 1177{
d4f587c6
MS
1178 ts->tv_sec = 0;
1179 ts->tv_nsec = 0;
8524070b
JS
1180}
1181
2ee96632
XP
1182void __weak read_persistent_clock64(struct timespec64 *ts64)
1183{
1184 struct timespec ts;
1185
1186 read_persistent_clock(&ts);
1187 *ts64 = timespec_to_timespec64(ts);
1188}
1189
23970e38
MS
1190/**
1191 * read_boot_clock - Return time of the system start.
1192 *
1193 * Weak dummy function for arches that do not yet support it.
1194 * Function to read the exact time the system has been started.
1195 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1196 *
1197 * XXX - Do be sure to remove it once all arches implement it.
1198 */
52f5684c 1199void __weak read_boot_clock(struct timespec *ts)
23970e38
MS
1200{
1201 ts->tv_sec = 0;
1202 ts->tv_nsec = 0;
1203}
1204
9a806ddb
XP
1205void __weak read_boot_clock64(struct timespec64 *ts64)
1206{
1207 struct timespec ts;
1208
1209 read_boot_clock(&ts);
1210 *ts64 = timespec_to_timespec64(ts);
1211}
1212
0fa88cb4
XP
1213/* Flag for if timekeeping_resume() has injected sleeptime */
1214static bool sleeptime_injected;
1215
1216/* Flag for if there is a persistent clock on this platform */
1217static bool persistent_clock_exists;
1218
8524070b
JS
1219/*
1220 * timekeeping_init - Initializes the clocksource and common timekeeping values
1221 */
1222void __init timekeeping_init(void)
1223{
3fdb14fd 1224 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1225 struct clocksource *clock;
8524070b 1226 unsigned long flags;
7d489d15 1227 struct timespec64 now, boot, tmp;
31ade306 1228
2ee96632 1229 read_persistent_clock64(&now);
7d489d15 1230 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1231 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1232 " Check your CMOS/BIOS settings.\n");
1233 now.tv_sec = 0;
1234 now.tv_nsec = 0;
31ade306 1235 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1236 persistent_clock_exists = true;
4e8b1452 1237
9a806ddb 1238 read_boot_clock64(&boot);
7d489d15 1239 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1240 pr_warn("WARNING: Boot clock returned invalid value!\n"
1241 " Check your CMOS/BIOS settings.\n");
1242 boot.tv_sec = 0;
1243 boot.tv_nsec = 0;
1244 }
8524070b 1245
9a7a71b1 1246 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1247 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1248 ntp_init();
1249
f1b82746 1250 clock = clocksource_default_clock();
a0f7d48b
MS
1251 if (clock->enable)
1252 clock->enable(clock);
4e250fdd 1253 tk_setup_internals(tk, clock);
8524070b 1254
4e250fdd
JS
1255 tk_set_xtime(tk, &now);
1256 tk->raw_time.tv_sec = 0;
1257 tk->raw_time.tv_nsec = 0;
1e75fa8b 1258 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1259 boot = tk_xtime(tk);
1e75fa8b 1260
7d489d15 1261 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1262 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1263
f111adfd 1264 timekeeping_update(tk, TK_MIRROR);
48cdc135 1265
3fdb14fd 1266 write_seqcount_end(&tk_core.seq);
9a7a71b1 1267 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1268}
1269
264bb3f7 1270/* time in seconds when suspend began for persistent clock */
7d489d15 1271static struct timespec64 timekeeping_suspend_time;
8524070b 1272
304529b1
JS
1273/**
1274 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1275 * @delta: pointer to a timespec delta value
1276 *
1277 * Takes a timespec offset measuring a suspend interval and properly
1278 * adds the sleep offset to the timekeeping variables.
1279 */
f726a697 1280static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1281 struct timespec64 *delta)
304529b1 1282{
7d489d15 1283 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1284 printk_deferred(KERN_WARNING
1285 "__timekeeping_inject_sleeptime: Invalid "
1286 "sleep delta value!\n");
cb5de2f8
JS
1287 return;
1288 }
f726a697 1289 tk_xtime_add(tk, delta);
7d489d15 1290 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1291 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1292 tk_debug_account_sleep_time(delta);
304529b1
JS
1293}
1294
7f298139 1295#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1296/**
1297 * We have three kinds of time sources to use for sleep time
1298 * injection, the preference order is:
1299 * 1) non-stop clocksource
1300 * 2) persistent clock (ie: RTC accessible when irqs are off)
1301 * 3) RTC
1302 *
1303 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1304 * If system has neither 1) nor 2), 3) will be used finally.
1305 *
1306 *
1307 * If timekeeping has injected sleeptime via either 1) or 2),
1308 * 3) becomes needless, so in this case we don't need to call
1309 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1310 * means.
1311 */
1312bool timekeeping_rtc_skipresume(void)
1313{
1314 return sleeptime_injected;
1315}
1316
1317/**
1318 * 1) can be determined whether to use or not only when doing
1319 * timekeeping_resume() which is invoked after rtc_suspend(),
1320 * so we can't skip rtc_suspend() surely if system has 1).
1321 *
1322 * But if system has 2), 2) will definitely be used, so in this
1323 * case we don't need to call rtc_suspend(), and this is what
1324 * timekeeping_rtc_skipsuspend() means.
1325 */
1326bool timekeeping_rtc_skipsuspend(void)
1327{
1328 return persistent_clock_exists;
1329}
1330
304529b1 1331/**
04d90890 1332 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1333 * @delta: pointer to a timespec64 delta value
304529b1 1334 *
2ee96632 1335 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1336 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1337 * and also don't have an effective nonstop clocksource.
304529b1
JS
1338 *
1339 * This function should only be called by rtc_resume(), and allows
1340 * a suspend offset to be injected into the timekeeping values.
1341 */
04d90890 1342void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1343{
3fdb14fd 1344 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1345 unsigned long flags;
304529b1 1346
9a7a71b1 1347 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1348 write_seqcount_begin(&tk_core.seq);
70471f2f 1349
4e250fdd 1350 timekeeping_forward_now(tk);
304529b1 1351
04d90890 1352 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1353
780427f0 1354 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1355
3fdb14fd 1356 write_seqcount_end(&tk_core.seq);
9a7a71b1 1357 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1358
1359 /* signal hrtimers about time change */
1360 clock_was_set();
1361}
7f298139 1362#endif
304529b1 1363
8524070b
JS
1364/**
1365 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1366 */
124cf911 1367void timekeeping_resume(void)
8524070b 1368{
3fdb14fd 1369 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1370 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1371 unsigned long flags;
7d489d15 1372 struct timespec64 ts_new, ts_delta;
e445cf1c 1373 cycle_t cycle_now, cycle_delta;
d4f587c6 1374
0fa88cb4 1375 sleeptime_injected = false;
2ee96632 1376 read_persistent_clock64(&ts_new);
8524070b 1377
adc78e6b 1378 clockevents_resume();
d10ff3fb
TG
1379 clocksource_resume();
1380
9a7a71b1 1381 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1382 write_seqcount_begin(&tk_core.seq);
8524070b 1383
e445cf1c
FT
1384 /*
1385 * After system resumes, we need to calculate the suspended time and
1386 * compensate it for the OS time. There are 3 sources that could be
1387 * used: Nonstop clocksource during suspend, persistent clock and rtc
1388 * device.
1389 *
1390 * One specific platform may have 1 or 2 or all of them, and the
1391 * preference will be:
1392 * suspend-nonstop clocksource -> persistent clock -> rtc
1393 * The less preferred source will only be tried if there is no better
1394 * usable source. The rtc part is handled separately in rtc core code.
1395 */
876e7881 1396 cycle_now = tk->tkr_mono.read(clock);
e445cf1c 1397 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1398 cycle_now > tk->tkr_mono.cycle_last) {
e445cf1c
FT
1399 u64 num, max = ULLONG_MAX;
1400 u32 mult = clock->mult;
1401 u32 shift = clock->shift;
1402 s64 nsec = 0;
1403
876e7881
PZ
1404 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1405 tk->tkr_mono.mask);
e445cf1c
FT
1406
1407 /*
1408 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1409 * suspended time is too long. In that case we need do the
1410 * 64 bits math carefully
1411 */
1412 do_div(max, mult);
1413 if (cycle_delta > max) {
1414 num = div64_u64(cycle_delta, max);
1415 nsec = (((u64) max * mult) >> shift) * num;
1416 cycle_delta -= num * max;
1417 }
1418 nsec += ((u64) cycle_delta * mult) >> shift;
1419
7d489d15 1420 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1421 sleeptime_injected = true;
7d489d15
JS
1422 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1423 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1424 sleeptime_injected = true;
8524070b 1425 }
e445cf1c 1426
0fa88cb4 1427 if (sleeptime_injected)
e445cf1c
FT
1428 __timekeeping_inject_sleeptime(tk, &ts_delta);
1429
1430 /* Re-base the last cycle value */
876e7881 1431 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1432 tk->tkr_raw.cycle_last = cycle_now;
1433
4e250fdd 1434 tk->ntp_error = 0;
8524070b 1435 timekeeping_suspended = 0;
780427f0 1436 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1437 write_seqcount_end(&tk_core.seq);
9a7a71b1 1438 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1439
1440 touch_softlockup_watchdog();
1441
4ffee521 1442 tick_resume();
b12a03ce 1443 hrtimers_resume();
8524070b
JS
1444}
1445
124cf911 1446int timekeeping_suspend(void)
8524070b 1447{
3fdb14fd 1448 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1449 unsigned long flags;
7d489d15
JS
1450 struct timespec64 delta, delta_delta;
1451 static struct timespec64 old_delta;
8524070b 1452
2ee96632 1453 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1454
0d6bd995
ZM
1455 /*
1456 * On some systems the persistent_clock can not be detected at
1457 * timekeeping_init by its return value, so if we see a valid
1458 * value returned, update the persistent_clock_exists flag.
1459 */
1460 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1461 persistent_clock_exists = true;
0d6bd995 1462
9a7a71b1 1463 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1464 write_seqcount_begin(&tk_core.seq);
4e250fdd 1465 timekeeping_forward_now(tk);
8524070b 1466 timekeeping_suspended = 1;
cb33217b 1467
0fa88cb4 1468 if (persistent_clock_exists) {
cb33217b 1469 /*
264bb3f7
XP
1470 * To avoid drift caused by repeated suspend/resumes,
1471 * which each can add ~1 second drift error,
1472 * try to compensate so the difference in system time
1473 * and persistent_clock time stays close to constant.
cb33217b 1474 */
264bb3f7
XP
1475 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1476 delta_delta = timespec64_sub(delta, old_delta);
1477 if (abs(delta_delta.tv_sec) >= 2) {
1478 /*
1479 * if delta_delta is too large, assume time correction
1480 * has occurred and set old_delta to the current delta.
1481 */
1482 old_delta = delta;
1483 } else {
1484 /* Otherwise try to adjust old_system to compensate */
1485 timekeeping_suspend_time =
1486 timespec64_add(timekeeping_suspend_time, delta_delta);
1487 }
cb33217b 1488 }
330a1617
JS
1489
1490 timekeeping_update(tk, TK_MIRROR);
060407ae 1491 halt_fast_timekeeper(tk);
3fdb14fd 1492 write_seqcount_end(&tk_core.seq);
9a7a71b1 1493 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1494
4ffee521 1495 tick_suspend();
c54a42b1 1496 clocksource_suspend();
adc78e6b 1497 clockevents_suspend();
8524070b
JS
1498
1499 return 0;
1500}
1501
1502/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1503static struct syscore_ops timekeeping_syscore_ops = {
8524070b
JS
1504 .resume = timekeeping_resume,
1505 .suspend = timekeeping_suspend,
8524070b
JS
1506};
1507
e1a85b2c 1508static int __init timekeeping_init_ops(void)
8524070b 1509{
e1a85b2c
RW
1510 register_syscore_ops(&timekeeping_syscore_ops);
1511 return 0;
8524070b 1512}
e1a85b2c 1513device_initcall(timekeeping_init_ops);
8524070b
JS
1514
1515/*
dc491596 1516 * Apply a multiplier adjustment to the timekeeper
8524070b 1517 */
dc491596
JS
1518static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1519 s64 offset,
1520 bool negative,
1521 int adj_scale)
8524070b 1522{
dc491596
JS
1523 s64 interval = tk->cycle_interval;
1524 s32 mult_adj = 1;
8524070b 1525
dc491596
JS
1526 if (negative) {
1527 mult_adj = -mult_adj;
1528 interval = -interval;
1529 offset = -offset;
1d17d174 1530 }
dc491596
JS
1531 mult_adj <<= adj_scale;
1532 interval <<= adj_scale;
1533 offset <<= adj_scale;
8524070b 1534
c2bc1111
JS
1535 /*
1536 * So the following can be confusing.
1537 *
dc491596 1538 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1539 *
dc491596 1540 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1541 * have been appropriately scaled so the math is the same.
1542 *
1543 * The basic idea here is that we're increasing the multiplier
1544 * by one, this causes the xtime_interval to be incremented by
1545 * one cycle_interval. This is because:
1546 * xtime_interval = cycle_interval * mult
1547 * So if mult is being incremented by one:
1548 * xtime_interval = cycle_interval * (mult + 1)
1549 * Its the same as:
1550 * xtime_interval = (cycle_interval * mult) + cycle_interval
1551 * Which can be shortened to:
1552 * xtime_interval += cycle_interval
1553 *
1554 * So offset stores the non-accumulated cycles. Thus the current
1555 * time (in shifted nanoseconds) is:
1556 * now = (offset * adj) + xtime_nsec
1557 * Now, even though we're adjusting the clock frequency, we have
1558 * to keep time consistent. In other words, we can't jump back
1559 * in time, and we also want to avoid jumping forward in time.
1560 *
1561 * So given the same offset value, we need the time to be the same
1562 * both before and after the freq adjustment.
1563 * now = (offset * adj_1) + xtime_nsec_1
1564 * now = (offset * adj_2) + xtime_nsec_2
1565 * So:
1566 * (offset * adj_1) + xtime_nsec_1 =
1567 * (offset * adj_2) + xtime_nsec_2
1568 * And we know:
1569 * adj_2 = adj_1 + 1
1570 * So:
1571 * (offset * adj_1) + xtime_nsec_1 =
1572 * (offset * (adj_1+1)) + xtime_nsec_2
1573 * (offset * adj_1) + xtime_nsec_1 =
1574 * (offset * adj_1) + offset + xtime_nsec_2
1575 * Canceling the sides:
1576 * xtime_nsec_1 = offset + xtime_nsec_2
1577 * Which gives us:
1578 * xtime_nsec_2 = xtime_nsec_1 - offset
1579 * Which simplfies to:
1580 * xtime_nsec -= offset
1581 *
1582 * XXX - TODO: Doc ntp_error calculation.
1583 */
876e7881 1584 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1585 /* NTP adjustment caused clocksource mult overflow */
1586 WARN_ON_ONCE(1);
1587 return;
1588 }
1589
876e7881 1590 tk->tkr_mono.mult += mult_adj;
f726a697 1591 tk->xtime_interval += interval;
876e7881 1592 tk->tkr_mono.xtime_nsec -= offset;
f726a697 1593 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1594}
1595
1596/*
1597 * Calculate the multiplier adjustment needed to match the frequency
1598 * specified by NTP
1599 */
1600static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1601 s64 offset)
1602{
1603 s64 interval = tk->cycle_interval;
1604 s64 xinterval = tk->xtime_interval;
1605 s64 tick_error;
1606 bool negative;
1607 u32 adj;
1608
1609 /* Remove any current error adj from freq calculation */
1610 if (tk->ntp_err_mult)
1611 xinterval -= tk->cycle_interval;
1612
375f45b5
JS
1613 tk->ntp_tick = ntp_tick_length();
1614
dc491596
JS
1615 /* Calculate current error per tick */
1616 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1617 tick_error -= (xinterval + tk->xtime_remainder);
1618
1619 /* Don't worry about correcting it if its small */
1620 if (likely((tick_error >= 0) && (tick_error <= interval)))
1621 return;
1622
1623 /* preserve the direction of correction */
1624 negative = (tick_error < 0);
1625
1626 /* Sort out the magnitude of the correction */
1627 tick_error = abs(tick_error);
1628 for (adj = 0; tick_error > interval; adj++)
1629 tick_error >>= 1;
1630
1631 /* scale the corrections */
1632 timekeeping_apply_adjustment(tk, offset, negative, adj);
1633}
1634
1635/*
1636 * Adjust the timekeeper's multiplier to the correct frequency
1637 * and also to reduce the accumulated error value.
1638 */
1639static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1640{
1641 /* Correct for the current frequency error */
1642 timekeeping_freqadjust(tk, offset);
1643
1644 /* Next make a small adjustment to fix any cumulative error */
1645 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1646 tk->ntp_err_mult = 1;
1647 timekeeping_apply_adjustment(tk, offset, 0, 0);
1648 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1649 /* Undo any existing error adjustment */
1650 timekeeping_apply_adjustment(tk, offset, 1, 0);
1651 tk->ntp_err_mult = 0;
1652 }
1653
876e7881
PZ
1654 if (unlikely(tk->tkr_mono.clock->maxadj &&
1655 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1656 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1657 printk_once(KERN_WARNING
1658 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1659 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1660 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1661 }
2a8c0883
JS
1662
1663 /*
1664 * It may be possible that when we entered this function, xtime_nsec
1665 * was very small. Further, if we're slightly speeding the clocksource
1666 * in the code above, its possible the required corrective factor to
1667 * xtime_nsec could cause it to underflow.
1668 *
1669 * Now, since we already accumulated the second, cannot simply roll
1670 * the accumulated second back, since the NTP subsystem has been
1671 * notified via second_overflow. So instead we push xtime_nsec forward
1672 * by the amount we underflowed, and add that amount into the error.
1673 *
1674 * We'll correct this error next time through this function, when
1675 * xtime_nsec is not as small.
1676 */
876e7881
PZ
1677 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1678 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1679 tk->tkr_mono.xtime_nsec = 0;
f726a697 1680 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1681 }
8524070b
JS
1682}
1683
1f4f9487
JS
1684/**
1685 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1686 *
1687 * Helper function that accumulates a the nsecs greater then a second
1688 * from the xtime_nsec field to the xtime_secs field.
1689 * It also calls into the NTP code to handle leapsecond processing.
1690 *
1691 */
780427f0 1692static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1693{
876e7881 1694 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1695 unsigned int clock_set = 0;
1f4f9487 1696
876e7881 1697 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1698 int leap;
1699
876e7881 1700 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1701 tk->xtime_sec++;
1702
1703 /* Figure out if its a leap sec and apply if needed */
1704 leap = second_overflow(tk->xtime_sec);
6d0ef903 1705 if (unlikely(leap)) {
7d489d15 1706 struct timespec64 ts;
6d0ef903
JS
1707
1708 tk->xtime_sec += leap;
1f4f9487 1709
6d0ef903
JS
1710 ts.tv_sec = leap;
1711 ts.tv_nsec = 0;
1712 tk_set_wall_to_mono(tk,
7d489d15 1713 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1714
cc244dda
JS
1715 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1716
5258d3f2 1717 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1718 }
1f4f9487 1719 }
5258d3f2 1720 return clock_set;
1f4f9487
JS
1721}
1722
a092ff0f
JS
1723/**
1724 * logarithmic_accumulation - shifted accumulation of cycles
1725 *
1726 * This functions accumulates a shifted interval of cycles into
1727 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1728 * loop.
1729 *
1730 * Returns the unconsumed cycles.
1731 */
f726a697 1732static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1733 u32 shift,
1734 unsigned int *clock_set)
a092ff0f 1735{
23a9537a 1736 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1737 u64 raw_nsecs;
a092ff0f 1738
f726a697 1739 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1740 if (offset < interval)
a092ff0f
JS
1741 return offset;
1742
1743 /* Accumulate one shifted interval */
23a9537a 1744 offset -= interval;
876e7881 1745 tk->tkr_mono.cycle_last += interval;
4a4ad80d 1746 tk->tkr_raw.cycle_last += interval;
a092ff0f 1747
876e7881 1748 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1749 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1750
deda2e81 1751 /* Accumulate raw time */
5b3900cd 1752 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1753 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1754 if (raw_nsecs >= NSEC_PER_SEC) {
1755 u64 raw_secs = raw_nsecs;
1756 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1757 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1758 }
f726a697 1759 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f
JS
1760
1761 /* Accumulate error between NTP and clock interval */
375f45b5 1762 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1763 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1764 (tk->ntp_error_shift + shift);
a092ff0f
JS
1765
1766 return offset;
1767}
1768
8524070b
JS
1769/**
1770 * update_wall_time - Uses the current clocksource to increment the wall time
1771 *
8524070b 1772 */
47a1b796 1773void update_wall_time(void)
8524070b 1774{
3fdb14fd 1775 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1776 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1777 cycle_t offset;
a092ff0f 1778 int shift = 0, maxshift;
5258d3f2 1779 unsigned int clock_set = 0;
70471f2f
JS
1780 unsigned long flags;
1781
9a7a71b1 1782 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b
JS
1783
1784 /* Make sure we're fully resumed: */
1785 if (unlikely(timekeeping_suspended))
70471f2f 1786 goto out;
8524070b 1787
592913ec 1788#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1789 offset = real_tk->cycle_interval;
592913ec 1790#else
876e7881
PZ
1791 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1792 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 1793#endif
8524070b 1794
bf2ac312 1795 /* Check if there's really nothing to do */
48cdc135 1796 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1797 goto out;
1798
3c17ad19
JS
1799 /* Do some additional sanity checking */
1800 timekeeping_check_update(real_tk, offset);
1801
a092ff0f
JS
1802 /*
1803 * With NO_HZ we may have to accumulate many cycle_intervals
1804 * (think "ticks") worth of time at once. To do this efficiently,
1805 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1806 * that is smaller than the offset. We then accumulate that
a092ff0f
JS
1807 * chunk in one go, and then try to consume the next smaller
1808 * doubled multiple.
8524070b 1809 */
4e250fdd 1810 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1811 shift = max(0, shift);
88b28adf 1812 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1813 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1814 shift = min(shift, maxshift);
4e250fdd 1815 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1816 offset = logarithmic_accumulation(tk, offset, shift,
1817 &clock_set);
4e250fdd 1818 if (offset < tk->cycle_interval<<shift)
830ec045 1819 shift--;
8524070b
JS
1820 }
1821
1822 /* correct the clock when NTP error is too big */
4e250fdd 1823 timekeeping_adjust(tk, offset);
8524070b 1824
6a867a39 1825 /*
92bb1fcf
JS
1826 * XXX This can be killed once everyone converts
1827 * to the new update_vsyscall.
1828 */
1829 old_vsyscall_fixup(tk);
8524070b 1830
6a867a39
JS
1831 /*
1832 * Finally, make sure that after the rounding
1e75fa8b 1833 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1834 */
5258d3f2 1835 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1836
3fdb14fd 1837 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1838 /*
1839 * Update the real timekeeper.
1840 *
1841 * We could avoid this memcpy by switching pointers, but that
1842 * requires changes to all other timekeeper usage sites as
1843 * well, i.e. move the timekeeper pointer getter into the
1844 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1845 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1846 * updating.
1847 */
1848 memcpy(real_tk, tk, sizeof(*tk));
5258d3f2 1849 timekeeping_update(real_tk, clock_set);
3fdb14fd 1850 write_seqcount_end(&tk_core.seq);
ca4523cd 1851out:
9a7a71b1 1852 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1853 if (clock_set)
cab5e127
JS
1854 /* Have to call _delayed version, since in irq context*/
1855 clock_was_set_delayed();
8524070b 1856}
7c3f1a57
TJ
1857
1858/**
d08c0cdd
JS
1859 * getboottime64 - Return the real time of system boot.
1860 * @ts: pointer to the timespec64 to be set
7c3f1a57 1861 *
d08c0cdd 1862 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
1863 *
1864 * This is based on the wall_to_monotonic offset and the total suspend
1865 * time. Calls to settimeofday will affect the value returned (which
1866 * basically means that however wrong your real time clock is at boot time,
1867 * you get the right time here).
1868 */
d08c0cdd 1869void getboottime64(struct timespec64 *ts)
7c3f1a57 1870{
3fdb14fd 1871 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1872 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1873
d08c0cdd 1874 *ts = ktime_to_timespec64(t);
7c3f1a57 1875}
d08c0cdd 1876EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 1877
17c38b74
JS
1878unsigned long get_seconds(void)
1879{
3fdb14fd 1880 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1881
1882 return tk->xtime_sec;
17c38b74
JS
1883}
1884EXPORT_SYMBOL(get_seconds);
1885
da15cfda
JS
1886struct timespec __current_kernel_time(void)
1887{
3fdb14fd 1888 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1889
7d489d15 1890 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1891}
17c38b74 1892
2c6b47de
JS
1893struct timespec current_kernel_time(void)
1894{
3fdb14fd 1895 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1896 struct timespec64 now;
2c6b47de
JS
1897 unsigned long seq;
1898
1899 do {
3fdb14fd 1900 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1901
4e250fdd 1902 now = tk_xtime(tk);
3fdb14fd 1903 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1904
7d489d15 1905 return timespec64_to_timespec(now);
2c6b47de 1906}
2c6b47de 1907EXPORT_SYMBOL(current_kernel_time);
da15cfda 1908
334334b5 1909struct timespec64 get_monotonic_coarse64(void)
da15cfda 1910{
3fdb14fd 1911 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1912 struct timespec64 now, mono;
da15cfda
JS
1913 unsigned long seq;
1914
1915 do {
3fdb14fd 1916 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1917
4e250fdd
JS
1918 now = tk_xtime(tk);
1919 mono = tk->wall_to_monotonic;
3fdb14fd 1920 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1921
7d489d15 1922 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1923 now.tv_nsec + mono.tv_nsec);
7d489d15 1924
334334b5 1925 return now;
da15cfda 1926}
871cf1e5
TH
1927
1928/*
d6ad4187 1929 * Must hold jiffies_lock
871cf1e5
TH
1930 */
1931void do_timer(unsigned long ticks)
1932{
1933 jiffies_64 += ticks;
871cf1e5
TH
1934 calc_global_load(ticks);
1935}
48cf76f7 1936
f6c06abf 1937/**
76f41088 1938 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 1939 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf
TG
1940 * @offs_real: pointer to storage for monotonic -> realtime offset
1941 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1942 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 1943 *
868a3e91
TG
1944 * Returns current monotonic time and updates the offsets if the
1945 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1946 * different.
1947 *
b7bc50e4 1948 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1949 */
868a3e91
TG
1950ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1951 ktime_t *offs_boot, ktime_t *offs_tai)
f6c06abf 1952{
3fdb14fd 1953 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1954 unsigned int seq;
a37c0aad
TG
1955 ktime_t base;
1956 u64 nsecs;
f6c06abf
TG
1957
1958 do {
3fdb14fd 1959 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1960
876e7881
PZ
1961 base = tk->tkr_mono.base;
1962 nsecs = timekeeping_get_ns(&tk->tkr_mono);
868a3e91
TG
1963 if (*cwsseq != tk->clock_was_set_seq) {
1964 *cwsseq = tk->clock_was_set_seq;
1965 *offs_real = tk->offs_real;
1966 *offs_boot = tk->offs_boot;
1967 *offs_tai = tk->offs_tai;
1968 }
3fdb14fd 1969 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1970
a37c0aad 1971 return ktime_add_ns(base, nsecs);
f6c06abf 1972}
f6c06abf 1973
aa6f9c59
JS
1974/**
1975 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1976 */
1977int do_adjtimex(struct timex *txc)
1978{
3fdb14fd 1979 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1980 unsigned long flags;
7d489d15 1981 struct timespec64 ts;
4e8f8b34 1982 s32 orig_tai, tai;
e4085693
JS
1983 int ret;
1984
1985 /* Validate the data before disabling interrupts */
1986 ret = ntp_validate_timex(txc);
1987 if (ret)
1988 return ret;
1989
cef90377
JS
1990 if (txc->modes & ADJ_SETOFFSET) {
1991 struct timespec delta;
1992 delta.tv_sec = txc->time.tv_sec;
1993 delta.tv_nsec = txc->time.tv_usec;
1994 if (!(txc->modes & ADJ_NANO))
1995 delta.tv_nsec *= 1000;
1996 ret = timekeeping_inject_offset(&delta);
1997 if (ret)
1998 return ret;
1999 }
2000
d6d29896 2001 getnstimeofday64(&ts);
87ace39b 2002
06c017fd 2003 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2004 write_seqcount_begin(&tk_core.seq);
06c017fd 2005
4e8f8b34 2006 orig_tai = tai = tk->tai_offset;
87ace39b 2007 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2008
4e8f8b34
JS
2009 if (tai != orig_tai) {
2010 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2011 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2012 }
3fdb14fd 2013 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2014 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2015
6fdda9a9
JS
2016 if (tai != orig_tai)
2017 clock_was_set();
2018
7bd36014
JS
2019 ntp_notify_cmos_timer();
2020
87ace39b
JS
2021 return ret;
2022}
aa6f9c59
JS
2023
2024#ifdef CONFIG_NTP_PPS
2025/**
2026 * hardpps() - Accessor function to NTP __hardpps function
2027 */
2028void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2029{
06c017fd
JS
2030 unsigned long flags;
2031
2032 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2033 write_seqcount_begin(&tk_core.seq);
06c017fd 2034
aa6f9c59 2035 __hardpps(phase_ts, raw_ts);
06c017fd 2036
3fdb14fd 2037 write_seqcount_end(&tk_core.seq);
06c017fd 2038 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2039}
2040EXPORT_SYMBOL(hardpps);
2041#endif
2042
f0af911a
TH
2043/**
2044 * xtime_update() - advances the timekeeping infrastructure
2045 * @ticks: number of ticks, that have elapsed since the last call.
2046 *
2047 * Must be called with interrupts disabled.
2048 */
2049void xtime_update(unsigned long ticks)
2050{
d6ad4187 2051 write_seqlock(&jiffies_lock);
f0af911a 2052 do_timer(ticks);
d6ad4187 2053 write_sequnlock(&jiffies_lock);
47a1b796 2054 update_wall_time();
f0af911a 2055}