]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/time/timekeeping.c
seqlock: Introduce raw_read_seqcount_latch()
[mirror_ubuntu-zesty-kernel.git] / kernel / time / timekeeping.c
CommitLineData
8524070b
JS
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b
JS
12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b
JS
19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
f09cb9a1 62static struct tk_fast tk_fast_raw ____cacheline_aligned;
4396e058 63
8fcce546
JS
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
1e75fa8b
JS
67static inline void tk_normalize_xtime(struct timekeeper *tk)
68{
876e7881
PZ
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
71 tk->xtime_sec++;
72 }
73}
74
c905fae4
TG
75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76{
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
876e7881 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
81 return ts;
82}
83
7d489d15 84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
85{
86 tk->xtime_sec = ts->tv_sec;
876e7881 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
88}
89
7d489d15 90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
91{
92 tk->xtime_sec += ts->tv_sec;
876e7881 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 94 tk_normalize_xtime(tk);
1e75fa8b 95}
8fcce546 96
7d489d15 97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 98{
7d489d15 99 struct timespec64 tmp;
6d0ef903
JS
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
7d489d15 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 106 -tk->wall_to_monotonic.tv_nsec);
7d489d15 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 108 tk->wall_to_monotonic = wtm;
7d489d15
JS
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
112}
113
47da70d3 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 115{
47da70d3 116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
117}
118
3c17ad19 119#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26
JS
120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121/*
122 * These simple flag variables are managed
123 * without locks, which is racy, but ok since
124 * we don't really care about being super
125 * precise about how many events were seen,
126 * just that a problem was observed.
127 */
128static int timekeeping_underflow_seen;
129static int timekeeping_overflow_seen;
130
131/* last_warning is only modified under the timekeeping lock */
132static long timekeeping_last_warning;
133
3c17ad19
JS
134static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
135{
136
876e7881
PZ
137 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
138 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
139
140 if (offset > max_cycles) {
a558cd02 141 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 142 offset, name, max_cycles);
a558cd02 143 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
144 } else {
145 if (offset > (max_cycles >> 1)) {
146 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
147 offset, name, max_cycles >> 1);
148 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
149 }
150 }
4ca22c26
JS
151
152 if (timekeeping_underflow_seen) {
153 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
154 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
155 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
156 printk_deferred(" Your kernel is probably still fine.\n");
157 timekeeping_last_warning = jiffies;
158 }
159 timekeeping_underflow_seen = 0;
160 }
161
162 if (timekeeping_overflow_seen) {
163 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
164 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
165 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
166 printk_deferred(" Your kernel is probably still fine.\n");
167 timekeeping_last_warning = jiffies;
168 }
169 timekeeping_overflow_seen = 0;
170 }
3c17ad19 171}
a558cd02
JS
172
173static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
174{
4ca22c26
JS
175 cycle_t now, last, mask, max, delta;
176 unsigned int seq;
a558cd02 177
4ca22c26
JS
178 /*
179 * Since we're called holding a seqlock, the data may shift
180 * under us while we're doing the calculation. This can cause
181 * false positives, since we'd note a problem but throw the
182 * results away. So nest another seqlock here to atomically
183 * grab the points we are checking with.
184 */
185 do {
186 seq = read_seqcount_begin(&tk_core.seq);
187 now = tkr->read(tkr->clock);
188 last = tkr->cycle_last;
189 mask = tkr->mask;
190 max = tkr->clock->max_cycles;
191 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 192
4ca22c26 193 delta = clocksource_delta(now, last, mask);
a558cd02 194
057b87e3
JS
195 /*
196 * Try to catch underflows by checking if we are seeing small
197 * mask-relative negative values.
198 */
4ca22c26
JS
199 if (unlikely((~delta & mask) < (mask >> 3))) {
200 timekeeping_underflow_seen = 1;
057b87e3 201 delta = 0;
4ca22c26 202 }
057b87e3 203
a558cd02 204 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26
JS
205 if (unlikely(delta > max)) {
206 timekeeping_overflow_seen = 1;
a558cd02 207 delta = tkr->clock->max_cycles;
4ca22c26 208 }
a558cd02
JS
209
210 return delta;
211}
3c17ad19
JS
212#else
213static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
214{
215}
a558cd02
JS
216static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
217{
218 cycle_t cycle_now, delta;
219
220 /* read clocksource */
221 cycle_now = tkr->read(tkr->clock);
222
223 /* calculate the delta since the last update_wall_time */
224 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
225
226 return delta;
227}
3c17ad19
JS
228#endif
229
155ec602 230/**
d26e4fe0 231 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 232 *
d26e4fe0 233 * @tk: The target timekeeper to setup.
155ec602
MS
234 * @clock: Pointer to clocksource.
235 *
236 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
237 * pair and interval request.
238 *
239 * Unless you're the timekeeping code, you should not be using this!
240 */
f726a697 241static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
242{
243 cycle_t interval;
a386b5af 244 u64 tmp, ntpinterval;
1e75fa8b 245 struct clocksource *old_clock;
155ec602 246
876e7881
PZ
247 old_clock = tk->tkr_mono.clock;
248 tk->tkr_mono.clock = clock;
249 tk->tkr_mono.read = clock->read;
250 tk->tkr_mono.mask = clock->mask;
251 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
155ec602 252
4a4ad80d
PZ
253 tk->tkr_raw.clock = clock;
254 tk->tkr_raw.read = clock->read;
255 tk->tkr_raw.mask = clock->mask;
256 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
257
155ec602
MS
258 /* Do the ns -> cycle conversion first, using original mult */
259 tmp = NTP_INTERVAL_LENGTH;
260 tmp <<= clock->shift;
a386b5af 261 ntpinterval = tmp;
0a544198
MS
262 tmp += clock->mult/2;
263 do_div(tmp, clock->mult);
155ec602
MS
264 if (tmp == 0)
265 tmp = 1;
266
267 interval = (cycle_t) tmp;
f726a697 268 tk->cycle_interval = interval;
155ec602
MS
269
270 /* Go back from cycles -> shifted ns */
f726a697
JS
271 tk->xtime_interval = (u64) interval * clock->mult;
272 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
273 tk->raw_interval =
0a544198 274 ((u64) interval * clock->mult) >> clock->shift;
155ec602 275
1e75fa8b
JS
276 /* if changing clocks, convert xtime_nsec shift units */
277 if (old_clock) {
278 int shift_change = clock->shift - old_clock->shift;
279 if (shift_change < 0)
876e7881 280 tk->tkr_mono.xtime_nsec >>= -shift_change;
1e75fa8b 281 else
876e7881 282 tk->tkr_mono.xtime_nsec <<= shift_change;
1e75fa8b 283 }
4a4ad80d
PZ
284 tk->tkr_raw.xtime_nsec = 0;
285
876e7881 286 tk->tkr_mono.shift = clock->shift;
4a4ad80d 287 tk->tkr_raw.shift = clock->shift;
155ec602 288
f726a697
JS
289 tk->ntp_error = 0;
290 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 291 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
292
293 /*
294 * The timekeeper keeps its own mult values for the currently
295 * active clocksource. These value will be adjusted via NTP
296 * to counteract clock drifting.
297 */
876e7881 298 tk->tkr_mono.mult = clock->mult;
4a4ad80d 299 tk->tkr_raw.mult = clock->mult;
dc491596 300 tk->ntp_err_mult = 0;
155ec602 301}
8524070b 302
2ba2a305 303/* Timekeeper helper functions. */
7b1f6207
SW
304
305#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
306static u32 default_arch_gettimeoffset(void) { return 0; }
307u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 308#else
e06fde37 309static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
310#endif
311
0e5ac3a8 312static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 313{
a558cd02 314 cycle_t delta;
1e75fa8b 315 s64 nsec;
2ba2a305 316
a558cd02 317 delta = timekeeping_get_delta(tkr);
2ba2a305 318
0e5ac3a8
TG
319 nsec = delta * tkr->mult + tkr->xtime_nsec;
320 nsec >>= tkr->shift;
f2a5a085 321
7b1f6207 322 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 323 return nsec + arch_gettimeoffset();
2ba2a305
MS
324}
325
4396e058
TG
326/**
327 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 328 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
329 *
330 * We want to use this from any context including NMI and tracing /
331 * instrumenting the timekeeping code itself.
332 *
6695b92a 333 * Employ the latch technique; see @raw_write_seqcount_latch.
4396e058
TG
334 *
335 * So if a NMI hits the update of base[0] then it will use base[1]
336 * which is still consistent. In the worst case this can result is a
337 * slightly wrong timestamp (a few nanoseconds). See
338 * @ktime_get_mono_fast_ns.
339 */
4498e746 340static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 341{
4498e746 342 struct tk_read_base *base = tkf->base;
4396e058
TG
343
344 /* Force readers off to base[1] */
4498e746 345 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
346
347 /* Update base[0] */
affe3e85 348 memcpy(base, tkr, sizeof(*base));
4396e058
TG
349
350 /* Force readers back to base[0] */
4498e746 351 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
352
353 /* Update base[1] */
354 memcpy(base + 1, base, sizeof(*base));
355}
356
357/**
358 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
359 *
360 * This timestamp is not guaranteed to be monotonic across an update.
361 * The timestamp is calculated by:
362 *
363 * now = base_mono + clock_delta * slope
364 *
365 * So if the update lowers the slope, readers who are forced to the
366 * not yet updated second array are still using the old steeper slope.
367 *
368 * tmono
369 * ^
370 * | o n
371 * | o n
372 * | u
373 * | o
374 * |o
375 * |12345678---> reader order
376 *
377 * o = old slope
378 * u = update
379 * n = new slope
380 *
381 * So reader 6 will observe time going backwards versus reader 5.
382 *
383 * While other CPUs are likely to be able observe that, the only way
384 * for a CPU local observation is when an NMI hits in the middle of
385 * the update. Timestamps taken from that NMI context might be ahead
386 * of the following timestamps. Callers need to be aware of that and
387 * deal with it.
388 */
4498e746 389static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
390{
391 struct tk_read_base *tkr;
392 unsigned int seq;
393 u64 now;
394
395 do {
7fc26327 396 seq = raw_read_seqcount_latch(&tkf->seq);
4498e746 397 tkr = tkf->base + (seq & 0x01);
876e7881 398 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
4498e746 399 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 400
4396e058
TG
401 return now;
402}
4498e746
PZ
403
404u64 ktime_get_mono_fast_ns(void)
405{
406 return __ktime_get_fast_ns(&tk_fast_mono);
407}
4396e058
TG
408EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
409
f09cb9a1
PZ
410u64 ktime_get_raw_fast_ns(void)
411{
412 return __ktime_get_fast_ns(&tk_fast_raw);
413}
414EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
415
060407ae
RW
416/* Suspend-time cycles value for halted fast timekeeper. */
417static cycle_t cycles_at_suspend;
418
419static cycle_t dummy_clock_read(struct clocksource *cs)
420{
421 return cycles_at_suspend;
422}
423
424/**
425 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
426 * @tk: Timekeeper to snapshot.
427 *
428 * It generally is unsafe to access the clocksource after timekeeping has been
429 * suspended, so take a snapshot of the readout base of @tk and use it as the
430 * fast timekeeper's readout base while suspended. It will return the same
431 * number of cycles every time until timekeeping is resumed at which time the
432 * proper readout base for the fast timekeeper will be restored automatically.
433 */
434static void halt_fast_timekeeper(struct timekeeper *tk)
435{
436 static struct tk_read_base tkr_dummy;
876e7881 437 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
438
439 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
440 cycles_at_suspend = tkr->read(tkr->clock);
441 tkr_dummy.read = dummy_clock_read;
4498e746 442 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
443
444 tkr = &tk->tkr_raw;
445 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
446 tkr_dummy.read = dummy_clock_read;
447 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
448}
449
c905fae4
TG
450#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
451
452static inline void update_vsyscall(struct timekeeper *tk)
453{
0680eb1f 454 struct timespec xt, wm;
c905fae4 455
e2dff1ec 456 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f 457 wm = timespec64_to_timespec(tk->wall_to_monotonic);
876e7881
PZ
458 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
459 tk->tkr_mono.cycle_last);
c905fae4
TG
460}
461
462static inline void old_vsyscall_fixup(struct timekeeper *tk)
463{
464 s64 remainder;
465
466 /*
467 * Store only full nanoseconds into xtime_nsec after rounding
468 * it up and add the remainder to the error difference.
469 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
470 * by truncating the remainder in vsyscalls. However, it causes
471 * additional work to be done in timekeeping_adjust(). Once
472 * the vsyscall implementations are converted to use xtime_nsec
473 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
474 * users are removed, this can be killed.
475 */
876e7881
PZ
476 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
477 tk->tkr_mono.xtime_nsec -= remainder;
478 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
c905fae4 479 tk->ntp_error += remainder << tk->ntp_error_shift;
876e7881 480 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
c905fae4
TG
481}
482#else
483#define old_vsyscall_fixup(tk)
484#endif
485
e0b306fe
MT
486static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
487
780427f0 488static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 489{
780427f0 490 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
491}
492
493/**
494 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
495 */
496int pvclock_gtod_register_notifier(struct notifier_block *nb)
497{
3fdb14fd 498 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
499 unsigned long flags;
500 int ret;
501
9a7a71b1 502 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 503 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 504 update_pvclock_gtod(tk, true);
9a7a71b1 505 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
506
507 return ret;
508}
509EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
510
511/**
512 * pvclock_gtod_unregister_notifier - unregister a pvclock
513 * timedata update listener
e0b306fe
MT
514 */
515int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
516{
e0b306fe
MT
517 unsigned long flags;
518 int ret;
519
9a7a71b1 520 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 521 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 522 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
523
524 return ret;
525}
526EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
527
7c032df5
TG
528/*
529 * Update the ktime_t based scalar nsec members of the timekeeper
530 */
531static inline void tk_update_ktime_data(struct timekeeper *tk)
532{
9e3680b1
HS
533 u64 seconds;
534 u32 nsec;
7c032df5
TG
535
536 /*
537 * The xtime based monotonic readout is:
538 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
539 * The ktime based monotonic readout is:
540 * nsec = base_mono + now();
541 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
542 */
9e3680b1
HS
543 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
544 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 545 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
546
547 /* Update the monotonic raw base */
4a4ad80d 548 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
549
550 /*
551 * The sum of the nanoseconds portions of xtime and
552 * wall_to_monotonic can be greater/equal one second. Take
553 * this into account before updating tk->ktime_sec.
554 */
876e7881 555 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
556 if (nsec >= NSEC_PER_SEC)
557 seconds++;
558 tk->ktime_sec = seconds;
7c032df5
TG
559}
560
9a7a71b1 561/* must hold timekeeper_lock */
04397fe9 562static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 563{
04397fe9 564 if (action & TK_CLEAR_NTP) {
f726a697 565 tk->ntp_error = 0;
cc06268c
TG
566 ntp_clear();
567 }
48cdc135 568
7c032df5
TG
569 tk_update_ktime_data(tk);
570
9bf2419f
TG
571 update_vsyscall(tk);
572 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
573
04397fe9 574 if (action & TK_MIRROR)
3fdb14fd
TG
575 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
576 sizeof(tk_core.timekeeper));
4396e058 577
4498e746 578 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 579 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
cc06268c
TG
580}
581
8524070b 582/**
155ec602 583 * timekeeping_forward_now - update clock to the current time
8524070b 584 *
9a055117
RZ
585 * Forward the current clock to update its state since the last call to
586 * update_wall_time(). This is useful before significant clock changes,
587 * as it avoids having to deal with this time offset explicitly.
8524070b 588 */
f726a697 589static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 590{
876e7881 591 struct clocksource *clock = tk->tkr_mono.clock;
3a978377 592 cycle_t cycle_now, delta;
9a055117 593 s64 nsec;
8524070b 594
876e7881
PZ
595 cycle_now = tk->tkr_mono.read(clock);
596 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
597 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 598 tk->tkr_raw.cycle_last = cycle_now;
8524070b 599
876e7881 600 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 601
7b1f6207 602 /* If arch requires, add in get_arch_timeoffset() */
876e7881 603 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 604
f726a697 605 tk_normalize_xtime(tk);
2d42244a 606
4a4ad80d 607 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
7d489d15 608 timespec64_add_ns(&tk->raw_time, nsec);
8524070b
JS
609}
610
611/**
d6d29896 612 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b
JS
613 * @ts: pointer to the timespec to be set
614 *
1e817fb6
KC
615 * Updates the time of day in the timespec.
616 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 617 */
d6d29896 618int __getnstimeofday64(struct timespec64 *ts)
8524070b 619{
3fdb14fd 620 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 621 unsigned long seq;
1e75fa8b 622 s64 nsecs = 0;
8524070b
JS
623
624 do {
3fdb14fd 625 seq = read_seqcount_begin(&tk_core.seq);
8524070b 626
4e250fdd 627 ts->tv_sec = tk->xtime_sec;
876e7881 628 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 629
3fdb14fd 630 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 631
ec145bab 632 ts->tv_nsec = 0;
d6d29896 633 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
634
635 /*
636 * Do not bail out early, in case there were callers still using
637 * the value, even in the face of the WARN_ON.
638 */
639 if (unlikely(timekeeping_suspended))
640 return -EAGAIN;
641 return 0;
642}
d6d29896 643EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
644
645/**
d6d29896 646 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 647 * @ts: pointer to the timespec64 to be set
1e817fb6 648 *
5322e4c2 649 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 650 */
d6d29896 651void getnstimeofday64(struct timespec64 *ts)
1e817fb6 652{
d6d29896 653 WARN_ON(__getnstimeofday64(ts));
8524070b 654}
d6d29896 655EXPORT_SYMBOL(getnstimeofday64);
8524070b 656
951ed4d3
MS
657ktime_t ktime_get(void)
658{
3fdb14fd 659 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 660 unsigned int seq;
a016a5bd
TG
661 ktime_t base;
662 s64 nsecs;
951ed4d3
MS
663
664 WARN_ON(timekeeping_suspended);
665
666 do {
3fdb14fd 667 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
668 base = tk->tkr_mono.base;
669 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 670
3fdb14fd 671 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 672
a016a5bd 673 return ktime_add_ns(base, nsecs);
951ed4d3
MS
674}
675EXPORT_SYMBOL_GPL(ktime_get);
676
0077dc60
TG
677static ktime_t *offsets[TK_OFFS_MAX] = {
678 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
679 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
680 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
681};
682
683ktime_t ktime_get_with_offset(enum tk_offsets offs)
684{
685 struct timekeeper *tk = &tk_core.timekeeper;
686 unsigned int seq;
687 ktime_t base, *offset = offsets[offs];
688 s64 nsecs;
689
690 WARN_ON(timekeeping_suspended);
691
692 do {
693 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
694 base = ktime_add(tk->tkr_mono.base, *offset);
695 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
696
697 } while (read_seqcount_retry(&tk_core.seq, seq));
698
699 return ktime_add_ns(base, nsecs);
700
701}
702EXPORT_SYMBOL_GPL(ktime_get_with_offset);
703
9a6b5197
TG
704/**
705 * ktime_mono_to_any() - convert mononotic time to any other time
706 * @tmono: time to convert.
707 * @offs: which offset to use
708 */
709ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
710{
711 ktime_t *offset = offsets[offs];
712 unsigned long seq;
713 ktime_t tconv;
714
715 do {
716 seq = read_seqcount_begin(&tk_core.seq);
717 tconv = ktime_add(tmono, *offset);
718 } while (read_seqcount_retry(&tk_core.seq, seq));
719
720 return tconv;
721}
722EXPORT_SYMBOL_GPL(ktime_mono_to_any);
723
f519b1a2
TG
724/**
725 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
726 */
727ktime_t ktime_get_raw(void)
728{
729 struct timekeeper *tk = &tk_core.timekeeper;
730 unsigned int seq;
731 ktime_t base;
732 s64 nsecs;
733
734 do {
735 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
736 base = tk->tkr_raw.base;
737 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
738
739 } while (read_seqcount_retry(&tk_core.seq, seq));
740
741 return ktime_add_ns(base, nsecs);
742}
743EXPORT_SYMBOL_GPL(ktime_get_raw);
744
951ed4d3 745/**
d6d29896 746 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
747 * @ts: pointer to timespec variable
748 *
749 * The function calculates the monotonic clock from the realtime
750 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 751 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 752 */
d6d29896 753void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 754{
3fdb14fd 755 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 756 struct timespec64 tomono;
ec145bab 757 s64 nsec;
951ed4d3 758 unsigned int seq;
951ed4d3
MS
759
760 WARN_ON(timekeeping_suspended);
761
762 do {
3fdb14fd 763 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 764 ts->tv_sec = tk->xtime_sec;
876e7881 765 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 766 tomono = tk->wall_to_monotonic;
951ed4d3 767
3fdb14fd 768 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 769
d6d29896
TG
770 ts->tv_sec += tomono.tv_sec;
771 ts->tv_nsec = 0;
772 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 773}
d6d29896 774EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 775
9e3680b1
HS
776/**
777 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
778 *
779 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
780 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
781 * works on both 32 and 64 bit systems. On 32 bit systems the readout
782 * covers ~136 years of uptime which should be enough to prevent
783 * premature wrap arounds.
784 */
785time64_t ktime_get_seconds(void)
786{
787 struct timekeeper *tk = &tk_core.timekeeper;
788
789 WARN_ON(timekeeping_suspended);
790 return tk->ktime_sec;
791}
792EXPORT_SYMBOL_GPL(ktime_get_seconds);
793
dbe7aa62
HS
794/**
795 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
796 *
797 * Returns the wall clock seconds since 1970. This replaces the
798 * get_seconds() interface which is not y2038 safe on 32bit systems.
799 *
800 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
801 * 32bit systems the access must be protected with the sequence
802 * counter to provide "atomic" access to the 64bit tk->xtime_sec
803 * value.
804 */
805time64_t ktime_get_real_seconds(void)
806{
807 struct timekeeper *tk = &tk_core.timekeeper;
808 time64_t seconds;
809 unsigned int seq;
810
811 if (IS_ENABLED(CONFIG_64BIT))
812 return tk->xtime_sec;
813
814 do {
815 seq = read_seqcount_begin(&tk_core.seq);
816 seconds = tk->xtime_sec;
817
818 } while (read_seqcount_retry(&tk_core.seq, seq));
819
820 return seconds;
821}
822EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
823
e2c18e49
AG
824#ifdef CONFIG_NTP_PPS
825
826/**
827 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
828 * @ts_raw: pointer to the timespec to be set to raw monotonic time
829 * @ts_real: pointer to the timespec to be set to the time of day
830 *
831 * This function reads both the time of day and raw monotonic time at the
832 * same time atomically and stores the resulting timestamps in timespec
833 * format.
834 */
835void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
836{
3fdb14fd 837 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
838 unsigned long seq;
839 s64 nsecs_raw, nsecs_real;
840
841 WARN_ON_ONCE(timekeeping_suspended);
842
843 do {
3fdb14fd 844 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 845
7d489d15 846 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 847 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 848 ts_real->tv_nsec = 0;
e2c18e49 849
4a4ad80d 850 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
876e7881 851 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
e2c18e49 852
3fdb14fd 853 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
854
855 timespec_add_ns(ts_raw, nsecs_raw);
856 timespec_add_ns(ts_real, nsecs_real);
857}
858EXPORT_SYMBOL(getnstime_raw_and_real);
859
860#endif /* CONFIG_NTP_PPS */
861
8524070b
JS
862/**
863 * do_gettimeofday - Returns the time of day in a timeval
864 * @tv: pointer to the timeval to be set
865 *
efd9ac86 866 * NOTE: Users should be converted to using getnstimeofday()
8524070b
JS
867 */
868void do_gettimeofday(struct timeval *tv)
869{
d6d29896 870 struct timespec64 now;
8524070b 871
d6d29896 872 getnstimeofday64(&now);
8524070b
JS
873 tv->tv_sec = now.tv_sec;
874 tv->tv_usec = now.tv_nsec/1000;
875}
8524070b 876EXPORT_SYMBOL(do_gettimeofday);
d239f49d 877
8524070b 878/**
21f7eca5 879 * do_settimeofday64 - Sets the time of day.
880 * @ts: pointer to the timespec64 variable containing the new time
8524070b
JS
881 *
882 * Sets the time of day to the new time and update NTP and notify hrtimers
883 */
21f7eca5 884int do_settimeofday64(const struct timespec64 *ts)
8524070b 885{
3fdb14fd 886 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 887 struct timespec64 ts_delta, xt;
92c1d3ed 888 unsigned long flags;
8524070b 889
21f7eca5 890 if (!timespec64_valid_strict(ts))
8524070b
JS
891 return -EINVAL;
892
9a7a71b1 893 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 894 write_seqcount_begin(&tk_core.seq);
8524070b 895
4e250fdd 896 timekeeping_forward_now(tk);
9a055117 897
4e250fdd 898 xt = tk_xtime(tk);
21f7eca5 899 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
900 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 901
7d489d15 902 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 903
21f7eca5 904 tk_set_xtime(tk, ts);
1e75fa8b 905
780427f0 906 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 907
3fdb14fd 908 write_seqcount_end(&tk_core.seq);
9a7a71b1 909 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
910
911 /* signal hrtimers about time change */
912 clock_was_set();
913
914 return 0;
915}
21f7eca5 916EXPORT_SYMBOL(do_settimeofday64);
8524070b 917
c528f7c6
JS
918/**
919 * timekeeping_inject_offset - Adds or subtracts from the current time.
920 * @tv: pointer to the timespec variable containing the offset
921 *
922 * Adds or subtracts an offset value from the current time.
923 */
924int timekeeping_inject_offset(struct timespec *ts)
925{
3fdb14fd 926 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 927 unsigned long flags;
7d489d15 928 struct timespec64 ts64, tmp;
4e8b1452 929 int ret = 0;
c528f7c6
JS
930
931 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
932 return -EINVAL;
933
7d489d15
JS
934 ts64 = timespec_to_timespec64(*ts);
935
9a7a71b1 936 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 937 write_seqcount_begin(&tk_core.seq);
c528f7c6 938
4e250fdd 939 timekeeping_forward_now(tk);
c528f7c6 940
4e8b1452 941 /* Make sure the proposed value is valid */
7d489d15
JS
942 tmp = timespec64_add(tk_xtime(tk), ts64);
943 if (!timespec64_valid_strict(&tmp)) {
4e8b1452
JS
944 ret = -EINVAL;
945 goto error;
946 }
1e75fa8b 947
7d489d15
JS
948 tk_xtime_add(tk, &ts64);
949 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 950
4e8b1452 951error: /* even if we error out, we forwarded the time, so call update */
780427f0 952 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 953
3fdb14fd 954 write_seqcount_end(&tk_core.seq);
9a7a71b1 955 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
956
957 /* signal hrtimers about time change */
958 clock_was_set();
959
4e8b1452 960 return ret;
c528f7c6
JS
961}
962EXPORT_SYMBOL(timekeeping_inject_offset);
963
cc244dda
JS
964
965/**
966 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
967 *
968 */
969s32 timekeeping_get_tai_offset(void)
970{
3fdb14fd 971 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
972 unsigned int seq;
973 s32 ret;
974
975 do {
3fdb14fd 976 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 977 ret = tk->tai_offset;
3fdb14fd 978 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
979
980 return ret;
981}
982
983/**
984 * __timekeeping_set_tai_offset - Lock free worker function
985 *
986 */
dd5d70e8 987static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
988{
989 tk->tai_offset = tai_offset;
04005f60 990 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
991}
992
993/**
994 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
995 *
996 */
997void timekeeping_set_tai_offset(s32 tai_offset)
998{
3fdb14fd 999 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1000 unsigned long flags;
1001
9a7a71b1 1002 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1003 write_seqcount_begin(&tk_core.seq);
cc244dda 1004 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 1005 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1006 write_seqcount_end(&tk_core.seq);
9a7a71b1 1007 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 1008 clock_was_set();
cc244dda
JS
1009}
1010
8524070b
JS
1011/**
1012 * change_clocksource - Swaps clocksources if a new one is available
1013 *
1014 * Accumulates current time interval and initializes new clocksource
1015 */
75c5158f 1016static int change_clocksource(void *data)
8524070b 1017{
3fdb14fd 1018 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1019 struct clocksource *new, *old;
f695cf94 1020 unsigned long flags;
8524070b 1021
75c5158f 1022 new = (struct clocksource *) data;
8524070b 1023
9a7a71b1 1024 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1025 write_seqcount_begin(&tk_core.seq);
f695cf94 1026
4e250fdd 1027 timekeeping_forward_now(tk);
09ac369c
TG
1028 /*
1029 * If the cs is in module, get a module reference. Succeeds
1030 * for built-in code (owner == NULL) as well.
1031 */
1032 if (try_module_get(new->owner)) {
1033 if (!new->enable || new->enable(new) == 0) {
876e7881 1034 old = tk->tkr_mono.clock;
09ac369c
TG
1035 tk_setup_internals(tk, new);
1036 if (old->disable)
1037 old->disable(old);
1038 module_put(old->owner);
1039 } else {
1040 module_put(new->owner);
1041 }
75c5158f 1042 }
780427f0 1043 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1044
3fdb14fd 1045 write_seqcount_end(&tk_core.seq);
9a7a71b1 1046 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1047
75c5158f
MS
1048 return 0;
1049}
8524070b 1050
75c5158f
MS
1051/**
1052 * timekeeping_notify - Install a new clock source
1053 * @clock: pointer to the clock source
1054 *
1055 * This function is called from clocksource.c after a new, better clock
1056 * source has been registered. The caller holds the clocksource_mutex.
1057 */
ba919d1c 1058int timekeeping_notify(struct clocksource *clock)
75c5158f 1059{
3fdb14fd 1060 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1061
876e7881 1062 if (tk->tkr_mono.clock == clock)
ba919d1c 1063 return 0;
75c5158f 1064 stop_machine(change_clocksource, clock, NULL);
8524070b 1065 tick_clock_notify();
876e7881 1066 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1067}
75c5158f 1068
2d42244a 1069/**
cdba2ec5
JS
1070 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1071 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1072 *
1073 * Returns the raw monotonic time (completely un-modified by ntp)
1074 */
cdba2ec5 1075void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1076{
3fdb14fd 1077 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1078 struct timespec64 ts64;
2d42244a
JS
1079 unsigned long seq;
1080 s64 nsecs;
2d42244a
JS
1081
1082 do {
3fdb14fd 1083 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d 1084 nsecs = timekeeping_get_ns(&tk->tkr_raw);
7d489d15 1085 ts64 = tk->raw_time;
2d42244a 1086
3fdb14fd 1087 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1088
7d489d15 1089 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1090 *ts = ts64;
2d42244a 1091}
cdba2ec5
JS
1092EXPORT_SYMBOL(getrawmonotonic64);
1093
2d42244a 1094
8524070b 1095/**
cf4fc6cb 1096 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1097 */
cf4fc6cb 1098int timekeeping_valid_for_hres(void)
8524070b 1099{
3fdb14fd 1100 struct timekeeper *tk = &tk_core.timekeeper;
8524070b
JS
1101 unsigned long seq;
1102 int ret;
1103
1104 do {
3fdb14fd 1105 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1106
876e7881 1107 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1108
3fdb14fd 1109 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b
JS
1110
1111 return ret;
1112}
1113
98962465
JH
1114/**
1115 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1116 */
1117u64 timekeeping_max_deferment(void)
1118{
3fdb14fd 1119 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1120 unsigned long seq;
1121 u64 ret;
42e71e81 1122
70471f2f 1123 do {
3fdb14fd 1124 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1125
876e7881 1126 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1127
3fdb14fd 1128 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1129
1130 return ret;
98962465
JH
1131}
1132
8524070b 1133/**
d4f587c6 1134 * read_persistent_clock - Return time from the persistent clock.
8524070b
JS
1135 *
1136 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1137 * Reads the time from the battery backed persistent clock.
1138 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b
JS
1139 *
1140 * XXX - Do be sure to remove it once all arches implement it.
1141 */
52f5684c 1142void __weak read_persistent_clock(struct timespec *ts)
8524070b 1143{
d4f587c6
MS
1144 ts->tv_sec = 0;
1145 ts->tv_nsec = 0;
8524070b
JS
1146}
1147
2ee96632
XP
1148void __weak read_persistent_clock64(struct timespec64 *ts64)
1149{
1150 struct timespec ts;
1151
1152 read_persistent_clock(&ts);
1153 *ts64 = timespec_to_timespec64(ts);
1154}
1155
23970e38
MS
1156/**
1157 * read_boot_clock - Return time of the system start.
1158 *
1159 * Weak dummy function for arches that do not yet support it.
1160 * Function to read the exact time the system has been started.
1161 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1162 *
1163 * XXX - Do be sure to remove it once all arches implement it.
1164 */
52f5684c 1165void __weak read_boot_clock(struct timespec *ts)
23970e38
MS
1166{
1167 ts->tv_sec = 0;
1168 ts->tv_nsec = 0;
1169}
1170
9a806ddb
XP
1171void __weak read_boot_clock64(struct timespec64 *ts64)
1172{
1173 struct timespec ts;
1174
1175 read_boot_clock(&ts);
1176 *ts64 = timespec_to_timespec64(ts);
1177}
1178
0fa88cb4
XP
1179/* Flag for if timekeeping_resume() has injected sleeptime */
1180static bool sleeptime_injected;
1181
1182/* Flag for if there is a persistent clock on this platform */
1183static bool persistent_clock_exists;
1184
8524070b
JS
1185/*
1186 * timekeeping_init - Initializes the clocksource and common timekeeping values
1187 */
1188void __init timekeeping_init(void)
1189{
3fdb14fd 1190 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1191 struct clocksource *clock;
8524070b 1192 unsigned long flags;
7d489d15 1193 struct timespec64 now, boot, tmp;
31ade306 1194
2ee96632 1195 read_persistent_clock64(&now);
7d489d15 1196 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1197 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1198 " Check your CMOS/BIOS settings.\n");
1199 now.tv_sec = 0;
1200 now.tv_nsec = 0;
31ade306 1201 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1202 persistent_clock_exists = true;
4e8b1452 1203
9a806ddb 1204 read_boot_clock64(&boot);
7d489d15 1205 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1206 pr_warn("WARNING: Boot clock returned invalid value!\n"
1207 " Check your CMOS/BIOS settings.\n");
1208 boot.tv_sec = 0;
1209 boot.tv_nsec = 0;
1210 }
8524070b 1211
9a7a71b1 1212 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1213 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1214 ntp_init();
1215
f1b82746 1216 clock = clocksource_default_clock();
a0f7d48b
MS
1217 if (clock->enable)
1218 clock->enable(clock);
4e250fdd 1219 tk_setup_internals(tk, clock);
8524070b 1220
4e250fdd
JS
1221 tk_set_xtime(tk, &now);
1222 tk->raw_time.tv_sec = 0;
1223 tk->raw_time.tv_nsec = 0;
1e75fa8b 1224 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1225 boot = tk_xtime(tk);
1e75fa8b 1226
7d489d15 1227 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1228 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1229
f111adfd 1230 timekeeping_update(tk, TK_MIRROR);
48cdc135 1231
3fdb14fd 1232 write_seqcount_end(&tk_core.seq);
9a7a71b1 1233 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1234}
1235
264bb3f7 1236/* time in seconds when suspend began for persistent clock */
7d489d15 1237static struct timespec64 timekeeping_suspend_time;
8524070b 1238
304529b1
JS
1239/**
1240 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1241 * @delta: pointer to a timespec delta value
1242 *
1243 * Takes a timespec offset measuring a suspend interval and properly
1244 * adds the sleep offset to the timekeeping variables.
1245 */
f726a697 1246static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1247 struct timespec64 *delta)
304529b1 1248{
7d489d15 1249 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1250 printk_deferred(KERN_WARNING
1251 "__timekeeping_inject_sleeptime: Invalid "
1252 "sleep delta value!\n");
cb5de2f8
JS
1253 return;
1254 }
f726a697 1255 tk_xtime_add(tk, delta);
7d489d15 1256 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1257 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1258 tk_debug_account_sleep_time(delta);
304529b1
JS
1259}
1260
7f298139 1261#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1262/**
1263 * We have three kinds of time sources to use for sleep time
1264 * injection, the preference order is:
1265 * 1) non-stop clocksource
1266 * 2) persistent clock (ie: RTC accessible when irqs are off)
1267 * 3) RTC
1268 *
1269 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1270 * If system has neither 1) nor 2), 3) will be used finally.
1271 *
1272 *
1273 * If timekeeping has injected sleeptime via either 1) or 2),
1274 * 3) becomes needless, so in this case we don't need to call
1275 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1276 * means.
1277 */
1278bool timekeeping_rtc_skipresume(void)
1279{
1280 return sleeptime_injected;
1281}
1282
1283/**
1284 * 1) can be determined whether to use or not only when doing
1285 * timekeeping_resume() which is invoked after rtc_suspend(),
1286 * so we can't skip rtc_suspend() surely if system has 1).
1287 *
1288 * But if system has 2), 2) will definitely be used, so in this
1289 * case we don't need to call rtc_suspend(), and this is what
1290 * timekeeping_rtc_skipsuspend() means.
1291 */
1292bool timekeeping_rtc_skipsuspend(void)
1293{
1294 return persistent_clock_exists;
1295}
1296
304529b1 1297/**
04d90890 1298 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1299 * @delta: pointer to a timespec64 delta value
304529b1 1300 *
2ee96632 1301 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1302 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1303 * and also don't have an effective nonstop clocksource.
304529b1
JS
1304 *
1305 * This function should only be called by rtc_resume(), and allows
1306 * a suspend offset to be injected into the timekeeping values.
1307 */
04d90890 1308void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1309{
3fdb14fd 1310 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1311 unsigned long flags;
304529b1 1312
9a7a71b1 1313 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1314 write_seqcount_begin(&tk_core.seq);
70471f2f 1315
4e250fdd 1316 timekeeping_forward_now(tk);
304529b1 1317
04d90890 1318 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1319
780427f0 1320 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1321
3fdb14fd 1322 write_seqcount_end(&tk_core.seq);
9a7a71b1 1323 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1324
1325 /* signal hrtimers about time change */
1326 clock_was_set();
1327}
7f298139 1328#endif
304529b1 1329
8524070b
JS
1330/**
1331 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1332 */
124cf911 1333void timekeeping_resume(void)
8524070b 1334{
3fdb14fd 1335 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1336 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1337 unsigned long flags;
7d489d15 1338 struct timespec64 ts_new, ts_delta;
e445cf1c 1339 cycle_t cycle_now, cycle_delta;
d4f587c6 1340
0fa88cb4 1341 sleeptime_injected = false;
2ee96632 1342 read_persistent_clock64(&ts_new);
8524070b 1343
adc78e6b 1344 clockevents_resume();
d10ff3fb
TG
1345 clocksource_resume();
1346
9a7a71b1 1347 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1348 write_seqcount_begin(&tk_core.seq);
8524070b 1349
e445cf1c
FT
1350 /*
1351 * After system resumes, we need to calculate the suspended time and
1352 * compensate it for the OS time. There are 3 sources that could be
1353 * used: Nonstop clocksource during suspend, persistent clock and rtc
1354 * device.
1355 *
1356 * One specific platform may have 1 or 2 or all of them, and the
1357 * preference will be:
1358 * suspend-nonstop clocksource -> persistent clock -> rtc
1359 * The less preferred source will only be tried if there is no better
1360 * usable source. The rtc part is handled separately in rtc core code.
1361 */
876e7881 1362 cycle_now = tk->tkr_mono.read(clock);
e445cf1c 1363 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1364 cycle_now > tk->tkr_mono.cycle_last) {
e445cf1c
FT
1365 u64 num, max = ULLONG_MAX;
1366 u32 mult = clock->mult;
1367 u32 shift = clock->shift;
1368 s64 nsec = 0;
1369
876e7881
PZ
1370 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1371 tk->tkr_mono.mask);
e445cf1c
FT
1372
1373 /*
1374 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1375 * suspended time is too long. In that case we need do the
1376 * 64 bits math carefully
1377 */
1378 do_div(max, mult);
1379 if (cycle_delta > max) {
1380 num = div64_u64(cycle_delta, max);
1381 nsec = (((u64) max * mult) >> shift) * num;
1382 cycle_delta -= num * max;
1383 }
1384 nsec += ((u64) cycle_delta * mult) >> shift;
1385
7d489d15 1386 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1387 sleeptime_injected = true;
7d489d15
JS
1388 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1389 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1390 sleeptime_injected = true;
8524070b 1391 }
e445cf1c 1392
0fa88cb4 1393 if (sleeptime_injected)
e445cf1c
FT
1394 __timekeeping_inject_sleeptime(tk, &ts_delta);
1395
1396 /* Re-base the last cycle value */
876e7881 1397 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1398 tk->tkr_raw.cycle_last = cycle_now;
1399
4e250fdd 1400 tk->ntp_error = 0;
8524070b 1401 timekeeping_suspended = 0;
780427f0 1402 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1403 write_seqcount_end(&tk_core.seq);
9a7a71b1 1404 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1405
1406 touch_softlockup_watchdog();
1407
4ffee521 1408 tick_resume();
b12a03ce 1409 hrtimers_resume();
8524070b
JS
1410}
1411
124cf911 1412int timekeeping_suspend(void)
8524070b 1413{
3fdb14fd 1414 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1415 unsigned long flags;
7d489d15
JS
1416 struct timespec64 delta, delta_delta;
1417 static struct timespec64 old_delta;
8524070b 1418
2ee96632 1419 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1420
0d6bd995
ZM
1421 /*
1422 * On some systems the persistent_clock can not be detected at
1423 * timekeeping_init by its return value, so if we see a valid
1424 * value returned, update the persistent_clock_exists flag.
1425 */
1426 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1427 persistent_clock_exists = true;
0d6bd995 1428
9a7a71b1 1429 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1430 write_seqcount_begin(&tk_core.seq);
4e250fdd 1431 timekeeping_forward_now(tk);
8524070b 1432 timekeeping_suspended = 1;
cb33217b 1433
0fa88cb4 1434 if (persistent_clock_exists) {
cb33217b 1435 /*
264bb3f7
XP
1436 * To avoid drift caused by repeated suspend/resumes,
1437 * which each can add ~1 second drift error,
1438 * try to compensate so the difference in system time
1439 * and persistent_clock time stays close to constant.
cb33217b 1440 */
264bb3f7
XP
1441 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1442 delta_delta = timespec64_sub(delta, old_delta);
1443 if (abs(delta_delta.tv_sec) >= 2) {
1444 /*
1445 * if delta_delta is too large, assume time correction
1446 * has occurred and set old_delta to the current delta.
1447 */
1448 old_delta = delta;
1449 } else {
1450 /* Otherwise try to adjust old_system to compensate */
1451 timekeeping_suspend_time =
1452 timespec64_add(timekeeping_suspend_time, delta_delta);
1453 }
cb33217b 1454 }
330a1617
JS
1455
1456 timekeeping_update(tk, TK_MIRROR);
060407ae 1457 halt_fast_timekeeper(tk);
3fdb14fd 1458 write_seqcount_end(&tk_core.seq);
9a7a71b1 1459 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1460
4ffee521 1461 tick_suspend();
c54a42b1 1462 clocksource_suspend();
adc78e6b 1463 clockevents_suspend();
8524070b
JS
1464
1465 return 0;
1466}
1467
1468/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1469static struct syscore_ops timekeeping_syscore_ops = {
8524070b
JS
1470 .resume = timekeeping_resume,
1471 .suspend = timekeeping_suspend,
8524070b
JS
1472};
1473
e1a85b2c 1474static int __init timekeeping_init_ops(void)
8524070b 1475{
e1a85b2c
RW
1476 register_syscore_ops(&timekeeping_syscore_ops);
1477 return 0;
8524070b 1478}
e1a85b2c 1479device_initcall(timekeeping_init_ops);
8524070b
JS
1480
1481/*
dc491596 1482 * Apply a multiplier adjustment to the timekeeper
8524070b 1483 */
dc491596
JS
1484static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1485 s64 offset,
1486 bool negative,
1487 int adj_scale)
8524070b 1488{
dc491596
JS
1489 s64 interval = tk->cycle_interval;
1490 s32 mult_adj = 1;
8524070b 1491
dc491596
JS
1492 if (negative) {
1493 mult_adj = -mult_adj;
1494 interval = -interval;
1495 offset = -offset;
1d17d174 1496 }
dc491596
JS
1497 mult_adj <<= adj_scale;
1498 interval <<= adj_scale;
1499 offset <<= adj_scale;
8524070b 1500
c2bc1111
JS
1501 /*
1502 * So the following can be confusing.
1503 *
dc491596 1504 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1505 *
dc491596 1506 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1507 * have been appropriately scaled so the math is the same.
1508 *
1509 * The basic idea here is that we're increasing the multiplier
1510 * by one, this causes the xtime_interval to be incremented by
1511 * one cycle_interval. This is because:
1512 * xtime_interval = cycle_interval * mult
1513 * So if mult is being incremented by one:
1514 * xtime_interval = cycle_interval * (mult + 1)
1515 * Its the same as:
1516 * xtime_interval = (cycle_interval * mult) + cycle_interval
1517 * Which can be shortened to:
1518 * xtime_interval += cycle_interval
1519 *
1520 * So offset stores the non-accumulated cycles. Thus the current
1521 * time (in shifted nanoseconds) is:
1522 * now = (offset * adj) + xtime_nsec
1523 * Now, even though we're adjusting the clock frequency, we have
1524 * to keep time consistent. In other words, we can't jump back
1525 * in time, and we also want to avoid jumping forward in time.
1526 *
1527 * So given the same offset value, we need the time to be the same
1528 * both before and after the freq adjustment.
1529 * now = (offset * adj_1) + xtime_nsec_1
1530 * now = (offset * adj_2) + xtime_nsec_2
1531 * So:
1532 * (offset * adj_1) + xtime_nsec_1 =
1533 * (offset * adj_2) + xtime_nsec_2
1534 * And we know:
1535 * adj_2 = adj_1 + 1
1536 * So:
1537 * (offset * adj_1) + xtime_nsec_1 =
1538 * (offset * (adj_1+1)) + xtime_nsec_2
1539 * (offset * adj_1) + xtime_nsec_1 =
1540 * (offset * adj_1) + offset + xtime_nsec_2
1541 * Canceling the sides:
1542 * xtime_nsec_1 = offset + xtime_nsec_2
1543 * Which gives us:
1544 * xtime_nsec_2 = xtime_nsec_1 - offset
1545 * Which simplfies to:
1546 * xtime_nsec -= offset
1547 *
1548 * XXX - TODO: Doc ntp_error calculation.
1549 */
876e7881 1550 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1551 /* NTP adjustment caused clocksource mult overflow */
1552 WARN_ON_ONCE(1);
1553 return;
1554 }
1555
876e7881 1556 tk->tkr_mono.mult += mult_adj;
f726a697 1557 tk->xtime_interval += interval;
876e7881 1558 tk->tkr_mono.xtime_nsec -= offset;
f726a697 1559 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1560}
1561
1562/*
1563 * Calculate the multiplier adjustment needed to match the frequency
1564 * specified by NTP
1565 */
1566static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1567 s64 offset)
1568{
1569 s64 interval = tk->cycle_interval;
1570 s64 xinterval = tk->xtime_interval;
1571 s64 tick_error;
1572 bool negative;
1573 u32 adj;
1574
1575 /* Remove any current error adj from freq calculation */
1576 if (tk->ntp_err_mult)
1577 xinterval -= tk->cycle_interval;
1578
375f45b5
JS
1579 tk->ntp_tick = ntp_tick_length();
1580
dc491596
JS
1581 /* Calculate current error per tick */
1582 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1583 tick_error -= (xinterval + tk->xtime_remainder);
1584
1585 /* Don't worry about correcting it if its small */
1586 if (likely((tick_error >= 0) && (tick_error <= interval)))
1587 return;
1588
1589 /* preserve the direction of correction */
1590 negative = (tick_error < 0);
1591
1592 /* Sort out the magnitude of the correction */
1593 tick_error = abs(tick_error);
1594 for (adj = 0; tick_error > interval; adj++)
1595 tick_error >>= 1;
1596
1597 /* scale the corrections */
1598 timekeeping_apply_adjustment(tk, offset, negative, adj);
1599}
1600
1601/*
1602 * Adjust the timekeeper's multiplier to the correct frequency
1603 * and also to reduce the accumulated error value.
1604 */
1605static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1606{
1607 /* Correct for the current frequency error */
1608 timekeeping_freqadjust(tk, offset);
1609
1610 /* Next make a small adjustment to fix any cumulative error */
1611 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1612 tk->ntp_err_mult = 1;
1613 timekeeping_apply_adjustment(tk, offset, 0, 0);
1614 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1615 /* Undo any existing error adjustment */
1616 timekeeping_apply_adjustment(tk, offset, 1, 0);
1617 tk->ntp_err_mult = 0;
1618 }
1619
876e7881
PZ
1620 if (unlikely(tk->tkr_mono.clock->maxadj &&
1621 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1622 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1623 printk_once(KERN_WARNING
1624 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1625 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1626 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1627 }
2a8c0883
JS
1628
1629 /*
1630 * It may be possible that when we entered this function, xtime_nsec
1631 * was very small. Further, if we're slightly speeding the clocksource
1632 * in the code above, its possible the required corrective factor to
1633 * xtime_nsec could cause it to underflow.
1634 *
1635 * Now, since we already accumulated the second, cannot simply roll
1636 * the accumulated second back, since the NTP subsystem has been
1637 * notified via second_overflow. So instead we push xtime_nsec forward
1638 * by the amount we underflowed, and add that amount into the error.
1639 *
1640 * We'll correct this error next time through this function, when
1641 * xtime_nsec is not as small.
1642 */
876e7881
PZ
1643 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1644 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1645 tk->tkr_mono.xtime_nsec = 0;
f726a697 1646 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1647 }
8524070b
JS
1648}
1649
1f4f9487
JS
1650/**
1651 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1652 *
1653 * Helper function that accumulates a the nsecs greater then a second
1654 * from the xtime_nsec field to the xtime_secs field.
1655 * It also calls into the NTP code to handle leapsecond processing.
1656 *
1657 */
780427f0 1658static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1659{
876e7881 1660 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1661 unsigned int clock_set = 0;
1f4f9487 1662
876e7881 1663 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1664 int leap;
1665
876e7881 1666 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1667 tk->xtime_sec++;
1668
1669 /* Figure out if its a leap sec and apply if needed */
1670 leap = second_overflow(tk->xtime_sec);
6d0ef903 1671 if (unlikely(leap)) {
7d489d15 1672 struct timespec64 ts;
6d0ef903
JS
1673
1674 tk->xtime_sec += leap;
1f4f9487 1675
6d0ef903
JS
1676 ts.tv_sec = leap;
1677 ts.tv_nsec = 0;
1678 tk_set_wall_to_mono(tk,
7d489d15 1679 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1680
cc244dda
JS
1681 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1682
5258d3f2 1683 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1684 }
1f4f9487 1685 }
5258d3f2 1686 return clock_set;
1f4f9487
JS
1687}
1688
a092ff0f
JS
1689/**
1690 * logarithmic_accumulation - shifted accumulation of cycles
1691 *
1692 * This functions accumulates a shifted interval of cycles into
1693 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1694 * loop.
1695 *
1696 * Returns the unconsumed cycles.
1697 */
f726a697 1698static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1699 u32 shift,
1700 unsigned int *clock_set)
a092ff0f 1701{
23a9537a 1702 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1703 u64 raw_nsecs;
a092ff0f 1704
f726a697 1705 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1706 if (offset < interval)
a092ff0f
JS
1707 return offset;
1708
1709 /* Accumulate one shifted interval */
23a9537a 1710 offset -= interval;
876e7881 1711 tk->tkr_mono.cycle_last += interval;
4a4ad80d 1712 tk->tkr_raw.cycle_last += interval;
a092ff0f 1713
876e7881 1714 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1715 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1716
deda2e81 1717 /* Accumulate raw time */
5b3900cd 1718 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1719 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1720 if (raw_nsecs >= NSEC_PER_SEC) {
1721 u64 raw_secs = raw_nsecs;
1722 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1723 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1724 }
f726a697 1725 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f
JS
1726
1727 /* Accumulate error between NTP and clock interval */
375f45b5 1728 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1729 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1730 (tk->ntp_error_shift + shift);
a092ff0f
JS
1731
1732 return offset;
1733}
1734
8524070b
JS
1735/**
1736 * update_wall_time - Uses the current clocksource to increment the wall time
1737 *
8524070b 1738 */
47a1b796 1739void update_wall_time(void)
8524070b 1740{
3fdb14fd 1741 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1742 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1743 cycle_t offset;
a092ff0f 1744 int shift = 0, maxshift;
5258d3f2 1745 unsigned int clock_set = 0;
70471f2f
JS
1746 unsigned long flags;
1747
9a7a71b1 1748 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b
JS
1749
1750 /* Make sure we're fully resumed: */
1751 if (unlikely(timekeeping_suspended))
70471f2f 1752 goto out;
8524070b 1753
592913ec 1754#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1755 offset = real_tk->cycle_interval;
592913ec 1756#else
876e7881
PZ
1757 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1758 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 1759#endif
8524070b 1760
bf2ac312 1761 /* Check if there's really nothing to do */
48cdc135 1762 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1763 goto out;
1764
3c17ad19
JS
1765 /* Do some additional sanity checking */
1766 timekeeping_check_update(real_tk, offset);
1767
a092ff0f
JS
1768 /*
1769 * With NO_HZ we may have to accumulate many cycle_intervals
1770 * (think "ticks") worth of time at once. To do this efficiently,
1771 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1772 * that is smaller than the offset. We then accumulate that
a092ff0f
JS
1773 * chunk in one go, and then try to consume the next smaller
1774 * doubled multiple.
8524070b 1775 */
4e250fdd 1776 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1777 shift = max(0, shift);
88b28adf 1778 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1779 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1780 shift = min(shift, maxshift);
4e250fdd 1781 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1782 offset = logarithmic_accumulation(tk, offset, shift,
1783 &clock_set);
4e250fdd 1784 if (offset < tk->cycle_interval<<shift)
830ec045 1785 shift--;
8524070b
JS
1786 }
1787
1788 /* correct the clock when NTP error is too big */
4e250fdd 1789 timekeeping_adjust(tk, offset);
8524070b 1790
6a867a39 1791 /*
92bb1fcf
JS
1792 * XXX This can be killed once everyone converts
1793 * to the new update_vsyscall.
1794 */
1795 old_vsyscall_fixup(tk);
8524070b 1796
6a867a39
JS
1797 /*
1798 * Finally, make sure that after the rounding
1e75fa8b 1799 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1800 */
5258d3f2 1801 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1802
3fdb14fd 1803 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1804 /*
1805 * Update the real timekeeper.
1806 *
1807 * We could avoid this memcpy by switching pointers, but that
1808 * requires changes to all other timekeeper usage sites as
1809 * well, i.e. move the timekeeper pointer getter into the
1810 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1811 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1812 * updating.
1813 */
1814 memcpy(real_tk, tk, sizeof(*tk));
5258d3f2 1815 timekeeping_update(real_tk, clock_set);
3fdb14fd 1816 write_seqcount_end(&tk_core.seq);
ca4523cd 1817out:
9a7a71b1 1818 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1819 if (clock_set)
cab5e127
JS
1820 /* Have to call _delayed version, since in irq context*/
1821 clock_was_set_delayed();
8524070b 1822}
7c3f1a57
TJ
1823
1824/**
d08c0cdd
JS
1825 * getboottime64 - Return the real time of system boot.
1826 * @ts: pointer to the timespec64 to be set
7c3f1a57 1827 *
d08c0cdd 1828 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
1829 *
1830 * This is based on the wall_to_monotonic offset and the total suspend
1831 * time. Calls to settimeofday will affect the value returned (which
1832 * basically means that however wrong your real time clock is at boot time,
1833 * you get the right time here).
1834 */
d08c0cdd 1835void getboottime64(struct timespec64 *ts)
7c3f1a57 1836{
3fdb14fd 1837 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1838 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1839
d08c0cdd 1840 *ts = ktime_to_timespec64(t);
7c3f1a57 1841}
d08c0cdd 1842EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 1843
17c38b74
JS
1844unsigned long get_seconds(void)
1845{
3fdb14fd 1846 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1847
1848 return tk->xtime_sec;
17c38b74
JS
1849}
1850EXPORT_SYMBOL(get_seconds);
1851
da15cfda
JS
1852struct timespec __current_kernel_time(void)
1853{
3fdb14fd 1854 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1855
7d489d15 1856 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1857}
17c38b74 1858
2c6b47de
JS
1859struct timespec current_kernel_time(void)
1860{
3fdb14fd 1861 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1862 struct timespec64 now;
2c6b47de
JS
1863 unsigned long seq;
1864
1865 do {
3fdb14fd 1866 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1867
4e250fdd 1868 now = tk_xtime(tk);
3fdb14fd 1869 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1870
7d489d15 1871 return timespec64_to_timespec(now);
2c6b47de 1872}
2c6b47de 1873EXPORT_SYMBOL(current_kernel_time);
da15cfda 1874
334334b5 1875struct timespec64 get_monotonic_coarse64(void)
da15cfda 1876{
3fdb14fd 1877 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1878 struct timespec64 now, mono;
da15cfda
JS
1879 unsigned long seq;
1880
1881 do {
3fdb14fd 1882 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1883
4e250fdd
JS
1884 now = tk_xtime(tk);
1885 mono = tk->wall_to_monotonic;
3fdb14fd 1886 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1887
7d489d15 1888 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1889 now.tv_nsec + mono.tv_nsec);
7d489d15 1890
334334b5 1891 return now;
da15cfda 1892}
871cf1e5
TH
1893
1894/*
d6ad4187 1895 * Must hold jiffies_lock
871cf1e5
TH
1896 */
1897void do_timer(unsigned long ticks)
1898{
1899 jiffies_64 += ticks;
871cf1e5
TH
1900 calc_global_load(ticks);
1901}
48cf76f7
TH
1902
1903/**
76f41088
JS
1904 * ktime_get_update_offsets_tick - hrtimer helper
1905 * @offs_real: pointer to storage for monotonic -> realtime offset
1906 * @offs_boot: pointer to storage for monotonic -> boottime offset
1907 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1908 *
1909 * Returns monotonic time at last tick and various offsets
48cf76f7 1910 */
76f41088
JS
1911ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1912 ktime_t *offs_tai)
48cf76f7 1913{
3fdb14fd 1914 struct timekeeper *tk = &tk_core.timekeeper;
76f41088 1915 unsigned int seq;
48064f5f
TG
1916 ktime_t base;
1917 u64 nsecs;
48cf76f7
TH
1918
1919 do {
3fdb14fd 1920 seq = read_seqcount_begin(&tk_core.seq);
76f41088 1921
876e7881
PZ
1922 base = tk->tkr_mono.base;
1923 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
48064f5f 1924
76f41088
JS
1925 *offs_real = tk->offs_real;
1926 *offs_boot = tk->offs_boot;
1927 *offs_tai = tk->offs_tai;
3fdb14fd 1928 } while (read_seqcount_retry(&tk_core.seq, seq));
76f41088 1929
48064f5f 1930 return ktime_add_ns(base, nsecs);
48cf76f7 1931}
f0af911a 1932
f6c06abf
TG
1933#ifdef CONFIG_HIGH_RES_TIMERS
1934/**
76f41088 1935 * ktime_get_update_offsets_now - hrtimer helper
f6c06abf
TG
1936 * @offs_real: pointer to storage for monotonic -> realtime offset
1937 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1938 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf
TG
1939 *
1940 * Returns current monotonic time and updates the offsets
b7bc50e4 1941 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1942 */
76f41088 1943ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
90adda98 1944 ktime_t *offs_tai)
f6c06abf 1945{
3fdb14fd 1946 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1947 unsigned int seq;
a37c0aad
TG
1948 ktime_t base;
1949 u64 nsecs;
f6c06abf
TG
1950
1951 do {
3fdb14fd 1952 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1953
876e7881
PZ
1954 base = tk->tkr_mono.base;
1955 nsecs = timekeeping_get_ns(&tk->tkr_mono);
f6c06abf 1956
4e250fdd
JS
1957 *offs_real = tk->offs_real;
1958 *offs_boot = tk->offs_boot;
90adda98 1959 *offs_tai = tk->offs_tai;
3fdb14fd 1960 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1961
a37c0aad 1962 return ktime_add_ns(base, nsecs);
f6c06abf
TG
1963}
1964#endif
1965
aa6f9c59
JS
1966/**
1967 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1968 */
1969int do_adjtimex(struct timex *txc)
1970{
3fdb14fd 1971 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1972 unsigned long flags;
7d489d15 1973 struct timespec64 ts;
4e8f8b34 1974 s32 orig_tai, tai;
e4085693
JS
1975 int ret;
1976
1977 /* Validate the data before disabling interrupts */
1978 ret = ntp_validate_timex(txc);
1979 if (ret)
1980 return ret;
1981
cef90377
JS
1982 if (txc->modes & ADJ_SETOFFSET) {
1983 struct timespec delta;
1984 delta.tv_sec = txc->time.tv_sec;
1985 delta.tv_nsec = txc->time.tv_usec;
1986 if (!(txc->modes & ADJ_NANO))
1987 delta.tv_nsec *= 1000;
1988 ret = timekeeping_inject_offset(&delta);
1989 if (ret)
1990 return ret;
1991 }
1992
d6d29896 1993 getnstimeofday64(&ts);
87ace39b 1994
06c017fd 1995 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1996 write_seqcount_begin(&tk_core.seq);
06c017fd 1997
4e8f8b34 1998 orig_tai = tai = tk->tai_offset;
87ace39b 1999 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2000
4e8f8b34
JS
2001 if (tai != orig_tai) {
2002 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2003 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2004 }
3fdb14fd 2005 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2006 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2007
6fdda9a9
JS
2008 if (tai != orig_tai)
2009 clock_was_set();
2010
7bd36014
JS
2011 ntp_notify_cmos_timer();
2012
87ace39b
JS
2013 return ret;
2014}
aa6f9c59
JS
2015
2016#ifdef CONFIG_NTP_PPS
2017/**
2018 * hardpps() - Accessor function to NTP __hardpps function
2019 */
2020void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2021{
06c017fd
JS
2022 unsigned long flags;
2023
2024 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2025 write_seqcount_begin(&tk_core.seq);
06c017fd 2026
aa6f9c59 2027 __hardpps(phase_ts, raw_ts);
06c017fd 2028
3fdb14fd 2029 write_seqcount_end(&tk_core.seq);
06c017fd 2030 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2031}
2032EXPORT_SYMBOL(hardpps);
2033#endif
2034
f0af911a
TH
2035/**
2036 * xtime_update() - advances the timekeeping infrastructure
2037 * @ticks: number of ticks, that have elapsed since the last call.
2038 *
2039 * Must be called with interrupts disabled.
2040 */
2041void xtime_update(unsigned long ticks)
2042{
d6ad4187 2043 write_seqlock(&jiffies_lock);
f0af911a 2044 do_timer(ticks);
d6ad4187 2045 write_sequnlock(&jiffies_lock);
47a1b796 2046 update_wall_time();
f0af911a 2047}