]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/timekeeping.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / kernel / time / timekeeping.c
CommitLineData
8524070b
JS
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b
JS
12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
38b8d208 17#include <linux/nmi.h>
d43c36dc 18#include <linux/sched.h>
4f17722c 19#include <linux/sched/loadavg.h>
e1a85b2c 20#include <linux/syscore_ops.h>
8524070b
JS
21#include <linux/clocksource.h>
22#include <linux/jiffies.h>
23#include <linux/time.h>
24#include <linux/tick.h>
75c5158f 25#include <linux/stop_machine.h>
e0b306fe 26#include <linux/pvclock_gtod.h>
52f5684c 27#include <linux/compiler.h>
8524070b 28
eb93e4d9 29#include "tick-internal.h"
aa6f9c59 30#include "ntp_internal.h"
5c83545f 31#include "timekeeping_internal.h"
155ec602 32
04397fe9
DV
33#define TK_CLEAR_NTP (1 << 0)
34#define TK_MIRROR (1 << 1)
780427f0 35#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 36
3fdb14fd
TG
37/*
38 * The most important data for readout fits into a single 64 byte
39 * cache line.
40 */
41static struct {
42 seqcount_t seq;
43 struct timekeeper timekeeper;
44} tk_core ____cacheline_aligned;
45
9a7a71b1 46static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 47static struct timekeeper shadow_timekeeper;
155ec602 48
4396e058
TG
49/**
50 * struct tk_fast - NMI safe timekeeper
51 * @seq: Sequence counter for protecting updates. The lowest bit
52 * is the index for the tk_read_base array
53 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * @seq.
55 *
56 * See @update_fast_timekeeper() below.
57 */
58struct tk_fast {
59 seqcount_t seq;
60 struct tk_read_base base[2];
61};
62
63static struct tk_fast tk_fast_mono ____cacheline_aligned;
f09cb9a1 64static struct tk_fast tk_fast_raw ____cacheline_aligned;
4396e058 65
8fcce546
JS
66/* flag for if timekeeping is suspended */
67int __read_mostly timekeeping_suspended;
68
1e75fa8b
JS
69static inline void tk_normalize_xtime(struct timekeeper *tk)
70{
876e7881
PZ
71 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
72 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
73 tk->xtime_sec++;
74 }
75}
76
c905fae4
TG
77static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78{
79 struct timespec64 ts;
80
81 ts.tv_sec = tk->xtime_sec;
876e7881 82 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
83 return ts;
84}
85
7d489d15 86static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
87{
88 tk->xtime_sec = ts->tv_sec;
876e7881 89 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
90}
91
7d489d15 92static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
93{
94 tk->xtime_sec += ts->tv_sec;
876e7881 95 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 96 tk_normalize_xtime(tk);
1e75fa8b 97}
8fcce546 98
7d489d15 99static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 100{
7d489d15 101 struct timespec64 tmp;
6d0ef903
JS
102
103 /*
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
106 */
7d489d15 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 108 -tk->wall_to_monotonic.tv_nsec);
2456e855 109 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
6d0ef903 110 tk->wall_to_monotonic = wtm;
7d489d15
JS
111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
114}
115
47da70d3 116static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 117{
47da70d3 118 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
119}
120
ceea5e37
JS
121/*
122 * tk_clock_read - atomic clocksource read() helper
123 *
124 * This helper is necessary to use in the read paths because, while the
125 * seqlock ensures we don't return a bad value while structures are updated,
126 * it doesn't protect from potential crashes. There is the possibility that
127 * the tkr's clocksource may change between the read reference, and the
128 * clock reference passed to the read function. This can cause crashes if
129 * the wrong clocksource is passed to the wrong read function.
130 * This isn't necessary to use when holding the timekeeper_lock or doing
131 * a read of the fast-timekeeper tkrs (which is protected by its own locking
132 * and update logic).
133 */
134static inline u64 tk_clock_read(struct tk_read_base *tkr)
135{
136 struct clocksource *clock = READ_ONCE(tkr->clock);
137
138 return clock->read(clock);
139}
140
3c17ad19 141#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 142#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 143
a5a1d1c2 144static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
3c17ad19
JS
145{
146
a5a1d1c2 147 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
876e7881 148 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
149
150 if (offset > max_cycles) {
a558cd02 151 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 152 offset, name, max_cycles);
a558cd02 153 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
154 } else {
155 if (offset > (max_cycles >> 1)) {
fc4fa6e1 156 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
3c17ad19
JS
157 offset, name, max_cycles >> 1);
158 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
159 }
160 }
4ca22c26 161
57d05a93
JS
162 if (tk->underflow_seen) {
163 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
164 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
165 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
166 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 167 tk->last_warning = jiffies;
4ca22c26 168 }
57d05a93 169 tk->underflow_seen = 0;
4ca22c26
JS
170 }
171
57d05a93
JS
172 if (tk->overflow_seen) {
173 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
174 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
175 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
176 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 177 tk->last_warning = jiffies;
4ca22c26 178 }
57d05a93 179 tk->overflow_seen = 0;
4ca22c26 180 }
3c17ad19 181}
a558cd02 182
a5a1d1c2 183static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
a558cd02 184{
57d05a93 185 struct timekeeper *tk = &tk_core.timekeeper;
a5a1d1c2 186 u64 now, last, mask, max, delta;
4ca22c26 187 unsigned int seq;
a558cd02 188
4ca22c26
JS
189 /*
190 * Since we're called holding a seqlock, the data may shift
191 * under us while we're doing the calculation. This can cause
192 * false positives, since we'd note a problem but throw the
193 * results away. So nest another seqlock here to atomically
194 * grab the points we are checking with.
195 */
196 do {
197 seq = read_seqcount_begin(&tk_core.seq);
ceea5e37 198 now = tk_clock_read(tkr);
4ca22c26
JS
199 last = tkr->cycle_last;
200 mask = tkr->mask;
201 max = tkr->clock->max_cycles;
202 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 203
4ca22c26 204 delta = clocksource_delta(now, last, mask);
a558cd02 205
057b87e3
JS
206 /*
207 * Try to catch underflows by checking if we are seeing small
208 * mask-relative negative values.
209 */
4ca22c26 210 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 211 tk->underflow_seen = 1;
057b87e3 212 delta = 0;
4ca22c26 213 }
057b87e3 214
a558cd02 215 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 216 if (unlikely(delta > max)) {
57d05a93 217 tk->overflow_seen = 1;
a558cd02 218 delta = tkr->clock->max_cycles;
4ca22c26 219 }
a558cd02
JS
220
221 return delta;
222}
3c17ad19 223#else
a5a1d1c2 224static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
3c17ad19
JS
225{
226}
a5a1d1c2 227static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
a558cd02 228{
a5a1d1c2 229 u64 cycle_now, delta;
a558cd02
JS
230
231 /* read clocksource */
ceea5e37 232 cycle_now = tk_clock_read(tkr);
a558cd02
JS
233
234 /* calculate the delta since the last update_wall_time */
235 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
236
237 return delta;
238}
3c17ad19
JS
239#endif
240
155ec602 241/**
d26e4fe0 242 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 243 *
d26e4fe0 244 * @tk: The target timekeeper to setup.
155ec602
MS
245 * @clock: Pointer to clocksource.
246 *
247 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
248 * pair and interval request.
249 *
250 * Unless you're the timekeeping code, you should not be using this!
251 */
f726a697 252static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602 253{
a5a1d1c2 254 u64 interval;
a386b5af 255 u64 tmp, ntpinterval;
1e75fa8b 256 struct clocksource *old_clock;
155ec602 257
2c756feb 258 ++tk->cs_was_changed_seq;
876e7881
PZ
259 old_clock = tk->tkr_mono.clock;
260 tk->tkr_mono.clock = clock;
876e7881 261 tk->tkr_mono.mask = clock->mask;
ceea5e37 262 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
155ec602 263
4a4ad80d 264 tk->tkr_raw.clock = clock;
4a4ad80d
PZ
265 tk->tkr_raw.mask = clock->mask;
266 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
267
155ec602
MS
268 /* Do the ns -> cycle conversion first, using original mult */
269 tmp = NTP_INTERVAL_LENGTH;
270 tmp <<= clock->shift;
a386b5af 271 ntpinterval = tmp;
0a544198
MS
272 tmp += clock->mult/2;
273 do_div(tmp, clock->mult);
155ec602
MS
274 if (tmp == 0)
275 tmp = 1;
276
a5a1d1c2 277 interval = (u64) tmp;
f726a697 278 tk->cycle_interval = interval;
155ec602
MS
279
280 /* Go back from cycles -> shifted ns */
cbd99e3b 281 tk->xtime_interval = interval * clock->mult;
f726a697 282 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
3d88d56c 283 tk->raw_interval = interval * clock->mult;
155ec602 284
1e75fa8b
JS
285 /* if changing clocks, convert xtime_nsec shift units */
286 if (old_clock) {
287 int shift_change = clock->shift - old_clock->shift;
288 if (shift_change < 0)
876e7881 289 tk->tkr_mono.xtime_nsec >>= -shift_change;
1e75fa8b 290 else
876e7881 291 tk->tkr_mono.xtime_nsec <<= shift_change;
1e75fa8b 292 }
4a4ad80d
PZ
293 tk->tkr_raw.xtime_nsec = 0;
294
876e7881 295 tk->tkr_mono.shift = clock->shift;
4a4ad80d 296 tk->tkr_raw.shift = clock->shift;
155ec602 297
f726a697
JS
298 tk->ntp_error = 0;
299 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 300 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
301
302 /*
303 * The timekeeper keeps its own mult values for the currently
304 * active clocksource. These value will be adjusted via NTP
305 * to counteract clock drifting.
306 */
876e7881 307 tk->tkr_mono.mult = clock->mult;
4a4ad80d 308 tk->tkr_raw.mult = clock->mult;
dc491596 309 tk->ntp_err_mult = 0;
155ec602 310}
8524070b 311
2ba2a305 312/* Timekeeper helper functions. */
7b1f6207
SW
313
314#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
315static u32 default_arch_gettimeoffset(void) { return 0; }
316u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 317#else
e06fde37 318static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
319#endif
320
a5a1d1c2 321static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
6bd58f09 322{
9c164572 323 u64 nsec;
6bd58f09
CH
324
325 nsec = delta * tkr->mult + tkr->xtime_nsec;
326 nsec >>= tkr->shift;
327
328 /* If arch requires, add in get_arch_timeoffset() */
329 return nsec + arch_gettimeoffset();
330}
331
acc89612 332static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 333{
a5a1d1c2 334 u64 delta;
2ba2a305 335
a558cd02 336 delta = timekeeping_get_delta(tkr);
6bd58f09
CH
337 return timekeeping_delta_to_ns(tkr, delta);
338}
2ba2a305 339
a5a1d1c2 340static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
6bd58f09 341{
a5a1d1c2 342 u64 delta;
f2a5a085 343
6bd58f09
CH
344 /* calculate the delta since the last update_wall_time */
345 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
346 return timekeeping_delta_to_ns(tkr, delta);
2ba2a305
MS
347}
348
4396e058
TG
349/**
350 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 351 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
352 *
353 * We want to use this from any context including NMI and tracing /
354 * instrumenting the timekeeping code itself.
355 *
6695b92a 356 * Employ the latch technique; see @raw_write_seqcount_latch.
4396e058
TG
357 *
358 * So if a NMI hits the update of base[0] then it will use base[1]
359 * which is still consistent. In the worst case this can result is a
360 * slightly wrong timestamp (a few nanoseconds). See
361 * @ktime_get_mono_fast_ns.
362 */
4498e746 363static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 364{
4498e746 365 struct tk_read_base *base = tkf->base;
4396e058
TG
366
367 /* Force readers off to base[1] */
4498e746 368 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
369
370 /* Update base[0] */
affe3e85 371 memcpy(base, tkr, sizeof(*base));
4396e058
TG
372
373 /* Force readers back to base[0] */
4498e746 374 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
375
376 /* Update base[1] */
377 memcpy(base + 1, base, sizeof(*base));
378}
379
380/**
381 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
382 *
383 * This timestamp is not guaranteed to be monotonic across an update.
384 * The timestamp is calculated by:
385 *
386 * now = base_mono + clock_delta * slope
387 *
388 * So if the update lowers the slope, readers who are forced to the
389 * not yet updated second array are still using the old steeper slope.
390 *
391 * tmono
392 * ^
393 * | o n
394 * | o n
395 * | u
396 * | o
397 * |o
398 * |12345678---> reader order
399 *
400 * o = old slope
401 * u = update
402 * n = new slope
403 *
404 * So reader 6 will observe time going backwards versus reader 5.
405 *
406 * While other CPUs are likely to be able observe that, the only way
407 * for a CPU local observation is when an NMI hits in the middle of
408 * the update. Timestamps taken from that NMI context might be ahead
409 * of the following timestamps. Callers need to be aware of that and
410 * deal with it.
411 */
4498e746 412static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
413{
414 struct tk_read_base *tkr;
415 unsigned int seq;
416 u64 now;
417
418 do {
7fc26327 419 seq = raw_read_seqcount_latch(&tkf->seq);
4498e746 420 tkr = tkf->base + (seq & 0x01);
27727df2
JS
421 now = ktime_to_ns(tkr->base);
422
58bfea95
JS
423 now += timekeeping_delta_to_ns(tkr,
424 clocksource_delta(
ceea5e37 425 tk_clock_read(tkr),
58bfea95
JS
426 tkr->cycle_last,
427 tkr->mask));
4498e746 428 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 429
4396e058
TG
430 return now;
431}
4498e746
PZ
432
433u64 ktime_get_mono_fast_ns(void)
434{
435 return __ktime_get_fast_ns(&tk_fast_mono);
436}
4396e058
TG
437EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
438
f09cb9a1
PZ
439u64 ktime_get_raw_fast_ns(void)
440{
441 return __ktime_get_fast_ns(&tk_fast_raw);
442}
443EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
444
948a5312
JF
445/**
446 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
447 *
448 * To keep it NMI safe since we're accessing from tracing, we're not using a
449 * separate timekeeper with updates to monotonic clock and boot offset
450 * protected with seqlocks. This has the following minor side effects:
451 *
452 * (1) Its possible that a timestamp be taken after the boot offset is updated
453 * but before the timekeeper is updated. If this happens, the new boot offset
454 * is added to the old timekeeping making the clock appear to update slightly
455 * earlier:
456 * CPU 0 CPU 1
457 * timekeeping_inject_sleeptime64()
458 * __timekeeping_inject_sleeptime(tk, delta);
459 * timestamp();
460 * timekeeping_update(tk, TK_CLEAR_NTP...);
461 *
462 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
463 * partially updated. Since the tk->offs_boot update is a rare event, this
464 * should be a rare occurrence which postprocessing should be able to handle.
465 */
466u64 notrace ktime_get_boot_fast_ns(void)
467{
468 struct timekeeper *tk = &tk_core.timekeeper;
469
470 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
471}
472EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
473
060407ae 474/* Suspend-time cycles value for halted fast timekeeper. */
a5a1d1c2 475static u64 cycles_at_suspend;
060407ae 476
a5a1d1c2 477static u64 dummy_clock_read(struct clocksource *cs)
060407ae
RW
478{
479 return cycles_at_suspend;
480}
481
ceea5e37
JS
482static struct clocksource dummy_clock = {
483 .read = dummy_clock_read,
484};
485
060407ae
RW
486/**
487 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
488 * @tk: Timekeeper to snapshot.
489 *
490 * It generally is unsafe to access the clocksource after timekeeping has been
491 * suspended, so take a snapshot of the readout base of @tk and use it as the
492 * fast timekeeper's readout base while suspended. It will return the same
493 * number of cycles every time until timekeeping is resumed at which time the
494 * proper readout base for the fast timekeeper will be restored automatically.
495 */
496static void halt_fast_timekeeper(struct timekeeper *tk)
497{
498 static struct tk_read_base tkr_dummy;
876e7881 499 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
500
501 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
ceea5e37
JS
502 cycles_at_suspend = tk_clock_read(tkr);
503 tkr_dummy.clock = &dummy_clock;
4498e746 504 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
505
506 tkr = &tk->tkr_raw;
507 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
ceea5e37 508 tkr_dummy.clock = &dummy_clock;
f09cb9a1 509 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
510}
511
c905fae4
TG
512#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
513
514static inline void update_vsyscall(struct timekeeper *tk)
515{
0680eb1f 516 struct timespec xt, wm;
c905fae4 517
e2dff1ec 518 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f 519 wm = timespec64_to_timespec(tk->wall_to_monotonic);
876e7881
PZ
520 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
521 tk->tkr_mono.cycle_last);
c905fae4
TG
522}
523
524static inline void old_vsyscall_fixup(struct timekeeper *tk)
525{
526 s64 remainder;
527
528 /*
529 * Store only full nanoseconds into xtime_nsec after rounding
530 * it up and add the remainder to the error difference.
531 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
532 * by truncating the remainder in vsyscalls. However, it causes
533 * additional work to be done in timekeeping_adjust(). Once
534 * the vsyscall implementations are converted to use xtime_nsec
535 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
536 * users are removed, this can be killed.
537 */
876e7881 538 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
0209b937
TG
539 if (remainder != 0) {
540 tk->tkr_mono.xtime_nsec -= remainder;
541 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
542 tk->ntp_error += remainder << tk->ntp_error_shift;
543 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
544 }
c905fae4
TG
545}
546#else
547#define old_vsyscall_fixup(tk)
548#endif
549
e0b306fe
MT
550static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
551
780427f0 552static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 553{
780427f0 554 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
555}
556
557/**
558 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
559 */
560int pvclock_gtod_register_notifier(struct notifier_block *nb)
561{
3fdb14fd 562 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
563 unsigned long flags;
564 int ret;
565
9a7a71b1 566 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 567 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 568 update_pvclock_gtod(tk, true);
9a7a71b1 569 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
570
571 return ret;
572}
573EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
574
575/**
576 * pvclock_gtod_unregister_notifier - unregister a pvclock
577 * timedata update listener
e0b306fe
MT
578 */
579int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
580{
e0b306fe
MT
581 unsigned long flags;
582 int ret;
583
9a7a71b1 584 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 585 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 586 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
587
588 return ret;
589}
590EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
591
833f32d7
JS
592/*
593 * tk_update_leap_state - helper to update the next_leap_ktime
594 */
595static inline void tk_update_leap_state(struct timekeeper *tk)
596{
597 tk->next_leap_ktime = ntp_get_next_leap();
2456e855 598 if (tk->next_leap_ktime != KTIME_MAX)
833f32d7
JS
599 /* Convert to monotonic time */
600 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
601}
602
7c032df5
TG
603/*
604 * Update the ktime_t based scalar nsec members of the timekeeper
605 */
606static inline void tk_update_ktime_data(struct timekeeper *tk)
607{
9e3680b1
HS
608 u64 seconds;
609 u32 nsec;
7c032df5
TG
610
611 /*
612 * The xtime based monotonic readout is:
613 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
614 * The ktime based monotonic readout is:
615 * nsec = base_mono + now();
616 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
617 */
9e3680b1
HS
618 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
619 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 620 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
621
622 /* Update the monotonic raw base */
4a4ad80d 623 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
624
625 /*
626 * The sum of the nanoseconds portions of xtime and
627 * wall_to_monotonic can be greater/equal one second. Take
628 * this into account before updating tk->ktime_sec.
629 */
876e7881 630 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
631 if (nsec >= NSEC_PER_SEC)
632 seconds++;
633 tk->ktime_sec = seconds;
7c032df5
TG
634}
635
9a7a71b1 636/* must hold timekeeper_lock */
04397fe9 637static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 638{
04397fe9 639 if (action & TK_CLEAR_NTP) {
f726a697 640 tk->ntp_error = 0;
cc06268c
TG
641 ntp_clear();
642 }
48cdc135 643
833f32d7 644 tk_update_leap_state(tk);
7c032df5
TG
645 tk_update_ktime_data(tk);
646
9bf2419f
TG
647 update_vsyscall(tk);
648 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
649
4498e746 650 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 651 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
652
653 if (action & TK_CLOCK_WAS_SET)
654 tk->clock_was_set_seq++;
d1518326
JS
655 /*
656 * The mirroring of the data to the shadow-timekeeper needs
657 * to happen last here to ensure we don't over-write the
658 * timekeeper structure on the next update with stale data
659 */
660 if (action & TK_MIRROR)
661 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
662 sizeof(tk_core.timekeeper));
cc06268c
TG
663}
664
8524070b 665/**
155ec602 666 * timekeeping_forward_now - update clock to the current time
8524070b 667 *
9a055117
RZ
668 * Forward the current clock to update its state since the last call to
669 * update_wall_time(). This is useful before significant clock changes,
670 * as it avoids having to deal with this time offset explicitly.
8524070b 671 */
f726a697 672static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 673{
a5a1d1c2 674 u64 cycle_now, delta;
acc89612 675 u64 nsec;
8524070b 676
ceea5e37 677 cycle_now = tk_clock_read(&tk->tkr_mono);
876e7881
PZ
678 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
679 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 680 tk->tkr_raw.cycle_last = cycle_now;
8524070b 681
876e7881 682 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 683
7b1f6207 684 /* If arch requires, add in get_arch_timeoffset() */
876e7881 685 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 686
f726a697 687 tk_normalize_xtime(tk);
2d42244a 688
4a4ad80d 689 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
7d489d15 690 timespec64_add_ns(&tk->raw_time, nsec);
8524070b
JS
691}
692
693/**
d6d29896 694 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b
JS
695 * @ts: pointer to the timespec to be set
696 *
1e817fb6
KC
697 * Updates the time of day in the timespec.
698 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 699 */
d6d29896 700int __getnstimeofday64(struct timespec64 *ts)
8524070b 701{
3fdb14fd 702 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 703 unsigned long seq;
acc89612 704 u64 nsecs;
8524070b
JS
705
706 do {
3fdb14fd 707 seq = read_seqcount_begin(&tk_core.seq);
8524070b 708
4e250fdd 709 ts->tv_sec = tk->xtime_sec;
876e7881 710 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 711
3fdb14fd 712 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 713
ec145bab 714 ts->tv_nsec = 0;
d6d29896 715 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
716
717 /*
718 * Do not bail out early, in case there were callers still using
719 * the value, even in the face of the WARN_ON.
720 */
721 if (unlikely(timekeeping_suspended))
722 return -EAGAIN;
723 return 0;
724}
d6d29896 725EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
726
727/**
d6d29896 728 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 729 * @ts: pointer to the timespec64 to be set
1e817fb6 730 *
5322e4c2 731 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 732 */
d6d29896 733void getnstimeofday64(struct timespec64 *ts)
1e817fb6 734{
d6d29896 735 WARN_ON(__getnstimeofday64(ts));
8524070b 736}
d6d29896 737EXPORT_SYMBOL(getnstimeofday64);
8524070b 738
951ed4d3
MS
739ktime_t ktime_get(void)
740{
3fdb14fd 741 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 742 unsigned int seq;
a016a5bd 743 ktime_t base;
acc89612 744 u64 nsecs;
951ed4d3
MS
745
746 WARN_ON(timekeeping_suspended);
747
748 do {
3fdb14fd 749 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
750 base = tk->tkr_mono.base;
751 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 752
3fdb14fd 753 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 754
a016a5bd 755 return ktime_add_ns(base, nsecs);
951ed4d3
MS
756}
757EXPORT_SYMBOL_GPL(ktime_get);
758
6374f912
HG
759u32 ktime_get_resolution_ns(void)
760{
761 struct timekeeper *tk = &tk_core.timekeeper;
762 unsigned int seq;
763 u32 nsecs;
764
765 WARN_ON(timekeeping_suspended);
766
767 do {
768 seq = read_seqcount_begin(&tk_core.seq);
769 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
770 } while (read_seqcount_retry(&tk_core.seq, seq));
771
772 return nsecs;
773}
774EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
775
0077dc60
TG
776static ktime_t *offsets[TK_OFFS_MAX] = {
777 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
778 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
779 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
780};
781
782ktime_t ktime_get_with_offset(enum tk_offsets offs)
783{
784 struct timekeeper *tk = &tk_core.timekeeper;
785 unsigned int seq;
786 ktime_t base, *offset = offsets[offs];
acc89612 787 u64 nsecs;
0077dc60
TG
788
789 WARN_ON(timekeeping_suspended);
790
791 do {
792 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
793 base = ktime_add(tk->tkr_mono.base, *offset);
794 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
795
796 } while (read_seqcount_retry(&tk_core.seq, seq));
797
798 return ktime_add_ns(base, nsecs);
799
800}
801EXPORT_SYMBOL_GPL(ktime_get_with_offset);
802
9a6b5197
TG
803/**
804 * ktime_mono_to_any() - convert mononotic time to any other time
805 * @tmono: time to convert.
806 * @offs: which offset to use
807 */
808ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
809{
810 ktime_t *offset = offsets[offs];
811 unsigned long seq;
812 ktime_t tconv;
813
814 do {
815 seq = read_seqcount_begin(&tk_core.seq);
816 tconv = ktime_add(tmono, *offset);
817 } while (read_seqcount_retry(&tk_core.seq, seq));
818
819 return tconv;
820}
821EXPORT_SYMBOL_GPL(ktime_mono_to_any);
822
f519b1a2
TG
823/**
824 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
825 */
826ktime_t ktime_get_raw(void)
827{
828 struct timekeeper *tk = &tk_core.timekeeper;
829 unsigned int seq;
830 ktime_t base;
acc89612 831 u64 nsecs;
f519b1a2
TG
832
833 do {
834 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
835 base = tk->tkr_raw.base;
836 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
837
838 } while (read_seqcount_retry(&tk_core.seq, seq));
839
840 return ktime_add_ns(base, nsecs);
841}
842EXPORT_SYMBOL_GPL(ktime_get_raw);
843
951ed4d3 844/**
d6d29896 845 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
846 * @ts: pointer to timespec variable
847 *
848 * The function calculates the monotonic clock from the realtime
849 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 850 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 851 */
d6d29896 852void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 853{
3fdb14fd 854 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 855 struct timespec64 tomono;
951ed4d3 856 unsigned int seq;
acc89612 857 u64 nsec;
951ed4d3
MS
858
859 WARN_ON(timekeeping_suspended);
860
861 do {
3fdb14fd 862 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 863 ts->tv_sec = tk->xtime_sec;
876e7881 864 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 865 tomono = tk->wall_to_monotonic;
951ed4d3 866
3fdb14fd 867 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 868
d6d29896
TG
869 ts->tv_sec += tomono.tv_sec;
870 ts->tv_nsec = 0;
871 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 872}
d6d29896 873EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 874
9e3680b1
HS
875/**
876 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
877 *
878 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
879 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
880 * works on both 32 and 64 bit systems. On 32 bit systems the readout
881 * covers ~136 years of uptime which should be enough to prevent
882 * premature wrap arounds.
883 */
884time64_t ktime_get_seconds(void)
885{
886 struct timekeeper *tk = &tk_core.timekeeper;
887
888 WARN_ON(timekeeping_suspended);
889 return tk->ktime_sec;
890}
891EXPORT_SYMBOL_GPL(ktime_get_seconds);
892
dbe7aa62
HS
893/**
894 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
895 *
896 * Returns the wall clock seconds since 1970. This replaces the
897 * get_seconds() interface which is not y2038 safe on 32bit systems.
898 *
899 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
900 * 32bit systems the access must be protected with the sequence
901 * counter to provide "atomic" access to the 64bit tk->xtime_sec
902 * value.
903 */
904time64_t ktime_get_real_seconds(void)
905{
906 struct timekeeper *tk = &tk_core.timekeeper;
907 time64_t seconds;
908 unsigned int seq;
909
910 if (IS_ENABLED(CONFIG_64BIT))
911 return tk->xtime_sec;
912
913 do {
914 seq = read_seqcount_begin(&tk_core.seq);
915 seconds = tk->xtime_sec;
916
917 } while (read_seqcount_retry(&tk_core.seq, seq));
918
919 return seconds;
920}
921EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
922
dee36654
D
923/**
924 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
925 * but without the sequence counter protect. This internal function
926 * is called just when timekeeping lock is already held.
927 */
928time64_t __ktime_get_real_seconds(void)
929{
930 struct timekeeper *tk = &tk_core.timekeeper;
931
932 return tk->xtime_sec;
933}
934
9da0f49c
CH
935/**
936 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
937 * @systime_snapshot: pointer to struct receiving the system time snapshot
938 */
939void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
940{
941 struct timekeeper *tk = &tk_core.timekeeper;
942 unsigned long seq;
943 ktime_t base_raw;
944 ktime_t base_real;
acc89612
TG
945 u64 nsec_raw;
946 u64 nsec_real;
a5a1d1c2 947 u64 now;
9da0f49c 948
ba26621e
CH
949 WARN_ON_ONCE(timekeeping_suspended);
950
9da0f49c
CH
951 do {
952 seq = read_seqcount_begin(&tk_core.seq);
ceea5e37 953 now = tk_clock_read(&tk->tkr_mono);
2c756feb
CH
954 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
955 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
9da0f49c
CH
956 base_real = ktime_add(tk->tkr_mono.base,
957 tk_core.timekeeper.offs_real);
958 base_raw = tk->tkr_raw.base;
959 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
960 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
961 } while (read_seqcount_retry(&tk_core.seq, seq));
962
963 systime_snapshot->cycles = now;
964 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
965 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
966}
967EXPORT_SYMBOL_GPL(ktime_get_snapshot);
dee36654 968
2c756feb
CH
969/* Scale base by mult/div checking for overflow */
970static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
971{
972 u64 tmp, rem;
973
974 tmp = div64_u64_rem(*base, div, &rem);
975
976 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
977 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
978 return -EOVERFLOW;
979 tmp *= mult;
980 rem *= mult;
981
982 do_div(rem, div);
983 *base = tmp + rem;
984 return 0;
985}
986
987/**
988 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
989 * @history: Snapshot representing start of history
990 * @partial_history_cycles: Cycle offset into history (fractional part)
991 * @total_history_cycles: Total history length in cycles
992 * @discontinuity: True indicates clock was set on history period
993 * @ts: Cross timestamp that should be adjusted using
994 * partial/total ratio
995 *
996 * Helper function used by get_device_system_crosststamp() to correct the
997 * crosstimestamp corresponding to the start of the current interval to the
998 * system counter value (timestamp point) provided by the driver. The
999 * total_history_* quantities are the total history starting at the provided
1000 * reference point and ending at the start of the current interval. The cycle
1001 * count between the driver timestamp point and the start of the current
1002 * interval is partial_history_cycles.
1003 */
1004static int adjust_historical_crosststamp(struct system_time_snapshot *history,
a5a1d1c2
TG
1005 u64 partial_history_cycles,
1006 u64 total_history_cycles,
2c756feb
CH
1007 bool discontinuity,
1008 struct system_device_crosststamp *ts)
1009{
1010 struct timekeeper *tk = &tk_core.timekeeper;
1011 u64 corr_raw, corr_real;
1012 bool interp_forward;
1013 int ret;
1014
1015 if (total_history_cycles == 0 || partial_history_cycles == 0)
1016 return 0;
1017
1018 /* Interpolate shortest distance from beginning or end of history */
5fc63f95 1019 interp_forward = partial_history_cycles > total_history_cycles / 2;
2c756feb
CH
1020 partial_history_cycles = interp_forward ?
1021 total_history_cycles - partial_history_cycles :
1022 partial_history_cycles;
1023
1024 /*
1025 * Scale the monotonic raw time delta by:
1026 * partial_history_cycles / total_history_cycles
1027 */
1028 corr_raw = (u64)ktime_to_ns(
1029 ktime_sub(ts->sys_monoraw, history->raw));
1030 ret = scale64_check_overflow(partial_history_cycles,
1031 total_history_cycles, &corr_raw);
1032 if (ret)
1033 return ret;
1034
1035 /*
1036 * If there is a discontinuity in the history, scale monotonic raw
1037 * correction by:
1038 * mult(real)/mult(raw) yielding the realtime correction
1039 * Otherwise, calculate the realtime correction similar to monotonic
1040 * raw calculation
1041 */
1042 if (discontinuity) {
1043 corr_real = mul_u64_u32_div
1044 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1045 } else {
1046 corr_real = (u64)ktime_to_ns(
1047 ktime_sub(ts->sys_realtime, history->real));
1048 ret = scale64_check_overflow(partial_history_cycles,
1049 total_history_cycles, &corr_real);
1050 if (ret)
1051 return ret;
1052 }
1053
1054 /* Fixup monotonic raw and real time time values */
1055 if (interp_forward) {
1056 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1057 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1058 } else {
1059 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1060 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1061 }
1062
1063 return 0;
1064}
1065
1066/*
1067 * cycle_between - true if test occurs chronologically between before and after
1068 */
a5a1d1c2 1069static bool cycle_between(u64 before, u64 test, u64 after)
2c756feb
CH
1070{
1071 if (test > before && test < after)
1072 return true;
1073 if (test < before && before > after)
1074 return true;
1075 return false;
1076}
1077
8006c245
CH
1078/**
1079 * get_device_system_crosststamp - Synchronously capture system/device timestamp
2c756feb 1080 * @get_time_fn: Callback to get simultaneous device time and
8006c245 1081 * system counter from the device driver
2c756feb
CH
1082 * @ctx: Context passed to get_time_fn()
1083 * @history_begin: Historical reference point used to interpolate system
1084 * time when counter provided by the driver is before the current interval
8006c245
CH
1085 * @xtstamp: Receives simultaneously captured system and device time
1086 *
1087 * Reads a timestamp from a device and correlates it to system time
1088 */
1089int get_device_system_crosststamp(int (*get_time_fn)
1090 (ktime_t *device_time,
1091 struct system_counterval_t *sys_counterval,
1092 void *ctx),
1093 void *ctx,
2c756feb 1094 struct system_time_snapshot *history_begin,
8006c245
CH
1095 struct system_device_crosststamp *xtstamp)
1096{
1097 struct system_counterval_t system_counterval;
1098 struct timekeeper *tk = &tk_core.timekeeper;
a5a1d1c2 1099 u64 cycles, now, interval_start;
6436257b 1100 unsigned int clock_was_set_seq = 0;
8006c245 1101 ktime_t base_real, base_raw;
acc89612 1102 u64 nsec_real, nsec_raw;
2c756feb 1103 u8 cs_was_changed_seq;
8006c245 1104 unsigned long seq;
2c756feb 1105 bool do_interp;
8006c245
CH
1106 int ret;
1107
1108 do {
1109 seq = read_seqcount_begin(&tk_core.seq);
1110 /*
1111 * Try to synchronously capture device time and a system
1112 * counter value calling back into the device driver
1113 */
1114 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1115 if (ret)
1116 return ret;
1117
1118 /*
1119 * Verify that the clocksource associated with the captured
1120 * system counter value is the same as the currently installed
1121 * timekeeper clocksource
1122 */
1123 if (tk->tkr_mono.clock != system_counterval.cs)
1124 return -ENODEV;
2c756feb
CH
1125 cycles = system_counterval.cycles;
1126
1127 /*
1128 * Check whether the system counter value provided by the
1129 * device driver is on the current timekeeping interval.
1130 */
ceea5e37 1131 now = tk_clock_read(&tk->tkr_mono);
2c756feb
CH
1132 interval_start = tk->tkr_mono.cycle_last;
1133 if (!cycle_between(interval_start, cycles, now)) {
1134 clock_was_set_seq = tk->clock_was_set_seq;
1135 cs_was_changed_seq = tk->cs_was_changed_seq;
1136 cycles = interval_start;
1137 do_interp = true;
1138 } else {
1139 do_interp = false;
1140 }
8006c245
CH
1141
1142 base_real = ktime_add(tk->tkr_mono.base,
1143 tk_core.timekeeper.offs_real);
1144 base_raw = tk->tkr_raw.base;
1145
1146 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1147 system_counterval.cycles);
1148 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1149 system_counterval.cycles);
1150 } while (read_seqcount_retry(&tk_core.seq, seq));
1151
1152 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1153 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
2c756feb
CH
1154
1155 /*
1156 * Interpolate if necessary, adjusting back from the start of the
1157 * current interval
1158 */
1159 if (do_interp) {
a5a1d1c2 1160 u64 partial_history_cycles, total_history_cycles;
2c756feb
CH
1161 bool discontinuity;
1162
1163 /*
1164 * Check that the counter value occurs after the provided
1165 * history reference and that the history doesn't cross a
1166 * clocksource change
1167 */
1168 if (!history_begin ||
1169 !cycle_between(history_begin->cycles,
1170 system_counterval.cycles, cycles) ||
1171 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1172 return -EINVAL;
1173 partial_history_cycles = cycles - system_counterval.cycles;
1174 total_history_cycles = cycles - history_begin->cycles;
1175 discontinuity =
1176 history_begin->clock_was_set_seq != clock_was_set_seq;
1177
1178 ret = adjust_historical_crosststamp(history_begin,
1179 partial_history_cycles,
1180 total_history_cycles,
1181 discontinuity, xtstamp);
1182 if (ret)
1183 return ret;
1184 }
1185
8006c245
CH
1186 return 0;
1187}
1188EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1189
8524070b
JS
1190/**
1191 * do_gettimeofday - Returns the time of day in a timeval
1192 * @tv: pointer to the timeval to be set
1193 *
efd9ac86 1194 * NOTE: Users should be converted to using getnstimeofday()
8524070b
JS
1195 */
1196void do_gettimeofday(struct timeval *tv)
1197{
d6d29896 1198 struct timespec64 now;
8524070b 1199
d6d29896 1200 getnstimeofday64(&now);
8524070b
JS
1201 tv->tv_sec = now.tv_sec;
1202 tv->tv_usec = now.tv_nsec/1000;
1203}
8524070b 1204EXPORT_SYMBOL(do_gettimeofday);
d239f49d 1205
8524070b 1206/**
21f7eca5 1207 * do_settimeofday64 - Sets the time of day.
1208 * @ts: pointer to the timespec64 variable containing the new time
8524070b
JS
1209 *
1210 * Sets the time of day to the new time and update NTP and notify hrtimers
1211 */
21f7eca5 1212int do_settimeofday64(const struct timespec64 *ts)
8524070b 1213{
3fdb14fd 1214 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 1215 struct timespec64 ts_delta, xt;
92c1d3ed 1216 unsigned long flags;
e1d7ba87 1217 int ret = 0;
8524070b 1218
21f7eca5 1219 if (!timespec64_valid_strict(ts))
8524070b
JS
1220 return -EINVAL;
1221
9a7a71b1 1222 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1223 write_seqcount_begin(&tk_core.seq);
8524070b 1224
4e250fdd 1225 timekeeping_forward_now(tk);
9a055117 1226
4e250fdd 1227 xt = tk_xtime(tk);
21f7eca5 1228 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1229 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 1230
e1d7ba87
WY
1231 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1232 ret = -EINVAL;
1233 goto out;
1234 }
1235
7d489d15 1236 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 1237
21f7eca5 1238 tk_set_xtime(tk, ts);
e1d7ba87 1239out:
780427f0 1240 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 1241
3fdb14fd 1242 write_seqcount_end(&tk_core.seq);
9a7a71b1 1243 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1244
1245 /* signal hrtimers about time change */
1246 clock_was_set();
1247
e1d7ba87 1248 return ret;
8524070b 1249}
21f7eca5 1250EXPORT_SYMBOL(do_settimeofday64);
8524070b 1251
c528f7c6
JS
1252/**
1253 * timekeeping_inject_offset - Adds or subtracts from the current time.
1254 * @tv: pointer to the timespec variable containing the offset
1255 *
1256 * Adds or subtracts an offset value from the current time.
1257 */
1258int timekeeping_inject_offset(struct timespec *ts)
1259{
3fdb14fd 1260 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1261 unsigned long flags;
7d489d15 1262 struct timespec64 ts64, tmp;
4e8b1452 1263 int ret = 0;
c528f7c6 1264
37cf4dc3 1265 if (!timespec_inject_offset_valid(ts))
c528f7c6
JS
1266 return -EINVAL;
1267
7d489d15
JS
1268 ts64 = timespec_to_timespec64(*ts);
1269
9a7a71b1 1270 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1271 write_seqcount_begin(&tk_core.seq);
c528f7c6 1272
4e250fdd 1273 timekeeping_forward_now(tk);
c528f7c6 1274
4e8b1452 1275 /* Make sure the proposed value is valid */
7d489d15 1276 tmp = timespec64_add(tk_xtime(tk), ts64);
e1d7ba87
WY
1277 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1278 !timespec64_valid_strict(&tmp)) {
4e8b1452
JS
1279 ret = -EINVAL;
1280 goto error;
1281 }
1e75fa8b 1282
7d489d15
JS
1283 tk_xtime_add(tk, &ts64);
1284 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 1285
4e8b1452 1286error: /* even if we error out, we forwarded the time, so call update */
780427f0 1287 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 1288
3fdb14fd 1289 write_seqcount_end(&tk_core.seq);
9a7a71b1 1290 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
1291
1292 /* signal hrtimers about time change */
1293 clock_was_set();
1294
4e8b1452 1295 return ret;
c528f7c6
JS
1296}
1297EXPORT_SYMBOL(timekeeping_inject_offset);
1298
cc244dda 1299/**
40d9f827 1300 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
cc244dda
JS
1301 *
1302 */
dd5d70e8 1303static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1304{
1305 tk->tai_offset = tai_offset;
04005f60 1306 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1307}
1308
8524070b
JS
1309/**
1310 * change_clocksource - Swaps clocksources if a new one is available
1311 *
1312 * Accumulates current time interval and initializes new clocksource
1313 */
75c5158f 1314static int change_clocksource(void *data)
8524070b 1315{
3fdb14fd 1316 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1317 struct clocksource *new, *old;
f695cf94 1318 unsigned long flags;
8524070b 1319
75c5158f 1320 new = (struct clocksource *) data;
8524070b 1321
9a7a71b1 1322 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1323 write_seqcount_begin(&tk_core.seq);
f695cf94 1324
4e250fdd 1325 timekeeping_forward_now(tk);
09ac369c
TG
1326 /*
1327 * If the cs is in module, get a module reference. Succeeds
1328 * for built-in code (owner == NULL) as well.
1329 */
1330 if (try_module_get(new->owner)) {
1331 if (!new->enable || new->enable(new) == 0) {
876e7881 1332 old = tk->tkr_mono.clock;
09ac369c
TG
1333 tk_setup_internals(tk, new);
1334 if (old->disable)
1335 old->disable(old);
1336 module_put(old->owner);
1337 } else {
1338 module_put(new->owner);
1339 }
75c5158f 1340 }
780427f0 1341 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1342
3fdb14fd 1343 write_seqcount_end(&tk_core.seq);
9a7a71b1 1344 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1345
75c5158f
MS
1346 return 0;
1347}
8524070b 1348
75c5158f
MS
1349/**
1350 * timekeeping_notify - Install a new clock source
1351 * @clock: pointer to the clock source
1352 *
1353 * This function is called from clocksource.c after a new, better clock
1354 * source has been registered. The caller holds the clocksource_mutex.
1355 */
ba919d1c 1356int timekeeping_notify(struct clocksource *clock)
75c5158f 1357{
3fdb14fd 1358 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1359
876e7881 1360 if (tk->tkr_mono.clock == clock)
ba919d1c 1361 return 0;
75c5158f 1362 stop_machine(change_clocksource, clock, NULL);
8524070b 1363 tick_clock_notify();
876e7881 1364 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1365}
75c5158f 1366
2d42244a 1367/**
cdba2ec5
JS
1368 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1369 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1370 *
1371 * Returns the raw monotonic time (completely un-modified by ntp)
1372 */
cdba2ec5 1373void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1374{
3fdb14fd 1375 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1376 struct timespec64 ts64;
2d42244a 1377 unsigned long seq;
acc89612 1378 u64 nsecs;
2d42244a
JS
1379
1380 do {
3fdb14fd 1381 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d 1382 nsecs = timekeeping_get_ns(&tk->tkr_raw);
7d489d15 1383 ts64 = tk->raw_time;
2d42244a 1384
3fdb14fd 1385 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1386
7d489d15 1387 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1388 *ts = ts64;
2d42244a 1389}
cdba2ec5
JS
1390EXPORT_SYMBOL(getrawmonotonic64);
1391
2d42244a 1392
8524070b 1393/**
cf4fc6cb 1394 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1395 */
cf4fc6cb 1396int timekeeping_valid_for_hres(void)
8524070b 1397{
3fdb14fd 1398 struct timekeeper *tk = &tk_core.timekeeper;
8524070b
JS
1399 unsigned long seq;
1400 int ret;
1401
1402 do {
3fdb14fd 1403 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1404
876e7881 1405 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1406
3fdb14fd 1407 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b
JS
1408
1409 return ret;
1410}
1411
98962465
JH
1412/**
1413 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1414 */
1415u64 timekeeping_max_deferment(void)
1416{
3fdb14fd 1417 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1418 unsigned long seq;
1419 u64 ret;
42e71e81 1420
70471f2f 1421 do {
3fdb14fd 1422 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1423
876e7881 1424 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1425
3fdb14fd 1426 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1427
1428 return ret;
98962465
JH
1429}
1430
8524070b 1431/**
d4f587c6 1432 * read_persistent_clock - Return time from the persistent clock.
8524070b
JS
1433 *
1434 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1435 * Reads the time from the battery backed persistent clock.
1436 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b
JS
1437 *
1438 * XXX - Do be sure to remove it once all arches implement it.
1439 */
52f5684c 1440void __weak read_persistent_clock(struct timespec *ts)
8524070b 1441{
d4f587c6
MS
1442 ts->tv_sec = 0;
1443 ts->tv_nsec = 0;
8524070b
JS
1444}
1445
2ee96632
XP
1446void __weak read_persistent_clock64(struct timespec64 *ts64)
1447{
1448 struct timespec ts;
1449
1450 read_persistent_clock(&ts);
1451 *ts64 = timespec_to_timespec64(ts);
1452}
1453
23970e38 1454/**
e83d0a41 1455 * read_boot_clock64 - Return time of the system start.
23970e38
MS
1456 *
1457 * Weak dummy function for arches that do not yet support it.
1458 * Function to read the exact time the system has been started.
e83d0a41 1459 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
23970e38
MS
1460 *
1461 * XXX - Do be sure to remove it once all arches implement it.
1462 */
e83d0a41 1463void __weak read_boot_clock64(struct timespec64 *ts)
23970e38
MS
1464{
1465 ts->tv_sec = 0;
1466 ts->tv_nsec = 0;
1467}
1468
0fa88cb4
XP
1469/* Flag for if timekeeping_resume() has injected sleeptime */
1470static bool sleeptime_injected;
1471
1472/* Flag for if there is a persistent clock on this platform */
1473static bool persistent_clock_exists;
1474
8524070b
JS
1475/*
1476 * timekeeping_init - Initializes the clocksource and common timekeeping values
1477 */
1478void __init timekeeping_init(void)
1479{
3fdb14fd 1480 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1481 struct clocksource *clock;
8524070b 1482 unsigned long flags;
7d489d15 1483 struct timespec64 now, boot, tmp;
31ade306 1484
2ee96632 1485 read_persistent_clock64(&now);
7d489d15 1486 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1487 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1488 " Check your CMOS/BIOS settings.\n");
1489 now.tv_sec = 0;
1490 now.tv_nsec = 0;
31ade306 1491 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1492 persistent_clock_exists = true;
4e8b1452 1493
9a806ddb 1494 read_boot_clock64(&boot);
7d489d15 1495 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1496 pr_warn("WARNING: Boot clock returned invalid value!\n"
1497 " Check your CMOS/BIOS settings.\n");
1498 boot.tv_sec = 0;
1499 boot.tv_nsec = 0;
1500 }
8524070b 1501
9a7a71b1 1502 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1503 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1504 ntp_init();
1505
f1b82746 1506 clock = clocksource_default_clock();
a0f7d48b
MS
1507 if (clock->enable)
1508 clock->enable(clock);
4e250fdd 1509 tk_setup_internals(tk, clock);
8524070b 1510
4e250fdd
JS
1511 tk_set_xtime(tk, &now);
1512 tk->raw_time.tv_sec = 0;
1513 tk->raw_time.tv_nsec = 0;
1e75fa8b 1514 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1515 boot = tk_xtime(tk);
1e75fa8b 1516
7d489d15 1517 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1518 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1519
56fd16ca 1520 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
48cdc135 1521
3fdb14fd 1522 write_seqcount_end(&tk_core.seq);
9a7a71b1 1523 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1524}
1525
264bb3f7 1526/* time in seconds when suspend began for persistent clock */
7d489d15 1527static struct timespec64 timekeeping_suspend_time;
8524070b 1528
304529b1
JS
1529/**
1530 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1531 * @delta: pointer to a timespec delta value
1532 *
1533 * Takes a timespec offset measuring a suspend interval and properly
1534 * adds the sleep offset to the timekeeping variables.
1535 */
f726a697 1536static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1537 struct timespec64 *delta)
304529b1 1538{
7d489d15 1539 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1540 printk_deferred(KERN_WARNING
1541 "__timekeeping_inject_sleeptime: Invalid "
1542 "sleep delta value!\n");
cb5de2f8
JS
1543 return;
1544 }
f726a697 1545 tk_xtime_add(tk, delta);
7d489d15 1546 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1547 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1548 tk_debug_account_sleep_time(delta);
304529b1
JS
1549}
1550
7f298139 1551#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1552/**
1553 * We have three kinds of time sources to use for sleep time
1554 * injection, the preference order is:
1555 * 1) non-stop clocksource
1556 * 2) persistent clock (ie: RTC accessible when irqs are off)
1557 * 3) RTC
1558 *
1559 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1560 * If system has neither 1) nor 2), 3) will be used finally.
1561 *
1562 *
1563 * If timekeeping has injected sleeptime via either 1) or 2),
1564 * 3) becomes needless, so in this case we don't need to call
1565 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1566 * means.
1567 */
1568bool timekeeping_rtc_skipresume(void)
1569{
1570 return sleeptime_injected;
1571}
1572
1573/**
1574 * 1) can be determined whether to use or not only when doing
1575 * timekeeping_resume() which is invoked after rtc_suspend(),
1576 * so we can't skip rtc_suspend() surely if system has 1).
1577 *
1578 * But if system has 2), 2) will definitely be used, so in this
1579 * case we don't need to call rtc_suspend(), and this is what
1580 * timekeeping_rtc_skipsuspend() means.
1581 */
1582bool timekeeping_rtc_skipsuspend(void)
1583{
1584 return persistent_clock_exists;
1585}
1586
304529b1 1587/**
04d90890 1588 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1589 * @delta: pointer to a timespec64 delta value
304529b1 1590 *
2ee96632 1591 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1592 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1593 * and also don't have an effective nonstop clocksource.
304529b1
JS
1594 *
1595 * This function should only be called by rtc_resume(), and allows
1596 * a suspend offset to be injected into the timekeeping values.
1597 */
04d90890 1598void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1599{
3fdb14fd 1600 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1601 unsigned long flags;
304529b1 1602
9a7a71b1 1603 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1604 write_seqcount_begin(&tk_core.seq);
70471f2f 1605
4e250fdd 1606 timekeeping_forward_now(tk);
304529b1 1607
04d90890 1608 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1609
780427f0 1610 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1611
3fdb14fd 1612 write_seqcount_end(&tk_core.seq);
9a7a71b1 1613 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1614
1615 /* signal hrtimers about time change */
1616 clock_was_set();
1617}
7f298139 1618#endif
304529b1 1619
8524070b
JS
1620/**
1621 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1622 */
124cf911 1623void timekeeping_resume(void)
8524070b 1624{
3fdb14fd 1625 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1626 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1627 unsigned long flags;
7d489d15 1628 struct timespec64 ts_new, ts_delta;
a5a1d1c2 1629 u64 cycle_now;
d4f587c6 1630
0fa88cb4 1631 sleeptime_injected = false;
2ee96632 1632 read_persistent_clock64(&ts_new);
8524070b 1633
adc78e6b 1634 clockevents_resume();
d10ff3fb
TG
1635 clocksource_resume();
1636
9a7a71b1 1637 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1638 write_seqcount_begin(&tk_core.seq);
8524070b 1639
e445cf1c
FT
1640 /*
1641 * After system resumes, we need to calculate the suspended time and
1642 * compensate it for the OS time. There are 3 sources that could be
1643 * used: Nonstop clocksource during suspend, persistent clock and rtc
1644 * device.
1645 *
1646 * One specific platform may have 1 or 2 or all of them, and the
1647 * preference will be:
1648 * suspend-nonstop clocksource -> persistent clock -> rtc
1649 * The less preferred source will only be tried if there is no better
1650 * usable source. The rtc part is handled separately in rtc core code.
1651 */
ceea5e37 1652 cycle_now = tk_clock_read(&tk->tkr_mono);
e445cf1c 1653 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1654 cycle_now > tk->tkr_mono.cycle_last) {
c029a2be 1655 u64 nsec, cyc_delta;
e445cf1c 1656
c029a2be
TG
1657 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1658 tk->tkr_mono.mask);
1659 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
7d489d15 1660 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1661 sleeptime_injected = true;
7d489d15
JS
1662 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1663 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1664 sleeptime_injected = true;
8524070b 1665 }
e445cf1c 1666
0fa88cb4 1667 if (sleeptime_injected)
e445cf1c
FT
1668 __timekeeping_inject_sleeptime(tk, &ts_delta);
1669
1670 /* Re-base the last cycle value */
876e7881 1671 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1672 tk->tkr_raw.cycle_last = cycle_now;
1673
4e250fdd 1674 tk->ntp_error = 0;
8524070b 1675 timekeeping_suspended = 0;
780427f0 1676 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1677 write_seqcount_end(&tk_core.seq);
9a7a71b1 1678 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1679
1680 touch_softlockup_watchdog();
1681
4ffee521 1682 tick_resume();
b12a03ce 1683 hrtimers_resume();
8524070b
JS
1684}
1685
124cf911 1686int timekeeping_suspend(void)
8524070b 1687{
3fdb14fd 1688 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1689 unsigned long flags;
7d489d15
JS
1690 struct timespec64 delta, delta_delta;
1691 static struct timespec64 old_delta;
8524070b 1692
2ee96632 1693 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1694
0d6bd995
ZM
1695 /*
1696 * On some systems the persistent_clock can not be detected at
1697 * timekeeping_init by its return value, so if we see a valid
1698 * value returned, update the persistent_clock_exists flag.
1699 */
1700 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1701 persistent_clock_exists = true;
0d6bd995 1702
9a7a71b1 1703 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1704 write_seqcount_begin(&tk_core.seq);
4e250fdd 1705 timekeeping_forward_now(tk);
8524070b 1706 timekeeping_suspended = 1;
cb33217b 1707
0fa88cb4 1708 if (persistent_clock_exists) {
cb33217b 1709 /*
264bb3f7
XP
1710 * To avoid drift caused by repeated suspend/resumes,
1711 * which each can add ~1 second drift error,
1712 * try to compensate so the difference in system time
1713 * and persistent_clock time stays close to constant.
cb33217b 1714 */
264bb3f7
XP
1715 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1716 delta_delta = timespec64_sub(delta, old_delta);
1717 if (abs(delta_delta.tv_sec) >= 2) {
1718 /*
1719 * if delta_delta is too large, assume time correction
1720 * has occurred and set old_delta to the current delta.
1721 */
1722 old_delta = delta;
1723 } else {
1724 /* Otherwise try to adjust old_system to compensate */
1725 timekeeping_suspend_time =
1726 timespec64_add(timekeeping_suspend_time, delta_delta);
1727 }
cb33217b 1728 }
330a1617
JS
1729
1730 timekeeping_update(tk, TK_MIRROR);
060407ae 1731 halt_fast_timekeeper(tk);
3fdb14fd 1732 write_seqcount_end(&tk_core.seq);
9a7a71b1 1733 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1734
4ffee521 1735 tick_suspend();
c54a42b1 1736 clocksource_suspend();
adc78e6b 1737 clockevents_suspend();
8524070b
JS
1738
1739 return 0;
1740}
1741
1742/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1743static struct syscore_ops timekeeping_syscore_ops = {
8524070b
JS
1744 .resume = timekeeping_resume,
1745 .suspend = timekeeping_suspend,
8524070b
JS
1746};
1747
e1a85b2c 1748static int __init timekeeping_init_ops(void)
8524070b 1749{
e1a85b2c
RW
1750 register_syscore_ops(&timekeeping_syscore_ops);
1751 return 0;
8524070b 1752}
e1a85b2c 1753device_initcall(timekeeping_init_ops);
8524070b
JS
1754
1755/*
dc491596 1756 * Apply a multiplier adjustment to the timekeeper
8524070b 1757 */
dc491596
JS
1758static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1759 s64 offset,
1760 bool negative,
1761 int adj_scale)
8524070b 1762{
dc491596
JS
1763 s64 interval = tk->cycle_interval;
1764 s32 mult_adj = 1;
8524070b 1765
dc491596
JS
1766 if (negative) {
1767 mult_adj = -mult_adj;
1768 interval = -interval;
1769 offset = -offset;
1d17d174 1770 }
dc491596
JS
1771 mult_adj <<= adj_scale;
1772 interval <<= adj_scale;
1773 offset <<= adj_scale;
8524070b 1774
c2bc1111
JS
1775 /*
1776 * So the following can be confusing.
1777 *
dc491596 1778 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1779 *
dc491596 1780 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1781 * have been appropriately scaled so the math is the same.
1782 *
1783 * The basic idea here is that we're increasing the multiplier
1784 * by one, this causes the xtime_interval to be incremented by
1785 * one cycle_interval. This is because:
1786 * xtime_interval = cycle_interval * mult
1787 * So if mult is being incremented by one:
1788 * xtime_interval = cycle_interval * (mult + 1)
1789 * Its the same as:
1790 * xtime_interval = (cycle_interval * mult) + cycle_interval
1791 * Which can be shortened to:
1792 * xtime_interval += cycle_interval
1793 *
1794 * So offset stores the non-accumulated cycles. Thus the current
1795 * time (in shifted nanoseconds) is:
1796 * now = (offset * adj) + xtime_nsec
1797 * Now, even though we're adjusting the clock frequency, we have
1798 * to keep time consistent. In other words, we can't jump back
1799 * in time, and we also want to avoid jumping forward in time.
1800 *
1801 * So given the same offset value, we need the time to be the same
1802 * both before and after the freq adjustment.
1803 * now = (offset * adj_1) + xtime_nsec_1
1804 * now = (offset * adj_2) + xtime_nsec_2
1805 * So:
1806 * (offset * adj_1) + xtime_nsec_1 =
1807 * (offset * adj_2) + xtime_nsec_2
1808 * And we know:
1809 * adj_2 = adj_1 + 1
1810 * So:
1811 * (offset * adj_1) + xtime_nsec_1 =
1812 * (offset * (adj_1+1)) + xtime_nsec_2
1813 * (offset * adj_1) + xtime_nsec_1 =
1814 * (offset * adj_1) + offset + xtime_nsec_2
1815 * Canceling the sides:
1816 * xtime_nsec_1 = offset + xtime_nsec_2
1817 * Which gives us:
1818 * xtime_nsec_2 = xtime_nsec_1 - offset
1819 * Which simplfies to:
1820 * xtime_nsec -= offset
1821 *
1822 * XXX - TODO: Doc ntp_error calculation.
1823 */
876e7881 1824 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1825 /* NTP adjustment caused clocksource mult overflow */
1826 WARN_ON_ONCE(1);
1827 return;
1828 }
1829
876e7881 1830 tk->tkr_mono.mult += mult_adj;
f726a697 1831 tk->xtime_interval += interval;
876e7881 1832 tk->tkr_mono.xtime_nsec -= offset;
f726a697 1833 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1834}
1835
1836/*
1837 * Calculate the multiplier adjustment needed to match the frequency
1838 * specified by NTP
1839 */
1840static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1841 s64 offset)
1842{
1843 s64 interval = tk->cycle_interval;
1844 s64 xinterval = tk->xtime_interval;
ec02b076
JS
1845 u32 base = tk->tkr_mono.clock->mult;
1846 u32 max = tk->tkr_mono.clock->maxadj;
1847 u32 cur_adj = tk->tkr_mono.mult;
dc491596
JS
1848 s64 tick_error;
1849 bool negative;
ec02b076 1850 u32 adj_scale;
dc491596
JS
1851
1852 /* Remove any current error adj from freq calculation */
1853 if (tk->ntp_err_mult)
1854 xinterval -= tk->cycle_interval;
1855
375f45b5
JS
1856 tk->ntp_tick = ntp_tick_length();
1857
dc491596
JS
1858 /* Calculate current error per tick */
1859 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1860 tick_error -= (xinterval + tk->xtime_remainder);
1861
1862 /* Don't worry about correcting it if its small */
1863 if (likely((tick_error >= 0) && (tick_error <= interval)))
1864 return;
1865
1866 /* preserve the direction of correction */
1867 negative = (tick_error < 0);
1868
ec02b076
JS
1869 /* If any adjustment would pass the max, just return */
1870 if (negative && (cur_adj - 1) <= (base - max))
1871 return;
1872 if (!negative && (cur_adj + 1) >= (base + max))
1873 return;
1874 /*
1875 * Sort out the magnitude of the correction, but
1876 * avoid making so large a correction that we go
1877 * over the max adjustment.
1878 */
1879 adj_scale = 0;
79211c8e 1880 tick_error = abs(tick_error);
ec02b076
JS
1881 while (tick_error > interval) {
1882 u32 adj = 1 << (adj_scale + 1);
1883
1884 /* Check if adjustment gets us within 1 unit from the max */
1885 if (negative && (cur_adj - adj) <= (base - max))
1886 break;
1887 if (!negative && (cur_adj + adj) >= (base + max))
1888 break;
1889
1890 adj_scale++;
dc491596 1891 tick_error >>= 1;
ec02b076 1892 }
dc491596
JS
1893
1894 /* scale the corrections */
ec02b076 1895 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
dc491596
JS
1896}
1897
1898/*
1899 * Adjust the timekeeper's multiplier to the correct frequency
1900 * and also to reduce the accumulated error value.
1901 */
1902static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1903{
1904 /* Correct for the current frequency error */
1905 timekeeping_freqadjust(tk, offset);
1906
1907 /* Next make a small adjustment to fix any cumulative error */
1908 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1909 tk->ntp_err_mult = 1;
1910 timekeeping_apply_adjustment(tk, offset, 0, 0);
1911 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1912 /* Undo any existing error adjustment */
1913 timekeeping_apply_adjustment(tk, offset, 1, 0);
1914 tk->ntp_err_mult = 0;
1915 }
1916
876e7881
PZ
1917 if (unlikely(tk->tkr_mono.clock->maxadj &&
1918 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1919 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1920 printk_once(KERN_WARNING
1921 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1922 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1923 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1924 }
2a8c0883
JS
1925
1926 /*
1927 * It may be possible that when we entered this function, xtime_nsec
1928 * was very small. Further, if we're slightly speeding the clocksource
1929 * in the code above, its possible the required corrective factor to
1930 * xtime_nsec could cause it to underflow.
1931 *
1932 * Now, since we already accumulated the second, cannot simply roll
1933 * the accumulated second back, since the NTP subsystem has been
1934 * notified via second_overflow. So instead we push xtime_nsec forward
1935 * by the amount we underflowed, and add that amount into the error.
1936 *
1937 * We'll correct this error next time through this function, when
1938 * xtime_nsec is not as small.
1939 */
876e7881
PZ
1940 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1941 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1942 tk->tkr_mono.xtime_nsec = 0;
f726a697 1943 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1944 }
8524070b
JS
1945}
1946
1f4f9487
JS
1947/**
1948 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1949 *
571af55a 1950 * Helper function that accumulates the nsecs greater than a second
1f4f9487
JS
1951 * from the xtime_nsec field to the xtime_secs field.
1952 * It also calls into the NTP code to handle leapsecond processing.
1953 *
1954 */
780427f0 1955static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1956{
876e7881 1957 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1958 unsigned int clock_set = 0;
1f4f9487 1959
876e7881 1960 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1961 int leap;
1962
876e7881 1963 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1964 tk->xtime_sec++;
1965
1966 /* Figure out if its a leap sec and apply if needed */
1967 leap = second_overflow(tk->xtime_sec);
6d0ef903 1968 if (unlikely(leap)) {
7d489d15 1969 struct timespec64 ts;
6d0ef903
JS
1970
1971 tk->xtime_sec += leap;
1f4f9487 1972
6d0ef903
JS
1973 ts.tv_sec = leap;
1974 ts.tv_nsec = 0;
1975 tk_set_wall_to_mono(tk,
7d489d15 1976 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1977
cc244dda
JS
1978 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1979
5258d3f2 1980 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1981 }
1f4f9487 1982 }
5258d3f2 1983 return clock_set;
1f4f9487
JS
1984}
1985
a092ff0f
JS
1986/**
1987 * logarithmic_accumulation - shifted accumulation of cycles
1988 *
1989 * This functions accumulates a shifted interval of cycles into
1990 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1991 * loop.
1992 *
1993 * Returns the unconsumed cycles.
1994 */
a5a1d1c2
TG
1995static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1996 u32 shift, unsigned int *clock_set)
a092ff0f 1997{
a5a1d1c2 1998 u64 interval = tk->cycle_interval << shift;
3d88d56c 1999 u64 snsec_per_sec;
a092ff0f 2000
571af55a 2001 /* If the offset is smaller than a shifted interval, do nothing */
23a9537a 2002 if (offset < interval)
a092ff0f
JS
2003 return offset;
2004
2005 /* Accumulate one shifted interval */
23a9537a 2006 offset -= interval;
876e7881 2007 tk->tkr_mono.cycle_last += interval;
4a4ad80d 2008 tk->tkr_raw.cycle_last += interval;
a092ff0f 2009
876e7881 2010 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 2011 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 2012
deda2e81 2013 /* Accumulate raw time */
3d88d56c
JS
2014 tk->tkr_raw.xtime_nsec += (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift;
2015 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2016 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2017 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2018 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2019 tk->raw_time.tv_sec++;
a092ff0f 2020 }
3d88d56c
JS
2021 tk->raw_time.tv_nsec = tk->tkr_raw.xtime_nsec >> tk->tkr_raw.shift;
2022 tk->tkr_raw.xtime_nsec -= (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift;
a092ff0f
JS
2023
2024 /* Accumulate error between NTP and clock interval */
375f45b5 2025 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
2026 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2027 (tk->ntp_error_shift + shift);
a092ff0f
JS
2028
2029 return offset;
2030}
2031
8524070b
JS
2032/**
2033 * update_wall_time - Uses the current clocksource to increment the wall time
2034 *
8524070b 2035 */
47a1b796 2036void update_wall_time(void)
8524070b 2037{
3fdb14fd 2038 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 2039 struct timekeeper *tk = &shadow_timekeeper;
a5a1d1c2 2040 u64 offset;
a092ff0f 2041 int shift = 0, maxshift;
5258d3f2 2042 unsigned int clock_set = 0;
70471f2f
JS
2043 unsigned long flags;
2044
9a7a71b1 2045 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b
JS
2046
2047 /* Make sure we're fully resumed: */
2048 if (unlikely(timekeeping_suspended))
70471f2f 2049 goto out;
8524070b 2050
592913ec 2051#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 2052 offset = real_tk->cycle_interval;
592913ec 2053#else
ceea5e37 2054 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
876e7881 2055 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 2056#endif
8524070b 2057
bf2ac312 2058 /* Check if there's really nothing to do */
48cdc135 2059 if (offset < real_tk->cycle_interval)
bf2ac312
JS
2060 goto out;
2061
3c17ad19
JS
2062 /* Do some additional sanity checking */
2063 timekeeping_check_update(real_tk, offset);
2064
a092ff0f
JS
2065 /*
2066 * With NO_HZ we may have to accumulate many cycle_intervals
2067 * (think "ticks") worth of time at once. To do this efficiently,
2068 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 2069 * that is smaller than the offset. We then accumulate that
a092ff0f
JS
2070 * chunk in one go, and then try to consume the next smaller
2071 * doubled multiple.
8524070b 2072 */
4e250fdd 2073 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 2074 shift = max(0, shift);
88b28adf 2075 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 2076 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 2077 shift = min(shift, maxshift);
4e250fdd 2078 while (offset >= tk->cycle_interval) {
5258d3f2
JS
2079 offset = logarithmic_accumulation(tk, offset, shift,
2080 &clock_set);
4e250fdd 2081 if (offset < tk->cycle_interval<<shift)
830ec045 2082 shift--;
8524070b
JS
2083 }
2084
2085 /* correct the clock when NTP error is too big */
4e250fdd 2086 timekeeping_adjust(tk, offset);
8524070b 2087
6a867a39 2088 /*
92bb1fcf
JS
2089 * XXX This can be killed once everyone converts
2090 * to the new update_vsyscall.
2091 */
2092 old_vsyscall_fixup(tk);
8524070b 2093
6a867a39
JS
2094 /*
2095 * Finally, make sure that after the rounding
1e75fa8b 2096 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 2097 */
5258d3f2 2098 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 2099
3fdb14fd 2100 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
2101 /*
2102 * Update the real timekeeper.
2103 *
2104 * We could avoid this memcpy by switching pointers, but that
2105 * requires changes to all other timekeeper usage sites as
2106 * well, i.e. move the timekeeper pointer getter into the
2107 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 2108 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
2109 * updating.
2110 */
906c5557 2111 timekeeping_update(tk, clock_set);
48cdc135 2112 memcpy(real_tk, tk, sizeof(*tk));
906c5557 2113 /* The memcpy must come last. Do not put anything here! */
3fdb14fd 2114 write_seqcount_end(&tk_core.seq);
ca4523cd 2115out:
9a7a71b1 2116 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 2117 if (clock_set)
cab5e127
JS
2118 /* Have to call _delayed version, since in irq context*/
2119 clock_was_set_delayed();
8524070b 2120}
7c3f1a57
TJ
2121
2122/**
d08c0cdd
JS
2123 * getboottime64 - Return the real time of system boot.
2124 * @ts: pointer to the timespec64 to be set
7c3f1a57 2125 *
d08c0cdd 2126 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
2127 *
2128 * This is based on the wall_to_monotonic offset and the total suspend
2129 * time. Calls to settimeofday will affect the value returned (which
2130 * basically means that however wrong your real time clock is at boot time,
2131 * you get the right time here).
2132 */
d08c0cdd 2133void getboottime64(struct timespec64 *ts)
7c3f1a57 2134{
3fdb14fd 2135 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
2136 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2137
d08c0cdd 2138 *ts = ktime_to_timespec64(t);
7c3f1a57 2139}
d08c0cdd 2140EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 2141
17c38b74
JS
2142unsigned long get_seconds(void)
2143{
3fdb14fd 2144 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
2145
2146 return tk->xtime_sec;
17c38b74
JS
2147}
2148EXPORT_SYMBOL(get_seconds);
2149
da15cfda
JS
2150struct timespec __current_kernel_time(void)
2151{
3fdb14fd 2152 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 2153
7d489d15 2154 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 2155}
17c38b74 2156
8758a240 2157struct timespec64 current_kernel_time64(void)
2c6b47de 2158{
3fdb14fd 2159 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2160 struct timespec64 now;
2c6b47de
JS
2161 unsigned long seq;
2162
2163 do {
3fdb14fd 2164 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2165
4e250fdd 2166 now = tk_xtime(tk);
3fdb14fd 2167 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 2168
8758a240 2169 return now;
2c6b47de 2170}
8758a240 2171EXPORT_SYMBOL(current_kernel_time64);
da15cfda 2172
334334b5 2173struct timespec64 get_monotonic_coarse64(void)
da15cfda 2174{
3fdb14fd 2175 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2176 struct timespec64 now, mono;
da15cfda
JS
2177 unsigned long seq;
2178
2179 do {
3fdb14fd 2180 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2181
4e250fdd
JS
2182 now = tk_xtime(tk);
2183 mono = tk->wall_to_monotonic;
3fdb14fd 2184 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 2185
7d489d15 2186 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 2187 now.tv_nsec + mono.tv_nsec);
7d489d15 2188
334334b5 2189 return now;
da15cfda 2190}
eaaa7ec7 2191EXPORT_SYMBOL(get_monotonic_coarse64);
871cf1e5
TH
2192
2193/*
d6ad4187 2194 * Must hold jiffies_lock
871cf1e5
TH
2195 */
2196void do_timer(unsigned long ticks)
2197{
2198 jiffies_64 += ticks;
871cf1e5
TH
2199 calc_global_load(ticks);
2200}
48cf76f7 2201
f6c06abf 2202/**
76f41088 2203 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 2204 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf
TG
2205 * @offs_real: pointer to storage for monotonic -> realtime offset
2206 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 2207 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 2208 *
868a3e91
TG
2209 * Returns current monotonic time and updates the offsets if the
2210 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2211 * different.
2212 *
b7bc50e4 2213 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 2214 */
868a3e91
TG
2215ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2216 ktime_t *offs_boot, ktime_t *offs_tai)
f6c06abf 2217{
3fdb14fd 2218 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 2219 unsigned int seq;
a37c0aad
TG
2220 ktime_t base;
2221 u64 nsecs;
f6c06abf
TG
2222
2223 do {
3fdb14fd 2224 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 2225
876e7881
PZ
2226 base = tk->tkr_mono.base;
2227 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833f32d7
JS
2228 base = ktime_add_ns(base, nsecs);
2229
868a3e91
TG
2230 if (*cwsseq != tk->clock_was_set_seq) {
2231 *cwsseq = tk->clock_was_set_seq;
2232 *offs_real = tk->offs_real;
2233 *offs_boot = tk->offs_boot;
2234 *offs_tai = tk->offs_tai;
2235 }
833f32d7
JS
2236
2237 /* Handle leapsecond insertion adjustments */
2456e855 2238 if (unlikely(base >= tk->next_leap_ktime))
833f32d7
JS
2239 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2240
3fdb14fd 2241 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 2242
833f32d7 2243 return base;
f6c06abf 2244}
f6c06abf 2245
aa6f9c59
JS
2246/**
2247 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2248 */
2249int do_adjtimex(struct timex *txc)
2250{
3fdb14fd 2251 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 2252 unsigned long flags;
7d489d15 2253 struct timespec64 ts;
4e8f8b34 2254 s32 orig_tai, tai;
e4085693
JS
2255 int ret;
2256
2257 /* Validate the data before disabling interrupts */
2258 ret = ntp_validate_timex(txc);
2259 if (ret)
2260 return ret;
2261
cef90377
JS
2262 if (txc->modes & ADJ_SETOFFSET) {
2263 struct timespec delta;
2264 delta.tv_sec = txc->time.tv_sec;
2265 delta.tv_nsec = txc->time.tv_usec;
2266 if (!(txc->modes & ADJ_NANO))
2267 delta.tv_nsec *= 1000;
2268 ret = timekeeping_inject_offset(&delta);
2269 if (ret)
2270 return ret;
2271 }
2272
d6d29896 2273 getnstimeofday64(&ts);
87ace39b 2274
06c017fd 2275 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2276 write_seqcount_begin(&tk_core.seq);
06c017fd 2277
4e8f8b34 2278 orig_tai = tai = tk->tai_offset;
87ace39b 2279 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2280
4e8f8b34
JS
2281 if (tai != orig_tai) {
2282 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2283 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2284 }
833f32d7
JS
2285 tk_update_leap_state(tk);
2286
3fdb14fd 2287 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2288 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2289
6fdda9a9
JS
2290 if (tai != orig_tai)
2291 clock_was_set();
2292
7bd36014
JS
2293 ntp_notify_cmos_timer();
2294
87ace39b
JS
2295 return ret;
2296}
aa6f9c59
JS
2297
2298#ifdef CONFIG_NTP_PPS
2299/**
2300 * hardpps() - Accessor function to NTP __hardpps function
2301 */
7ec88e4b 2302void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
aa6f9c59 2303{
06c017fd
JS
2304 unsigned long flags;
2305
2306 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2307 write_seqcount_begin(&tk_core.seq);
06c017fd 2308
aa6f9c59 2309 __hardpps(phase_ts, raw_ts);
06c017fd 2310
3fdb14fd 2311 write_seqcount_end(&tk_core.seq);
06c017fd 2312 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2313}
2314EXPORT_SYMBOL(hardpps);
2315#endif
2316
f0af911a
TH
2317/**
2318 * xtime_update() - advances the timekeeping infrastructure
2319 * @ticks: number of ticks, that have elapsed since the last call.
2320 *
2321 * Must be called with interrupts disabled.
2322 */
2323void xtime_update(unsigned long ticks)
2324{
d6ad4187 2325 write_seqlock(&jiffies_lock);
f0af911a 2326 do_timer(ticks);
d6ad4187 2327 write_sequnlock(&jiffies_lock);
47a1b796 2328 update_wall_time();
f0af911a 2329}