]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/time/timekeeping.c
time: Cleanup global variables and move them to the top
[mirror_ubuntu-zesty-kernel.git] / kernel / time / timekeeping.c
CommitLineData
8524070b
JS
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/module.h>
12#include <linux/interrupt.h>
13#include <linux/percpu.h>
14#include <linux/init.h>
15#include <linux/mm.h>
d43c36dc 16#include <linux/sched.h>
e1a85b2c 17#include <linux/syscore_ops.h>
8524070b
JS
18#include <linux/clocksource.h>
19#include <linux/jiffies.h>
20#include <linux/time.h>
21#include <linux/tick.h>
75c5158f 22#include <linux/stop_machine.h>
8524070b 23
155ec602
MS
24/* Structure holding internal timekeeping values. */
25struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
23ce7211
MS
28 /* The shift value of the current clocksource. */
29 int shift;
155ec602
MS
30
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
a386b5af
KP
35 /* shifted nano seconds left over when rounding cycle_interval */
36 s64 xtime_remainder;
155ec602
MS
37 /* Raw nano seconds accumulated per NTP interval. */
38 u32 raw_interval;
39
40 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 u64 xtime_nsec;
42 /* Difference between accumulated time and NTP time in ntp
43 * shifted nano seconds. */
44 s64 ntp_error;
23ce7211
MS
45 /* Shift conversion between clock shifted nano seconds and
46 * ntp shifted nano seconds. */
47 int ntp_error_shift;
0a544198
MS
48 /* NTP adjusted clock multiplier */
49 u32 mult;
00c5fb77 50
8ff2cb92
JS
51 /* The current time */
52 struct timespec xtime;
d9f7217a
JS
53 /*
54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
56 * at zero at system boot time, so wall_to_monotonic will be negative,
57 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 * the usual normalization.
59 *
60 * wall_to_monotonic is moved after resume from suspend for the
61 * monotonic time not to jump. We need to add total_sleep_time to
62 * wall_to_monotonic to get the real boot based time offset.
63 *
64 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 * used instead.
66 */
67 struct timespec wall_to_monotonic;
00c5fb77
JS
68 /* time spent in suspend */
69 struct timespec total_sleep_time;
01f71b47
JS
70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 struct timespec raw_time;
155ec602
MS
72};
73
afa14e7c 74static struct timekeeper timekeeper;
155ec602 75
8fcce546
JS
76/*
77 * This read-write spinlock protects us from races in SMP while
78 * playing with xtime.
79 */
80__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
81
82
83/* flag for if timekeeping is suspended */
84int __read_mostly timekeeping_suspended;
85
86
87
155ec602
MS
88/**
89 * timekeeper_setup_internals - Set up internals to use clocksource clock.
90 *
91 * @clock: Pointer to clocksource.
92 *
93 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
94 * pair and interval request.
95 *
96 * Unless you're the timekeeping code, you should not be using this!
97 */
98static void timekeeper_setup_internals(struct clocksource *clock)
99{
100 cycle_t interval;
a386b5af 101 u64 tmp, ntpinterval;
155ec602
MS
102
103 timekeeper.clock = clock;
104 clock->cycle_last = clock->read(clock);
105
106 /* Do the ns -> cycle conversion first, using original mult */
107 tmp = NTP_INTERVAL_LENGTH;
108 tmp <<= clock->shift;
a386b5af 109 ntpinterval = tmp;
0a544198
MS
110 tmp += clock->mult/2;
111 do_div(tmp, clock->mult);
155ec602
MS
112 if (tmp == 0)
113 tmp = 1;
114
115 interval = (cycle_t) tmp;
116 timekeeper.cycle_interval = interval;
117
118 /* Go back from cycles -> shifted ns */
119 timekeeper.xtime_interval = (u64) interval * clock->mult;
a386b5af 120 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
155ec602 121 timekeeper.raw_interval =
0a544198 122 ((u64) interval * clock->mult) >> clock->shift;
155ec602
MS
123
124 timekeeper.xtime_nsec = 0;
23ce7211 125 timekeeper.shift = clock->shift;
155ec602
MS
126
127 timekeeper.ntp_error = 0;
23ce7211 128 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
0a544198
MS
129
130 /*
131 * The timekeeper keeps its own mult values for the currently
132 * active clocksource. These value will be adjusted via NTP
133 * to counteract clock drifting.
134 */
135 timekeeper.mult = clock->mult;
155ec602 136}
8524070b 137
2ba2a305
MS
138/* Timekeeper helper functions. */
139static inline s64 timekeeping_get_ns(void)
140{
141 cycle_t cycle_now, cycle_delta;
142 struct clocksource *clock;
143
144 /* read clocksource: */
145 clock = timekeeper.clock;
146 cycle_now = clock->read(clock);
147
148 /* calculate the delta since the last update_wall_time: */
149 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
150
151 /* return delta convert to nanoseconds using ntp adjusted mult. */
152 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
153 timekeeper.shift);
154}
155
156static inline s64 timekeeping_get_ns_raw(void)
157{
158 cycle_t cycle_now, cycle_delta;
159 struct clocksource *clock;
160
161 /* read clocksource: */
162 clock = timekeeper.clock;
163 cycle_now = clock->read(clock);
164
165 /* calculate the delta since the last update_wall_time: */
166 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
167
c9fad429 168 /* return delta convert to nanoseconds. */
2ba2a305
MS
169 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
170}
171
31089c13
JS
172/* must hold xtime_lock */
173void timekeeping_leap_insert(int leapsecond)
174{
8ff2cb92 175 timekeeper.xtime.tv_sec += leapsecond;
d9f7217a 176 timekeeper.wall_to_monotonic.tv_sec -= leapsecond;
8ff2cb92
JS
177 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
178 timekeeper.clock, timekeeper.mult);
31089c13 179}
8524070b 180
8524070b 181/**
155ec602 182 * timekeeping_forward_now - update clock to the current time
8524070b 183 *
9a055117
RZ
184 * Forward the current clock to update its state since the last call to
185 * update_wall_time(). This is useful before significant clock changes,
186 * as it avoids having to deal with this time offset explicitly.
8524070b 187 */
155ec602 188static void timekeeping_forward_now(void)
8524070b
JS
189{
190 cycle_t cycle_now, cycle_delta;
155ec602 191 struct clocksource *clock;
9a055117 192 s64 nsec;
8524070b 193
155ec602 194 clock = timekeeper.clock;
a0f7d48b 195 cycle_now = clock->read(clock);
8524070b 196 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
9a055117 197 clock->cycle_last = cycle_now;
8524070b 198
0a544198
MS
199 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
200 timekeeper.shift);
7d27558c
JS
201
202 /* If arch requires, add in gettimeoffset() */
203 nsec += arch_gettimeoffset();
204
8ff2cb92 205 timespec_add_ns(&timekeeper.xtime, nsec);
2d42244a 206
0a544198 207 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
01f71b47 208 timespec_add_ns(&timekeeper.raw_time, nsec);
8524070b
JS
209}
210
211/**
efd9ac86 212 * getnstimeofday - Returns the time of day in a timespec
8524070b
JS
213 * @ts: pointer to the timespec to be set
214 *
efd9ac86 215 * Returns the time of day in a timespec.
8524070b 216 */
efd9ac86 217void getnstimeofday(struct timespec *ts)
8524070b
JS
218{
219 unsigned long seq;
220 s64 nsecs;
221
1c5745aa
TG
222 WARN_ON(timekeeping_suspended);
223
8524070b
JS
224 do {
225 seq = read_seqbegin(&xtime_lock);
226
8ff2cb92 227 *ts = timekeeper.xtime;
2ba2a305 228 nsecs = timekeeping_get_ns();
8524070b 229
7d27558c
JS
230 /* If arch requires, add in gettimeoffset() */
231 nsecs += arch_gettimeoffset();
232
8524070b
JS
233 } while (read_seqretry(&xtime_lock, seq));
234
235 timespec_add_ns(ts, nsecs);
236}
237
8524070b
JS
238EXPORT_SYMBOL(getnstimeofday);
239
951ed4d3
MS
240ktime_t ktime_get(void)
241{
951ed4d3
MS
242 unsigned int seq;
243 s64 secs, nsecs;
244
245 WARN_ON(timekeeping_suspended);
246
247 do {
248 seq = read_seqbegin(&xtime_lock);
8ff2cb92
JS
249 secs = timekeeper.xtime.tv_sec +
250 timekeeper.wall_to_monotonic.tv_sec;
251 nsecs = timekeeper.xtime.tv_nsec +
252 timekeeper.wall_to_monotonic.tv_nsec;
2ba2a305 253 nsecs += timekeeping_get_ns();
d004e024
HP
254 /* If arch requires, add in gettimeoffset() */
255 nsecs += arch_gettimeoffset();
951ed4d3
MS
256
257 } while (read_seqretry(&xtime_lock, seq));
258 /*
259 * Use ktime_set/ktime_add_ns to create a proper ktime on
260 * 32-bit architectures without CONFIG_KTIME_SCALAR.
261 */
262 return ktime_add_ns(ktime_set(secs, 0), nsecs);
263}
264EXPORT_SYMBOL_GPL(ktime_get);
265
266/**
267 * ktime_get_ts - get the monotonic clock in timespec format
268 * @ts: pointer to timespec variable
269 *
270 * The function calculates the monotonic clock from the realtime
271 * clock and the wall_to_monotonic offset and stores the result
272 * in normalized timespec format in the variable pointed to by @ts.
273 */
274void ktime_get_ts(struct timespec *ts)
275{
951ed4d3
MS
276 struct timespec tomono;
277 unsigned int seq;
278 s64 nsecs;
279
280 WARN_ON(timekeeping_suspended);
281
282 do {
283 seq = read_seqbegin(&xtime_lock);
8ff2cb92 284 *ts = timekeeper.xtime;
d9f7217a 285 tomono = timekeeper.wall_to_monotonic;
2ba2a305 286 nsecs = timekeeping_get_ns();
d004e024
HP
287 /* If arch requires, add in gettimeoffset() */
288 nsecs += arch_gettimeoffset();
951ed4d3
MS
289
290 } while (read_seqretry(&xtime_lock, seq));
291
292 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
293 ts->tv_nsec + tomono.tv_nsec + nsecs);
294}
295EXPORT_SYMBOL_GPL(ktime_get_ts);
296
e2c18e49
AG
297#ifdef CONFIG_NTP_PPS
298
299/**
300 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
301 * @ts_raw: pointer to the timespec to be set to raw monotonic time
302 * @ts_real: pointer to the timespec to be set to the time of day
303 *
304 * This function reads both the time of day and raw monotonic time at the
305 * same time atomically and stores the resulting timestamps in timespec
306 * format.
307 */
308void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
309{
310 unsigned long seq;
311 s64 nsecs_raw, nsecs_real;
312
313 WARN_ON_ONCE(timekeeping_suspended);
314
315 do {
316 u32 arch_offset;
317
318 seq = read_seqbegin(&xtime_lock);
319
01f71b47 320 *ts_raw = timekeeper.raw_time;
8ff2cb92 321 *ts_real = timekeeper.xtime;
e2c18e49
AG
322
323 nsecs_raw = timekeeping_get_ns_raw();
324 nsecs_real = timekeeping_get_ns();
325
326 /* If arch requires, add in gettimeoffset() */
327 arch_offset = arch_gettimeoffset();
328 nsecs_raw += arch_offset;
329 nsecs_real += arch_offset;
330
331 } while (read_seqretry(&xtime_lock, seq));
332
333 timespec_add_ns(ts_raw, nsecs_raw);
334 timespec_add_ns(ts_real, nsecs_real);
335}
336EXPORT_SYMBOL(getnstime_raw_and_real);
337
338#endif /* CONFIG_NTP_PPS */
339
8524070b
JS
340/**
341 * do_gettimeofday - Returns the time of day in a timeval
342 * @tv: pointer to the timeval to be set
343 *
efd9ac86 344 * NOTE: Users should be converted to using getnstimeofday()
8524070b
JS
345 */
346void do_gettimeofday(struct timeval *tv)
347{
348 struct timespec now;
349
efd9ac86 350 getnstimeofday(&now);
8524070b
JS
351 tv->tv_sec = now.tv_sec;
352 tv->tv_usec = now.tv_nsec/1000;
353}
354
355EXPORT_SYMBOL(do_gettimeofday);
356/**
357 * do_settimeofday - Sets the time of day
358 * @tv: pointer to the timespec variable containing the new time
359 *
360 * Sets the time of day to the new time and update NTP and notify hrtimers
361 */
1e6d7679 362int do_settimeofday(const struct timespec *tv)
8524070b 363{
9a055117 364 struct timespec ts_delta;
8524070b 365 unsigned long flags;
8524070b
JS
366
367 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
368 return -EINVAL;
369
370 write_seqlock_irqsave(&xtime_lock, flags);
371
155ec602 372 timekeeping_forward_now();
9a055117 373
8ff2cb92
JS
374 ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
375 ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
d9f7217a
JS
376 timekeeper.wall_to_monotonic =
377 timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
8524070b 378
8ff2cb92 379 timekeeper.xtime = *tv;
8524070b 380
155ec602 381 timekeeper.ntp_error = 0;
8524070b
JS
382 ntp_clear();
383
8ff2cb92
JS
384 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
385 timekeeper.clock, timekeeper.mult);
8524070b
JS
386
387 write_sequnlock_irqrestore(&xtime_lock, flags);
388
389 /* signal hrtimers about time change */
390 clock_was_set();
391
392 return 0;
393}
394
395EXPORT_SYMBOL(do_settimeofday);
396
c528f7c6
JS
397
398/**
399 * timekeeping_inject_offset - Adds or subtracts from the current time.
400 * @tv: pointer to the timespec variable containing the offset
401 *
402 * Adds or subtracts an offset value from the current time.
403 */
404int timekeeping_inject_offset(struct timespec *ts)
405{
406 unsigned long flags;
407
408 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
409 return -EINVAL;
410
411 write_seqlock_irqsave(&xtime_lock, flags);
412
413 timekeeping_forward_now();
414
8ff2cb92 415 timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
d9f7217a
JS
416 timekeeper.wall_to_monotonic =
417 timespec_sub(timekeeper.wall_to_monotonic, *ts);
c528f7c6
JS
418
419 timekeeper.ntp_error = 0;
420 ntp_clear();
421
8ff2cb92
JS
422 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
423 timekeeper.clock, timekeeper.mult);
c528f7c6
JS
424
425 write_sequnlock_irqrestore(&xtime_lock, flags);
426
427 /* signal hrtimers about time change */
428 clock_was_set();
429
430 return 0;
431}
432EXPORT_SYMBOL(timekeeping_inject_offset);
433
8524070b
JS
434/**
435 * change_clocksource - Swaps clocksources if a new one is available
436 *
437 * Accumulates current time interval and initializes new clocksource
438 */
75c5158f 439static int change_clocksource(void *data)
8524070b 440{
4614e6ad 441 struct clocksource *new, *old;
8524070b 442
75c5158f 443 new = (struct clocksource *) data;
8524070b 444
155ec602 445 timekeeping_forward_now();
75c5158f
MS
446 if (!new->enable || new->enable(new) == 0) {
447 old = timekeeper.clock;
448 timekeeper_setup_internals(new);
449 if (old->disable)
450 old->disable(old);
451 }
452 return 0;
453}
8524070b 454
75c5158f
MS
455/**
456 * timekeeping_notify - Install a new clock source
457 * @clock: pointer to the clock source
458 *
459 * This function is called from clocksource.c after a new, better clock
460 * source has been registered. The caller holds the clocksource_mutex.
461 */
462void timekeeping_notify(struct clocksource *clock)
463{
464 if (timekeeper.clock == clock)
4614e6ad 465 return;
75c5158f 466 stop_machine(change_clocksource, clock, NULL);
8524070b 467 tick_clock_notify();
8524070b 468}
75c5158f 469
a40f262c
TG
470/**
471 * ktime_get_real - get the real (wall-) time in ktime_t format
472 *
473 * returns the time in ktime_t format
474 */
475ktime_t ktime_get_real(void)
476{
477 struct timespec now;
478
479 getnstimeofday(&now);
480
481 return timespec_to_ktime(now);
482}
483EXPORT_SYMBOL_GPL(ktime_get_real);
8524070b 484
2d42244a
JS
485/**
486 * getrawmonotonic - Returns the raw monotonic time in a timespec
487 * @ts: pointer to the timespec to be set
488 *
489 * Returns the raw monotonic time (completely un-modified by ntp)
490 */
491void getrawmonotonic(struct timespec *ts)
492{
493 unsigned long seq;
494 s64 nsecs;
2d42244a
JS
495
496 do {
497 seq = read_seqbegin(&xtime_lock);
2ba2a305 498 nsecs = timekeeping_get_ns_raw();
01f71b47 499 *ts = timekeeper.raw_time;
2d42244a
JS
500
501 } while (read_seqretry(&xtime_lock, seq));
502
503 timespec_add_ns(ts, nsecs);
504}
505EXPORT_SYMBOL(getrawmonotonic);
506
507
8524070b 508/**
cf4fc6cb 509 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 510 */
cf4fc6cb 511int timekeeping_valid_for_hres(void)
8524070b
JS
512{
513 unsigned long seq;
514 int ret;
515
516 do {
517 seq = read_seqbegin(&xtime_lock);
518
155ec602 519 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b
JS
520
521 } while (read_seqretry(&xtime_lock, seq));
522
523 return ret;
524}
525
98962465
JH
526/**
527 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
528 *
529 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
530 * ensure that the clocksource does not change!
531 */
532u64 timekeeping_max_deferment(void)
533{
534 return timekeeper.clock->max_idle_ns;
535}
536
8524070b 537/**
d4f587c6 538 * read_persistent_clock - Return time from the persistent clock.
8524070b
JS
539 *
540 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
541 * Reads the time from the battery backed persistent clock.
542 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b
JS
543 *
544 * XXX - Do be sure to remove it once all arches implement it.
545 */
d4f587c6 546void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
8524070b 547{
d4f587c6
MS
548 ts->tv_sec = 0;
549 ts->tv_nsec = 0;
8524070b
JS
550}
551
23970e38
MS
552/**
553 * read_boot_clock - Return time of the system start.
554 *
555 * Weak dummy function for arches that do not yet support it.
556 * Function to read the exact time the system has been started.
557 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
558 *
559 * XXX - Do be sure to remove it once all arches implement it.
560 */
561void __attribute__((weak)) read_boot_clock(struct timespec *ts)
562{
563 ts->tv_sec = 0;
564 ts->tv_nsec = 0;
565}
566
8524070b
JS
567/*
568 * timekeeping_init - Initializes the clocksource and common timekeeping values
569 */
570void __init timekeeping_init(void)
571{
155ec602 572 struct clocksource *clock;
8524070b 573 unsigned long flags;
23970e38 574 struct timespec now, boot;
d4f587c6
MS
575
576 read_persistent_clock(&now);
23970e38 577 read_boot_clock(&boot);
8524070b
JS
578
579 write_seqlock_irqsave(&xtime_lock, flags);
580
7dffa3c6 581 ntp_init();
8524070b 582
f1b82746 583 clock = clocksource_default_clock();
a0f7d48b
MS
584 if (clock->enable)
585 clock->enable(clock);
155ec602 586 timekeeper_setup_internals(clock);
8524070b 587
8ff2cb92
JS
588 timekeeper.xtime.tv_sec = now.tv_sec;
589 timekeeper.xtime.tv_nsec = now.tv_nsec;
01f71b47
JS
590 timekeeper.raw_time.tv_sec = 0;
591 timekeeper.raw_time.tv_nsec = 0;
23970e38 592 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
8ff2cb92
JS
593 boot.tv_sec = timekeeper.xtime.tv_sec;
594 boot.tv_nsec = timekeeper.xtime.tv_nsec;
23970e38 595 }
d9f7217a 596 set_normalized_timespec(&timekeeper.wall_to_monotonic,
23970e38 597 -boot.tv_sec, -boot.tv_nsec);
00c5fb77
JS
598 timekeeper.total_sleep_time.tv_sec = 0;
599 timekeeper.total_sleep_time.tv_nsec = 0;
8524070b
JS
600 write_sequnlock_irqrestore(&xtime_lock, flags);
601}
602
8524070b 603/* time in seconds when suspend began */
d4f587c6 604static struct timespec timekeeping_suspend_time;
8524070b 605
304529b1
JS
606/**
607 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
608 * @delta: pointer to a timespec delta value
609 *
610 * Takes a timespec offset measuring a suspend interval and properly
611 * adds the sleep offset to the timekeeping variables.
612 */
613static void __timekeeping_inject_sleeptime(struct timespec *delta)
614{
cb5de2f8 615 if (!timespec_valid(delta)) {
cbaa5152 616 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
cb5de2f8
JS
617 "sleep delta value!\n");
618 return;
619 }
620
8ff2cb92 621 timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
d9f7217a
JS
622 timekeeper.wall_to_monotonic =
623 timespec_sub(timekeeper.wall_to_monotonic, *delta);
00c5fb77
JS
624 timekeeper.total_sleep_time = timespec_add(
625 timekeeper.total_sleep_time, *delta);
304529b1
JS
626}
627
628
629/**
630 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
631 * @delta: pointer to a timespec delta value
632 *
633 * This hook is for architectures that cannot support read_persistent_clock
634 * because their RTC/persistent clock is only accessible when irqs are enabled.
635 *
636 * This function should only be called by rtc_resume(), and allows
637 * a suspend offset to be injected into the timekeeping values.
638 */
639void timekeeping_inject_sleeptime(struct timespec *delta)
640{
641 unsigned long flags;
642 struct timespec ts;
643
644 /* Make sure we don't set the clock twice */
645 read_persistent_clock(&ts);
646 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
647 return;
648
649 write_seqlock_irqsave(&xtime_lock, flags);
650 timekeeping_forward_now();
651
652 __timekeeping_inject_sleeptime(delta);
653
654 timekeeper.ntp_error = 0;
655 ntp_clear();
8ff2cb92
JS
656 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
657 timekeeper.clock, timekeeper.mult);
304529b1
JS
658
659 write_sequnlock_irqrestore(&xtime_lock, flags);
660
661 /* signal hrtimers about time change */
662 clock_was_set();
663}
664
665
8524070b
JS
666/**
667 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b
JS
668 *
669 * This is for the generic clocksource timekeeping.
670 * xtime/wall_to_monotonic/jiffies/etc are
671 * still managed by arch specific suspend/resume code.
672 */
e1a85b2c 673static void timekeeping_resume(void)
8524070b
JS
674{
675 unsigned long flags;
d4f587c6
MS
676 struct timespec ts;
677
678 read_persistent_clock(&ts);
8524070b 679
d10ff3fb
TG
680 clocksource_resume();
681
8524070b
JS
682 write_seqlock_irqsave(&xtime_lock, flags);
683
d4f587c6
MS
684 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
685 ts = timespec_sub(ts, timekeeping_suspend_time);
304529b1 686 __timekeeping_inject_sleeptime(&ts);
8524070b
JS
687 }
688 /* re-base the last cycle value */
155ec602
MS
689 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
690 timekeeper.ntp_error = 0;
8524070b
JS
691 timekeeping_suspended = 0;
692 write_sequnlock_irqrestore(&xtime_lock, flags);
693
694 touch_softlockup_watchdog();
695
696 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
697
698 /* Resume hrtimers */
b12a03ce 699 hrtimers_resume();
8524070b
JS
700}
701
e1a85b2c 702static int timekeeping_suspend(void)
8524070b
JS
703{
704 unsigned long flags;
cb33217b
JS
705 struct timespec delta, delta_delta;
706 static struct timespec old_delta;
8524070b 707
d4f587c6 708 read_persistent_clock(&timekeeping_suspend_time);
3be90950 709
8524070b 710 write_seqlock_irqsave(&xtime_lock, flags);
155ec602 711 timekeeping_forward_now();
8524070b 712 timekeeping_suspended = 1;
cb33217b
JS
713
714 /*
715 * To avoid drift caused by repeated suspend/resumes,
716 * which each can add ~1 second drift error,
717 * try to compensate so the difference in system time
718 * and persistent_clock time stays close to constant.
719 */
8ff2cb92 720 delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
cb33217b
JS
721 delta_delta = timespec_sub(delta, old_delta);
722 if (abs(delta_delta.tv_sec) >= 2) {
723 /*
724 * if delta_delta is too large, assume time correction
725 * has occured and set old_delta to the current delta.
726 */
727 old_delta = delta;
728 } else {
729 /* Otherwise try to adjust old_system to compensate */
730 timekeeping_suspend_time =
731 timespec_add(timekeeping_suspend_time, delta_delta);
732 }
8524070b
JS
733 write_sequnlock_irqrestore(&xtime_lock, flags);
734
735 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 736 clocksource_suspend();
8524070b
JS
737
738 return 0;
739}
740
741/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 742static struct syscore_ops timekeeping_syscore_ops = {
8524070b
JS
743 .resume = timekeeping_resume,
744 .suspend = timekeeping_suspend,
8524070b
JS
745};
746
e1a85b2c 747static int __init timekeeping_init_ops(void)
8524070b 748{
e1a85b2c
RW
749 register_syscore_ops(&timekeeping_syscore_ops);
750 return 0;
8524070b
JS
751}
752
e1a85b2c 753device_initcall(timekeeping_init_ops);
8524070b
JS
754
755/*
756 * If the error is already larger, we look ahead even further
757 * to compensate for late or lost adjustments.
758 */
155ec602 759static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
8524070b
JS
760 s64 *offset)
761{
762 s64 tick_error, i;
763 u32 look_ahead, adj;
764 s32 error2, mult;
765
766 /*
767 * Use the current error value to determine how much to look ahead.
768 * The larger the error the slower we adjust for it to avoid problems
769 * with losing too many ticks, otherwise we would overadjust and
770 * produce an even larger error. The smaller the adjustment the
771 * faster we try to adjust for it, as lost ticks can do less harm
3eb05676 772 * here. This is tuned so that an error of about 1 msec is adjusted
8524070b
JS
773 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
774 */
155ec602 775 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
8524070b
JS
776 error2 = abs(error2);
777 for (look_ahead = 0; error2 > 0; look_ahead++)
778 error2 >>= 2;
779
780 /*
781 * Now calculate the error in (1 << look_ahead) ticks, but first
782 * remove the single look ahead already included in the error.
783 */
23ce7211 784 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
155ec602 785 tick_error -= timekeeper.xtime_interval >> 1;
8524070b
JS
786 error = ((error - tick_error) >> look_ahead) + tick_error;
787
788 /* Finally calculate the adjustment shift value. */
789 i = *interval;
790 mult = 1;
791 if (error < 0) {
792 error = -error;
793 *interval = -*interval;
794 *offset = -*offset;
795 mult = -1;
796 }
797 for (adj = 0; error > i; adj++)
798 error >>= 1;
799
800 *interval <<= adj;
801 *offset <<= adj;
802 return mult << adj;
803}
804
805/*
806 * Adjust the multiplier to reduce the error value,
807 * this is optimized for the most common adjustments of -1,0,1,
808 * for other values we can do a bit more work.
809 */
155ec602 810static void timekeeping_adjust(s64 offset)
8524070b 811{
155ec602 812 s64 error, interval = timekeeper.cycle_interval;
8524070b
JS
813 int adj;
814
c2bc1111
JS
815 /*
816 * The point of this is to check if the error is greater then half
817 * an interval.
818 *
819 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
820 *
821 * Note we subtract one in the shift, so that error is really error*2.
3f86f28f
JS
822 * This "saves" dividing(shifting) interval twice, but keeps the
823 * (error > interval) comparison as still measuring if error is
c2bc1111
JS
824 * larger then half an interval.
825 *
3f86f28f 826 * Note: It does not "save" on aggravation when reading the code.
c2bc1111 827 */
23ce7211 828 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
8524070b 829 if (error > interval) {
c2bc1111
JS
830 /*
831 * We now divide error by 4(via shift), which checks if
832 * the error is greater then twice the interval.
833 * If it is greater, we need a bigadjust, if its smaller,
834 * we can adjust by 1.
835 */
8524070b 836 error >>= 2;
c2bc1111
JS
837 /*
838 * XXX - In update_wall_time, we round up to the next
839 * nanosecond, and store the amount rounded up into
840 * the error. This causes the likely below to be unlikely.
841 *
3f86f28f 842 * The proper fix is to avoid rounding up by using
c2bc1111
JS
843 * the high precision timekeeper.xtime_nsec instead of
844 * xtime.tv_nsec everywhere. Fixing this will take some
845 * time.
846 */
8524070b
JS
847 if (likely(error <= interval))
848 adj = 1;
849 else
155ec602 850 adj = timekeeping_bigadjust(error, &interval, &offset);
8524070b 851 } else if (error < -interval) {
c2bc1111 852 /* See comment above, this is just switched for the negative */
8524070b
JS
853 error >>= 2;
854 if (likely(error >= -interval)) {
855 adj = -1;
856 interval = -interval;
857 offset = -offset;
858 } else
155ec602 859 adj = timekeeping_bigadjust(error, &interval, &offset);
c2bc1111 860 } else /* No adjustment needed */
8524070b
JS
861 return;
862
d65670a7
JS
863 WARN_ONCE(timekeeper.clock->maxadj &&
864 (timekeeper.mult + adj > timekeeper.clock->mult +
865 timekeeper.clock->maxadj),
866 "Adjusting %s more then 11%% (%ld vs %ld)\n",
867 timekeeper.clock->name, (long)timekeeper.mult + adj,
868 (long)timekeeper.clock->mult +
869 timekeeper.clock->maxadj);
c2bc1111
JS
870 /*
871 * So the following can be confusing.
872 *
873 * To keep things simple, lets assume adj == 1 for now.
874 *
875 * When adj != 1, remember that the interval and offset values
876 * have been appropriately scaled so the math is the same.
877 *
878 * The basic idea here is that we're increasing the multiplier
879 * by one, this causes the xtime_interval to be incremented by
880 * one cycle_interval. This is because:
881 * xtime_interval = cycle_interval * mult
882 * So if mult is being incremented by one:
883 * xtime_interval = cycle_interval * (mult + 1)
884 * Its the same as:
885 * xtime_interval = (cycle_interval * mult) + cycle_interval
886 * Which can be shortened to:
887 * xtime_interval += cycle_interval
888 *
889 * So offset stores the non-accumulated cycles. Thus the current
890 * time (in shifted nanoseconds) is:
891 * now = (offset * adj) + xtime_nsec
892 * Now, even though we're adjusting the clock frequency, we have
893 * to keep time consistent. In other words, we can't jump back
894 * in time, and we also want to avoid jumping forward in time.
895 *
896 * So given the same offset value, we need the time to be the same
897 * both before and after the freq adjustment.
898 * now = (offset * adj_1) + xtime_nsec_1
899 * now = (offset * adj_2) + xtime_nsec_2
900 * So:
901 * (offset * adj_1) + xtime_nsec_1 =
902 * (offset * adj_2) + xtime_nsec_2
903 * And we know:
904 * adj_2 = adj_1 + 1
905 * So:
906 * (offset * adj_1) + xtime_nsec_1 =
907 * (offset * (adj_1+1)) + xtime_nsec_2
908 * (offset * adj_1) + xtime_nsec_1 =
909 * (offset * adj_1) + offset + xtime_nsec_2
910 * Canceling the sides:
911 * xtime_nsec_1 = offset + xtime_nsec_2
912 * Which gives us:
913 * xtime_nsec_2 = xtime_nsec_1 - offset
914 * Which simplfies to:
915 * xtime_nsec -= offset
916 *
917 * XXX - TODO: Doc ntp_error calculation.
918 */
0a544198 919 timekeeper.mult += adj;
155ec602
MS
920 timekeeper.xtime_interval += interval;
921 timekeeper.xtime_nsec -= offset;
922 timekeeper.ntp_error -= (interval - offset) <<
23ce7211 923 timekeeper.ntp_error_shift;
8524070b
JS
924}
925
83f57a11 926
a092ff0f
JS
927/**
928 * logarithmic_accumulation - shifted accumulation of cycles
929 *
930 * This functions accumulates a shifted interval of cycles into
931 * into a shifted interval nanoseconds. Allows for O(log) accumulation
932 * loop.
933 *
934 * Returns the unconsumed cycles.
935 */
936static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
937{
938 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
deda2e81 939 u64 raw_nsecs;
a092ff0f
JS
940
941 /* If the offset is smaller then a shifted interval, do nothing */
942 if (offset < timekeeper.cycle_interval<<shift)
943 return offset;
944
945 /* Accumulate one shifted interval */
946 offset -= timekeeper.cycle_interval << shift;
947 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
948
949 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
950 while (timekeeper.xtime_nsec >= nsecps) {
951 timekeeper.xtime_nsec -= nsecps;
8ff2cb92 952 timekeeper.xtime.tv_sec++;
a092ff0f
JS
953 second_overflow();
954 }
955
deda2e81
JW
956 /* Accumulate raw time */
957 raw_nsecs = timekeeper.raw_interval << shift;
01f71b47 958 raw_nsecs += timekeeper.raw_time.tv_nsec;
c7dcf87a
JS
959 if (raw_nsecs >= NSEC_PER_SEC) {
960 u64 raw_secs = raw_nsecs;
961 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
01f71b47 962 timekeeper.raw_time.tv_sec += raw_secs;
a092ff0f 963 }
01f71b47 964 timekeeper.raw_time.tv_nsec = raw_nsecs;
a092ff0f
JS
965
966 /* Accumulate error between NTP and clock interval */
967 timekeeper.ntp_error += tick_length << shift;
a386b5af
KP
968 timekeeper.ntp_error -=
969 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
a092ff0f
JS
970 (timekeeper.ntp_error_shift + shift);
971
972 return offset;
973}
974
83f57a11 975
8524070b
JS
976/**
977 * update_wall_time - Uses the current clocksource to increment the wall time
978 *
979 * Called from the timer interrupt, must hold a write on xtime_lock.
980 */
871cf1e5 981static void update_wall_time(void)
8524070b 982{
155ec602 983 struct clocksource *clock;
8524070b 984 cycle_t offset;
a092ff0f 985 int shift = 0, maxshift;
8524070b
JS
986
987 /* Make sure we're fully resumed: */
988 if (unlikely(timekeeping_suspended))
989 return;
990
155ec602 991 clock = timekeeper.clock;
592913ec
JS
992
993#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
155ec602 994 offset = timekeeper.cycle_interval;
592913ec
JS
995#else
996 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
8524070b 997#endif
8ff2cb92
JS
998 timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
999 timekeeper.shift;
8524070b 1000
a092ff0f
JS
1001 /*
1002 * With NO_HZ we may have to accumulate many cycle_intervals
1003 * (think "ticks") worth of time at once. To do this efficiently,
1004 * we calculate the largest doubling multiple of cycle_intervals
1005 * that is smaller then the offset. We then accumulate that
1006 * chunk in one go, and then try to consume the next smaller
1007 * doubled multiple.
8524070b 1008 */
a092ff0f
JS
1009 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1010 shift = max(0, shift);
1011 /* Bound shift to one less then what overflows tick_length */
1012 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
1013 shift = min(shift, maxshift);
155ec602 1014 while (offset >= timekeeper.cycle_interval) {
a092ff0f 1015 offset = logarithmic_accumulation(offset, shift);
830ec045
JS
1016 if(offset < timekeeper.cycle_interval<<shift)
1017 shift--;
8524070b
JS
1018 }
1019
1020 /* correct the clock when NTP error is too big */
155ec602 1021 timekeeping_adjust(offset);
8524070b 1022
6c9bacb4
JS
1023 /*
1024 * Since in the loop above, we accumulate any amount of time
1025 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1026 * xtime_nsec to be fairly small after the loop. Further, if we're
155ec602 1027 * slightly speeding the clocksource up in timekeeping_adjust(),
6c9bacb4
JS
1028 * its possible the required corrective factor to xtime_nsec could
1029 * cause it to underflow.
1030 *
1031 * Now, we cannot simply roll the accumulated second back, since
1032 * the NTP subsystem has been notified via second_overflow. So
1033 * instead we push xtime_nsec forward by the amount we underflowed,
1034 * and add that amount into the error.
1035 *
1036 * We'll correct this error next time through this function, when
1037 * xtime_nsec is not as small.
1038 */
155ec602
MS
1039 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1040 s64 neg = -(s64)timekeeper.xtime_nsec;
1041 timekeeper.xtime_nsec = 0;
23ce7211 1042 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
6c9bacb4
JS
1043 }
1044
6a867a39
JS
1045
1046 /*
1047 * Store full nanoseconds into xtime after rounding it up and
5cd1c9c5
RZ
1048 * add the remainder to the error difference.
1049 */
8ff2cb92
JS
1050 timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1051 timekeeper.shift) + 1;
1052 timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1053 timekeeper.shift;
23ce7211
MS
1054 timekeeper.ntp_error += timekeeper.xtime_nsec <<
1055 timekeeper.ntp_error_shift;
8524070b 1056
6a867a39
JS
1057 /*
1058 * Finally, make sure that after the rounding
1059 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
1060 */
8ff2cb92
JS
1061 if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1062 timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1063 timekeeper.xtime.tv_sec++;
6a867a39
JS
1064 second_overflow();
1065 }
83f57a11 1066
8524070b 1067 /* check to see if there is a new clocksource to use */
8ff2cb92
JS
1068 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
1069 timekeeper.clock, timekeeper.mult);
8524070b 1070}
7c3f1a57
TJ
1071
1072/**
1073 * getboottime - Return the real time of system boot.
1074 * @ts: pointer to the timespec to be set
1075 *
abb3a4ea 1076 * Returns the wall-time of boot in a timespec.
7c3f1a57
TJ
1077 *
1078 * This is based on the wall_to_monotonic offset and the total suspend
1079 * time. Calls to settimeofday will affect the value returned (which
1080 * basically means that however wrong your real time clock is at boot time,
1081 * you get the right time here).
1082 */
1083void getboottime(struct timespec *ts)
1084{
36d47481 1085 struct timespec boottime = {
d9f7217a 1086 .tv_sec = timekeeper.wall_to_monotonic.tv_sec +
00c5fb77 1087 timekeeper.total_sleep_time.tv_sec,
d9f7217a 1088 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
00c5fb77 1089 timekeeper.total_sleep_time.tv_nsec
36d47481 1090 };
d4f587c6 1091
d4f587c6 1092 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
7c3f1a57 1093}
c93d89f3 1094EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57 1095
abb3a4ea
JS
1096
1097/**
1098 * get_monotonic_boottime - Returns monotonic time since boot
1099 * @ts: pointer to the timespec to be set
1100 *
1101 * Returns the monotonic time since boot in a timespec.
1102 *
1103 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1104 * includes the time spent in suspend.
1105 */
1106void get_monotonic_boottime(struct timespec *ts)
1107{
1108 struct timespec tomono, sleep;
1109 unsigned int seq;
1110 s64 nsecs;
1111
1112 WARN_ON(timekeeping_suspended);
1113
1114 do {
1115 seq = read_seqbegin(&xtime_lock);
8ff2cb92 1116 *ts = timekeeper.xtime;
d9f7217a 1117 tomono = timekeeper.wall_to_monotonic;
00c5fb77 1118 sleep = timekeeper.total_sleep_time;
abb3a4ea
JS
1119 nsecs = timekeeping_get_ns();
1120
1121 } while (read_seqretry(&xtime_lock, seq));
1122
1123 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1124 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1125}
1126EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1127
1128/**
1129 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1130 *
1131 * Returns the monotonic time since boot in a ktime
1132 *
1133 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1134 * includes the time spent in suspend.
1135 */
1136ktime_t ktime_get_boottime(void)
1137{
1138 struct timespec ts;
1139
1140 get_monotonic_boottime(&ts);
1141 return timespec_to_ktime(ts);
1142}
1143EXPORT_SYMBOL_GPL(ktime_get_boottime);
1144
7c3f1a57
TJ
1145/**
1146 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1147 * @ts: pointer to the timespec to be converted
1148 */
1149void monotonic_to_bootbased(struct timespec *ts)
1150{
00c5fb77 1151 *ts = timespec_add(*ts, timekeeper.total_sleep_time);
7c3f1a57 1152}
c93d89f3 1153EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
2c6b47de 1154
17c38b74
JS
1155unsigned long get_seconds(void)
1156{
8ff2cb92 1157 return timekeeper.xtime.tv_sec;
17c38b74
JS
1158}
1159EXPORT_SYMBOL(get_seconds);
1160
da15cfda
JS
1161struct timespec __current_kernel_time(void)
1162{
8ff2cb92 1163 return timekeeper.xtime;
da15cfda 1164}
17c38b74 1165
2c6b47de
JS
1166struct timespec current_kernel_time(void)
1167{
1168 struct timespec now;
1169 unsigned long seq;
1170
1171 do {
1172 seq = read_seqbegin(&xtime_lock);
83f57a11 1173
8ff2cb92 1174 now = timekeeper.xtime;
2c6b47de
JS
1175 } while (read_seqretry(&xtime_lock, seq));
1176
1177 return now;
1178}
2c6b47de 1179EXPORT_SYMBOL(current_kernel_time);
da15cfda
JS
1180
1181struct timespec get_monotonic_coarse(void)
1182{
1183 struct timespec now, mono;
1184 unsigned long seq;
1185
1186 do {
1187 seq = read_seqbegin(&xtime_lock);
83f57a11 1188
8ff2cb92 1189 now = timekeeper.xtime;
d9f7217a 1190 mono = timekeeper.wall_to_monotonic;
da15cfda
JS
1191 } while (read_seqretry(&xtime_lock, seq));
1192
1193 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1194 now.tv_nsec + mono.tv_nsec);
1195 return now;
1196}
871cf1e5
TH
1197
1198/*
1199 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1200 * without sampling the sequence number in xtime_lock.
1201 * jiffies is defined in the linker script...
1202 */
1203void do_timer(unsigned long ticks)
1204{
1205 jiffies_64 += ticks;
1206 update_wall_time();
1207 calc_global_load(ticks);
1208}
48cf76f7
TH
1209
1210/**
314ac371
JS
1211 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1212 * and sleep offsets.
48cf76f7
TH
1213 * @xtim: pointer to timespec to be set with xtime
1214 * @wtom: pointer to timespec to be set with wall_to_monotonic
314ac371 1215 * @sleep: pointer to timespec to be set with time in suspend
48cf76f7 1216 */
314ac371
JS
1217void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1218 struct timespec *wtom, struct timespec *sleep)
48cf76f7
TH
1219{
1220 unsigned long seq;
1221
1222 do {
1223 seq = read_seqbegin(&xtime_lock);
8ff2cb92 1224 *xtim = timekeeper.xtime;
d9f7217a 1225 *wtom = timekeeper.wall_to_monotonic;
00c5fb77 1226 *sleep = timekeeper.total_sleep_time;
48cf76f7
TH
1227 } while (read_seqretry(&xtime_lock, seq));
1228}
f0af911a 1229
99ee5315
TG
1230/**
1231 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1232 */
1233ktime_t ktime_get_monotonic_offset(void)
1234{
1235 unsigned long seq;
1236 struct timespec wtom;
1237
1238 do {
1239 seq = read_seqbegin(&xtime_lock);
d9f7217a 1240 wtom = timekeeper.wall_to_monotonic;
99ee5315
TG
1241 } while (read_seqretry(&xtime_lock, seq));
1242 return timespec_to_ktime(wtom);
1243}
1244
f0af911a
TH
1245/**
1246 * xtime_update() - advances the timekeeping infrastructure
1247 * @ticks: number of ticks, that have elapsed since the last call.
1248 *
1249 * Must be called with interrupts disabled.
1250 */
1251void xtime_update(unsigned long ticks)
1252{
1253 write_seqlock(&xtime_lock);
1254 do_timer(ticks);
1255 write_sequnlock(&xtime_lock);
1256}