]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/time/timekeeping.c
time: Provide y2038 safe mktime() replacement
[mirror_ubuntu-bionic-kernel.git] / kernel / time / timekeeping.c
CommitLineData
8524070b
JS
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b
JS
12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b
JS
19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
8fcce546
JS
63/* flag for if timekeeping is suspended */
64int __read_mostly timekeeping_suspended;
65
31ade306
FT
66/* Flag for if there is a persistent clock on this platform */
67bool __read_mostly persistent_clock_exist = false;
68
1e75fa8b
JS
69static inline void tk_normalize_xtime(struct timekeeper *tk)
70{
d28ede83
TG
71 while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
1e75fa8b
JS
73 tk->xtime_sec++;
74 }
75}
76
c905fae4
TG
77static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78{
79 struct timespec64 ts;
80
81 ts.tv_sec = tk->xtime_sec;
d28ede83 82 ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
c905fae4
TG
83 return ts;
84}
85
7d489d15 86static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
87{
88 tk->xtime_sec = ts->tv_sec;
d28ede83 89 tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
1e75fa8b
JS
90}
91
7d489d15 92static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
93{
94 tk->xtime_sec += ts->tv_sec;
d28ede83 95 tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
784ffcbb 96 tk_normalize_xtime(tk);
1e75fa8b 97}
8fcce546 98
7d489d15 99static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 100{
7d489d15 101 struct timespec64 tmp;
6d0ef903
JS
102
103 /*
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
106 */
7d489d15 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 108 -tk->wall_to_monotonic.tv_nsec);
7d489d15 109 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 110 tk->wall_to_monotonic = wtm;
7d489d15
JS
111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
114}
115
47da70d3 116static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 117{
47da70d3 118 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
119}
120
155ec602 121/**
d26e4fe0 122 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 123 *
d26e4fe0 124 * @tk: The target timekeeper to setup.
155ec602
MS
125 * @clock: Pointer to clocksource.
126 *
127 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128 * pair and interval request.
129 *
130 * Unless you're the timekeeping code, you should not be using this!
131 */
f726a697 132static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
133{
134 cycle_t interval;
a386b5af 135 u64 tmp, ntpinterval;
1e75fa8b 136 struct clocksource *old_clock;
155ec602 137
d28ede83
TG
138 old_clock = tk->tkr.clock;
139 tk->tkr.clock = clock;
140 tk->tkr.read = clock->read;
141 tk->tkr.mask = clock->mask;
142 tk->tkr.cycle_last = tk->tkr.read(clock);
155ec602
MS
143
144 /* Do the ns -> cycle conversion first, using original mult */
145 tmp = NTP_INTERVAL_LENGTH;
146 tmp <<= clock->shift;
a386b5af 147 ntpinterval = tmp;
0a544198
MS
148 tmp += clock->mult/2;
149 do_div(tmp, clock->mult);
155ec602
MS
150 if (tmp == 0)
151 tmp = 1;
152
153 interval = (cycle_t) tmp;
f726a697 154 tk->cycle_interval = interval;
155ec602
MS
155
156 /* Go back from cycles -> shifted ns */
f726a697
JS
157 tk->xtime_interval = (u64) interval * clock->mult;
158 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159 tk->raw_interval =
0a544198 160 ((u64) interval * clock->mult) >> clock->shift;
155ec602 161
1e75fa8b
JS
162 /* if changing clocks, convert xtime_nsec shift units */
163 if (old_clock) {
164 int shift_change = clock->shift - old_clock->shift;
165 if (shift_change < 0)
d28ede83 166 tk->tkr.xtime_nsec >>= -shift_change;
1e75fa8b 167 else
d28ede83 168 tk->tkr.xtime_nsec <<= shift_change;
1e75fa8b 169 }
d28ede83 170 tk->tkr.shift = clock->shift;
155ec602 171
f726a697
JS
172 tk->ntp_error = 0;
173 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 174 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
175
176 /*
177 * The timekeeper keeps its own mult values for the currently
178 * active clocksource. These value will be adjusted via NTP
179 * to counteract clock drifting.
180 */
d28ede83 181 tk->tkr.mult = clock->mult;
dc491596 182 tk->ntp_err_mult = 0;
155ec602 183}
8524070b 184
2ba2a305 185/* Timekeeper helper functions. */
7b1f6207
SW
186
187#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
188static u32 default_arch_gettimeoffset(void) { return 0; }
189u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 190#else
e06fde37 191static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
192#endif
193
0e5ac3a8 194static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 195{
3a978377 196 cycle_t cycle_now, delta;
1e75fa8b 197 s64 nsec;
2ba2a305
MS
198
199 /* read clocksource: */
0e5ac3a8 200 cycle_now = tkr->read(tkr->clock);
2ba2a305
MS
201
202 /* calculate the delta since the last update_wall_time: */
0e5ac3a8 203 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
2ba2a305 204
0e5ac3a8
TG
205 nsec = delta * tkr->mult + tkr->xtime_nsec;
206 nsec >>= tkr->shift;
f2a5a085 207
7b1f6207 208 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 209 return nsec + arch_gettimeoffset();
2ba2a305
MS
210}
211
f726a697 212static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
2ba2a305 213{
d28ede83 214 struct clocksource *clock = tk->tkr.clock;
3a978377 215 cycle_t cycle_now, delta;
f2a5a085 216 s64 nsec;
2ba2a305
MS
217
218 /* read clocksource: */
d28ede83 219 cycle_now = tk->tkr.read(clock);
2ba2a305
MS
220
221 /* calculate the delta since the last update_wall_time: */
d28ede83 222 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
2ba2a305 223
f2a5a085 224 /* convert delta to nanoseconds. */
3a978377 225 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
f2a5a085 226
7b1f6207 227 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 228 return nsec + arch_gettimeoffset();
2ba2a305
MS
229}
230
4396e058
TG
231/**
232 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233 * @tk: The timekeeper from which we take the update
234 * @tkf: The fast timekeeper to update
235 * @tbase: The time base for the fast timekeeper (mono/raw)
236 *
237 * We want to use this from any context including NMI and tracing /
238 * instrumenting the timekeeping code itself.
239 *
240 * So we handle this differently than the other timekeeping accessor
241 * functions which retry when the sequence count has changed. The
242 * update side does:
243 *
244 * smp_wmb(); <- Ensure that the last base[1] update is visible
245 * tkf->seq++;
246 * smp_wmb(); <- Ensure that the seqcount update is visible
247 * update(tkf->base[0], tk);
248 * smp_wmb(); <- Ensure that the base[0] update is visible
249 * tkf->seq++;
250 * smp_wmb(); <- Ensure that the seqcount update is visible
251 * update(tkf->base[1], tk);
252 *
253 * The reader side does:
254 *
255 * do {
256 * seq = tkf->seq;
257 * smp_rmb();
258 * idx = seq & 0x01;
259 * now = now(tkf->base[idx]);
260 * smp_rmb();
261 * } while (seq != tkf->seq)
262 *
263 * As long as we update base[0] readers are forced off to
264 * base[1]. Once base[0] is updated readers are redirected to base[0]
265 * and the base[1] update takes place.
266 *
267 * So if a NMI hits the update of base[0] then it will use base[1]
268 * which is still consistent. In the worst case this can result is a
269 * slightly wrong timestamp (a few nanoseconds). See
270 * @ktime_get_mono_fast_ns.
271 */
272static void update_fast_timekeeper(struct timekeeper *tk)
273{
274 struct tk_read_base *base = tk_fast_mono.base;
275
276 /* Force readers off to base[1] */
277 raw_write_seqcount_latch(&tk_fast_mono.seq);
278
279 /* Update base[0] */
280 memcpy(base, &tk->tkr, sizeof(*base));
281
282 /* Force readers back to base[0] */
283 raw_write_seqcount_latch(&tk_fast_mono.seq);
284
285 /* Update base[1] */
286 memcpy(base + 1, base, sizeof(*base));
287}
288
289/**
290 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
291 *
292 * This timestamp is not guaranteed to be monotonic across an update.
293 * The timestamp is calculated by:
294 *
295 * now = base_mono + clock_delta * slope
296 *
297 * So if the update lowers the slope, readers who are forced to the
298 * not yet updated second array are still using the old steeper slope.
299 *
300 * tmono
301 * ^
302 * | o n
303 * | o n
304 * | u
305 * | o
306 * |o
307 * |12345678---> reader order
308 *
309 * o = old slope
310 * u = update
311 * n = new slope
312 *
313 * So reader 6 will observe time going backwards versus reader 5.
314 *
315 * While other CPUs are likely to be able observe that, the only way
316 * for a CPU local observation is when an NMI hits in the middle of
317 * the update. Timestamps taken from that NMI context might be ahead
318 * of the following timestamps. Callers need to be aware of that and
319 * deal with it.
320 */
321u64 notrace ktime_get_mono_fast_ns(void)
322{
323 struct tk_read_base *tkr;
324 unsigned int seq;
325 u64 now;
326
327 do {
328 seq = raw_read_seqcount(&tk_fast_mono.seq);
329 tkr = tk_fast_mono.base + (seq & 0x01);
330 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
331
332 } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
333 return now;
334}
335EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
336
c905fae4
TG
337#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
338
339static inline void update_vsyscall(struct timekeeper *tk)
340{
0680eb1f 341 struct timespec xt, wm;
c905fae4 342
e2dff1ec 343 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f
JS
344 wm = timespec64_to_timespec(tk->wall_to_monotonic);
345 update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
d28ede83 346 tk->tkr.cycle_last);
c905fae4
TG
347}
348
349static inline void old_vsyscall_fixup(struct timekeeper *tk)
350{
351 s64 remainder;
352
353 /*
354 * Store only full nanoseconds into xtime_nsec after rounding
355 * it up and add the remainder to the error difference.
356 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
357 * by truncating the remainder in vsyscalls. However, it causes
358 * additional work to be done in timekeeping_adjust(). Once
359 * the vsyscall implementations are converted to use xtime_nsec
360 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
361 * users are removed, this can be killed.
362 */
d28ede83
TG
363 remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
364 tk->tkr.xtime_nsec -= remainder;
365 tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
c905fae4 366 tk->ntp_error += remainder << tk->ntp_error_shift;
d28ede83 367 tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
c905fae4
TG
368}
369#else
370#define old_vsyscall_fixup(tk)
371#endif
372
e0b306fe
MT
373static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
374
780427f0 375static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 376{
780427f0 377 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
378}
379
380/**
381 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
382 */
383int pvclock_gtod_register_notifier(struct notifier_block *nb)
384{
3fdb14fd 385 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
386 unsigned long flags;
387 int ret;
388
9a7a71b1 389 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 390 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 391 update_pvclock_gtod(tk, true);
9a7a71b1 392 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
393
394 return ret;
395}
396EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
397
398/**
399 * pvclock_gtod_unregister_notifier - unregister a pvclock
400 * timedata update listener
e0b306fe
MT
401 */
402int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
403{
e0b306fe
MT
404 unsigned long flags;
405 int ret;
406
9a7a71b1 407 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 408 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 409 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
410
411 return ret;
412}
413EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
414
7c032df5
TG
415/*
416 * Update the ktime_t based scalar nsec members of the timekeeper
417 */
418static inline void tk_update_ktime_data(struct timekeeper *tk)
419{
420 s64 nsec;
421
422 /*
423 * The xtime based monotonic readout is:
424 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
425 * The ktime based monotonic readout is:
426 * nsec = base_mono + now();
427 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
428 */
429 nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
430 nsec *= NSEC_PER_SEC;
431 nsec += tk->wall_to_monotonic.tv_nsec;
d28ede83 432 tk->tkr.base_mono = ns_to_ktime(nsec);
f519b1a2
TG
433
434 /* Update the monotonic raw base */
435 tk->base_raw = timespec64_to_ktime(tk->raw_time);
7c032df5
TG
436}
437
9a7a71b1 438/* must hold timekeeper_lock */
04397fe9 439static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 440{
04397fe9 441 if (action & TK_CLEAR_NTP) {
f726a697 442 tk->ntp_error = 0;
cc06268c
TG
443 ntp_clear();
444 }
48cdc135 445
7c032df5
TG
446 tk_update_ktime_data(tk);
447
9bf2419f
TG
448 update_vsyscall(tk);
449 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
450
04397fe9 451 if (action & TK_MIRROR)
3fdb14fd
TG
452 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
453 sizeof(tk_core.timekeeper));
4396e058
TG
454
455 update_fast_timekeeper(tk);
cc06268c
TG
456}
457
8524070b 458/**
155ec602 459 * timekeeping_forward_now - update clock to the current time
8524070b 460 *
9a055117
RZ
461 * Forward the current clock to update its state since the last call to
462 * update_wall_time(). This is useful before significant clock changes,
463 * as it avoids having to deal with this time offset explicitly.
8524070b 464 */
f726a697 465static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 466{
d28ede83 467 struct clocksource *clock = tk->tkr.clock;
3a978377 468 cycle_t cycle_now, delta;
9a055117 469 s64 nsec;
8524070b 470
d28ede83
TG
471 cycle_now = tk->tkr.read(clock);
472 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
473 tk->tkr.cycle_last = cycle_now;
8524070b 474
d28ede83 475 tk->tkr.xtime_nsec += delta * tk->tkr.mult;
7d27558c 476
7b1f6207 477 /* If arch requires, add in get_arch_timeoffset() */
d28ede83 478 tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
7d27558c 479
f726a697 480 tk_normalize_xtime(tk);
2d42244a 481
3a978377 482 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
7d489d15 483 timespec64_add_ns(&tk->raw_time, nsec);
8524070b
JS
484}
485
486/**
d6d29896 487 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b
JS
488 * @ts: pointer to the timespec to be set
489 *
1e817fb6
KC
490 * Updates the time of day in the timespec.
491 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 492 */
d6d29896 493int __getnstimeofday64(struct timespec64 *ts)
8524070b 494{
3fdb14fd 495 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 496 unsigned long seq;
1e75fa8b 497 s64 nsecs = 0;
8524070b
JS
498
499 do {
3fdb14fd 500 seq = read_seqcount_begin(&tk_core.seq);
8524070b 501
4e250fdd 502 ts->tv_sec = tk->xtime_sec;
0e5ac3a8 503 nsecs = timekeeping_get_ns(&tk->tkr);
8524070b 504
3fdb14fd 505 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 506
ec145bab 507 ts->tv_nsec = 0;
d6d29896 508 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
509
510 /*
511 * Do not bail out early, in case there were callers still using
512 * the value, even in the face of the WARN_ON.
513 */
514 if (unlikely(timekeeping_suspended))
515 return -EAGAIN;
516 return 0;
517}
d6d29896 518EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
519
520/**
d6d29896 521 * getnstimeofday64 - Returns the time of day in a timespec64.
1e817fb6
KC
522 * @ts: pointer to the timespec to be set
523 *
524 * Returns the time of day in a timespec (WARN if suspended).
525 */
d6d29896 526void getnstimeofday64(struct timespec64 *ts)
1e817fb6 527{
d6d29896 528 WARN_ON(__getnstimeofday64(ts));
8524070b 529}
d6d29896 530EXPORT_SYMBOL(getnstimeofday64);
8524070b 531
951ed4d3
MS
532ktime_t ktime_get(void)
533{
3fdb14fd 534 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 535 unsigned int seq;
a016a5bd
TG
536 ktime_t base;
537 s64 nsecs;
951ed4d3
MS
538
539 WARN_ON(timekeeping_suspended);
540
541 do {
3fdb14fd 542 seq = read_seqcount_begin(&tk_core.seq);
d28ede83 543 base = tk->tkr.base_mono;
0e5ac3a8 544 nsecs = timekeeping_get_ns(&tk->tkr);
951ed4d3 545
3fdb14fd 546 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 547
a016a5bd 548 return ktime_add_ns(base, nsecs);
951ed4d3
MS
549}
550EXPORT_SYMBOL_GPL(ktime_get);
551
0077dc60
TG
552static ktime_t *offsets[TK_OFFS_MAX] = {
553 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
554 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
555 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
556};
557
558ktime_t ktime_get_with_offset(enum tk_offsets offs)
559{
560 struct timekeeper *tk = &tk_core.timekeeper;
561 unsigned int seq;
562 ktime_t base, *offset = offsets[offs];
563 s64 nsecs;
564
565 WARN_ON(timekeeping_suspended);
566
567 do {
568 seq = read_seqcount_begin(&tk_core.seq);
d28ede83 569 base = ktime_add(tk->tkr.base_mono, *offset);
0e5ac3a8 570 nsecs = timekeeping_get_ns(&tk->tkr);
0077dc60
TG
571
572 } while (read_seqcount_retry(&tk_core.seq, seq));
573
574 return ktime_add_ns(base, nsecs);
575
576}
577EXPORT_SYMBOL_GPL(ktime_get_with_offset);
578
9a6b5197
TG
579/**
580 * ktime_mono_to_any() - convert mononotic time to any other time
581 * @tmono: time to convert.
582 * @offs: which offset to use
583 */
584ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
585{
586 ktime_t *offset = offsets[offs];
587 unsigned long seq;
588 ktime_t tconv;
589
590 do {
591 seq = read_seqcount_begin(&tk_core.seq);
592 tconv = ktime_add(tmono, *offset);
593 } while (read_seqcount_retry(&tk_core.seq, seq));
594
595 return tconv;
596}
597EXPORT_SYMBOL_GPL(ktime_mono_to_any);
598
f519b1a2
TG
599/**
600 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
601 */
602ktime_t ktime_get_raw(void)
603{
604 struct timekeeper *tk = &tk_core.timekeeper;
605 unsigned int seq;
606 ktime_t base;
607 s64 nsecs;
608
609 do {
610 seq = read_seqcount_begin(&tk_core.seq);
611 base = tk->base_raw;
612 nsecs = timekeeping_get_ns_raw(tk);
613
614 } while (read_seqcount_retry(&tk_core.seq, seq));
615
616 return ktime_add_ns(base, nsecs);
617}
618EXPORT_SYMBOL_GPL(ktime_get_raw);
619
951ed4d3 620/**
d6d29896 621 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
622 * @ts: pointer to timespec variable
623 *
624 * The function calculates the monotonic clock from the realtime
625 * clock and the wall_to_monotonic offset and stores the result
626 * in normalized timespec format in the variable pointed to by @ts.
627 */
d6d29896 628void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 629{
3fdb14fd 630 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 631 struct timespec64 tomono;
ec145bab 632 s64 nsec;
951ed4d3 633 unsigned int seq;
951ed4d3
MS
634
635 WARN_ON(timekeeping_suspended);
636
637 do {
3fdb14fd 638 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 639 ts->tv_sec = tk->xtime_sec;
0e5ac3a8 640 nsec = timekeeping_get_ns(&tk->tkr);
4e250fdd 641 tomono = tk->wall_to_monotonic;
951ed4d3 642
3fdb14fd 643 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 644
d6d29896
TG
645 ts->tv_sec += tomono.tv_sec;
646 ts->tv_nsec = 0;
647 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 648}
d6d29896 649EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 650
e2c18e49
AG
651#ifdef CONFIG_NTP_PPS
652
653/**
654 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
655 * @ts_raw: pointer to the timespec to be set to raw monotonic time
656 * @ts_real: pointer to the timespec to be set to the time of day
657 *
658 * This function reads both the time of day and raw monotonic time at the
659 * same time atomically and stores the resulting timestamps in timespec
660 * format.
661 */
662void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
663{
3fdb14fd 664 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
665 unsigned long seq;
666 s64 nsecs_raw, nsecs_real;
667
668 WARN_ON_ONCE(timekeeping_suspended);
669
670 do {
3fdb14fd 671 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 672
7d489d15 673 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 674 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 675 ts_real->tv_nsec = 0;
e2c18e49 676
4e250fdd 677 nsecs_raw = timekeeping_get_ns_raw(tk);
0e5ac3a8 678 nsecs_real = timekeeping_get_ns(&tk->tkr);
e2c18e49 679
3fdb14fd 680 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
681
682 timespec_add_ns(ts_raw, nsecs_raw);
683 timespec_add_ns(ts_real, nsecs_real);
684}
685EXPORT_SYMBOL(getnstime_raw_and_real);
686
687#endif /* CONFIG_NTP_PPS */
688
8524070b
JS
689/**
690 * do_gettimeofday - Returns the time of day in a timeval
691 * @tv: pointer to the timeval to be set
692 *
efd9ac86 693 * NOTE: Users should be converted to using getnstimeofday()
8524070b
JS
694 */
695void do_gettimeofday(struct timeval *tv)
696{
d6d29896 697 struct timespec64 now;
8524070b 698
d6d29896 699 getnstimeofday64(&now);
8524070b
JS
700 tv->tv_sec = now.tv_sec;
701 tv->tv_usec = now.tv_nsec/1000;
702}
8524070b 703EXPORT_SYMBOL(do_gettimeofday);
d239f49d 704
8524070b 705/**
21f7eca5 706 * do_settimeofday64 - Sets the time of day.
707 * @ts: pointer to the timespec64 variable containing the new time
8524070b
JS
708 *
709 * Sets the time of day to the new time and update NTP and notify hrtimers
710 */
21f7eca5 711int do_settimeofday64(const struct timespec64 *ts)
8524070b 712{
3fdb14fd 713 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 714 struct timespec64 ts_delta, xt;
92c1d3ed 715 unsigned long flags;
8524070b 716
21f7eca5 717 if (!timespec64_valid_strict(ts))
8524070b
JS
718 return -EINVAL;
719
9a7a71b1 720 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 721 write_seqcount_begin(&tk_core.seq);
8524070b 722
4e250fdd 723 timekeeping_forward_now(tk);
9a055117 724
4e250fdd 725 xt = tk_xtime(tk);
21f7eca5 726 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
727 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 728
7d489d15 729 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 730
21f7eca5 731 tk_set_xtime(tk, ts);
1e75fa8b 732
780427f0 733 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 734
3fdb14fd 735 write_seqcount_end(&tk_core.seq);
9a7a71b1 736 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
737
738 /* signal hrtimers about time change */
739 clock_was_set();
740
741 return 0;
742}
21f7eca5 743EXPORT_SYMBOL(do_settimeofday64);
8524070b 744
c528f7c6
JS
745/**
746 * timekeeping_inject_offset - Adds or subtracts from the current time.
747 * @tv: pointer to the timespec variable containing the offset
748 *
749 * Adds or subtracts an offset value from the current time.
750 */
751int timekeeping_inject_offset(struct timespec *ts)
752{
3fdb14fd 753 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 754 unsigned long flags;
7d489d15 755 struct timespec64 ts64, tmp;
4e8b1452 756 int ret = 0;
c528f7c6
JS
757
758 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
759 return -EINVAL;
760
7d489d15
JS
761 ts64 = timespec_to_timespec64(*ts);
762
9a7a71b1 763 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 764 write_seqcount_begin(&tk_core.seq);
c528f7c6 765
4e250fdd 766 timekeeping_forward_now(tk);
c528f7c6 767
4e8b1452 768 /* Make sure the proposed value is valid */
7d489d15
JS
769 tmp = timespec64_add(tk_xtime(tk), ts64);
770 if (!timespec64_valid_strict(&tmp)) {
4e8b1452
JS
771 ret = -EINVAL;
772 goto error;
773 }
1e75fa8b 774
7d489d15
JS
775 tk_xtime_add(tk, &ts64);
776 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 777
4e8b1452 778error: /* even if we error out, we forwarded the time, so call update */
780427f0 779 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 780
3fdb14fd 781 write_seqcount_end(&tk_core.seq);
9a7a71b1 782 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
783
784 /* signal hrtimers about time change */
785 clock_was_set();
786
4e8b1452 787 return ret;
c528f7c6
JS
788}
789EXPORT_SYMBOL(timekeeping_inject_offset);
790
cc244dda
JS
791
792/**
793 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
794 *
795 */
796s32 timekeeping_get_tai_offset(void)
797{
3fdb14fd 798 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
799 unsigned int seq;
800 s32 ret;
801
802 do {
3fdb14fd 803 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 804 ret = tk->tai_offset;
3fdb14fd 805 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
806
807 return ret;
808}
809
810/**
811 * __timekeeping_set_tai_offset - Lock free worker function
812 *
813 */
dd5d70e8 814static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
815{
816 tk->tai_offset = tai_offset;
04005f60 817 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
818}
819
820/**
821 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
822 *
823 */
824void timekeeping_set_tai_offset(s32 tai_offset)
825{
3fdb14fd 826 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
827 unsigned long flags;
828
9a7a71b1 829 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 830 write_seqcount_begin(&tk_core.seq);
cc244dda 831 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 832 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 833 write_seqcount_end(&tk_core.seq);
9a7a71b1 834 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 835 clock_was_set();
cc244dda
JS
836}
837
8524070b
JS
838/**
839 * change_clocksource - Swaps clocksources if a new one is available
840 *
841 * Accumulates current time interval and initializes new clocksource
842 */
75c5158f 843static int change_clocksource(void *data)
8524070b 844{
3fdb14fd 845 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 846 struct clocksource *new, *old;
f695cf94 847 unsigned long flags;
8524070b 848
75c5158f 849 new = (struct clocksource *) data;
8524070b 850
9a7a71b1 851 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 852 write_seqcount_begin(&tk_core.seq);
f695cf94 853
4e250fdd 854 timekeeping_forward_now(tk);
09ac369c
TG
855 /*
856 * If the cs is in module, get a module reference. Succeeds
857 * for built-in code (owner == NULL) as well.
858 */
859 if (try_module_get(new->owner)) {
860 if (!new->enable || new->enable(new) == 0) {
d28ede83 861 old = tk->tkr.clock;
09ac369c
TG
862 tk_setup_internals(tk, new);
863 if (old->disable)
864 old->disable(old);
865 module_put(old->owner);
866 } else {
867 module_put(new->owner);
868 }
75c5158f 869 }
780427f0 870 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 871
3fdb14fd 872 write_seqcount_end(&tk_core.seq);
9a7a71b1 873 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 874
75c5158f
MS
875 return 0;
876}
8524070b 877
75c5158f
MS
878/**
879 * timekeeping_notify - Install a new clock source
880 * @clock: pointer to the clock source
881 *
882 * This function is called from clocksource.c after a new, better clock
883 * source has been registered. The caller holds the clocksource_mutex.
884 */
ba919d1c 885int timekeeping_notify(struct clocksource *clock)
75c5158f 886{
3fdb14fd 887 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 888
d28ede83 889 if (tk->tkr.clock == clock)
ba919d1c 890 return 0;
75c5158f 891 stop_machine(change_clocksource, clock, NULL);
8524070b 892 tick_clock_notify();
d28ede83 893 return tk->tkr.clock == clock ? 0 : -1;
8524070b 894}
75c5158f 895
2d42244a
JS
896/**
897 * getrawmonotonic - Returns the raw monotonic time in a timespec
898 * @ts: pointer to the timespec to be set
899 *
900 * Returns the raw monotonic time (completely un-modified by ntp)
901 */
902void getrawmonotonic(struct timespec *ts)
903{
3fdb14fd 904 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 905 struct timespec64 ts64;
2d42244a
JS
906 unsigned long seq;
907 s64 nsecs;
2d42244a
JS
908
909 do {
3fdb14fd 910 seq = read_seqcount_begin(&tk_core.seq);
4e250fdd 911 nsecs = timekeeping_get_ns_raw(tk);
7d489d15 912 ts64 = tk->raw_time;
2d42244a 913
3fdb14fd 914 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 915
7d489d15
JS
916 timespec64_add_ns(&ts64, nsecs);
917 *ts = timespec64_to_timespec(ts64);
2d42244a
JS
918}
919EXPORT_SYMBOL(getrawmonotonic);
920
8524070b 921/**
cf4fc6cb 922 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 923 */
cf4fc6cb 924int timekeeping_valid_for_hres(void)
8524070b 925{
3fdb14fd 926 struct timekeeper *tk = &tk_core.timekeeper;
8524070b
JS
927 unsigned long seq;
928 int ret;
929
930 do {
3fdb14fd 931 seq = read_seqcount_begin(&tk_core.seq);
8524070b 932
d28ede83 933 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 934
3fdb14fd 935 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b
JS
936
937 return ret;
938}
939
98962465
JH
940/**
941 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
942 */
943u64 timekeeping_max_deferment(void)
944{
3fdb14fd 945 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
946 unsigned long seq;
947 u64 ret;
42e71e81 948
70471f2f 949 do {
3fdb14fd 950 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 951
d28ede83 952 ret = tk->tkr.clock->max_idle_ns;
70471f2f 953
3fdb14fd 954 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
955
956 return ret;
98962465
JH
957}
958
8524070b 959/**
d4f587c6 960 * read_persistent_clock - Return time from the persistent clock.
8524070b
JS
961 *
962 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
963 * Reads the time from the battery backed persistent clock.
964 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b
JS
965 *
966 * XXX - Do be sure to remove it once all arches implement it.
967 */
52f5684c 968void __weak read_persistent_clock(struct timespec *ts)
8524070b 969{
d4f587c6
MS
970 ts->tv_sec = 0;
971 ts->tv_nsec = 0;
8524070b
JS
972}
973
23970e38
MS
974/**
975 * read_boot_clock - Return time of the system start.
976 *
977 * Weak dummy function for arches that do not yet support it.
978 * Function to read the exact time the system has been started.
979 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
980 *
981 * XXX - Do be sure to remove it once all arches implement it.
982 */
52f5684c 983void __weak read_boot_clock(struct timespec *ts)
23970e38
MS
984{
985 ts->tv_sec = 0;
986 ts->tv_nsec = 0;
987}
988
8524070b
JS
989/*
990 * timekeeping_init - Initializes the clocksource and common timekeeping values
991 */
992void __init timekeeping_init(void)
993{
3fdb14fd 994 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 995 struct clocksource *clock;
8524070b 996 unsigned long flags;
7d489d15
JS
997 struct timespec64 now, boot, tmp;
998 struct timespec ts;
31ade306 999
7d489d15
JS
1000 read_persistent_clock(&ts);
1001 now = timespec_to_timespec64(ts);
1002 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1003 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1004 " Check your CMOS/BIOS settings.\n");
1005 now.tv_sec = 0;
1006 now.tv_nsec = 0;
31ade306
FT
1007 } else if (now.tv_sec || now.tv_nsec)
1008 persistent_clock_exist = true;
4e8b1452 1009
7d489d15
JS
1010 read_boot_clock(&ts);
1011 boot = timespec_to_timespec64(ts);
1012 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1013 pr_warn("WARNING: Boot clock returned invalid value!\n"
1014 " Check your CMOS/BIOS settings.\n");
1015 boot.tv_sec = 0;
1016 boot.tv_nsec = 0;
1017 }
8524070b 1018
9a7a71b1 1019 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1020 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1021 ntp_init();
1022
f1b82746 1023 clock = clocksource_default_clock();
a0f7d48b
MS
1024 if (clock->enable)
1025 clock->enable(clock);
4e250fdd 1026 tk_setup_internals(tk, clock);
8524070b 1027
4e250fdd
JS
1028 tk_set_xtime(tk, &now);
1029 tk->raw_time.tv_sec = 0;
1030 tk->raw_time.tv_nsec = 0;
f519b1a2 1031 tk->base_raw.tv64 = 0;
1e75fa8b 1032 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1033 boot = tk_xtime(tk);
1e75fa8b 1034
7d489d15 1035 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1036 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1037
f111adfd 1038 timekeeping_update(tk, TK_MIRROR);
48cdc135 1039
3fdb14fd 1040 write_seqcount_end(&tk_core.seq);
9a7a71b1 1041 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1042}
1043
8524070b 1044/* time in seconds when suspend began */
7d489d15 1045static struct timespec64 timekeeping_suspend_time;
8524070b 1046
304529b1
JS
1047/**
1048 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1049 * @delta: pointer to a timespec delta value
1050 *
1051 * Takes a timespec offset measuring a suspend interval and properly
1052 * adds the sleep offset to the timekeeping variables.
1053 */
f726a697 1054static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1055 struct timespec64 *delta)
304529b1 1056{
7d489d15 1057 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1058 printk_deferred(KERN_WARNING
1059 "__timekeeping_inject_sleeptime: Invalid "
1060 "sleep delta value!\n");
cb5de2f8
JS
1061 return;
1062 }
f726a697 1063 tk_xtime_add(tk, delta);
7d489d15 1064 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1065 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1066 tk_debug_account_sleep_time(delta);
304529b1
JS
1067}
1068
304529b1 1069/**
04d90890 1070 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1071 * @delta: pointer to a timespec64 delta value
304529b1
JS
1072 *
1073 * This hook is for architectures that cannot support read_persistent_clock
1074 * because their RTC/persistent clock is only accessible when irqs are enabled.
1075 *
1076 * This function should only be called by rtc_resume(), and allows
1077 * a suspend offset to be injected into the timekeeping values.
1078 */
04d90890 1079void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1080{
3fdb14fd 1081 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1082 unsigned long flags;
304529b1 1083
31ade306
FT
1084 /*
1085 * Make sure we don't set the clock twice, as timekeeping_resume()
1086 * already did it
1087 */
1088 if (has_persistent_clock())
304529b1
JS
1089 return;
1090
9a7a71b1 1091 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1092 write_seqcount_begin(&tk_core.seq);
70471f2f 1093
4e250fdd 1094 timekeeping_forward_now(tk);
304529b1 1095
04d90890 1096 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1097
780427f0 1098 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1099
3fdb14fd 1100 write_seqcount_end(&tk_core.seq);
9a7a71b1 1101 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1102
1103 /* signal hrtimers about time change */
1104 clock_was_set();
1105}
1106
8524070b
JS
1107/**
1108 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b
JS
1109 *
1110 * This is for the generic clocksource timekeeping.
1111 * xtime/wall_to_monotonic/jiffies/etc are
1112 * still managed by arch specific suspend/resume code.
1113 */
e1a85b2c 1114static void timekeeping_resume(void)
8524070b 1115{
3fdb14fd 1116 struct timekeeper *tk = &tk_core.timekeeper;
d28ede83 1117 struct clocksource *clock = tk->tkr.clock;
92c1d3ed 1118 unsigned long flags;
7d489d15
JS
1119 struct timespec64 ts_new, ts_delta;
1120 struct timespec tmp;
e445cf1c
FT
1121 cycle_t cycle_now, cycle_delta;
1122 bool suspendtime_found = false;
d4f587c6 1123
7d489d15
JS
1124 read_persistent_clock(&tmp);
1125 ts_new = timespec_to_timespec64(tmp);
8524070b 1126
adc78e6b 1127 clockevents_resume();
d10ff3fb
TG
1128 clocksource_resume();
1129
9a7a71b1 1130 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1131 write_seqcount_begin(&tk_core.seq);
8524070b 1132
e445cf1c
FT
1133 /*
1134 * After system resumes, we need to calculate the suspended time and
1135 * compensate it for the OS time. There are 3 sources that could be
1136 * used: Nonstop clocksource during suspend, persistent clock and rtc
1137 * device.
1138 *
1139 * One specific platform may have 1 or 2 or all of them, and the
1140 * preference will be:
1141 * suspend-nonstop clocksource -> persistent clock -> rtc
1142 * The less preferred source will only be tried if there is no better
1143 * usable source. The rtc part is handled separately in rtc core code.
1144 */
d28ede83 1145 cycle_now = tk->tkr.read(clock);
e445cf1c 1146 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
d28ede83 1147 cycle_now > tk->tkr.cycle_last) {
e445cf1c
FT
1148 u64 num, max = ULLONG_MAX;
1149 u32 mult = clock->mult;
1150 u32 shift = clock->shift;
1151 s64 nsec = 0;
1152
d28ede83
TG
1153 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1154 tk->tkr.mask);
e445cf1c
FT
1155
1156 /*
1157 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1158 * suspended time is too long. In that case we need do the
1159 * 64 bits math carefully
1160 */
1161 do_div(max, mult);
1162 if (cycle_delta > max) {
1163 num = div64_u64(cycle_delta, max);
1164 nsec = (((u64) max * mult) >> shift) * num;
1165 cycle_delta -= num * max;
1166 }
1167 nsec += ((u64) cycle_delta * mult) >> shift;
1168
7d489d15 1169 ts_delta = ns_to_timespec64(nsec);
e445cf1c 1170 suspendtime_found = true;
7d489d15
JS
1171 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1172 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
e445cf1c 1173 suspendtime_found = true;
8524070b 1174 }
e445cf1c
FT
1175
1176 if (suspendtime_found)
1177 __timekeeping_inject_sleeptime(tk, &ts_delta);
1178
1179 /* Re-base the last cycle value */
d28ede83 1180 tk->tkr.cycle_last = cycle_now;
4e250fdd 1181 tk->ntp_error = 0;
8524070b 1182 timekeeping_suspended = 0;
780427f0 1183 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1184 write_seqcount_end(&tk_core.seq);
9a7a71b1 1185 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1186
1187 touch_softlockup_watchdog();
1188
1189 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1190
1191 /* Resume hrtimers */
b12a03ce 1192 hrtimers_resume();
8524070b
JS
1193}
1194
e1a85b2c 1195static int timekeeping_suspend(void)
8524070b 1196{
3fdb14fd 1197 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1198 unsigned long flags;
7d489d15
JS
1199 struct timespec64 delta, delta_delta;
1200 static struct timespec64 old_delta;
1201 struct timespec tmp;
8524070b 1202
7d489d15
JS
1203 read_persistent_clock(&tmp);
1204 timekeeping_suspend_time = timespec_to_timespec64(tmp);
3be90950 1205
0d6bd995
ZM
1206 /*
1207 * On some systems the persistent_clock can not be detected at
1208 * timekeeping_init by its return value, so if we see a valid
1209 * value returned, update the persistent_clock_exists flag.
1210 */
1211 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1212 persistent_clock_exist = true;
1213
9a7a71b1 1214 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1215 write_seqcount_begin(&tk_core.seq);
4e250fdd 1216 timekeeping_forward_now(tk);
8524070b 1217 timekeeping_suspended = 1;
cb33217b
JS
1218
1219 /*
1220 * To avoid drift caused by repeated suspend/resumes,
1221 * which each can add ~1 second drift error,
1222 * try to compensate so the difference in system time
1223 * and persistent_clock time stays close to constant.
1224 */
7d489d15
JS
1225 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1226 delta_delta = timespec64_sub(delta, old_delta);
cb33217b
JS
1227 if (abs(delta_delta.tv_sec) >= 2) {
1228 /*
1229 * if delta_delta is too large, assume time correction
1230 * has occured and set old_delta to the current delta.
1231 */
1232 old_delta = delta;
1233 } else {
1234 /* Otherwise try to adjust old_system to compensate */
1235 timekeeping_suspend_time =
7d489d15 1236 timespec64_add(timekeeping_suspend_time, delta_delta);
cb33217b 1237 }
330a1617
JS
1238
1239 timekeeping_update(tk, TK_MIRROR);
3fdb14fd 1240 write_seqcount_end(&tk_core.seq);
9a7a71b1 1241 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1242
1243 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 1244 clocksource_suspend();
adc78e6b 1245 clockevents_suspend();
8524070b
JS
1246
1247 return 0;
1248}
1249
1250/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1251static struct syscore_ops timekeeping_syscore_ops = {
8524070b
JS
1252 .resume = timekeeping_resume,
1253 .suspend = timekeeping_suspend,
8524070b
JS
1254};
1255
e1a85b2c 1256static int __init timekeeping_init_ops(void)
8524070b 1257{
e1a85b2c
RW
1258 register_syscore_ops(&timekeeping_syscore_ops);
1259 return 0;
8524070b 1260}
e1a85b2c 1261device_initcall(timekeeping_init_ops);
8524070b
JS
1262
1263/*
dc491596 1264 * Apply a multiplier adjustment to the timekeeper
8524070b 1265 */
dc491596
JS
1266static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1267 s64 offset,
1268 bool negative,
1269 int adj_scale)
8524070b 1270{
dc491596
JS
1271 s64 interval = tk->cycle_interval;
1272 s32 mult_adj = 1;
8524070b 1273
dc491596
JS
1274 if (negative) {
1275 mult_adj = -mult_adj;
1276 interval = -interval;
1277 offset = -offset;
1d17d174 1278 }
dc491596
JS
1279 mult_adj <<= adj_scale;
1280 interval <<= adj_scale;
1281 offset <<= adj_scale;
8524070b 1282
c2bc1111
JS
1283 /*
1284 * So the following can be confusing.
1285 *
dc491596 1286 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1287 *
dc491596 1288 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1289 * have been appropriately scaled so the math is the same.
1290 *
1291 * The basic idea here is that we're increasing the multiplier
1292 * by one, this causes the xtime_interval to be incremented by
1293 * one cycle_interval. This is because:
1294 * xtime_interval = cycle_interval * mult
1295 * So if mult is being incremented by one:
1296 * xtime_interval = cycle_interval * (mult + 1)
1297 * Its the same as:
1298 * xtime_interval = (cycle_interval * mult) + cycle_interval
1299 * Which can be shortened to:
1300 * xtime_interval += cycle_interval
1301 *
1302 * So offset stores the non-accumulated cycles. Thus the current
1303 * time (in shifted nanoseconds) is:
1304 * now = (offset * adj) + xtime_nsec
1305 * Now, even though we're adjusting the clock frequency, we have
1306 * to keep time consistent. In other words, we can't jump back
1307 * in time, and we also want to avoid jumping forward in time.
1308 *
1309 * So given the same offset value, we need the time to be the same
1310 * both before and after the freq adjustment.
1311 * now = (offset * adj_1) + xtime_nsec_1
1312 * now = (offset * adj_2) + xtime_nsec_2
1313 * So:
1314 * (offset * adj_1) + xtime_nsec_1 =
1315 * (offset * adj_2) + xtime_nsec_2
1316 * And we know:
1317 * adj_2 = adj_1 + 1
1318 * So:
1319 * (offset * adj_1) + xtime_nsec_1 =
1320 * (offset * (adj_1+1)) + xtime_nsec_2
1321 * (offset * adj_1) + xtime_nsec_1 =
1322 * (offset * adj_1) + offset + xtime_nsec_2
1323 * Canceling the sides:
1324 * xtime_nsec_1 = offset + xtime_nsec_2
1325 * Which gives us:
1326 * xtime_nsec_2 = xtime_nsec_1 - offset
1327 * Which simplfies to:
1328 * xtime_nsec -= offset
1329 *
1330 * XXX - TODO: Doc ntp_error calculation.
1331 */
6067dc5a 1332 if (tk->tkr.mult + mult_adj < mult_adj) {
1333 /* NTP adjustment caused clocksource mult overflow */
1334 WARN_ON_ONCE(1);
1335 return;
1336 }
1337
dc491596 1338 tk->tkr.mult += mult_adj;
f726a697 1339 tk->xtime_interval += interval;
d28ede83 1340 tk->tkr.xtime_nsec -= offset;
f726a697 1341 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1342}
1343
1344/*
1345 * Calculate the multiplier adjustment needed to match the frequency
1346 * specified by NTP
1347 */
1348static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1349 s64 offset)
1350{
1351 s64 interval = tk->cycle_interval;
1352 s64 xinterval = tk->xtime_interval;
1353 s64 tick_error;
1354 bool negative;
1355 u32 adj;
1356
1357 /* Remove any current error adj from freq calculation */
1358 if (tk->ntp_err_mult)
1359 xinterval -= tk->cycle_interval;
1360
375f45b5
JS
1361 tk->ntp_tick = ntp_tick_length();
1362
dc491596
JS
1363 /* Calculate current error per tick */
1364 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1365 tick_error -= (xinterval + tk->xtime_remainder);
1366
1367 /* Don't worry about correcting it if its small */
1368 if (likely((tick_error >= 0) && (tick_error <= interval)))
1369 return;
1370
1371 /* preserve the direction of correction */
1372 negative = (tick_error < 0);
1373
1374 /* Sort out the magnitude of the correction */
1375 tick_error = abs(tick_error);
1376 for (adj = 0; tick_error > interval; adj++)
1377 tick_error >>= 1;
1378
1379 /* scale the corrections */
1380 timekeeping_apply_adjustment(tk, offset, negative, adj);
1381}
1382
1383/*
1384 * Adjust the timekeeper's multiplier to the correct frequency
1385 * and also to reduce the accumulated error value.
1386 */
1387static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1388{
1389 /* Correct for the current frequency error */
1390 timekeeping_freqadjust(tk, offset);
1391
1392 /* Next make a small adjustment to fix any cumulative error */
1393 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1394 tk->ntp_err_mult = 1;
1395 timekeeping_apply_adjustment(tk, offset, 0, 0);
1396 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1397 /* Undo any existing error adjustment */
1398 timekeeping_apply_adjustment(tk, offset, 1, 0);
1399 tk->ntp_err_mult = 0;
1400 }
1401
1402 if (unlikely(tk->tkr.clock->maxadj &&
659bc17b 1403 (abs(tk->tkr.mult - tk->tkr.clock->mult)
1404 > tk->tkr.clock->maxadj))) {
dc491596
JS
1405 printk_once(KERN_WARNING
1406 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1407 tk->tkr.clock->name, (long)tk->tkr.mult,
1408 (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1409 }
2a8c0883
JS
1410
1411 /*
1412 * It may be possible that when we entered this function, xtime_nsec
1413 * was very small. Further, if we're slightly speeding the clocksource
1414 * in the code above, its possible the required corrective factor to
1415 * xtime_nsec could cause it to underflow.
1416 *
1417 * Now, since we already accumulated the second, cannot simply roll
1418 * the accumulated second back, since the NTP subsystem has been
1419 * notified via second_overflow. So instead we push xtime_nsec forward
1420 * by the amount we underflowed, and add that amount into the error.
1421 *
1422 * We'll correct this error next time through this function, when
1423 * xtime_nsec is not as small.
1424 */
d28ede83
TG
1425 if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1426 s64 neg = -(s64)tk->tkr.xtime_nsec;
1427 tk->tkr.xtime_nsec = 0;
f726a697 1428 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1429 }
8524070b
JS
1430}
1431
1f4f9487
JS
1432/**
1433 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1434 *
1435 * Helper function that accumulates a the nsecs greater then a second
1436 * from the xtime_nsec field to the xtime_secs field.
1437 * It also calls into the NTP code to handle leapsecond processing.
1438 *
1439 */
780427f0 1440static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1441{
d28ede83 1442 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
5258d3f2 1443 unsigned int clock_set = 0;
1f4f9487 1444
d28ede83 1445 while (tk->tkr.xtime_nsec >= nsecps) {
1f4f9487
JS
1446 int leap;
1447
d28ede83 1448 tk->tkr.xtime_nsec -= nsecps;
1f4f9487
JS
1449 tk->xtime_sec++;
1450
1451 /* Figure out if its a leap sec and apply if needed */
1452 leap = second_overflow(tk->xtime_sec);
6d0ef903 1453 if (unlikely(leap)) {
7d489d15 1454 struct timespec64 ts;
6d0ef903
JS
1455
1456 tk->xtime_sec += leap;
1f4f9487 1457
6d0ef903
JS
1458 ts.tv_sec = leap;
1459 ts.tv_nsec = 0;
1460 tk_set_wall_to_mono(tk,
7d489d15 1461 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1462
cc244dda
JS
1463 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1464
5258d3f2 1465 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1466 }
1f4f9487 1467 }
5258d3f2 1468 return clock_set;
1f4f9487
JS
1469}
1470
a092ff0f
JS
1471/**
1472 * logarithmic_accumulation - shifted accumulation of cycles
1473 *
1474 * This functions accumulates a shifted interval of cycles into
1475 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1476 * loop.
1477 *
1478 * Returns the unconsumed cycles.
1479 */
f726a697 1480static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1481 u32 shift,
1482 unsigned int *clock_set)
a092ff0f 1483{
23a9537a 1484 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1485 u64 raw_nsecs;
a092ff0f 1486
f726a697 1487 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1488 if (offset < interval)
a092ff0f
JS
1489 return offset;
1490
1491 /* Accumulate one shifted interval */
23a9537a 1492 offset -= interval;
d28ede83 1493 tk->tkr.cycle_last += interval;
a092ff0f 1494
d28ede83 1495 tk->tkr.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1496 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1497
deda2e81 1498 /* Accumulate raw time */
5b3900cd 1499 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1500 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1501 if (raw_nsecs >= NSEC_PER_SEC) {
1502 u64 raw_secs = raw_nsecs;
1503 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1504 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1505 }
f726a697 1506 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f
JS
1507
1508 /* Accumulate error between NTP and clock interval */
375f45b5 1509 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1510 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1511 (tk->ntp_error_shift + shift);
a092ff0f
JS
1512
1513 return offset;
1514}
1515
8524070b
JS
1516/**
1517 * update_wall_time - Uses the current clocksource to increment the wall time
1518 *
8524070b 1519 */
47a1b796 1520void update_wall_time(void)
8524070b 1521{
3fdb14fd 1522 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1523 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1524 cycle_t offset;
a092ff0f 1525 int shift = 0, maxshift;
5258d3f2 1526 unsigned int clock_set = 0;
70471f2f
JS
1527 unsigned long flags;
1528
9a7a71b1 1529 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b
JS
1530
1531 /* Make sure we're fully resumed: */
1532 if (unlikely(timekeeping_suspended))
70471f2f 1533 goto out;
8524070b 1534
592913ec 1535#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1536 offset = real_tk->cycle_interval;
592913ec 1537#else
d28ede83
TG
1538 offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1539 tk->tkr.cycle_last, tk->tkr.mask);
8524070b 1540#endif
8524070b 1541
bf2ac312 1542 /* Check if there's really nothing to do */
48cdc135 1543 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1544 goto out;
1545
a092ff0f
JS
1546 /*
1547 * With NO_HZ we may have to accumulate many cycle_intervals
1548 * (think "ticks") worth of time at once. To do this efficiently,
1549 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1550 * that is smaller than the offset. We then accumulate that
a092ff0f
JS
1551 * chunk in one go, and then try to consume the next smaller
1552 * doubled multiple.
8524070b 1553 */
4e250fdd 1554 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1555 shift = max(0, shift);
88b28adf 1556 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1557 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1558 shift = min(shift, maxshift);
4e250fdd 1559 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1560 offset = logarithmic_accumulation(tk, offset, shift,
1561 &clock_set);
4e250fdd 1562 if (offset < tk->cycle_interval<<shift)
830ec045 1563 shift--;
8524070b
JS
1564 }
1565
1566 /* correct the clock when NTP error is too big */
4e250fdd 1567 timekeeping_adjust(tk, offset);
8524070b 1568
6a867a39 1569 /*
92bb1fcf
JS
1570 * XXX This can be killed once everyone converts
1571 * to the new update_vsyscall.
1572 */
1573 old_vsyscall_fixup(tk);
8524070b 1574
6a867a39
JS
1575 /*
1576 * Finally, make sure that after the rounding
1e75fa8b 1577 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1578 */
5258d3f2 1579 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1580
3fdb14fd 1581 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1582 /*
1583 * Update the real timekeeper.
1584 *
1585 * We could avoid this memcpy by switching pointers, but that
1586 * requires changes to all other timekeeper usage sites as
1587 * well, i.e. move the timekeeper pointer getter into the
1588 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1589 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1590 * updating.
1591 */
1592 memcpy(real_tk, tk, sizeof(*tk));
5258d3f2 1593 timekeeping_update(real_tk, clock_set);
3fdb14fd 1594 write_seqcount_end(&tk_core.seq);
ca4523cd 1595out:
9a7a71b1 1596 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1597 if (clock_set)
cab5e127
JS
1598 /* Have to call _delayed version, since in irq context*/
1599 clock_was_set_delayed();
8524070b 1600}
7c3f1a57
TJ
1601
1602/**
1603 * getboottime - Return the real time of system boot.
1604 * @ts: pointer to the timespec to be set
1605 *
abb3a4ea 1606 * Returns the wall-time of boot in a timespec.
7c3f1a57
TJ
1607 *
1608 * This is based on the wall_to_monotonic offset and the total suspend
1609 * time. Calls to settimeofday will affect the value returned (which
1610 * basically means that however wrong your real time clock is at boot time,
1611 * you get the right time here).
1612 */
1613void getboottime(struct timespec *ts)
1614{
3fdb14fd 1615 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1616 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1617
1618 *ts = ktime_to_timespec(t);
7c3f1a57 1619}
c93d89f3 1620EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57 1621
17c38b74
JS
1622unsigned long get_seconds(void)
1623{
3fdb14fd 1624 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1625
1626 return tk->xtime_sec;
17c38b74
JS
1627}
1628EXPORT_SYMBOL(get_seconds);
1629
da15cfda
JS
1630struct timespec __current_kernel_time(void)
1631{
3fdb14fd 1632 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1633
7d489d15 1634 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1635}
17c38b74 1636
2c6b47de
JS
1637struct timespec current_kernel_time(void)
1638{
3fdb14fd 1639 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1640 struct timespec64 now;
2c6b47de
JS
1641 unsigned long seq;
1642
1643 do {
3fdb14fd 1644 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1645
4e250fdd 1646 now = tk_xtime(tk);
3fdb14fd 1647 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1648
7d489d15 1649 return timespec64_to_timespec(now);
2c6b47de 1650}
2c6b47de 1651EXPORT_SYMBOL(current_kernel_time);
da15cfda
JS
1652
1653struct timespec get_monotonic_coarse(void)
1654{
3fdb14fd 1655 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1656 struct timespec64 now, mono;
da15cfda
JS
1657 unsigned long seq;
1658
1659 do {
3fdb14fd 1660 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1661
4e250fdd
JS
1662 now = tk_xtime(tk);
1663 mono = tk->wall_to_monotonic;
3fdb14fd 1664 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1665
7d489d15 1666 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1667 now.tv_nsec + mono.tv_nsec);
7d489d15
JS
1668
1669 return timespec64_to_timespec(now);
da15cfda 1670}
871cf1e5
TH
1671
1672/*
d6ad4187 1673 * Must hold jiffies_lock
871cf1e5
TH
1674 */
1675void do_timer(unsigned long ticks)
1676{
1677 jiffies_64 += ticks;
871cf1e5
TH
1678 calc_global_load(ticks);
1679}
48cf76f7
TH
1680
1681/**
76f41088
JS
1682 * ktime_get_update_offsets_tick - hrtimer helper
1683 * @offs_real: pointer to storage for monotonic -> realtime offset
1684 * @offs_boot: pointer to storage for monotonic -> boottime offset
1685 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1686 *
1687 * Returns monotonic time at last tick and various offsets
48cf76f7 1688 */
76f41088
JS
1689ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1690 ktime_t *offs_tai)
48cf76f7 1691{
3fdb14fd 1692 struct timekeeper *tk = &tk_core.timekeeper;
76f41088 1693 unsigned int seq;
48064f5f
TG
1694 ktime_t base;
1695 u64 nsecs;
48cf76f7
TH
1696
1697 do {
3fdb14fd 1698 seq = read_seqcount_begin(&tk_core.seq);
76f41088 1699
d28ede83
TG
1700 base = tk->tkr.base_mono;
1701 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
48064f5f 1702
76f41088
JS
1703 *offs_real = tk->offs_real;
1704 *offs_boot = tk->offs_boot;
1705 *offs_tai = tk->offs_tai;
3fdb14fd 1706 } while (read_seqcount_retry(&tk_core.seq, seq));
76f41088 1707
48064f5f 1708 return ktime_add_ns(base, nsecs);
48cf76f7 1709}
f0af911a 1710
f6c06abf
TG
1711#ifdef CONFIG_HIGH_RES_TIMERS
1712/**
76f41088 1713 * ktime_get_update_offsets_now - hrtimer helper
f6c06abf
TG
1714 * @offs_real: pointer to storage for monotonic -> realtime offset
1715 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1716 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf
TG
1717 *
1718 * Returns current monotonic time and updates the offsets
b7bc50e4 1719 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1720 */
76f41088 1721ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
90adda98 1722 ktime_t *offs_tai)
f6c06abf 1723{
3fdb14fd 1724 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1725 unsigned int seq;
a37c0aad
TG
1726 ktime_t base;
1727 u64 nsecs;
f6c06abf
TG
1728
1729 do {
3fdb14fd 1730 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1731
d28ede83 1732 base = tk->tkr.base_mono;
0e5ac3a8 1733 nsecs = timekeeping_get_ns(&tk->tkr);
f6c06abf 1734
4e250fdd
JS
1735 *offs_real = tk->offs_real;
1736 *offs_boot = tk->offs_boot;
90adda98 1737 *offs_tai = tk->offs_tai;
3fdb14fd 1738 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1739
a37c0aad 1740 return ktime_add_ns(base, nsecs);
f6c06abf
TG
1741}
1742#endif
1743
aa6f9c59
JS
1744/**
1745 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1746 */
1747int do_adjtimex(struct timex *txc)
1748{
3fdb14fd 1749 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1750 unsigned long flags;
7d489d15 1751 struct timespec64 ts;
4e8f8b34 1752 s32 orig_tai, tai;
e4085693
JS
1753 int ret;
1754
1755 /* Validate the data before disabling interrupts */
1756 ret = ntp_validate_timex(txc);
1757 if (ret)
1758 return ret;
1759
cef90377
JS
1760 if (txc->modes & ADJ_SETOFFSET) {
1761 struct timespec delta;
1762 delta.tv_sec = txc->time.tv_sec;
1763 delta.tv_nsec = txc->time.tv_usec;
1764 if (!(txc->modes & ADJ_NANO))
1765 delta.tv_nsec *= 1000;
1766 ret = timekeeping_inject_offset(&delta);
1767 if (ret)
1768 return ret;
1769 }
1770
d6d29896 1771 getnstimeofday64(&ts);
87ace39b 1772
06c017fd 1773 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1774 write_seqcount_begin(&tk_core.seq);
06c017fd 1775
4e8f8b34 1776 orig_tai = tai = tk->tai_offset;
87ace39b 1777 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 1778
4e8f8b34
JS
1779 if (tai != orig_tai) {
1780 __timekeeping_set_tai_offset(tk, tai);
f55c0760 1781 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 1782 }
3fdb14fd 1783 write_seqcount_end(&tk_core.seq);
06c017fd
JS
1784 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1785
6fdda9a9
JS
1786 if (tai != orig_tai)
1787 clock_was_set();
1788
7bd36014
JS
1789 ntp_notify_cmos_timer();
1790
87ace39b
JS
1791 return ret;
1792}
aa6f9c59
JS
1793
1794#ifdef CONFIG_NTP_PPS
1795/**
1796 * hardpps() - Accessor function to NTP __hardpps function
1797 */
1798void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1799{
06c017fd
JS
1800 unsigned long flags;
1801
1802 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1803 write_seqcount_begin(&tk_core.seq);
06c017fd 1804
aa6f9c59 1805 __hardpps(phase_ts, raw_ts);
06c017fd 1806
3fdb14fd 1807 write_seqcount_end(&tk_core.seq);
06c017fd 1808 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
1809}
1810EXPORT_SYMBOL(hardpps);
1811#endif
1812
f0af911a
TH
1813/**
1814 * xtime_update() - advances the timekeeping infrastructure
1815 * @ticks: number of ticks, that have elapsed since the last call.
1816 *
1817 * Must be called with interrupts disabled.
1818 */
1819void xtime_update(unsigned long ticks)
1820{
d6ad4187 1821 write_seqlock(&jiffies_lock);
f0af911a 1822 do_timer(ticks);
d6ad4187 1823 write_sequnlock(&jiffies_lock);
47a1b796 1824 update_wall_time();
f0af911a 1825}