]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/time/timekeeping.c
timekeeping: Provide fast accessor to the seconds part of CLOCK_MONOTONIC
[mirror_ubuntu-zesty-kernel.git] / kernel / time / timekeeping.c
CommitLineData
8524070b
JS
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b
JS
12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b
JS
19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
8fcce546
JS
63/* flag for if timekeeping is suspended */
64int __read_mostly timekeeping_suspended;
65
31ade306
FT
66/* Flag for if there is a persistent clock on this platform */
67bool __read_mostly persistent_clock_exist = false;
68
1e75fa8b
JS
69static inline void tk_normalize_xtime(struct timekeeper *tk)
70{
d28ede83
TG
71 while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
1e75fa8b
JS
73 tk->xtime_sec++;
74 }
75}
76
c905fae4
TG
77static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78{
79 struct timespec64 ts;
80
81 ts.tv_sec = tk->xtime_sec;
d28ede83 82 ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
c905fae4
TG
83 return ts;
84}
85
7d489d15 86static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
87{
88 tk->xtime_sec = ts->tv_sec;
d28ede83 89 tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
1e75fa8b
JS
90}
91
7d489d15 92static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
93{
94 tk->xtime_sec += ts->tv_sec;
d28ede83 95 tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
784ffcbb 96 tk_normalize_xtime(tk);
1e75fa8b 97}
8fcce546 98
7d489d15 99static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 100{
7d489d15 101 struct timespec64 tmp;
6d0ef903
JS
102
103 /*
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
106 */
7d489d15 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 108 -tk->wall_to_monotonic.tv_nsec);
7d489d15 109 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 110 tk->wall_to_monotonic = wtm;
7d489d15
JS
111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
114}
115
47da70d3 116static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 117{
47da70d3 118 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
119}
120
155ec602 121/**
d26e4fe0 122 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 123 *
d26e4fe0 124 * @tk: The target timekeeper to setup.
155ec602
MS
125 * @clock: Pointer to clocksource.
126 *
127 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128 * pair and interval request.
129 *
130 * Unless you're the timekeeping code, you should not be using this!
131 */
f726a697 132static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
133{
134 cycle_t interval;
a386b5af 135 u64 tmp, ntpinterval;
1e75fa8b 136 struct clocksource *old_clock;
155ec602 137
d28ede83
TG
138 old_clock = tk->tkr.clock;
139 tk->tkr.clock = clock;
140 tk->tkr.read = clock->read;
141 tk->tkr.mask = clock->mask;
142 tk->tkr.cycle_last = tk->tkr.read(clock);
155ec602
MS
143
144 /* Do the ns -> cycle conversion first, using original mult */
145 tmp = NTP_INTERVAL_LENGTH;
146 tmp <<= clock->shift;
a386b5af 147 ntpinterval = tmp;
0a544198
MS
148 tmp += clock->mult/2;
149 do_div(tmp, clock->mult);
155ec602
MS
150 if (tmp == 0)
151 tmp = 1;
152
153 interval = (cycle_t) tmp;
f726a697 154 tk->cycle_interval = interval;
155ec602
MS
155
156 /* Go back from cycles -> shifted ns */
f726a697
JS
157 tk->xtime_interval = (u64) interval * clock->mult;
158 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159 tk->raw_interval =
0a544198 160 ((u64) interval * clock->mult) >> clock->shift;
155ec602 161
1e75fa8b
JS
162 /* if changing clocks, convert xtime_nsec shift units */
163 if (old_clock) {
164 int shift_change = clock->shift - old_clock->shift;
165 if (shift_change < 0)
d28ede83 166 tk->tkr.xtime_nsec >>= -shift_change;
1e75fa8b 167 else
d28ede83 168 tk->tkr.xtime_nsec <<= shift_change;
1e75fa8b 169 }
d28ede83 170 tk->tkr.shift = clock->shift;
155ec602 171
f726a697
JS
172 tk->ntp_error = 0;
173 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 174 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
175
176 /*
177 * The timekeeper keeps its own mult values for the currently
178 * active clocksource. These value will be adjusted via NTP
179 * to counteract clock drifting.
180 */
d28ede83 181 tk->tkr.mult = clock->mult;
dc491596 182 tk->ntp_err_mult = 0;
155ec602 183}
8524070b 184
2ba2a305 185/* Timekeeper helper functions. */
7b1f6207
SW
186
187#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
188static u32 default_arch_gettimeoffset(void) { return 0; }
189u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 190#else
e06fde37 191static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
192#endif
193
0e5ac3a8 194static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 195{
3a978377 196 cycle_t cycle_now, delta;
1e75fa8b 197 s64 nsec;
2ba2a305
MS
198
199 /* read clocksource: */
0e5ac3a8 200 cycle_now = tkr->read(tkr->clock);
2ba2a305
MS
201
202 /* calculate the delta since the last update_wall_time: */
0e5ac3a8 203 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
2ba2a305 204
0e5ac3a8
TG
205 nsec = delta * tkr->mult + tkr->xtime_nsec;
206 nsec >>= tkr->shift;
f2a5a085 207
7b1f6207 208 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 209 return nsec + arch_gettimeoffset();
2ba2a305
MS
210}
211
f726a697 212static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
2ba2a305 213{
d28ede83 214 struct clocksource *clock = tk->tkr.clock;
3a978377 215 cycle_t cycle_now, delta;
f2a5a085 216 s64 nsec;
2ba2a305
MS
217
218 /* read clocksource: */
d28ede83 219 cycle_now = tk->tkr.read(clock);
2ba2a305
MS
220
221 /* calculate the delta since the last update_wall_time: */
d28ede83 222 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
2ba2a305 223
f2a5a085 224 /* convert delta to nanoseconds. */
3a978377 225 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
f2a5a085 226
7b1f6207 227 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 228 return nsec + arch_gettimeoffset();
2ba2a305
MS
229}
230
4396e058
TG
231/**
232 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233 * @tk: The timekeeper from which we take the update
234 * @tkf: The fast timekeeper to update
235 * @tbase: The time base for the fast timekeeper (mono/raw)
236 *
237 * We want to use this from any context including NMI and tracing /
238 * instrumenting the timekeeping code itself.
239 *
240 * So we handle this differently than the other timekeeping accessor
241 * functions which retry when the sequence count has changed. The
242 * update side does:
243 *
244 * smp_wmb(); <- Ensure that the last base[1] update is visible
245 * tkf->seq++;
246 * smp_wmb(); <- Ensure that the seqcount update is visible
247 * update(tkf->base[0], tk);
248 * smp_wmb(); <- Ensure that the base[0] update is visible
249 * tkf->seq++;
250 * smp_wmb(); <- Ensure that the seqcount update is visible
251 * update(tkf->base[1], tk);
252 *
253 * The reader side does:
254 *
255 * do {
256 * seq = tkf->seq;
257 * smp_rmb();
258 * idx = seq & 0x01;
259 * now = now(tkf->base[idx]);
260 * smp_rmb();
261 * } while (seq != tkf->seq)
262 *
263 * As long as we update base[0] readers are forced off to
264 * base[1]. Once base[0] is updated readers are redirected to base[0]
265 * and the base[1] update takes place.
266 *
267 * So if a NMI hits the update of base[0] then it will use base[1]
268 * which is still consistent. In the worst case this can result is a
269 * slightly wrong timestamp (a few nanoseconds). See
270 * @ktime_get_mono_fast_ns.
271 */
272static void update_fast_timekeeper(struct timekeeper *tk)
273{
274 struct tk_read_base *base = tk_fast_mono.base;
275
276 /* Force readers off to base[1] */
277 raw_write_seqcount_latch(&tk_fast_mono.seq);
278
279 /* Update base[0] */
280 memcpy(base, &tk->tkr, sizeof(*base));
281
282 /* Force readers back to base[0] */
283 raw_write_seqcount_latch(&tk_fast_mono.seq);
284
285 /* Update base[1] */
286 memcpy(base + 1, base, sizeof(*base));
287}
288
289/**
290 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
291 *
292 * This timestamp is not guaranteed to be monotonic across an update.
293 * The timestamp is calculated by:
294 *
295 * now = base_mono + clock_delta * slope
296 *
297 * So if the update lowers the slope, readers who are forced to the
298 * not yet updated second array are still using the old steeper slope.
299 *
300 * tmono
301 * ^
302 * | o n
303 * | o n
304 * | u
305 * | o
306 * |o
307 * |12345678---> reader order
308 *
309 * o = old slope
310 * u = update
311 * n = new slope
312 *
313 * So reader 6 will observe time going backwards versus reader 5.
314 *
315 * While other CPUs are likely to be able observe that, the only way
316 * for a CPU local observation is when an NMI hits in the middle of
317 * the update. Timestamps taken from that NMI context might be ahead
318 * of the following timestamps. Callers need to be aware of that and
319 * deal with it.
320 */
321u64 notrace ktime_get_mono_fast_ns(void)
322{
323 struct tk_read_base *tkr;
324 unsigned int seq;
325 u64 now;
326
327 do {
328 seq = raw_read_seqcount(&tk_fast_mono.seq);
329 tkr = tk_fast_mono.base + (seq & 0x01);
330 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
331
332 } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
333 return now;
334}
335EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
336
c905fae4
TG
337#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
338
339static inline void update_vsyscall(struct timekeeper *tk)
340{
0680eb1f 341 struct timespec xt, wm;
c905fae4 342
e2dff1ec 343 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f
JS
344 wm = timespec64_to_timespec(tk->wall_to_monotonic);
345 update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
d28ede83 346 tk->tkr.cycle_last);
c905fae4
TG
347}
348
349static inline void old_vsyscall_fixup(struct timekeeper *tk)
350{
351 s64 remainder;
352
353 /*
354 * Store only full nanoseconds into xtime_nsec after rounding
355 * it up and add the remainder to the error difference.
356 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
357 * by truncating the remainder in vsyscalls. However, it causes
358 * additional work to be done in timekeeping_adjust(). Once
359 * the vsyscall implementations are converted to use xtime_nsec
360 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
361 * users are removed, this can be killed.
362 */
d28ede83
TG
363 remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
364 tk->tkr.xtime_nsec -= remainder;
365 tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
c905fae4 366 tk->ntp_error += remainder << tk->ntp_error_shift;
d28ede83 367 tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
c905fae4
TG
368}
369#else
370#define old_vsyscall_fixup(tk)
371#endif
372
e0b306fe
MT
373static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
374
780427f0 375static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 376{
780427f0 377 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
378}
379
380/**
381 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
382 */
383int pvclock_gtod_register_notifier(struct notifier_block *nb)
384{
3fdb14fd 385 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
386 unsigned long flags;
387 int ret;
388
9a7a71b1 389 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 390 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 391 update_pvclock_gtod(tk, true);
9a7a71b1 392 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
393
394 return ret;
395}
396EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
397
398/**
399 * pvclock_gtod_unregister_notifier - unregister a pvclock
400 * timedata update listener
e0b306fe
MT
401 */
402int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
403{
e0b306fe
MT
404 unsigned long flags;
405 int ret;
406
9a7a71b1 407 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 408 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 409 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
410
411 return ret;
412}
413EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
414
7c032df5
TG
415/*
416 * Update the ktime_t based scalar nsec members of the timekeeper
417 */
418static inline void tk_update_ktime_data(struct timekeeper *tk)
419{
9e3680b1
HS
420 u64 seconds;
421 u32 nsec;
7c032df5
TG
422
423 /*
424 * The xtime based monotonic readout is:
425 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
426 * The ktime based monotonic readout is:
427 * nsec = base_mono + now();
428 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
429 */
9e3680b1
HS
430 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
431 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
432 tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
433
434 /* Update the monotonic raw base */
435 tk->base_raw = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
436
437 /*
438 * The sum of the nanoseconds portions of xtime and
439 * wall_to_monotonic can be greater/equal one second. Take
440 * this into account before updating tk->ktime_sec.
441 */
442 nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
443 if (nsec >= NSEC_PER_SEC)
444 seconds++;
445 tk->ktime_sec = seconds;
7c032df5
TG
446}
447
9a7a71b1 448/* must hold timekeeper_lock */
04397fe9 449static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 450{
04397fe9 451 if (action & TK_CLEAR_NTP) {
f726a697 452 tk->ntp_error = 0;
cc06268c
TG
453 ntp_clear();
454 }
48cdc135 455
7c032df5
TG
456 tk_update_ktime_data(tk);
457
9bf2419f
TG
458 update_vsyscall(tk);
459 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
460
04397fe9 461 if (action & TK_MIRROR)
3fdb14fd
TG
462 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
463 sizeof(tk_core.timekeeper));
4396e058
TG
464
465 update_fast_timekeeper(tk);
cc06268c
TG
466}
467
8524070b 468/**
155ec602 469 * timekeeping_forward_now - update clock to the current time
8524070b 470 *
9a055117
RZ
471 * Forward the current clock to update its state since the last call to
472 * update_wall_time(). This is useful before significant clock changes,
473 * as it avoids having to deal with this time offset explicitly.
8524070b 474 */
f726a697 475static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 476{
d28ede83 477 struct clocksource *clock = tk->tkr.clock;
3a978377 478 cycle_t cycle_now, delta;
9a055117 479 s64 nsec;
8524070b 480
d28ede83
TG
481 cycle_now = tk->tkr.read(clock);
482 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
483 tk->tkr.cycle_last = cycle_now;
8524070b 484
d28ede83 485 tk->tkr.xtime_nsec += delta * tk->tkr.mult;
7d27558c 486
7b1f6207 487 /* If arch requires, add in get_arch_timeoffset() */
d28ede83 488 tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
7d27558c 489
f726a697 490 tk_normalize_xtime(tk);
2d42244a 491
3a978377 492 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
7d489d15 493 timespec64_add_ns(&tk->raw_time, nsec);
8524070b
JS
494}
495
496/**
d6d29896 497 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b
JS
498 * @ts: pointer to the timespec to be set
499 *
1e817fb6
KC
500 * Updates the time of day in the timespec.
501 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 502 */
d6d29896 503int __getnstimeofday64(struct timespec64 *ts)
8524070b 504{
3fdb14fd 505 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 506 unsigned long seq;
1e75fa8b 507 s64 nsecs = 0;
8524070b
JS
508
509 do {
3fdb14fd 510 seq = read_seqcount_begin(&tk_core.seq);
8524070b 511
4e250fdd 512 ts->tv_sec = tk->xtime_sec;
0e5ac3a8 513 nsecs = timekeeping_get_ns(&tk->tkr);
8524070b 514
3fdb14fd 515 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 516
ec145bab 517 ts->tv_nsec = 0;
d6d29896 518 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
519
520 /*
521 * Do not bail out early, in case there were callers still using
522 * the value, even in the face of the WARN_ON.
523 */
524 if (unlikely(timekeeping_suspended))
525 return -EAGAIN;
526 return 0;
527}
d6d29896 528EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
529
530/**
d6d29896 531 * getnstimeofday64 - Returns the time of day in a timespec64.
1e817fb6
KC
532 * @ts: pointer to the timespec to be set
533 *
534 * Returns the time of day in a timespec (WARN if suspended).
535 */
d6d29896 536void getnstimeofday64(struct timespec64 *ts)
1e817fb6 537{
d6d29896 538 WARN_ON(__getnstimeofday64(ts));
8524070b 539}
d6d29896 540EXPORT_SYMBOL(getnstimeofday64);
8524070b 541
951ed4d3
MS
542ktime_t ktime_get(void)
543{
3fdb14fd 544 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 545 unsigned int seq;
a016a5bd
TG
546 ktime_t base;
547 s64 nsecs;
951ed4d3
MS
548
549 WARN_ON(timekeeping_suspended);
550
551 do {
3fdb14fd 552 seq = read_seqcount_begin(&tk_core.seq);
d28ede83 553 base = tk->tkr.base_mono;
0e5ac3a8 554 nsecs = timekeeping_get_ns(&tk->tkr);
951ed4d3 555
3fdb14fd 556 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 557
a016a5bd 558 return ktime_add_ns(base, nsecs);
951ed4d3
MS
559}
560EXPORT_SYMBOL_GPL(ktime_get);
561
0077dc60
TG
562static ktime_t *offsets[TK_OFFS_MAX] = {
563 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
564 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
565 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
566};
567
568ktime_t ktime_get_with_offset(enum tk_offsets offs)
569{
570 struct timekeeper *tk = &tk_core.timekeeper;
571 unsigned int seq;
572 ktime_t base, *offset = offsets[offs];
573 s64 nsecs;
574
575 WARN_ON(timekeeping_suspended);
576
577 do {
578 seq = read_seqcount_begin(&tk_core.seq);
d28ede83 579 base = ktime_add(tk->tkr.base_mono, *offset);
0e5ac3a8 580 nsecs = timekeeping_get_ns(&tk->tkr);
0077dc60
TG
581
582 } while (read_seqcount_retry(&tk_core.seq, seq));
583
584 return ktime_add_ns(base, nsecs);
585
586}
587EXPORT_SYMBOL_GPL(ktime_get_with_offset);
588
9a6b5197
TG
589/**
590 * ktime_mono_to_any() - convert mononotic time to any other time
591 * @tmono: time to convert.
592 * @offs: which offset to use
593 */
594ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
595{
596 ktime_t *offset = offsets[offs];
597 unsigned long seq;
598 ktime_t tconv;
599
600 do {
601 seq = read_seqcount_begin(&tk_core.seq);
602 tconv = ktime_add(tmono, *offset);
603 } while (read_seqcount_retry(&tk_core.seq, seq));
604
605 return tconv;
606}
607EXPORT_SYMBOL_GPL(ktime_mono_to_any);
608
f519b1a2
TG
609/**
610 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
611 */
612ktime_t ktime_get_raw(void)
613{
614 struct timekeeper *tk = &tk_core.timekeeper;
615 unsigned int seq;
616 ktime_t base;
617 s64 nsecs;
618
619 do {
620 seq = read_seqcount_begin(&tk_core.seq);
621 base = tk->base_raw;
622 nsecs = timekeeping_get_ns_raw(tk);
623
624 } while (read_seqcount_retry(&tk_core.seq, seq));
625
626 return ktime_add_ns(base, nsecs);
627}
628EXPORT_SYMBOL_GPL(ktime_get_raw);
629
951ed4d3 630/**
d6d29896 631 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
632 * @ts: pointer to timespec variable
633 *
634 * The function calculates the monotonic clock from the realtime
635 * clock and the wall_to_monotonic offset and stores the result
636 * in normalized timespec format in the variable pointed to by @ts.
637 */
d6d29896 638void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 639{
3fdb14fd 640 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 641 struct timespec64 tomono;
ec145bab 642 s64 nsec;
951ed4d3 643 unsigned int seq;
951ed4d3
MS
644
645 WARN_ON(timekeeping_suspended);
646
647 do {
3fdb14fd 648 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 649 ts->tv_sec = tk->xtime_sec;
0e5ac3a8 650 nsec = timekeeping_get_ns(&tk->tkr);
4e250fdd 651 tomono = tk->wall_to_monotonic;
951ed4d3 652
3fdb14fd 653 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 654
d6d29896
TG
655 ts->tv_sec += tomono.tv_sec;
656 ts->tv_nsec = 0;
657 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 658}
d6d29896 659EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 660
9e3680b1
HS
661/**
662 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
663 *
664 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
665 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
666 * works on both 32 and 64 bit systems. On 32 bit systems the readout
667 * covers ~136 years of uptime which should be enough to prevent
668 * premature wrap arounds.
669 */
670time64_t ktime_get_seconds(void)
671{
672 struct timekeeper *tk = &tk_core.timekeeper;
673
674 WARN_ON(timekeeping_suspended);
675 return tk->ktime_sec;
676}
677EXPORT_SYMBOL_GPL(ktime_get_seconds);
678
e2c18e49
AG
679#ifdef CONFIG_NTP_PPS
680
681/**
682 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
683 * @ts_raw: pointer to the timespec to be set to raw monotonic time
684 * @ts_real: pointer to the timespec to be set to the time of day
685 *
686 * This function reads both the time of day and raw monotonic time at the
687 * same time atomically and stores the resulting timestamps in timespec
688 * format.
689 */
690void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
691{
3fdb14fd 692 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
693 unsigned long seq;
694 s64 nsecs_raw, nsecs_real;
695
696 WARN_ON_ONCE(timekeeping_suspended);
697
698 do {
3fdb14fd 699 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 700
7d489d15 701 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 702 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 703 ts_real->tv_nsec = 0;
e2c18e49 704
4e250fdd 705 nsecs_raw = timekeeping_get_ns_raw(tk);
0e5ac3a8 706 nsecs_real = timekeeping_get_ns(&tk->tkr);
e2c18e49 707
3fdb14fd 708 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
709
710 timespec_add_ns(ts_raw, nsecs_raw);
711 timespec_add_ns(ts_real, nsecs_real);
712}
713EXPORT_SYMBOL(getnstime_raw_and_real);
714
715#endif /* CONFIG_NTP_PPS */
716
8524070b
JS
717/**
718 * do_gettimeofday - Returns the time of day in a timeval
719 * @tv: pointer to the timeval to be set
720 *
efd9ac86 721 * NOTE: Users should be converted to using getnstimeofday()
8524070b
JS
722 */
723void do_gettimeofday(struct timeval *tv)
724{
d6d29896 725 struct timespec64 now;
8524070b 726
d6d29896 727 getnstimeofday64(&now);
8524070b
JS
728 tv->tv_sec = now.tv_sec;
729 tv->tv_usec = now.tv_nsec/1000;
730}
8524070b 731EXPORT_SYMBOL(do_gettimeofday);
d239f49d 732
8524070b
JS
733/**
734 * do_settimeofday - Sets the time of day
735 * @tv: pointer to the timespec variable containing the new time
736 *
737 * Sets the time of day to the new time and update NTP and notify hrtimers
738 */
1e6d7679 739int do_settimeofday(const struct timespec *tv)
8524070b 740{
3fdb14fd 741 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 742 struct timespec64 ts_delta, xt, tmp;
92c1d3ed 743 unsigned long flags;
8524070b 744
cee58483 745 if (!timespec_valid_strict(tv))
8524070b
JS
746 return -EINVAL;
747
9a7a71b1 748 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 749 write_seqcount_begin(&tk_core.seq);
8524070b 750
4e250fdd 751 timekeeping_forward_now(tk);
9a055117 752
4e250fdd 753 xt = tk_xtime(tk);
1e75fa8b
JS
754 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
755 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
756
7d489d15 757 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 758
7d489d15
JS
759 tmp = timespec_to_timespec64(*tv);
760 tk_set_xtime(tk, &tmp);
1e75fa8b 761
780427f0 762 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 763
3fdb14fd 764 write_seqcount_end(&tk_core.seq);
9a7a71b1 765 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
766
767 /* signal hrtimers about time change */
768 clock_was_set();
769
770 return 0;
771}
8524070b
JS
772EXPORT_SYMBOL(do_settimeofday);
773
c528f7c6
JS
774/**
775 * timekeeping_inject_offset - Adds or subtracts from the current time.
776 * @tv: pointer to the timespec variable containing the offset
777 *
778 * Adds or subtracts an offset value from the current time.
779 */
780int timekeeping_inject_offset(struct timespec *ts)
781{
3fdb14fd 782 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 783 unsigned long flags;
7d489d15 784 struct timespec64 ts64, tmp;
4e8b1452 785 int ret = 0;
c528f7c6
JS
786
787 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
788 return -EINVAL;
789
7d489d15
JS
790 ts64 = timespec_to_timespec64(*ts);
791
9a7a71b1 792 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 793 write_seqcount_begin(&tk_core.seq);
c528f7c6 794
4e250fdd 795 timekeeping_forward_now(tk);
c528f7c6 796
4e8b1452 797 /* Make sure the proposed value is valid */
7d489d15
JS
798 tmp = timespec64_add(tk_xtime(tk), ts64);
799 if (!timespec64_valid_strict(&tmp)) {
4e8b1452
JS
800 ret = -EINVAL;
801 goto error;
802 }
1e75fa8b 803
7d489d15
JS
804 tk_xtime_add(tk, &ts64);
805 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 806
4e8b1452 807error: /* even if we error out, we forwarded the time, so call update */
780427f0 808 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 809
3fdb14fd 810 write_seqcount_end(&tk_core.seq);
9a7a71b1 811 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
812
813 /* signal hrtimers about time change */
814 clock_was_set();
815
4e8b1452 816 return ret;
c528f7c6
JS
817}
818EXPORT_SYMBOL(timekeeping_inject_offset);
819
cc244dda
JS
820
821/**
822 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
823 *
824 */
825s32 timekeeping_get_tai_offset(void)
826{
3fdb14fd 827 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
828 unsigned int seq;
829 s32 ret;
830
831 do {
3fdb14fd 832 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 833 ret = tk->tai_offset;
3fdb14fd 834 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
835
836 return ret;
837}
838
839/**
840 * __timekeeping_set_tai_offset - Lock free worker function
841 *
842 */
dd5d70e8 843static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
844{
845 tk->tai_offset = tai_offset;
04005f60 846 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
847}
848
849/**
850 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
851 *
852 */
853void timekeeping_set_tai_offset(s32 tai_offset)
854{
3fdb14fd 855 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
856 unsigned long flags;
857
9a7a71b1 858 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 859 write_seqcount_begin(&tk_core.seq);
cc244dda 860 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 861 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 862 write_seqcount_end(&tk_core.seq);
9a7a71b1 863 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 864 clock_was_set();
cc244dda
JS
865}
866
8524070b
JS
867/**
868 * change_clocksource - Swaps clocksources if a new one is available
869 *
870 * Accumulates current time interval and initializes new clocksource
871 */
75c5158f 872static int change_clocksource(void *data)
8524070b 873{
3fdb14fd 874 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 875 struct clocksource *new, *old;
f695cf94 876 unsigned long flags;
8524070b 877
75c5158f 878 new = (struct clocksource *) data;
8524070b 879
9a7a71b1 880 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 881 write_seqcount_begin(&tk_core.seq);
f695cf94 882
4e250fdd 883 timekeeping_forward_now(tk);
09ac369c
TG
884 /*
885 * If the cs is in module, get a module reference. Succeeds
886 * for built-in code (owner == NULL) as well.
887 */
888 if (try_module_get(new->owner)) {
889 if (!new->enable || new->enable(new) == 0) {
d28ede83 890 old = tk->tkr.clock;
09ac369c
TG
891 tk_setup_internals(tk, new);
892 if (old->disable)
893 old->disable(old);
894 module_put(old->owner);
895 } else {
896 module_put(new->owner);
897 }
75c5158f 898 }
780427f0 899 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 900
3fdb14fd 901 write_seqcount_end(&tk_core.seq);
9a7a71b1 902 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 903
75c5158f
MS
904 return 0;
905}
8524070b 906
75c5158f
MS
907/**
908 * timekeeping_notify - Install a new clock source
909 * @clock: pointer to the clock source
910 *
911 * This function is called from clocksource.c after a new, better clock
912 * source has been registered. The caller holds the clocksource_mutex.
913 */
ba919d1c 914int timekeeping_notify(struct clocksource *clock)
75c5158f 915{
3fdb14fd 916 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 917
d28ede83 918 if (tk->tkr.clock == clock)
ba919d1c 919 return 0;
75c5158f 920 stop_machine(change_clocksource, clock, NULL);
8524070b 921 tick_clock_notify();
d28ede83 922 return tk->tkr.clock == clock ? 0 : -1;
8524070b 923}
75c5158f 924
2d42244a
JS
925/**
926 * getrawmonotonic - Returns the raw monotonic time in a timespec
927 * @ts: pointer to the timespec to be set
928 *
929 * Returns the raw monotonic time (completely un-modified by ntp)
930 */
931void getrawmonotonic(struct timespec *ts)
932{
3fdb14fd 933 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 934 struct timespec64 ts64;
2d42244a
JS
935 unsigned long seq;
936 s64 nsecs;
2d42244a
JS
937
938 do {
3fdb14fd 939 seq = read_seqcount_begin(&tk_core.seq);
4e250fdd 940 nsecs = timekeeping_get_ns_raw(tk);
7d489d15 941 ts64 = tk->raw_time;
2d42244a 942
3fdb14fd 943 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 944
7d489d15
JS
945 timespec64_add_ns(&ts64, nsecs);
946 *ts = timespec64_to_timespec(ts64);
2d42244a
JS
947}
948EXPORT_SYMBOL(getrawmonotonic);
949
8524070b 950/**
cf4fc6cb 951 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 952 */
cf4fc6cb 953int timekeeping_valid_for_hres(void)
8524070b 954{
3fdb14fd 955 struct timekeeper *tk = &tk_core.timekeeper;
8524070b
JS
956 unsigned long seq;
957 int ret;
958
959 do {
3fdb14fd 960 seq = read_seqcount_begin(&tk_core.seq);
8524070b 961
d28ede83 962 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 963
3fdb14fd 964 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b
JS
965
966 return ret;
967}
968
98962465
JH
969/**
970 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
971 */
972u64 timekeeping_max_deferment(void)
973{
3fdb14fd 974 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
975 unsigned long seq;
976 u64 ret;
42e71e81 977
70471f2f 978 do {
3fdb14fd 979 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 980
d28ede83 981 ret = tk->tkr.clock->max_idle_ns;
70471f2f 982
3fdb14fd 983 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
984
985 return ret;
98962465
JH
986}
987
8524070b 988/**
d4f587c6 989 * read_persistent_clock - Return time from the persistent clock.
8524070b
JS
990 *
991 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
992 * Reads the time from the battery backed persistent clock.
993 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b
JS
994 *
995 * XXX - Do be sure to remove it once all arches implement it.
996 */
52f5684c 997void __weak read_persistent_clock(struct timespec *ts)
8524070b 998{
d4f587c6
MS
999 ts->tv_sec = 0;
1000 ts->tv_nsec = 0;
8524070b
JS
1001}
1002
23970e38
MS
1003/**
1004 * read_boot_clock - Return time of the system start.
1005 *
1006 * Weak dummy function for arches that do not yet support it.
1007 * Function to read the exact time the system has been started.
1008 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1009 *
1010 * XXX - Do be sure to remove it once all arches implement it.
1011 */
52f5684c 1012void __weak read_boot_clock(struct timespec *ts)
23970e38
MS
1013{
1014 ts->tv_sec = 0;
1015 ts->tv_nsec = 0;
1016}
1017
8524070b
JS
1018/*
1019 * timekeeping_init - Initializes the clocksource and common timekeeping values
1020 */
1021void __init timekeeping_init(void)
1022{
3fdb14fd 1023 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1024 struct clocksource *clock;
8524070b 1025 unsigned long flags;
7d489d15
JS
1026 struct timespec64 now, boot, tmp;
1027 struct timespec ts;
31ade306 1028
7d489d15
JS
1029 read_persistent_clock(&ts);
1030 now = timespec_to_timespec64(ts);
1031 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1032 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1033 " Check your CMOS/BIOS settings.\n");
1034 now.tv_sec = 0;
1035 now.tv_nsec = 0;
31ade306
FT
1036 } else if (now.tv_sec || now.tv_nsec)
1037 persistent_clock_exist = true;
4e8b1452 1038
7d489d15
JS
1039 read_boot_clock(&ts);
1040 boot = timespec_to_timespec64(ts);
1041 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1042 pr_warn("WARNING: Boot clock returned invalid value!\n"
1043 " Check your CMOS/BIOS settings.\n");
1044 boot.tv_sec = 0;
1045 boot.tv_nsec = 0;
1046 }
8524070b 1047
9a7a71b1 1048 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1049 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1050 ntp_init();
1051
f1b82746 1052 clock = clocksource_default_clock();
a0f7d48b
MS
1053 if (clock->enable)
1054 clock->enable(clock);
4e250fdd 1055 tk_setup_internals(tk, clock);
8524070b 1056
4e250fdd
JS
1057 tk_set_xtime(tk, &now);
1058 tk->raw_time.tv_sec = 0;
1059 tk->raw_time.tv_nsec = 0;
f519b1a2 1060 tk->base_raw.tv64 = 0;
1e75fa8b 1061 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1062 boot = tk_xtime(tk);
1e75fa8b 1063
7d489d15 1064 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1065 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1066
f111adfd 1067 timekeeping_update(tk, TK_MIRROR);
48cdc135 1068
3fdb14fd 1069 write_seqcount_end(&tk_core.seq);
9a7a71b1 1070 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1071}
1072
8524070b 1073/* time in seconds when suspend began */
7d489d15 1074static struct timespec64 timekeeping_suspend_time;
8524070b 1075
304529b1
JS
1076/**
1077 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1078 * @delta: pointer to a timespec delta value
1079 *
1080 * Takes a timespec offset measuring a suspend interval and properly
1081 * adds the sleep offset to the timekeeping variables.
1082 */
f726a697 1083static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1084 struct timespec64 *delta)
304529b1 1085{
7d489d15 1086 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1087 printk_deferred(KERN_WARNING
1088 "__timekeeping_inject_sleeptime: Invalid "
1089 "sleep delta value!\n");
cb5de2f8
JS
1090 return;
1091 }
f726a697 1092 tk_xtime_add(tk, delta);
7d489d15 1093 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1094 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1095 tk_debug_account_sleep_time(delta);
304529b1
JS
1096}
1097
304529b1
JS
1098/**
1099 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
1100 * @delta: pointer to a timespec delta value
1101 *
1102 * This hook is for architectures that cannot support read_persistent_clock
1103 * because their RTC/persistent clock is only accessible when irqs are enabled.
1104 *
1105 * This function should only be called by rtc_resume(), and allows
1106 * a suspend offset to be injected into the timekeeping values.
1107 */
1108void timekeeping_inject_sleeptime(struct timespec *delta)
1109{
3fdb14fd 1110 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1111 struct timespec64 tmp;
92c1d3ed 1112 unsigned long flags;
304529b1 1113
31ade306
FT
1114 /*
1115 * Make sure we don't set the clock twice, as timekeeping_resume()
1116 * already did it
1117 */
1118 if (has_persistent_clock())
304529b1
JS
1119 return;
1120
9a7a71b1 1121 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1122 write_seqcount_begin(&tk_core.seq);
70471f2f 1123
4e250fdd 1124 timekeeping_forward_now(tk);
304529b1 1125
7d489d15
JS
1126 tmp = timespec_to_timespec64(*delta);
1127 __timekeeping_inject_sleeptime(tk, &tmp);
304529b1 1128
780427f0 1129 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1130
3fdb14fd 1131 write_seqcount_end(&tk_core.seq);
9a7a71b1 1132 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1133
1134 /* signal hrtimers about time change */
1135 clock_was_set();
1136}
1137
8524070b
JS
1138/**
1139 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b
JS
1140 *
1141 * This is for the generic clocksource timekeeping.
1142 * xtime/wall_to_monotonic/jiffies/etc are
1143 * still managed by arch specific suspend/resume code.
1144 */
e1a85b2c 1145static void timekeeping_resume(void)
8524070b 1146{
3fdb14fd 1147 struct timekeeper *tk = &tk_core.timekeeper;
d28ede83 1148 struct clocksource *clock = tk->tkr.clock;
92c1d3ed 1149 unsigned long flags;
7d489d15
JS
1150 struct timespec64 ts_new, ts_delta;
1151 struct timespec tmp;
e445cf1c
FT
1152 cycle_t cycle_now, cycle_delta;
1153 bool suspendtime_found = false;
d4f587c6 1154
7d489d15
JS
1155 read_persistent_clock(&tmp);
1156 ts_new = timespec_to_timespec64(tmp);
8524070b 1157
adc78e6b 1158 clockevents_resume();
d10ff3fb
TG
1159 clocksource_resume();
1160
9a7a71b1 1161 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1162 write_seqcount_begin(&tk_core.seq);
8524070b 1163
e445cf1c
FT
1164 /*
1165 * After system resumes, we need to calculate the suspended time and
1166 * compensate it for the OS time. There are 3 sources that could be
1167 * used: Nonstop clocksource during suspend, persistent clock and rtc
1168 * device.
1169 *
1170 * One specific platform may have 1 or 2 or all of them, and the
1171 * preference will be:
1172 * suspend-nonstop clocksource -> persistent clock -> rtc
1173 * The less preferred source will only be tried if there is no better
1174 * usable source. The rtc part is handled separately in rtc core code.
1175 */
d28ede83 1176 cycle_now = tk->tkr.read(clock);
e445cf1c 1177 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
d28ede83 1178 cycle_now > tk->tkr.cycle_last) {
e445cf1c
FT
1179 u64 num, max = ULLONG_MAX;
1180 u32 mult = clock->mult;
1181 u32 shift = clock->shift;
1182 s64 nsec = 0;
1183
d28ede83
TG
1184 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1185 tk->tkr.mask);
e445cf1c
FT
1186
1187 /*
1188 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1189 * suspended time is too long. In that case we need do the
1190 * 64 bits math carefully
1191 */
1192 do_div(max, mult);
1193 if (cycle_delta > max) {
1194 num = div64_u64(cycle_delta, max);
1195 nsec = (((u64) max * mult) >> shift) * num;
1196 cycle_delta -= num * max;
1197 }
1198 nsec += ((u64) cycle_delta * mult) >> shift;
1199
7d489d15 1200 ts_delta = ns_to_timespec64(nsec);
e445cf1c 1201 suspendtime_found = true;
7d489d15
JS
1202 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1203 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
e445cf1c 1204 suspendtime_found = true;
8524070b 1205 }
e445cf1c
FT
1206
1207 if (suspendtime_found)
1208 __timekeeping_inject_sleeptime(tk, &ts_delta);
1209
1210 /* Re-base the last cycle value */
d28ede83 1211 tk->tkr.cycle_last = cycle_now;
4e250fdd 1212 tk->ntp_error = 0;
8524070b 1213 timekeeping_suspended = 0;
780427f0 1214 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1215 write_seqcount_end(&tk_core.seq);
9a7a71b1 1216 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1217
1218 touch_softlockup_watchdog();
1219
1220 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1221
1222 /* Resume hrtimers */
b12a03ce 1223 hrtimers_resume();
8524070b
JS
1224}
1225
e1a85b2c 1226static int timekeeping_suspend(void)
8524070b 1227{
3fdb14fd 1228 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1229 unsigned long flags;
7d489d15
JS
1230 struct timespec64 delta, delta_delta;
1231 static struct timespec64 old_delta;
1232 struct timespec tmp;
8524070b 1233
7d489d15
JS
1234 read_persistent_clock(&tmp);
1235 timekeeping_suspend_time = timespec_to_timespec64(tmp);
3be90950 1236
0d6bd995
ZM
1237 /*
1238 * On some systems the persistent_clock can not be detected at
1239 * timekeeping_init by its return value, so if we see a valid
1240 * value returned, update the persistent_clock_exists flag.
1241 */
1242 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1243 persistent_clock_exist = true;
1244
9a7a71b1 1245 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1246 write_seqcount_begin(&tk_core.seq);
4e250fdd 1247 timekeeping_forward_now(tk);
8524070b 1248 timekeeping_suspended = 1;
cb33217b
JS
1249
1250 /*
1251 * To avoid drift caused by repeated suspend/resumes,
1252 * which each can add ~1 second drift error,
1253 * try to compensate so the difference in system time
1254 * and persistent_clock time stays close to constant.
1255 */
7d489d15
JS
1256 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1257 delta_delta = timespec64_sub(delta, old_delta);
cb33217b
JS
1258 if (abs(delta_delta.tv_sec) >= 2) {
1259 /*
1260 * if delta_delta is too large, assume time correction
1261 * has occured and set old_delta to the current delta.
1262 */
1263 old_delta = delta;
1264 } else {
1265 /* Otherwise try to adjust old_system to compensate */
1266 timekeeping_suspend_time =
7d489d15 1267 timespec64_add(timekeeping_suspend_time, delta_delta);
cb33217b 1268 }
330a1617
JS
1269
1270 timekeeping_update(tk, TK_MIRROR);
3fdb14fd 1271 write_seqcount_end(&tk_core.seq);
9a7a71b1 1272 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1273
1274 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 1275 clocksource_suspend();
adc78e6b 1276 clockevents_suspend();
8524070b
JS
1277
1278 return 0;
1279}
1280
1281/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1282static struct syscore_ops timekeeping_syscore_ops = {
8524070b
JS
1283 .resume = timekeeping_resume,
1284 .suspend = timekeeping_suspend,
8524070b
JS
1285};
1286
e1a85b2c 1287static int __init timekeeping_init_ops(void)
8524070b 1288{
e1a85b2c
RW
1289 register_syscore_ops(&timekeeping_syscore_ops);
1290 return 0;
8524070b 1291}
e1a85b2c 1292device_initcall(timekeeping_init_ops);
8524070b
JS
1293
1294/*
dc491596 1295 * Apply a multiplier adjustment to the timekeeper
8524070b 1296 */
dc491596
JS
1297static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1298 s64 offset,
1299 bool negative,
1300 int adj_scale)
8524070b 1301{
dc491596
JS
1302 s64 interval = tk->cycle_interval;
1303 s32 mult_adj = 1;
8524070b 1304
dc491596
JS
1305 if (negative) {
1306 mult_adj = -mult_adj;
1307 interval = -interval;
1308 offset = -offset;
1d17d174 1309 }
dc491596
JS
1310 mult_adj <<= adj_scale;
1311 interval <<= adj_scale;
1312 offset <<= adj_scale;
8524070b 1313
c2bc1111
JS
1314 /*
1315 * So the following can be confusing.
1316 *
dc491596 1317 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1318 *
dc491596 1319 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1320 * have been appropriately scaled so the math is the same.
1321 *
1322 * The basic idea here is that we're increasing the multiplier
1323 * by one, this causes the xtime_interval to be incremented by
1324 * one cycle_interval. This is because:
1325 * xtime_interval = cycle_interval * mult
1326 * So if mult is being incremented by one:
1327 * xtime_interval = cycle_interval * (mult + 1)
1328 * Its the same as:
1329 * xtime_interval = (cycle_interval * mult) + cycle_interval
1330 * Which can be shortened to:
1331 * xtime_interval += cycle_interval
1332 *
1333 * So offset stores the non-accumulated cycles. Thus the current
1334 * time (in shifted nanoseconds) is:
1335 * now = (offset * adj) + xtime_nsec
1336 * Now, even though we're adjusting the clock frequency, we have
1337 * to keep time consistent. In other words, we can't jump back
1338 * in time, and we also want to avoid jumping forward in time.
1339 *
1340 * So given the same offset value, we need the time to be the same
1341 * both before and after the freq adjustment.
1342 * now = (offset * adj_1) + xtime_nsec_1
1343 * now = (offset * adj_2) + xtime_nsec_2
1344 * So:
1345 * (offset * adj_1) + xtime_nsec_1 =
1346 * (offset * adj_2) + xtime_nsec_2
1347 * And we know:
1348 * adj_2 = adj_1 + 1
1349 * So:
1350 * (offset * adj_1) + xtime_nsec_1 =
1351 * (offset * (adj_1+1)) + xtime_nsec_2
1352 * (offset * adj_1) + xtime_nsec_1 =
1353 * (offset * adj_1) + offset + xtime_nsec_2
1354 * Canceling the sides:
1355 * xtime_nsec_1 = offset + xtime_nsec_2
1356 * Which gives us:
1357 * xtime_nsec_2 = xtime_nsec_1 - offset
1358 * Which simplfies to:
1359 * xtime_nsec -= offset
1360 *
1361 * XXX - TODO: Doc ntp_error calculation.
1362 */
dc491596 1363 tk->tkr.mult += mult_adj;
f726a697 1364 tk->xtime_interval += interval;
d28ede83 1365 tk->tkr.xtime_nsec -= offset;
f726a697 1366 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1367}
1368
1369/*
1370 * Calculate the multiplier adjustment needed to match the frequency
1371 * specified by NTP
1372 */
1373static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1374 s64 offset)
1375{
1376 s64 interval = tk->cycle_interval;
1377 s64 xinterval = tk->xtime_interval;
1378 s64 tick_error;
1379 bool negative;
1380 u32 adj;
1381
1382 /* Remove any current error adj from freq calculation */
1383 if (tk->ntp_err_mult)
1384 xinterval -= tk->cycle_interval;
1385
375f45b5
JS
1386 tk->ntp_tick = ntp_tick_length();
1387
dc491596
JS
1388 /* Calculate current error per tick */
1389 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1390 tick_error -= (xinterval + tk->xtime_remainder);
1391
1392 /* Don't worry about correcting it if its small */
1393 if (likely((tick_error >= 0) && (tick_error <= interval)))
1394 return;
1395
1396 /* preserve the direction of correction */
1397 negative = (tick_error < 0);
1398
1399 /* Sort out the magnitude of the correction */
1400 tick_error = abs(tick_error);
1401 for (adj = 0; tick_error > interval; adj++)
1402 tick_error >>= 1;
1403
1404 /* scale the corrections */
1405 timekeeping_apply_adjustment(tk, offset, negative, adj);
1406}
1407
1408/*
1409 * Adjust the timekeeper's multiplier to the correct frequency
1410 * and also to reduce the accumulated error value.
1411 */
1412static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1413{
1414 /* Correct for the current frequency error */
1415 timekeeping_freqadjust(tk, offset);
1416
1417 /* Next make a small adjustment to fix any cumulative error */
1418 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1419 tk->ntp_err_mult = 1;
1420 timekeeping_apply_adjustment(tk, offset, 0, 0);
1421 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1422 /* Undo any existing error adjustment */
1423 timekeeping_apply_adjustment(tk, offset, 1, 0);
1424 tk->ntp_err_mult = 0;
1425 }
1426
1427 if (unlikely(tk->tkr.clock->maxadj &&
1428 (tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
1429 printk_once(KERN_WARNING
1430 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1431 tk->tkr.clock->name, (long)tk->tkr.mult,
1432 (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1433 }
2a8c0883
JS
1434
1435 /*
1436 * It may be possible that when we entered this function, xtime_nsec
1437 * was very small. Further, if we're slightly speeding the clocksource
1438 * in the code above, its possible the required corrective factor to
1439 * xtime_nsec could cause it to underflow.
1440 *
1441 * Now, since we already accumulated the second, cannot simply roll
1442 * the accumulated second back, since the NTP subsystem has been
1443 * notified via second_overflow. So instead we push xtime_nsec forward
1444 * by the amount we underflowed, and add that amount into the error.
1445 *
1446 * We'll correct this error next time through this function, when
1447 * xtime_nsec is not as small.
1448 */
d28ede83
TG
1449 if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1450 s64 neg = -(s64)tk->tkr.xtime_nsec;
1451 tk->tkr.xtime_nsec = 0;
f726a697 1452 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1453 }
8524070b
JS
1454}
1455
1f4f9487
JS
1456/**
1457 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1458 *
1459 * Helper function that accumulates a the nsecs greater then a second
1460 * from the xtime_nsec field to the xtime_secs field.
1461 * It also calls into the NTP code to handle leapsecond processing.
1462 *
1463 */
780427f0 1464static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1465{
d28ede83 1466 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
5258d3f2 1467 unsigned int clock_set = 0;
1f4f9487 1468
d28ede83 1469 while (tk->tkr.xtime_nsec >= nsecps) {
1f4f9487
JS
1470 int leap;
1471
d28ede83 1472 tk->tkr.xtime_nsec -= nsecps;
1f4f9487
JS
1473 tk->xtime_sec++;
1474
1475 /* Figure out if its a leap sec and apply if needed */
1476 leap = second_overflow(tk->xtime_sec);
6d0ef903 1477 if (unlikely(leap)) {
7d489d15 1478 struct timespec64 ts;
6d0ef903
JS
1479
1480 tk->xtime_sec += leap;
1f4f9487 1481
6d0ef903
JS
1482 ts.tv_sec = leap;
1483 ts.tv_nsec = 0;
1484 tk_set_wall_to_mono(tk,
7d489d15 1485 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1486
cc244dda
JS
1487 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1488
5258d3f2 1489 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1490 }
1f4f9487 1491 }
5258d3f2 1492 return clock_set;
1f4f9487
JS
1493}
1494
a092ff0f
JS
1495/**
1496 * logarithmic_accumulation - shifted accumulation of cycles
1497 *
1498 * This functions accumulates a shifted interval of cycles into
1499 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1500 * loop.
1501 *
1502 * Returns the unconsumed cycles.
1503 */
f726a697 1504static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1505 u32 shift,
1506 unsigned int *clock_set)
a092ff0f 1507{
23a9537a 1508 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1509 u64 raw_nsecs;
a092ff0f 1510
f726a697 1511 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1512 if (offset < interval)
a092ff0f
JS
1513 return offset;
1514
1515 /* Accumulate one shifted interval */
23a9537a 1516 offset -= interval;
d28ede83 1517 tk->tkr.cycle_last += interval;
a092ff0f 1518
d28ede83 1519 tk->tkr.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1520 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1521
deda2e81 1522 /* Accumulate raw time */
5b3900cd 1523 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1524 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1525 if (raw_nsecs >= NSEC_PER_SEC) {
1526 u64 raw_secs = raw_nsecs;
1527 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1528 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1529 }
f726a697 1530 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f
JS
1531
1532 /* Accumulate error between NTP and clock interval */
375f45b5 1533 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1534 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1535 (tk->ntp_error_shift + shift);
a092ff0f
JS
1536
1537 return offset;
1538}
1539
8524070b
JS
1540/**
1541 * update_wall_time - Uses the current clocksource to increment the wall time
1542 *
8524070b 1543 */
47a1b796 1544void update_wall_time(void)
8524070b 1545{
3fdb14fd 1546 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1547 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1548 cycle_t offset;
a092ff0f 1549 int shift = 0, maxshift;
5258d3f2 1550 unsigned int clock_set = 0;
70471f2f
JS
1551 unsigned long flags;
1552
9a7a71b1 1553 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b
JS
1554
1555 /* Make sure we're fully resumed: */
1556 if (unlikely(timekeeping_suspended))
70471f2f 1557 goto out;
8524070b 1558
592913ec 1559#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1560 offset = real_tk->cycle_interval;
592913ec 1561#else
d28ede83
TG
1562 offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1563 tk->tkr.cycle_last, tk->tkr.mask);
8524070b 1564#endif
8524070b 1565
bf2ac312 1566 /* Check if there's really nothing to do */
48cdc135 1567 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1568 goto out;
1569
a092ff0f
JS
1570 /*
1571 * With NO_HZ we may have to accumulate many cycle_intervals
1572 * (think "ticks") worth of time at once. To do this efficiently,
1573 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1574 * that is smaller than the offset. We then accumulate that
a092ff0f
JS
1575 * chunk in one go, and then try to consume the next smaller
1576 * doubled multiple.
8524070b 1577 */
4e250fdd 1578 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1579 shift = max(0, shift);
88b28adf 1580 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1581 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1582 shift = min(shift, maxshift);
4e250fdd 1583 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1584 offset = logarithmic_accumulation(tk, offset, shift,
1585 &clock_set);
4e250fdd 1586 if (offset < tk->cycle_interval<<shift)
830ec045 1587 shift--;
8524070b
JS
1588 }
1589
1590 /* correct the clock when NTP error is too big */
4e250fdd 1591 timekeeping_adjust(tk, offset);
8524070b 1592
6a867a39 1593 /*
92bb1fcf
JS
1594 * XXX This can be killed once everyone converts
1595 * to the new update_vsyscall.
1596 */
1597 old_vsyscall_fixup(tk);
8524070b 1598
6a867a39
JS
1599 /*
1600 * Finally, make sure that after the rounding
1e75fa8b 1601 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1602 */
5258d3f2 1603 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1604
3fdb14fd 1605 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1606 /*
1607 * Update the real timekeeper.
1608 *
1609 * We could avoid this memcpy by switching pointers, but that
1610 * requires changes to all other timekeeper usage sites as
1611 * well, i.e. move the timekeeper pointer getter into the
1612 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1613 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1614 * updating.
1615 */
1616 memcpy(real_tk, tk, sizeof(*tk));
5258d3f2 1617 timekeeping_update(real_tk, clock_set);
3fdb14fd 1618 write_seqcount_end(&tk_core.seq);
ca4523cd 1619out:
9a7a71b1 1620 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1621 if (clock_set)
cab5e127
JS
1622 /* Have to call _delayed version, since in irq context*/
1623 clock_was_set_delayed();
8524070b 1624}
7c3f1a57
TJ
1625
1626/**
1627 * getboottime - Return the real time of system boot.
1628 * @ts: pointer to the timespec to be set
1629 *
abb3a4ea 1630 * Returns the wall-time of boot in a timespec.
7c3f1a57
TJ
1631 *
1632 * This is based on the wall_to_monotonic offset and the total suspend
1633 * time. Calls to settimeofday will affect the value returned (which
1634 * basically means that however wrong your real time clock is at boot time,
1635 * you get the right time here).
1636 */
1637void getboottime(struct timespec *ts)
1638{
3fdb14fd 1639 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1640 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1641
1642 *ts = ktime_to_timespec(t);
7c3f1a57 1643}
c93d89f3 1644EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57 1645
17c38b74
JS
1646unsigned long get_seconds(void)
1647{
3fdb14fd 1648 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1649
1650 return tk->xtime_sec;
17c38b74
JS
1651}
1652EXPORT_SYMBOL(get_seconds);
1653
da15cfda
JS
1654struct timespec __current_kernel_time(void)
1655{
3fdb14fd 1656 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1657
7d489d15 1658 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1659}
17c38b74 1660
2c6b47de
JS
1661struct timespec current_kernel_time(void)
1662{
3fdb14fd 1663 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1664 struct timespec64 now;
2c6b47de
JS
1665 unsigned long seq;
1666
1667 do {
3fdb14fd 1668 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1669
4e250fdd 1670 now = tk_xtime(tk);
3fdb14fd 1671 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1672
7d489d15 1673 return timespec64_to_timespec(now);
2c6b47de 1674}
2c6b47de 1675EXPORT_SYMBOL(current_kernel_time);
da15cfda
JS
1676
1677struct timespec get_monotonic_coarse(void)
1678{
3fdb14fd 1679 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1680 struct timespec64 now, mono;
da15cfda
JS
1681 unsigned long seq;
1682
1683 do {
3fdb14fd 1684 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1685
4e250fdd
JS
1686 now = tk_xtime(tk);
1687 mono = tk->wall_to_monotonic;
3fdb14fd 1688 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1689
7d489d15 1690 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1691 now.tv_nsec + mono.tv_nsec);
7d489d15
JS
1692
1693 return timespec64_to_timespec(now);
da15cfda 1694}
871cf1e5
TH
1695
1696/*
d6ad4187 1697 * Must hold jiffies_lock
871cf1e5
TH
1698 */
1699void do_timer(unsigned long ticks)
1700{
1701 jiffies_64 += ticks;
871cf1e5
TH
1702 calc_global_load(ticks);
1703}
48cf76f7
TH
1704
1705/**
76f41088
JS
1706 * ktime_get_update_offsets_tick - hrtimer helper
1707 * @offs_real: pointer to storage for monotonic -> realtime offset
1708 * @offs_boot: pointer to storage for monotonic -> boottime offset
1709 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1710 *
1711 * Returns monotonic time at last tick and various offsets
48cf76f7 1712 */
76f41088
JS
1713ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1714 ktime_t *offs_tai)
48cf76f7 1715{
3fdb14fd 1716 struct timekeeper *tk = &tk_core.timekeeper;
76f41088 1717 unsigned int seq;
48064f5f
TG
1718 ktime_t base;
1719 u64 nsecs;
48cf76f7
TH
1720
1721 do {
3fdb14fd 1722 seq = read_seqcount_begin(&tk_core.seq);
76f41088 1723
d28ede83
TG
1724 base = tk->tkr.base_mono;
1725 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
48064f5f 1726
76f41088
JS
1727 *offs_real = tk->offs_real;
1728 *offs_boot = tk->offs_boot;
1729 *offs_tai = tk->offs_tai;
3fdb14fd 1730 } while (read_seqcount_retry(&tk_core.seq, seq));
76f41088 1731
48064f5f 1732 return ktime_add_ns(base, nsecs);
48cf76f7 1733}
f0af911a 1734
f6c06abf
TG
1735#ifdef CONFIG_HIGH_RES_TIMERS
1736/**
76f41088 1737 * ktime_get_update_offsets_now - hrtimer helper
f6c06abf
TG
1738 * @offs_real: pointer to storage for monotonic -> realtime offset
1739 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1740 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf
TG
1741 *
1742 * Returns current monotonic time and updates the offsets
b7bc50e4 1743 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1744 */
76f41088 1745ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
90adda98 1746 ktime_t *offs_tai)
f6c06abf 1747{
3fdb14fd 1748 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1749 unsigned int seq;
a37c0aad
TG
1750 ktime_t base;
1751 u64 nsecs;
f6c06abf
TG
1752
1753 do {
3fdb14fd 1754 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1755
d28ede83 1756 base = tk->tkr.base_mono;
0e5ac3a8 1757 nsecs = timekeeping_get_ns(&tk->tkr);
f6c06abf 1758
4e250fdd
JS
1759 *offs_real = tk->offs_real;
1760 *offs_boot = tk->offs_boot;
90adda98 1761 *offs_tai = tk->offs_tai;
3fdb14fd 1762 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1763
a37c0aad 1764 return ktime_add_ns(base, nsecs);
f6c06abf
TG
1765}
1766#endif
1767
aa6f9c59
JS
1768/**
1769 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1770 */
1771int do_adjtimex(struct timex *txc)
1772{
3fdb14fd 1773 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1774 unsigned long flags;
7d489d15 1775 struct timespec64 ts;
4e8f8b34 1776 s32 orig_tai, tai;
e4085693
JS
1777 int ret;
1778
1779 /* Validate the data before disabling interrupts */
1780 ret = ntp_validate_timex(txc);
1781 if (ret)
1782 return ret;
1783
cef90377
JS
1784 if (txc->modes & ADJ_SETOFFSET) {
1785 struct timespec delta;
1786 delta.tv_sec = txc->time.tv_sec;
1787 delta.tv_nsec = txc->time.tv_usec;
1788 if (!(txc->modes & ADJ_NANO))
1789 delta.tv_nsec *= 1000;
1790 ret = timekeeping_inject_offset(&delta);
1791 if (ret)
1792 return ret;
1793 }
1794
d6d29896 1795 getnstimeofday64(&ts);
87ace39b 1796
06c017fd 1797 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1798 write_seqcount_begin(&tk_core.seq);
06c017fd 1799
4e8f8b34 1800 orig_tai = tai = tk->tai_offset;
87ace39b 1801 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 1802
4e8f8b34
JS
1803 if (tai != orig_tai) {
1804 __timekeeping_set_tai_offset(tk, tai);
f55c0760 1805 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 1806 }
3fdb14fd 1807 write_seqcount_end(&tk_core.seq);
06c017fd
JS
1808 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1809
6fdda9a9
JS
1810 if (tai != orig_tai)
1811 clock_was_set();
1812
7bd36014
JS
1813 ntp_notify_cmos_timer();
1814
87ace39b
JS
1815 return ret;
1816}
aa6f9c59
JS
1817
1818#ifdef CONFIG_NTP_PPS
1819/**
1820 * hardpps() - Accessor function to NTP __hardpps function
1821 */
1822void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1823{
06c017fd
JS
1824 unsigned long flags;
1825
1826 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1827 write_seqcount_begin(&tk_core.seq);
06c017fd 1828
aa6f9c59 1829 __hardpps(phase_ts, raw_ts);
06c017fd 1830
3fdb14fd 1831 write_seqcount_end(&tk_core.seq);
06c017fd 1832 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
1833}
1834EXPORT_SYMBOL(hardpps);
1835#endif
1836
f0af911a
TH
1837/**
1838 * xtime_update() - advances the timekeeping infrastructure
1839 * @ticks: number of ticks, that have elapsed since the last call.
1840 *
1841 * Must be called with interrupts disabled.
1842 */
1843void xtime_update(unsigned long ticks)
1844{
d6ad4187 1845 write_seqlock(&jiffies_lock);
f0af911a 1846 do_timer(ticks);
d6ad4187 1847 write_sequnlock(&jiffies_lock);
47a1b796 1848 update_wall_time();
f0af911a 1849}