]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/time/timekeeping.c
timekeeping: Use ktime_t based data for ktime_get_clocktai()
[mirror_ubuntu-bionic-kernel.git] / kernel / time / timekeeping.c
CommitLineData
8524070b
JS
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b
JS
12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b
JS
19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
8fcce546
JS
47/* flag for if timekeeping is suspended */
48int __read_mostly timekeeping_suspended;
49
31ade306
FT
50/* Flag for if there is a persistent clock on this platform */
51bool __read_mostly persistent_clock_exist = false;
52
1e75fa8b
JS
53static inline void tk_normalize_xtime(struct timekeeper *tk)
54{
55 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
56 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
57 tk->xtime_sec++;
58 }
59}
60
c905fae4
TG
61static inline struct timespec64 tk_xtime(struct timekeeper *tk)
62{
63 struct timespec64 ts;
64
65 ts.tv_sec = tk->xtime_sec;
66 ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
67 return ts;
68}
69
7d489d15 70static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
71{
72 tk->xtime_sec = ts->tv_sec;
b44d50dc 73 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
1e75fa8b
JS
74}
75
7d489d15 76static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
77{
78 tk->xtime_sec += ts->tv_sec;
b44d50dc 79 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
784ffcbb 80 tk_normalize_xtime(tk);
1e75fa8b 81}
8fcce546 82
7d489d15 83static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 84{
7d489d15 85 struct timespec64 tmp;
6d0ef903
JS
86
87 /*
88 * Verify consistency of: offset_real = -wall_to_monotonic
89 * before modifying anything
90 */
7d489d15 91 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 92 -tk->wall_to_monotonic.tv_nsec);
7d489d15 93 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 94 tk->wall_to_monotonic = wtm;
7d489d15
JS
95 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
96 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 97 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
98}
99
7d489d15 100static void tk_set_sleep_time(struct timekeeper *tk, struct timespec64 t)
6d0ef903
JS
101{
102 /* Verify consistency before modifying */
7d489d15 103 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec64_to_ktime(tk->total_sleep_time).tv64);
6d0ef903
JS
104
105 tk->total_sleep_time = t;
7d489d15 106 tk->offs_boot = timespec64_to_ktime(t);
6d0ef903
JS
107}
108
155ec602 109/**
d26e4fe0 110 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 111 *
d26e4fe0 112 * @tk: The target timekeeper to setup.
155ec602
MS
113 * @clock: Pointer to clocksource.
114 *
115 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
116 * pair and interval request.
117 *
118 * Unless you're the timekeeping code, you should not be using this!
119 */
f726a697 120static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
121{
122 cycle_t interval;
a386b5af 123 u64 tmp, ntpinterval;
1e75fa8b 124 struct clocksource *old_clock;
155ec602 125
f726a697
JS
126 old_clock = tk->clock;
127 tk->clock = clock;
14a3b6ab 128 tk->cycle_last = clock->cycle_last = clock->read(clock);
155ec602
MS
129
130 /* Do the ns -> cycle conversion first, using original mult */
131 tmp = NTP_INTERVAL_LENGTH;
132 tmp <<= clock->shift;
a386b5af 133 ntpinterval = tmp;
0a544198
MS
134 tmp += clock->mult/2;
135 do_div(tmp, clock->mult);
155ec602
MS
136 if (tmp == 0)
137 tmp = 1;
138
139 interval = (cycle_t) tmp;
f726a697 140 tk->cycle_interval = interval;
155ec602
MS
141
142 /* Go back from cycles -> shifted ns */
f726a697
JS
143 tk->xtime_interval = (u64) interval * clock->mult;
144 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
145 tk->raw_interval =
0a544198 146 ((u64) interval * clock->mult) >> clock->shift;
155ec602 147
1e75fa8b
JS
148 /* if changing clocks, convert xtime_nsec shift units */
149 if (old_clock) {
150 int shift_change = clock->shift - old_clock->shift;
151 if (shift_change < 0)
f726a697 152 tk->xtime_nsec >>= -shift_change;
1e75fa8b 153 else
f726a697 154 tk->xtime_nsec <<= shift_change;
1e75fa8b 155 }
f726a697 156 tk->shift = clock->shift;
155ec602 157
f726a697
JS
158 tk->ntp_error = 0;
159 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
0a544198
MS
160
161 /*
162 * The timekeeper keeps its own mult values for the currently
163 * active clocksource. These value will be adjusted via NTP
164 * to counteract clock drifting.
165 */
f726a697 166 tk->mult = clock->mult;
155ec602 167}
8524070b 168
2ba2a305 169/* Timekeeper helper functions. */
7b1f6207
SW
170
171#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
172static u32 default_arch_gettimeoffset(void) { return 0; }
173u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 174#else
e06fde37 175static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
176#endif
177
f726a697 178static inline s64 timekeeping_get_ns(struct timekeeper *tk)
2ba2a305
MS
179{
180 cycle_t cycle_now, cycle_delta;
181 struct clocksource *clock;
1e75fa8b 182 s64 nsec;
2ba2a305
MS
183
184 /* read clocksource: */
f726a697 185 clock = tk->clock;
2ba2a305
MS
186 cycle_now = clock->read(clock);
187
188 /* calculate the delta since the last update_wall_time: */
189 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
190
f726a697
JS
191 nsec = cycle_delta * tk->mult + tk->xtime_nsec;
192 nsec >>= tk->shift;
f2a5a085 193
7b1f6207 194 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 195 return nsec + arch_gettimeoffset();
2ba2a305
MS
196}
197
f726a697 198static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
2ba2a305
MS
199{
200 cycle_t cycle_now, cycle_delta;
201 struct clocksource *clock;
f2a5a085 202 s64 nsec;
2ba2a305
MS
203
204 /* read clocksource: */
f726a697 205 clock = tk->clock;
2ba2a305
MS
206 cycle_now = clock->read(clock);
207
208 /* calculate the delta since the last update_wall_time: */
209 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
210
f2a5a085
JS
211 /* convert delta to nanoseconds. */
212 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
213
7b1f6207 214 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 215 return nsec + arch_gettimeoffset();
2ba2a305
MS
216}
217
c905fae4
TG
218#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
219
220static inline void update_vsyscall(struct timekeeper *tk)
221{
222 struct timespec xt;
223
224 xt = tk_xtime(tk);
225 update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
226}
227
228static inline void old_vsyscall_fixup(struct timekeeper *tk)
229{
230 s64 remainder;
231
232 /*
233 * Store only full nanoseconds into xtime_nsec after rounding
234 * it up and add the remainder to the error difference.
235 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
236 * by truncating the remainder in vsyscalls. However, it causes
237 * additional work to be done in timekeeping_adjust(). Once
238 * the vsyscall implementations are converted to use xtime_nsec
239 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
240 * users are removed, this can be killed.
241 */
242 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
243 tk->xtime_nsec -= remainder;
244 tk->xtime_nsec += 1ULL << tk->shift;
245 tk->ntp_error += remainder << tk->ntp_error_shift;
246 tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
247}
248#else
249#define old_vsyscall_fixup(tk)
250#endif
251
e0b306fe
MT
252static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
253
780427f0 254static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 255{
780427f0 256 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
257}
258
259/**
260 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
261 */
262int pvclock_gtod_register_notifier(struct notifier_block *nb)
263{
3fdb14fd 264 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
265 unsigned long flags;
266 int ret;
267
9a7a71b1 268 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 269 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 270 update_pvclock_gtod(tk, true);
9a7a71b1 271 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
272
273 return ret;
274}
275EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
276
277/**
278 * pvclock_gtod_unregister_notifier - unregister a pvclock
279 * timedata update listener
e0b306fe
MT
280 */
281int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
282{
e0b306fe
MT
283 unsigned long flags;
284 int ret;
285
9a7a71b1 286 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 287 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 288 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
289
290 return ret;
291}
292EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
293
7c032df5
TG
294/*
295 * Update the ktime_t based scalar nsec members of the timekeeper
296 */
297static inline void tk_update_ktime_data(struct timekeeper *tk)
298{
299 s64 nsec;
300
301 /*
302 * The xtime based monotonic readout is:
303 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
304 * The ktime based monotonic readout is:
305 * nsec = base_mono + now();
306 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
307 */
308 nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
309 nsec *= NSEC_PER_SEC;
310 nsec += tk->wall_to_monotonic.tv_nsec;
311 tk->base_mono = ns_to_ktime(nsec);
312}
313
9a7a71b1 314/* must hold timekeeper_lock */
04397fe9 315static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 316{
04397fe9 317 if (action & TK_CLEAR_NTP) {
f726a697 318 tk->ntp_error = 0;
cc06268c
TG
319 ntp_clear();
320 }
576094b7 321 update_vsyscall(tk);
780427f0 322 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
48cdc135 323
7c032df5
TG
324 tk_update_ktime_data(tk);
325
04397fe9 326 if (action & TK_MIRROR)
3fdb14fd
TG
327 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
328 sizeof(tk_core.timekeeper));
cc06268c
TG
329}
330
8524070b 331/**
155ec602 332 * timekeeping_forward_now - update clock to the current time
8524070b 333 *
9a055117
RZ
334 * Forward the current clock to update its state since the last call to
335 * update_wall_time(). This is useful before significant clock changes,
336 * as it avoids having to deal with this time offset explicitly.
8524070b 337 */
f726a697 338static void timekeeping_forward_now(struct timekeeper *tk)
8524070b
JS
339{
340 cycle_t cycle_now, cycle_delta;
155ec602 341 struct clocksource *clock;
9a055117 342 s64 nsec;
8524070b 343
f726a697 344 clock = tk->clock;
a0f7d48b 345 cycle_now = clock->read(clock);
8524070b 346 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
14a3b6ab 347 tk->cycle_last = clock->cycle_last = cycle_now;
8524070b 348
f726a697 349 tk->xtime_nsec += cycle_delta * tk->mult;
7d27558c 350
7b1f6207 351 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 352 tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
7d27558c 353
f726a697 354 tk_normalize_xtime(tk);
2d42244a 355
0a544198 356 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
7d489d15 357 timespec64_add_ns(&tk->raw_time, nsec);
8524070b
JS
358}
359
360/**
d6d29896 361 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b
JS
362 * @ts: pointer to the timespec to be set
363 *
1e817fb6
KC
364 * Updates the time of day in the timespec.
365 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 366 */
d6d29896 367int __getnstimeofday64(struct timespec64 *ts)
8524070b 368{
3fdb14fd 369 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 370 unsigned long seq;
1e75fa8b 371 s64 nsecs = 0;
8524070b
JS
372
373 do {
3fdb14fd 374 seq = read_seqcount_begin(&tk_core.seq);
8524070b 375
4e250fdd 376 ts->tv_sec = tk->xtime_sec;
ec145bab 377 nsecs = timekeeping_get_ns(tk);
8524070b 378
3fdb14fd 379 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 380
ec145bab 381 ts->tv_nsec = 0;
d6d29896 382 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
383
384 /*
385 * Do not bail out early, in case there were callers still using
386 * the value, even in the face of the WARN_ON.
387 */
388 if (unlikely(timekeeping_suspended))
389 return -EAGAIN;
390 return 0;
391}
d6d29896 392EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
393
394/**
d6d29896 395 * getnstimeofday64 - Returns the time of day in a timespec64.
1e817fb6
KC
396 * @ts: pointer to the timespec to be set
397 *
398 * Returns the time of day in a timespec (WARN if suspended).
399 */
d6d29896 400void getnstimeofday64(struct timespec64 *ts)
1e817fb6 401{
d6d29896 402 WARN_ON(__getnstimeofday64(ts));
8524070b 403}
d6d29896 404EXPORT_SYMBOL(getnstimeofday64);
8524070b 405
951ed4d3
MS
406ktime_t ktime_get(void)
407{
3fdb14fd 408 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 409 unsigned int seq;
a016a5bd
TG
410 ktime_t base;
411 s64 nsecs;
951ed4d3
MS
412
413 WARN_ON(timekeeping_suspended);
414
415 do {
3fdb14fd 416 seq = read_seqcount_begin(&tk_core.seq);
a016a5bd
TG
417 base = tk->base_mono;
418 nsecs = timekeeping_get_ns(tk);
951ed4d3 419
3fdb14fd 420 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 421
a016a5bd 422 return ktime_add_ns(base, nsecs);
951ed4d3
MS
423}
424EXPORT_SYMBOL_GPL(ktime_get);
425
0077dc60
TG
426static ktime_t *offsets[TK_OFFS_MAX] = {
427 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
428 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
429 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
430};
431
432ktime_t ktime_get_with_offset(enum tk_offsets offs)
433{
434 struct timekeeper *tk = &tk_core.timekeeper;
435 unsigned int seq;
436 ktime_t base, *offset = offsets[offs];
437 s64 nsecs;
438
439 WARN_ON(timekeeping_suspended);
440
441 do {
442 seq = read_seqcount_begin(&tk_core.seq);
443 base = ktime_add(tk->base_mono, *offset);
444 nsecs = timekeeping_get_ns(tk);
445
446 } while (read_seqcount_retry(&tk_core.seq, seq));
447
448 return ktime_add_ns(base, nsecs);
449
450}
451EXPORT_SYMBOL_GPL(ktime_get_with_offset);
452
951ed4d3 453/**
d6d29896 454 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
455 * @ts: pointer to timespec variable
456 *
457 * The function calculates the monotonic clock from the realtime
458 * clock and the wall_to_monotonic offset and stores the result
459 * in normalized timespec format in the variable pointed to by @ts.
460 */
d6d29896 461void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 462{
3fdb14fd 463 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 464 struct timespec64 tomono;
ec145bab 465 s64 nsec;
951ed4d3 466 unsigned int seq;
951ed4d3
MS
467
468 WARN_ON(timekeeping_suspended);
469
470 do {
3fdb14fd 471 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 472 ts->tv_sec = tk->xtime_sec;
ec145bab 473 nsec = timekeeping_get_ns(tk);
4e250fdd 474 tomono = tk->wall_to_monotonic;
951ed4d3 475
3fdb14fd 476 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 477
d6d29896
TG
478 ts->tv_sec += tomono.tv_sec;
479 ts->tv_nsec = 0;
480 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 481}
d6d29896 482EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 483
1ff3c967
JS
484
485/**
486 * timekeeping_clocktai - Returns the TAI time of day in a timespec
487 * @ts: pointer to the timespec to be set
488 *
489 * Returns the time of day in a timespec.
490 */
491void timekeeping_clocktai(struct timespec *ts)
492{
3fdb14fd 493 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 494 struct timespec64 ts64;
1ff3c967
JS
495 unsigned long seq;
496 u64 nsecs;
497
498 WARN_ON(timekeeping_suspended);
499
500 do {
3fdb14fd 501 seq = read_seqcount_begin(&tk_core.seq);
1ff3c967 502
7d489d15 503 ts64.tv_sec = tk->xtime_sec + tk->tai_offset;
1ff3c967
JS
504 nsecs = timekeeping_get_ns(tk);
505
3fdb14fd 506 } while (read_seqcount_retry(&tk_core.seq, seq));
1ff3c967 507
7d489d15
JS
508 ts64.tv_nsec = 0;
509 timespec64_add_ns(&ts64, nsecs);
510 *ts = timespec64_to_timespec(ts64);
1ff3c967
JS
511
512}
513EXPORT_SYMBOL(timekeeping_clocktai);
514
e2c18e49
AG
515#ifdef CONFIG_NTP_PPS
516
517/**
518 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
519 * @ts_raw: pointer to the timespec to be set to raw monotonic time
520 * @ts_real: pointer to the timespec to be set to the time of day
521 *
522 * This function reads both the time of day and raw monotonic time at the
523 * same time atomically and stores the resulting timestamps in timespec
524 * format.
525 */
526void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
527{
3fdb14fd 528 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
529 unsigned long seq;
530 s64 nsecs_raw, nsecs_real;
531
532 WARN_ON_ONCE(timekeeping_suspended);
533
534 do {
3fdb14fd 535 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 536
7d489d15 537 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 538 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 539 ts_real->tv_nsec = 0;
e2c18e49 540
4e250fdd
JS
541 nsecs_raw = timekeeping_get_ns_raw(tk);
542 nsecs_real = timekeeping_get_ns(tk);
e2c18e49 543
3fdb14fd 544 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
545
546 timespec_add_ns(ts_raw, nsecs_raw);
547 timespec_add_ns(ts_real, nsecs_real);
548}
549EXPORT_SYMBOL(getnstime_raw_and_real);
550
551#endif /* CONFIG_NTP_PPS */
552
8524070b
JS
553/**
554 * do_gettimeofday - Returns the time of day in a timeval
555 * @tv: pointer to the timeval to be set
556 *
efd9ac86 557 * NOTE: Users should be converted to using getnstimeofday()
8524070b
JS
558 */
559void do_gettimeofday(struct timeval *tv)
560{
d6d29896 561 struct timespec64 now;
8524070b 562
d6d29896 563 getnstimeofday64(&now);
8524070b
JS
564 tv->tv_sec = now.tv_sec;
565 tv->tv_usec = now.tv_nsec/1000;
566}
8524070b 567EXPORT_SYMBOL(do_gettimeofday);
d239f49d 568
8524070b
JS
569/**
570 * do_settimeofday - Sets the time of day
571 * @tv: pointer to the timespec variable containing the new time
572 *
573 * Sets the time of day to the new time and update NTP and notify hrtimers
574 */
1e6d7679 575int do_settimeofday(const struct timespec *tv)
8524070b 576{
3fdb14fd 577 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 578 struct timespec64 ts_delta, xt, tmp;
92c1d3ed 579 unsigned long flags;
8524070b 580
cee58483 581 if (!timespec_valid_strict(tv))
8524070b
JS
582 return -EINVAL;
583
9a7a71b1 584 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 585 write_seqcount_begin(&tk_core.seq);
8524070b 586
4e250fdd 587 timekeeping_forward_now(tk);
9a055117 588
4e250fdd 589 xt = tk_xtime(tk);
1e75fa8b
JS
590 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
591 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
592
7d489d15 593 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 594
7d489d15
JS
595 tmp = timespec_to_timespec64(*tv);
596 tk_set_xtime(tk, &tmp);
1e75fa8b 597
780427f0 598 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 599
3fdb14fd 600 write_seqcount_end(&tk_core.seq);
9a7a71b1 601 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
602
603 /* signal hrtimers about time change */
604 clock_was_set();
605
606 return 0;
607}
8524070b
JS
608EXPORT_SYMBOL(do_settimeofday);
609
c528f7c6
JS
610/**
611 * timekeeping_inject_offset - Adds or subtracts from the current time.
612 * @tv: pointer to the timespec variable containing the offset
613 *
614 * Adds or subtracts an offset value from the current time.
615 */
616int timekeeping_inject_offset(struct timespec *ts)
617{
3fdb14fd 618 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 619 unsigned long flags;
7d489d15 620 struct timespec64 ts64, tmp;
4e8b1452 621 int ret = 0;
c528f7c6
JS
622
623 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
624 return -EINVAL;
625
7d489d15
JS
626 ts64 = timespec_to_timespec64(*ts);
627
9a7a71b1 628 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 629 write_seqcount_begin(&tk_core.seq);
c528f7c6 630
4e250fdd 631 timekeeping_forward_now(tk);
c528f7c6 632
4e8b1452 633 /* Make sure the proposed value is valid */
7d489d15
JS
634 tmp = timespec64_add(tk_xtime(tk), ts64);
635 if (!timespec64_valid_strict(&tmp)) {
4e8b1452
JS
636 ret = -EINVAL;
637 goto error;
638 }
1e75fa8b 639
7d489d15
JS
640 tk_xtime_add(tk, &ts64);
641 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 642
4e8b1452 643error: /* even if we error out, we forwarded the time, so call update */
780427f0 644 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 645
3fdb14fd 646 write_seqcount_end(&tk_core.seq);
9a7a71b1 647 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
648
649 /* signal hrtimers about time change */
650 clock_was_set();
651
4e8b1452 652 return ret;
c528f7c6
JS
653}
654EXPORT_SYMBOL(timekeeping_inject_offset);
655
cc244dda
JS
656
657/**
658 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
659 *
660 */
661s32 timekeeping_get_tai_offset(void)
662{
3fdb14fd 663 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
664 unsigned int seq;
665 s32 ret;
666
667 do {
3fdb14fd 668 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 669 ret = tk->tai_offset;
3fdb14fd 670 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
671
672 return ret;
673}
674
675/**
676 * __timekeeping_set_tai_offset - Lock free worker function
677 *
678 */
dd5d70e8 679static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
680{
681 tk->tai_offset = tai_offset;
04005f60 682 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
683}
684
685/**
686 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
687 *
688 */
689void timekeeping_set_tai_offset(s32 tai_offset)
690{
3fdb14fd 691 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
692 unsigned long flags;
693
9a7a71b1 694 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 695 write_seqcount_begin(&tk_core.seq);
cc244dda 696 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 697 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 698 write_seqcount_end(&tk_core.seq);
9a7a71b1 699 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 700 clock_was_set();
cc244dda
JS
701}
702
8524070b
JS
703/**
704 * change_clocksource - Swaps clocksources if a new one is available
705 *
706 * Accumulates current time interval and initializes new clocksource
707 */
75c5158f 708static int change_clocksource(void *data)
8524070b 709{
3fdb14fd 710 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 711 struct clocksource *new, *old;
f695cf94 712 unsigned long flags;
8524070b 713
75c5158f 714 new = (struct clocksource *) data;
8524070b 715
9a7a71b1 716 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 717 write_seqcount_begin(&tk_core.seq);
f695cf94 718
4e250fdd 719 timekeeping_forward_now(tk);
09ac369c
TG
720 /*
721 * If the cs is in module, get a module reference. Succeeds
722 * for built-in code (owner == NULL) as well.
723 */
724 if (try_module_get(new->owner)) {
725 if (!new->enable || new->enable(new) == 0) {
726 old = tk->clock;
727 tk_setup_internals(tk, new);
728 if (old->disable)
729 old->disable(old);
730 module_put(old->owner);
731 } else {
732 module_put(new->owner);
733 }
75c5158f 734 }
780427f0 735 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 736
3fdb14fd 737 write_seqcount_end(&tk_core.seq);
9a7a71b1 738 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 739
75c5158f
MS
740 return 0;
741}
8524070b 742
75c5158f
MS
743/**
744 * timekeeping_notify - Install a new clock source
745 * @clock: pointer to the clock source
746 *
747 * This function is called from clocksource.c after a new, better clock
748 * source has been registered. The caller holds the clocksource_mutex.
749 */
ba919d1c 750int timekeeping_notify(struct clocksource *clock)
75c5158f 751{
3fdb14fd 752 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
753
754 if (tk->clock == clock)
ba919d1c 755 return 0;
75c5158f 756 stop_machine(change_clocksource, clock, NULL);
8524070b 757 tick_clock_notify();
ba919d1c 758 return tk->clock == clock ? 0 : -1;
8524070b 759}
75c5158f 760
2d42244a
JS
761/**
762 * getrawmonotonic - Returns the raw monotonic time in a timespec
763 * @ts: pointer to the timespec to be set
764 *
765 * Returns the raw monotonic time (completely un-modified by ntp)
766 */
767void getrawmonotonic(struct timespec *ts)
768{
3fdb14fd 769 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 770 struct timespec64 ts64;
2d42244a
JS
771 unsigned long seq;
772 s64 nsecs;
2d42244a
JS
773
774 do {
3fdb14fd 775 seq = read_seqcount_begin(&tk_core.seq);
4e250fdd 776 nsecs = timekeeping_get_ns_raw(tk);
7d489d15 777 ts64 = tk->raw_time;
2d42244a 778
3fdb14fd 779 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 780
7d489d15
JS
781 timespec64_add_ns(&ts64, nsecs);
782 *ts = timespec64_to_timespec(ts64);
2d42244a
JS
783}
784EXPORT_SYMBOL(getrawmonotonic);
785
8524070b 786/**
cf4fc6cb 787 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 788 */
cf4fc6cb 789int timekeeping_valid_for_hres(void)
8524070b 790{
3fdb14fd 791 struct timekeeper *tk = &tk_core.timekeeper;
8524070b
JS
792 unsigned long seq;
793 int ret;
794
795 do {
3fdb14fd 796 seq = read_seqcount_begin(&tk_core.seq);
8524070b 797
4e250fdd 798 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 799
3fdb14fd 800 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b
JS
801
802 return ret;
803}
804
98962465
JH
805/**
806 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
807 */
808u64 timekeeping_max_deferment(void)
809{
3fdb14fd 810 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
811 unsigned long seq;
812 u64 ret;
42e71e81 813
70471f2f 814 do {
3fdb14fd 815 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 816
4e250fdd 817 ret = tk->clock->max_idle_ns;
70471f2f 818
3fdb14fd 819 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
820
821 return ret;
98962465
JH
822}
823
8524070b 824/**
d4f587c6 825 * read_persistent_clock - Return time from the persistent clock.
8524070b
JS
826 *
827 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
828 * Reads the time from the battery backed persistent clock.
829 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b
JS
830 *
831 * XXX - Do be sure to remove it once all arches implement it.
832 */
52f5684c 833void __weak read_persistent_clock(struct timespec *ts)
8524070b 834{
d4f587c6
MS
835 ts->tv_sec = 0;
836 ts->tv_nsec = 0;
8524070b
JS
837}
838
23970e38
MS
839/**
840 * read_boot_clock - Return time of the system start.
841 *
842 * Weak dummy function for arches that do not yet support it.
843 * Function to read the exact time the system has been started.
844 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
845 *
846 * XXX - Do be sure to remove it once all arches implement it.
847 */
52f5684c 848void __weak read_boot_clock(struct timespec *ts)
23970e38
MS
849{
850 ts->tv_sec = 0;
851 ts->tv_nsec = 0;
852}
853
8524070b
JS
854/*
855 * timekeeping_init - Initializes the clocksource and common timekeeping values
856 */
857void __init timekeeping_init(void)
858{
3fdb14fd 859 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 860 struct clocksource *clock;
8524070b 861 unsigned long flags;
7d489d15
JS
862 struct timespec64 now, boot, tmp;
863 struct timespec ts;
31ade306 864
7d489d15
JS
865 read_persistent_clock(&ts);
866 now = timespec_to_timespec64(ts);
867 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
868 pr_warn("WARNING: Persistent clock returned invalid value!\n"
869 " Check your CMOS/BIOS settings.\n");
870 now.tv_sec = 0;
871 now.tv_nsec = 0;
31ade306
FT
872 } else if (now.tv_sec || now.tv_nsec)
873 persistent_clock_exist = true;
4e8b1452 874
7d489d15
JS
875 read_boot_clock(&ts);
876 boot = timespec_to_timespec64(ts);
877 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
878 pr_warn("WARNING: Boot clock returned invalid value!\n"
879 " Check your CMOS/BIOS settings.\n");
880 boot.tv_sec = 0;
881 boot.tv_nsec = 0;
882 }
8524070b 883
9a7a71b1 884 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 885 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
886 ntp_init();
887
f1b82746 888 clock = clocksource_default_clock();
a0f7d48b
MS
889 if (clock->enable)
890 clock->enable(clock);
4e250fdd 891 tk_setup_internals(tk, clock);
8524070b 892
4e250fdd
JS
893 tk_set_xtime(tk, &now);
894 tk->raw_time.tv_sec = 0;
895 tk->raw_time.tv_nsec = 0;
1e75fa8b 896 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 897 boot = tk_xtime(tk);
1e75fa8b 898
7d489d15 899 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 900 tk_set_wall_to_mono(tk, tmp);
6d0ef903
JS
901
902 tmp.tv_sec = 0;
903 tmp.tv_nsec = 0;
4e250fdd 904 tk_set_sleep_time(tk, tmp);
6d0ef903 905
f111adfd 906 timekeeping_update(tk, TK_MIRROR);
48cdc135 907
3fdb14fd 908 write_seqcount_end(&tk_core.seq);
9a7a71b1 909 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
910}
911
8524070b 912/* time in seconds when suspend began */
7d489d15 913static struct timespec64 timekeeping_suspend_time;
8524070b 914
304529b1
JS
915/**
916 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
917 * @delta: pointer to a timespec delta value
918 *
919 * Takes a timespec offset measuring a suspend interval and properly
920 * adds the sleep offset to the timekeeping variables.
921 */
f726a697 922static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 923 struct timespec64 *delta)
304529b1 924{
7d489d15 925 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
926 printk_deferred(KERN_WARNING
927 "__timekeeping_inject_sleeptime: Invalid "
928 "sleep delta value!\n");
cb5de2f8
JS
929 return;
930 }
f726a697 931 tk_xtime_add(tk, delta);
7d489d15
JS
932 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
933 tk_set_sleep_time(tk, timespec64_add(tk->total_sleep_time, *delta));
5c83545f 934 tk_debug_account_sleep_time(delta);
304529b1
JS
935}
936
304529b1
JS
937/**
938 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
939 * @delta: pointer to a timespec delta value
940 *
941 * This hook is for architectures that cannot support read_persistent_clock
942 * because their RTC/persistent clock is only accessible when irqs are enabled.
943 *
944 * This function should only be called by rtc_resume(), and allows
945 * a suspend offset to be injected into the timekeeping values.
946 */
947void timekeeping_inject_sleeptime(struct timespec *delta)
948{
3fdb14fd 949 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 950 struct timespec64 tmp;
92c1d3ed 951 unsigned long flags;
304529b1 952
31ade306
FT
953 /*
954 * Make sure we don't set the clock twice, as timekeeping_resume()
955 * already did it
956 */
957 if (has_persistent_clock())
304529b1
JS
958 return;
959
9a7a71b1 960 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 961 write_seqcount_begin(&tk_core.seq);
70471f2f 962
4e250fdd 963 timekeeping_forward_now(tk);
304529b1 964
7d489d15
JS
965 tmp = timespec_to_timespec64(*delta);
966 __timekeeping_inject_sleeptime(tk, &tmp);
304529b1 967
780427f0 968 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 969
3fdb14fd 970 write_seqcount_end(&tk_core.seq);
9a7a71b1 971 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
972
973 /* signal hrtimers about time change */
974 clock_was_set();
975}
976
8524070b
JS
977/**
978 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b
JS
979 *
980 * This is for the generic clocksource timekeeping.
981 * xtime/wall_to_monotonic/jiffies/etc are
982 * still managed by arch specific suspend/resume code.
983 */
e1a85b2c 984static void timekeeping_resume(void)
8524070b 985{
3fdb14fd 986 struct timekeeper *tk = &tk_core.timekeeper;
e445cf1c 987 struct clocksource *clock = tk->clock;
92c1d3ed 988 unsigned long flags;
7d489d15
JS
989 struct timespec64 ts_new, ts_delta;
990 struct timespec tmp;
e445cf1c
FT
991 cycle_t cycle_now, cycle_delta;
992 bool suspendtime_found = false;
d4f587c6 993
7d489d15
JS
994 read_persistent_clock(&tmp);
995 ts_new = timespec_to_timespec64(tmp);
8524070b 996
adc78e6b 997 clockevents_resume();
d10ff3fb
TG
998 clocksource_resume();
999
9a7a71b1 1000 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1001 write_seqcount_begin(&tk_core.seq);
8524070b 1002
e445cf1c
FT
1003 /*
1004 * After system resumes, we need to calculate the suspended time and
1005 * compensate it for the OS time. There are 3 sources that could be
1006 * used: Nonstop clocksource during suspend, persistent clock and rtc
1007 * device.
1008 *
1009 * One specific platform may have 1 or 2 or all of them, and the
1010 * preference will be:
1011 * suspend-nonstop clocksource -> persistent clock -> rtc
1012 * The less preferred source will only be tried if there is no better
1013 * usable source. The rtc part is handled separately in rtc core code.
1014 */
1015 cycle_now = clock->read(clock);
1016 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1017 cycle_now > clock->cycle_last) {
1018 u64 num, max = ULLONG_MAX;
1019 u32 mult = clock->mult;
1020 u32 shift = clock->shift;
1021 s64 nsec = 0;
1022
1023 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
1024
1025 /*
1026 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1027 * suspended time is too long. In that case we need do the
1028 * 64 bits math carefully
1029 */
1030 do_div(max, mult);
1031 if (cycle_delta > max) {
1032 num = div64_u64(cycle_delta, max);
1033 nsec = (((u64) max * mult) >> shift) * num;
1034 cycle_delta -= num * max;
1035 }
1036 nsec += ((u64) cycle_delta * mult) >> shift;
1037
7d489d15 1038 ts_delta = ns_to_timespec64(nsec);
e445cf1c 1039 suspendtime_found = true;
7d489d15
JS
1040 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1041 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
e445cf1c 1042 suspendtime_found = true;
8524070b 1043 }
e445cf1c
FT
1044
1045 if (suspendtime_found)
1046 __timekeeping_inject_sleeptime(tk, &ts_delta);
1047
1048 /* Re-base the last cycle value */
77c675ba 1049 tk->cycle_last = clock->cycle_last = cycle_now;
4e250fdd 1050 tk->ntp_error = 0;
8524070b 1051 timekeeping_suspended = 0;
780427f0 1052 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1053 write_seqcount_end(&tk_core.seq);
9a7a71b1 1054 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1055
1056 touch_softlockup_watchdog();
1057
1058 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1059
1060 /* Resume hrtimers */
b12a03ce 1061 hrtimers_resume();
8524070b
JS
1062}
1063
e1a85b2c 1064static int timekeeping_suspend(void)
8524070b 1065{
3fdb14fd 1066 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1067 unsigned long flags;
7d489d15
JS
1068 struct timespec64 delta, delta_delta;
1069 static struct timespec64 old_delta;
1070 struct timespec tmp;
8524070b 1071
7d489d15
JS
1072 read_persistent_clock(&tmp);
1073 timekeeping_suspend_time = timespec_to_timespec64(tmp);
3be90950 1074
0d6bd995
ZM
1075 /*
1076 * On some systems the persistent_clock can not be detected at
1077 * timekeeping_init by its return value, so if we see a valid
1078 * value returned, update the persistent_clock_exists flag.
1079 */
1080 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1081 persistent_clock_exist = true;
1082
9a7a71b1 1083 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1084 write_seqcount_begin(&tk_core.seq);
4e250fdd 1085 timekeeping_forward_now(tk);
8524070b 1086 timekeeping_suspended = 1;
cb33217b
JS
1087
1088 /*
1089 * To avoid drift caused by repeated suspend/resumes,
1090 * which each can add ~1 second drift error,
1091 * try to compensate so the difference in system time
1092 * and persistent_clock time stays close to constant.
1093 */
7d489d15
JS
1094 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1095 delta_delta = timespec64_sub(delta, old_delta);
cb33217b
JS
1096 if (abs(delta_delta.tv_sec) >= 2) {
1097 /*
1098 * if delta_delta is too large, assume time correction
1099 * has occured and set old_delta to the current delta.
1100 */
1101 old_delta = delta;
1102 } else {
1103 /* Otherwise try to adjust old_system to compensate */
1104 timekeeping_suspend_time =
7d489d15 1105 timespec64_add(timekeeping_suspend_time, delta_delta);
cb33217b 1106 }
330a1617
JS
1107
1108 timekeeping_update(tk, TK_MIRROR);
3fdb14fd 1109 write_seqcount_end(&tk_core.seq);
9a7a71b1 1110 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b
JS
1111
1112 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 1113 clocksource_suspend();
adc78e6b 1114 clockevents_suspend();
8524070b
JS
1115
1116 return 0;
1117}
1118
1119/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1120static struct syscore_ops timekeeping_syscore_ops = {
8524070b
JS
1121 .resume = timekeeping_resume,
1122 .suspend = timekeeping_suspend,
8524070b
JS
1123};
1124
e1a85b2c 1125static int __init timekeeping_init_ops(void)
8524070b 1126{
e1a85b2c
RW
1127 register_syscore_ops(&timekeeping_syscore_ops);
1128 return 0;
8524070b
JS
1129}
1130
e1a85b2c 1131device_initcall(timekeeping_init_ops);
8524070b
JS
1132
1133/*
1134 * If the error is already larger, we look ahead even further
1135 * to compensate for late or lost adjustments.
1136 */
f726a697
JS
1137static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
1138 s64 error, s64 *interval,
8524070b
JS
1139 s64 *offset)
1140{
1141 s64 tick_error, i;
1142 u32 look_ahead, adj;
1143 s32 error2, mult;
1144
1145 /*
1146 * Use the current error value to determine how much to look ahead.
1147 * The larger the error the slower we adjust for it to avoid problems
1148 * with losing too many ticks, otherwise we would overadjust and
1149 * produce an even larger error. The smaller the adjustment the
1150 * faster we try to adjust for it, as lost ticks can do less harm
3eb05676 1151 * here. This is tuned so that an error of about 1 msec is adjusted
8524070b
JS
1152 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1153 */
f726a697 1154 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
8524070b
JS
1155 error2 = abs(error2);
1156 for (look_ahead = 0; error2 > 0; look_ahead++)
1157 error2 >>= 2;
1158
1159 /*
1160 * Now calculate the error in (1 << look_ahead) ticks, but first
1161 * remove the single look ahead already included in the error.
1162 */
f726a697
JS
1163 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
1164 tick_error -= tk->xtime_interval >> 1;
8524070b
JS
1165 error = ((error - tick_error) >> look_ahead) + tick_error;
1166
1167 /* Finally calculate the adjustment shift value. */
1168 i = *interval;
1169 mult = 1;
1170 if (error < 0) {
1171 error = -error;
1172 *interval = -*interval;
1173 *offset = -*offset;
1174 mult = -1;
1175 }
1176 for (adj = 0; error > i; adj++)
1177 error >>= 1;
1178
1179 *interval <<= adj;
1180 *offset <<= adj;
1181 return mult << adj;
1182}
1183
1184/*
1185 * Adjust the multiplier to reduce the error value,
1186 * this is optimized for the most common adjustments of -1,0,1,
1187 * for other values we can do a bit more work.
1188 */
f726a697 1189static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
8524070b 1190{
f726a697 1191 s64 error, interval = tk->cycle_interval;
8524070b
JS
1192 int adj;
1193
c2bc1111 1194 /*
88b28adf 1195 * The point of this is to check if the error is greater than half
c2bc1111
JS
1196 * an interval.
1197 *
1198 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
1199 *
1200 * Note we subtract one in the shift, so that error is really error*2.
3f86f28f
JS
1201 * This "saves" dividing(shifting) interval twice, but keeps the
1202 * (error > interval) comparison as still measuring if error is
88b28adf 1203 * larger than half an interval.
c2bc1111 1204 *
3f86f28f 1205 * Note: It does not "save" on aggravation when reading the code.
c2bc1111 1206 */
f726a697 1207 error = tk->ntp_error >> (tk->ntp_error_shift - 1);
8524070b 1208 if (error > interval) {
c2bc1111
JS
1209 /*
1210 * We now divide error by 4(via shift), which checks if
88b28adf 1211 * the error is greater than twice the interval.
c2bc1111
JS
1212 * If it is greater, we need a bigadjust, if its smaller,
1213 * we can adjust by 1.
1214 */
8524070b
JS
1215 error >>= 2;
1216 if (likely(error <= interval))
1217 adj = 1;
1218 else
1d17d174
IM
1219 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1220 } else {
1221 if (error < -interval) {
1222 /* See comment above, this is just switched for the negative */
1223 error >>= 2;
1224 if (likely(error >= -interval)) {
1225 adj = -1;
1226 interval = -interval;
1227 offset = -offset;
1228 } else {
1229 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1230 }
1231 } else {
1232 goto out_adjust;
1233 }
1234 }
8524070b 1235
f726a697
JS
1236 if (unlikely(tk->clock->maxadj &&
1237 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
6d9bcb62 1238 printk_deferred_once(KERN_WARNING
e919cfd4 1239 "Adjusting %s more than 11%% (%ld vs %ld)\n",
f726a697
JS
1240 tk->clock->name, (long)tk->mult + adj,
1241 (long)tk->clock->mult + tk->clock->maxadj);
e919cfd4 1242 }
c2bc1111
JS
1243 /*
1244 * So the following can be confusing.
1245 *
1246 * To keep things simple, lets assume adj == 1 for now.
1247 *
1248 * When adj != 1, remember that the interval and offset values
1249 * have been appropriately scaled so the math is the same.
1250 *
1251 * The basic idea here is that we're increasing the multiplier
1252 * by one, this causes the xtime_interval to be incremented by
1253 * one cycle_interval. This is because:
1254 * xtime_interval = cycle_interval * mult
1255 * So if mult is being incremented by one:
1256 * xtime_interval = cycle_interval * (mult + 1)
1257 * Its the same as:
1258 * xtime_interval = (cycle_interval * mult) + cycle_interval
1259 * Which can be shortened to:
1260 * xtime_interval += cycle_interval
1261 *
1262 * So offset stores the non-accumulated cycles. Thus the current
1263 * time (in shifted nanoseconds) is:
1264 * now = (offset * adj) + xtime_nsec
1265 * Now, even though we're adjusting the clock frequency, we have
1266 * to keep time consistent. In other words, we can't jump back
1267 * in time, and we also want to avoid jumping forward in time.
1268 *
1269 * So given the same offset value, we need the time to be the same
1270 * both before and after the freq adjustment.
1271 * now = (offset * adj_1) + xtime_nsec_1
1272 * now = (offset * adj_2) + xtime_nsec_2
1273 * So:
1274 * (offset * adj_1) + xtime_nsec_1 =
1275 * (offset * adj_2) + xtime_nsec_2
1276 * And we know:
1277 * adj_2 = adj_1 + 1
1278 * So:
1279 * (offset * adj_1) + xtime_nsec_1 =
1280 * (offset * (adj_1+1)) + xtime_nsec_2
1281 * (offset * adj_1) + xtime_nsec_1 =
1282 * (offset * adj_1) + offset + xtime_nsec_2
1283 * Canceling the sides:
1284 * xtime_nsec_1 = offset + xtime_nsec_2
1285 * Which gives us:
1286 * xtime_nsec_2 = xtime_nsec_1 - offset
1287 * Which simplfies to:
1288 * xtime_nsec -= offset
1289 *
1290 * XXX - TODO: Doc ntp_error calculation.
1291 */
f726a697
JS
1292 tk->mult += adj;
1293 tk->xtime_interval += interval;
1294 tk->xtime_nsec -= offset;
1295 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
2a8c0883 1296
1d17d174 1297out_adjust:
2a8c0883
JS
1298 /*
1299 * It may be possible that when we entered this function, xtime_nsec
1300 * was very small. Further, if we're slightly speeding the clocksource
1301 * in the code above, its possible the required corrective factor to
1302 * xtime_nsec could cause it to underflow.
1303 *
1304 * Now, since we already accumulated the second, cannot simply roll
1305 * the accumulated second back, since the NTP subsystem has been
1306 * notified via second_overflow. So instead we push xtime_nsec forward
1307 * by the amount we underflowed, and add that amount into the error.
1308 *
1309 * We'll correct this error next time through this function, when
1310 * xtime_nsec is not as small.
1311 */
f726a697
JS
1312 if (unlikely((s64)tk->xtime_nsec < 0)) {
1313 s64 neg = -(s64)tk->xtime_nsec;
1314 tk->xtime_nsec = 0;
1315 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883
JS
1316 }
1317
8524070b
JS
1318}
1319
1f4f9487
JS
1320/**
1321 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1322 *
1323 * Helper function that accumulates a the nsecs greater then a second
1324 * from the xtime_nsec field to the xtime_secs field.
1325 * It also calls into the NTP code to handle leapsecond processing.
1326 *
1327 */
780427f0 1328static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487
JS
1329{
1330 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
5258d3f2 1331 unsigned int clock_set = 0;
1f4f9487
JS
1332
1333 while (tk->xtime_nsec >= nsecps) {
1334 int leap;
1335
1336 tk->xtime_nsec -= nsecps;
1337 tk->xtime_sec++;
1338
1339 /* Figure out if its a leap sec and apply if needed */
1340 leap = second_overflow(tk->xtime_sec);
6d0ef903 1341 if (unlikely(leap)) {
7d489d15 1342 struct timespec64 ts;
6d0ef903
JS
1343
1344 tk->xtime_sec += leap;
1f4f9487 1345
6d0ef903
JS
1346 ts.tv_sec = leap;
1347 ts.tv_nsec = 0;
1348 tk_set_wall_to_mono(tk,
7d489d15 1349 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1350
cc244dda
JS
1351 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1352
5258d3f2 1353 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1354 }
1f4f9487 1355 }
5258d3f2 1356 return clock_set;
1f4f9487
JS
1357}
1358
a092ff0f
JS
1359/**
1360 * logarithmic_accumulation - shifted accumulation of cycles
1361 *
1362 * This functions accumulates a shifted interval of cycles into
1363 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1364 * loop.
1365 *
1366 * Returns the unconsumed cycles.
1367 */
f726a697 1368static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1369 u32 shift,
1370 unsigned int *clock_set)
a092ff0f 1371{
23a9537a 1372 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1373 u64 raw_nsecs;
a092ff0f 1374
f726a697 1375 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1376 if (offset < interval)
a092ff0f
JS
1377 return offset;
1378
1379 /* Accumulate one shifted interval */
23a9537a 1380 offset -= interval;
7ec98e15 1381 tk->cycle_last += interval;
a092ff0f 1382
f726a697 1383 tk->xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1384 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1385
deda2e81 1386 /* Accumulate raw time */
5b3900cd 1387 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1388 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1389 if (raw_nsecs >= NSEC_PER_SEC) {
1390 u64 raw_secs = raw_nsecs;
1391 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1392 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1393 }
f726a697 1394 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f
JS
1395
1396 /* Accumulate error between NTP and clock interval */
f726a697
JS
1397 tk->ntp_error += ntp_tick_length() << shift;
1398 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1399 (tk->ntp_error_shift + shift);
a092ff0f
JS
1400
1401 return offset;
1402}
1403
8524070b
JS
1404/**
1405 * update_wall_time - Uses the current clocksource to increment the wall time
1406 *
8524070b 1407 */
47a1b796 1408void update_wall_time(void)
8524070b 1409{
155ec602 1410 struct clocksource *clock;
3fdb14fd 1411 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1412 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1413 cycle_t offset;
a092ff0f 1414 int shift = 0, maxshift;
5258d3f2 1415 unsigned int clock_set = 0;
70471f2f
JS
1416 unsigned long flags;
1417
9a7a71b1 1418 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b
JS
1419
1420 /* Make sure we're fully resumed: */
1421 if (unlikely(timekeeping_suspended))
70471f2f 1422 goto out;
8524070b 1423
48cdc135 1424 clock = real_tk->clock;
592913ec
JS
1425
1426#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1427 offset = real_tk->cycle_interval;
592913ec
JS
1428#else
1429 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
8524070b 1430#endif
8524070b 1431
bf2ac312 1432 /* Check if there's really nothing to do */
48cdc135 1433 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1434 goto out;
1435
a092ff0f
JS
1436 /*
1437 * With NO_HZ we may have to accumulate many cycle_intervals
1438 * (think "ticks") worth of time at once. To do this efficiently,
1439 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1440 * that is smaller than the offset. We then accumulate that
a092ff0f
JS
1441 * chunk in one go, and then try to consume the next smaller
1442 * doubled multiple.
8524070b 1443 */
4e250fdd 1444 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1445 shift = max(0, shift);
88b28adf 1446 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1447 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1448 shift = min(shift, maxshift);
4e250fdd 1449 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1450 offset = logarithmic_accumulation(tk, offset, shift,
1451 &clock_set);
4e250fdd 1452 if (offset < tk->cycle_interval<<shift)
830ec045 1453 shift--;
8524070b
JS
1454 }
1455
1456 /* correct the clock when NTP error is too big */
4e250fdd 1457 timekeeping_adjust(tk, offset);
8524070b 1458
6a867a39 1459 /*
92bb1fcf
JS
1460 * XXX This can be killed once everyone converts
1461 * to the new update_vsyscall.
1462 */
1463 old_vsyscall_fixup(tk);
8524070b 1464
6a867a39
JS
1465 /*
1466 * Finally, make sure that after the rounding
1e75fa8b 1467 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1468 */
5258d3f2 1469 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1470
3fdb14fd 1471 write_seqcount_begin(&tk_core.seq);
7ec98e15
TG
1472 /* Update clock->cycle_last with the new value */
1473 clock->cycle_last = tk->cycle_last;
48cdc135
TG
1474 /*
1475 * Update the real timekeeper.
1476 *
1477 * We could avoid this memcpy by switching pointers, but that
1478 * requires changes to all other timekeeper usage sites as
1479 * well, i.e. move the timekeeper pointer getter into the
1480 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1481 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1482 * updating.
1483 */
1484 memcpy(real_tk, tk, sizeof(*tk));
5258d3f2 1485 timekeeping_update(real_tk, clock_set);
3fdb14fd 1486 write_seqcount_end(&tk_core.seq);
ca4523cd 1487out:
9a7a71b1 1488 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1489 if (clock_set)
cab5e127
JS
1490 /* Have to call _delayed version, since in irq context*/
1491 clock_was_set_delayed();
8524070b 1492}
7c3f1a57
TJ
1493
1494/**
1495 * getboottime - Return the real time of system boot.
1496 * @ts: pointer to the timespec to be set
1497 *
abb3a4ea 1498 * Returns the wall-time of boot in a timespec.
7c3f1a57
TJ
1499 *
1500 * This is based on the wall_to_monotonic offset and the total suspend
1501 * time. Calls to settimeofday will affect the value returned (which
1502 * basically means that however wrong your real time clock is at boot time,
1503 * you get the right time here).
1504 */
1505void getboottime(struct timespec *ts)
1506{
3fdb14fd 1507 struct timekeeper *tk = &tk_core.timekeeper;
36d47481 1508 struct timespec boottime = {
4e250fdd
JS
1509 .tv_sec = tk->wall_to_monotonic.tv_sec +
1510 tk->total_sleep_time.tv_sec,
1511 .tv_nsec = tk->wall_to_monotonic.tv_nsec +
1512 tk->total_sleep_time.tv_nsec
36d47481 1513 };
d4f587c6 1514
d4f587c6 1515 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
7c3f1a57 1516}
c93d89f3 1517EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57 1518
abb3a4ea
JS
1519/**
1520 * get_monotonic_boottime - Returns monotonic time since boot
1521 * @ts: pointer to the timespec to be set
1522 *
1523 * Returns the monotonic time since boot in a timespec.
1524 *
1525 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1526 * includes the time spent in suspend.
1527 */
1528void get_monotonic_boottime(struct timespec *ts)
1529{
3fdb14fd 1530 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1531 struct timespec64 tomono, sleep, ret;
ec145bab 1532 s64 nsec;
abb3a4ea 1533 unsigned int seq;
abb3a4ea
JS
1534
1535 WARN_ON(timekeeping_suspended);
1536
1537 do {
3fdb14fd 1538 seq = read_seqcount_begin(&tk_core.seq);
7d489d15 1539 ret.tv_sec = tk->xtime_sec;
ec145bab 1540 nsec = timekeeping_get_ns(tk);
4e250fdd
JS
1541 tomono = tk->wall_to_monotonic;
1542 sleep = tk->total_sleep_time;
abb3a4ea 1543
3fdb14fd 1544 } while (read_seqcount_retry(&tk_core.seq, seq));
abb3a4ea 1545
7d489d15
JS
1546 ret.tv_sec += tomono.tv_sec + sleep.tv_sec;
1547 ret.tv_nsec = 0;
1548 timespec64_add_ns(&ret, nsec + tomono.tv_nsec + sleep.tv_nsec);
1549 *ts = timespec64_to_timespec(ret);
abb3a4ea
JS
1550}
1551EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1552
7c3f1a57
TJ
1553/**
1554 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1555 * @ts: pointer to the timespec to be converted
1556 */
1557void monotonic_to_bootbased(struct timespec *ts)
1558{
3fdb14fd 1559 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1560 struct timespec64 ts64;
4e250fdd 1561
7d489d15
JS
1562 ts64 = timespec_to_timespec64(*ts);
1563 ts64 = timespec64_add(ts64, tk->total_sleep_time);
1564 *ts = timespec64_to_timespec(ts64);
7c3f1a57 1565}
c93d89f3 1566EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
2c6b47de 1567
17c38b74
JS
1568unsigned long get_seconds(void)
1569{
3fdb14fd 1570 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1571
1572 return tk->xtime_sec;
17c38b74
JS
1573}
1574EXPORT_SYMBOL(get_seconds);
1575
da15cfda
JS
1576struct timespec __current_kernel_time(void)
1577{
3fdb14fd 1578 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1579
7d489d15 1580 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1581}
17c38b74 1582
2c6b47de
JS
1583struct timespec current_kernel_time(void)
1584{
3fdb14fd 1585 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1586 struct timespec64 now;
2c6b47de
JS
1587 unsigned long seq;
1588
1589 do {
3fdb14fd 1590 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1591
4e250fdd 1592 now = tk_xtime(tk);
3fdb14fd 1593 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1594
7d489d15 1595 return timespec64_to_timespec(now);
2c6b47de 1596}
2c6b47de 1597EXPORT_SYMBOL(current_kernel_time);
da15cfda
JS
1598
1599struct timespec get_monotonic_coarse(void)
1600{
3fdb14fd 1601 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1602 struct timespec64 now, mono;
da15cfda
JS
1603 unsigned long seq;
1604
1605 do {
3fdb14fd 1606 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1607
4e250fdd
JS
1608 now = tk_xtime(tk);
1609 mono = tk->wall_to_monotonic;
3fdb14fd 1610 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1611
7d489d15 1612 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1613 now.tv_nsec + mono.tv_nsec);
7d489d15
JS
1614
1615 return timespec64_to_timespec(now);
da15cfda 1616}
871cf1e5
TH
1617
1618/*
d6ad4187 1619 * Must hold jiffies_lock
871cf1e5
TH
1620 */
1621void do_timer(unsigned long ticks)
1622{
1623 jiffies_64 += ticks;
871cf1e5
TH
1624 calc_global_load(ticks);
1625}
48cf76f7
TH
1626
1627/**
76f41088
JS
1628 * ktime_get_update_offsets_tick - hrtimer helper
1629 * @offs_real: pointer to storage for monotonic -> realtime offset
1630 * @offs_boot: pointer to storage for monotonic -> boottime offset
1631 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1632 *
1633 * Returns monotonic time at last tick and various offsets
48cf76f7 1634 */
76f41088
JS
1635ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1636 ktime_t *offs_tai)
48cf76f7 1637{
3fdb14fd 1638 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1639 struct timespec64 ts;
76f41088
JS
1640 ktime_t now;
1641 unsigned int seq;
48cf76f7
TH
1642
1643 do {
3fdb14fd 1644 seq = read_seqcount_begin(&tk_core.seq);
76f41088
JS
1645
1646 ts = tk_xtime(tk);
76f41088
JS
1647 *offs_real = tk->offs_real;
1648 *offs_boot = tk->offs_boot;
1649 *offs_tai = tk->offs_tai;
3fdb14fd 1650 } while (read_seqcount_retry(&tk_core.seq, seq));
76f41088
JS
1651
1652 now = ktime_set(ts.tv_sec, ts.tv_nsec);
1653 now = ktime_sub(now, *offs_real);
1654 return now;
48cf76f7 1655}
f0af911a 1656
f6c06abf
TG
1657#ifdef CONFIG_HIGH_RES_TIMERS
1658/**
76f41088 1659 * ktime_get_update_offsets_now - hrtimer helper
f6c06abf
TG
1660 * @offs_real: pointer to storage for monotonic -> realtime offset
1661 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1662 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf
TG
1663 *
1664 * Returns current monotonic time and updates the offsets
b7bc50e4 1665 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1666 */
76f41088 1667ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
90adda98 1668 ktime_t *offs_tai)
f6c06abf 1669{
3fdb14fd 1670 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf
TG
1671 ktime_t now;
1672 unsigned int seq;
1673 u64 secs, nsecs;
1674
1675 do {
3fdb14fd 1676 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1677
4e250fdd
JS
1678 secs = tk->xtime_sec;
1679 nsecs = timekeeping_get_ns(tk);
f6c06abf 1680
4e250fdd
JS
1681 *offs_real = tk->offs_real;
1682 *offs_boot = tk->offs_boot;
90adda98 1683 *offs_tai = tk->offs_tai;
3fdb14fd 1684 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf
TG
1685
1686 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1687 now = ktime_sub(now, *offs_real);
1688 return now;
1689}
1690#endif
1691
99ee5315
TG
1692/**
1693 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1694 */
1695ktime_t ktime_get_monotonic_offset(void)
1696{
3fdb14fd 1697 struct timekeeper *tk = &tk_core.timekeeper;
99ee5315 1698 unsigned long seq;
7d489d15 1699 struct timespec64 wtom;
99ee5315
TG
1700
1701 do {
3fdb14fd 1702 seq = read_seqcount_begin(&tk_core.seq);
4e250fdd 1703 wtom = tk->wall_to_monotonic;
3fdb14fd 1704 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f 1705
7d489d15 1706 return timespec64_to_ktime(wtom);
99ee5315 1707}
a80b83b7
JS
1708EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1709
aa6f9c59
JS
1710/**
1711 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1712 */
1713int do_adjtimex(struct timex *txc)
1714{
3fdb14fd 1715 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1716 unsigned long flags;
7d489d15 1717 struct timespec64 ts;
4e8f8b34 1718 s32 orig_tai, tai;
e4085693
JS
1719 int ret;
1720
1721 /* Validate the data before disabling interrupts */
1722 ret = ntp_validate_timex(txc);
1723 if (ret)
1724 return ret;
1725
cef90377
JS
1726 if (txc->modes & ADJ_SETOFFSET) {
1727 struct timespec delta;
1728 delta.tv_sec = txc->time.tv_sec;
1729 delta.tv_nsec = txc->time.tv_usec;
1730 if (!(txc->modes & ADJ_NANO))
1731 delta.tv_nsec *= 1000;
1732 ret = timekeeping_inject_offset(&delta);
1733 if (ret)
1734 return ret;
1735 }
1736
d6d29896 1737 getnstimeofday64(&ts);
87ace39b 1738
06c017fd 1739 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1740 write_seqcount_begin(&tk_core.seq);
06c017fd 1741
4e8f8b34 1742 orig_tai = tai = tk->tai_offset;
87ace39b 1743 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 1744
4e8f8b34
JS
1745 if (tai != orig_tai) {
1746 __timekeeping_set_tai_offset(tk, tai);
f55c0760 1747 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 1748 }
3fdb14fd 1749 write_seqcount_end(&tk_core.seq);
06c017fd
JS
1750 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1751
6fdda9a9
JS
1752 if (tai != orig_tai)
1753 clock_was_set();
1754
7bd36014
JS
1755 ntp_notify_cmos_timer();
1756
87ace39b
JS
1757 return ret;
1758}
aa6f9c59
JS
1759
1760#ifdef CONFIG_NTP_PPS
1761/**
1762 * hardpps() - Accessor function to NTP __hardpps function
1763 */
1764void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1765{
06c017fd
JS
1766 unsigned long flags;
1767
1768 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1769 write_seqcount_begin(&tk_core.seq);
06c017fd 1770
aa6f9c59 1771 __hardpps(phase_ts, raw_ts);
06c017fd 1772
3fdb14fd 1773 write_seqcount_end(&tk_core.seq);
06c017fd 1774 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
1775}
1776EXPORT_SYMBOL(hardpps);
1777#endif
1778
f0af911a
TH
1779/**
1780 * xtime_update() - advances the timekeeping infrastructure
1781 * @ticks: number of ticks, that have elapsed since the last call.
1782 *
1783 * Must be called with interrupts disabled.
1784 */
1785void xtime_update(unsigned long ticks)
1786{
d6ad4187 1787 write_seqlock(&jiffies_lock);
f0af911a 1788 do_timer(ticks);
d6ad4187 1789 write_sequnlock(&jiffies_lock);
47a1b796 1790 update_wall_time();
f0af911a 1791}