]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/timer.c
Merge branch 'pm-tools'
[mirror_ubuntu-artful-kernel.git] / kernel / time / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4a22f166 4 * Kernel internal timers
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
5a0e3ad6 43#include <linux/slab.h>
1a0df594 44#include <linux/compat.h>
1da177e4
LT
45
46#include <asm/uaccess.h>
47#include <asm/unistd.h>
48#include <asm/div64.h>
49#include <asm/timex.h>
50#include <asm/io.h>
51
c1ad348b
TG
52#include "tick-internal.h"
53
2b022e3d
XG
54#define CREATE_TRACE_POINTS
55#include <trace/events/timer.h>
56
40747ffa 57__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
ecea8d19
TG
58
59EXPORT_SYMBOL(jiffies_64);
60
1da177e4
LT
61/*
62 * per-CPU timer vector definitions:
63 */
1da177e4
LT
64#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
65#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
66#define TVN_SIZE (1 << TVN_BITS)
67#define TVR_SIZE (1 << TVR_BITS)
68#define TVN_MASK (TVN_SIZE - 1)
69#define TVR_MASK (TVR_SIZE - 1)
26cff4e2 70#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
1da177e4 71
a6fa8e5a 72struct tvec {
1dabbcec 73 struct hlist_head vec[TVN_SIZE];
a6fa8e5a 74};
1da177e4 75
a6fa8e5a 76struct tvec_root {
1dabbcec 77 struct hlist_head vec[TVR_SIZE];
a6fa8e5a 78};
1da177e4 79
a6fa8e5a 80struct tvec_base {
3691c519
ON
81 spinlock_t lock;
82 struct timer_list *running_timer;
1da177e4 83 unsigned long timer_jiffies;
97fd9ed4 84 unsigned long next_timer;
99d5f3aa 85 unsigned long active_timers;
fff42158 86 unsigned long all_timers;
d6f93829 87 int cpu;
bc7a34b8 88 bool migration_enabled;
683be13a 89 bool nohz_active;
a6fa8e5a
PM
90 struct tvec_root tv1;
91 struct tvec tv2;
92 struct tvec tv3;
93 struct tvec tv4;
94 struct tvec tv5;
6e453a67 95} ____cacheline_aligned;
1da177e4 96
e52b1db3 97
0eeda71b 98static DEFINE_PER_CPU(struct tvec_base, tvec_bases);
6e453a67 99
bc7a34b8
TG
100#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
101unsigned int sysctl_timer_migration = 1;
102
683be13a 103void timers_update_migration(bool update_nohz)
bc7a34b8
TG
104{
105 bool on = sysctl_timer_migration && tick_nohz_active;
106 unsigned int cpu;
107
108 /* Avoid the loop, if nothing to update */
109 if (this_cpu_read(tvec_bases.migration_enabled) == on)
110 return;
111
112 for_each_possible_cpu(cpu) {
113 per_cpu(tvec_bases.migration_enabled, cpu) = on;
114 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
683be13a
TG
115 if (!update_nohz)
116 continue;
117 per_cpu(tvec_bases.nohz_active, cpu) = true;
118 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
bc7a34b8
TG
119 }
120}
121
122int timer_migration_handler(struct ctl_table *table, int write,
123 void __user *buffer, size_t *lenp,
124 loff_t *ppos)
125{
126 static DEFINE_MUTEX(mutex);
127 int ret;
128
129 mutex_lock(&mutex);
130 ret = proc_dointvec(table, write, buffer, lenp, ppos);
131 if (!ret && write)
683be13a 132 timers_update_migration(false);
bc7a34b8
TG
133 mutex_unlock(&mutex);
134 return ret;
135}
136
137static inline struct tvec_base *get_target_base(struct tvec_base *base,
138 int pinned)
139{
140 if (pinned || !base->migration_enabled)
141 return this_cpu_ptr(&tvec_bases);
142 return per_cpu_ptr(&tvec_bases, get_nohz_timer_target());
143}
144#else
145static inline struct tvec_base *get_target_base(struct tvec_base *base,
146 int pinned)
147{
148 return this_cpu_ptr(&tvec_bases);
149}
150#endif
151
9c133c46
AS
152static unsigned long round_jiffies_common(unsigned long j, int cpu,
153 bool force_up)
4c36a5de
AV
154{
155 int rem;
156 unsigned long original = j;
157
158 /*
159 * We don't want all cpus firing their timers at once hitting the
160 * same lock or cachelines, so we skew each extra cpu with an extra
161 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
162 * already did this.
163 * The skew is done by adding 3*cpunr, then round, then subtract this
164 * extra offset again.
165 */
166 j += cpu * 3;
167
168 rem = j % HZ;
169
170 /*
171 * If the target jiffie is just after a whole second (which can happen
172 * due to delays of the timer irq, long irq off times etc etc) then
173 * we should round down to the whole second, not up. Use 1/4th second
174 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 175 * But never round down if @force_up is set.
4c36a5de 176 */
9c133c46 177 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
178 j = j - rem;
179 else /* round up */
180 j = j - rem + HZ;
181
182 /* now that we have rounded, subtract the extra skew again */
183 j -= cpu * 3;
184
9e04d380
BVA
185 /*
186 * Make sure j is still in the future. Otherwise return the
187 * unmodified value.
188 */
189 return time_is_after_jiffies(j) ? j : original;
4c36a5de 190}
9c133c46
AS
191
192/**
193 * __round_jiffies - function to round jiffies to a full second
194 * @j: the time in (absolute) jiffies that should be rounded
195 * @cpu: the processor number on which the timeout will happen
196 *
197 * __round_jiffies() rounds an absolute time in the future (in jiffies)
198 * up or down to (approximately) full seconds. This is useful for timers
199 * for which the exact time they fire does not matter too much, as long as
200 * they fire approximately every X seconds.
201 *
202 * By rounding these timers to whole seconds, all such timers will fire
203 * at the same time, rather than at various times spread out. The goal
204 * of this is to have the CPU wake up less, which saves power.
205 *
206 * The exact rounding is skewed for each processor to avoid all
207 * processors firing at the exact same time, which could lead
208 * to lock contention or spurious cache line bouncing.
209 *
210 * The return value is the rounded version of the @j parameter.
211 */
212unsigned long __round_jiffies(unsigned long j, int cpu)
213{
214 return round_jiffies_common(j, cpu, false);
215}
4c36a5de
AV
216EXPORT_SYMBOL_GPL(__round_jiffies);
217
218/**
219 * __round_jiffies_relative - function to round jiffies to a full second
220 * @j: the time in (relative) jiffies that should be rounded
221 * @cpu: the processor number on which the timeout will happen
222 *
72fd4a35 223 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
224 * up or down to (approximately) full seconds. This is useful for timers
225 * for which the exact time they fire does not matter too much, as long as
226 * they fire approximately every X seconds.
227 *
228 * By rounding these timers to whole seconds, all such timers will fire
229 * at the same time, rather than at various times spread out. The goal
230 * of this is to have the CPU wake up less, which saves power.
231 *
232 * The exact rounding is skewed for each processor to avoid all
233 * processors firing at the exact same time, which could lead
234 * to lock contention or spurious cache line bouncing.
235 *
72fd4a35 236 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
237 */
238unsigned long __round_jiffies_relative(unsigned long j, int cpu)
239{
9c133c46
AS
240 unsigned long j0 = jiffies;
241
242 /* Use j0 because jiffies might change while we run */
243 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
244}
245EXPORT_SYMBOL_GPL(__round_jiffies_relative);
246
247/**
248 * round_jiffies - function to round jiffies to a full second
249 * @j: the time in (absolute) jiffies that should be rounded
250 *
72fd4a35 251 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
252 * up or down to (approximately) full seconds. This is useful for timers
253 * for which the exact time they fire does not matter too much, as long as
254 * they fire approximately every X seconds.
255 *
256 * By rounding these timers to whole seconds, all such timers will fire
257 * at the same time, rather than at various times spread out. The goal
258 * of this is to have the CPU wake up less, which saves power.
259 *
72fd4a35 260 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
261 */
262unsigned long round_jiffies(unsigned long j)
263{
9c133c46 264 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
265}
266EXPORT_SYMBOL_GPL(round_jiffies);
267
268/**
269 * round_jiffies_relative - function to round jiffies to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 *
72fd4a35 272 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
273 * up or down to (approximately) full seconds. This is useful for timers
274 * for which the exact time they fire does not matter too much, as long as
275 * they fire approximately every X seconds.
276 *
277 * By rounding these timers to whole seconds, all such timers will fire
278 * at the same time, rather than at various times spread out. The goal
279 * of this is to have the CPU wake up less, which saves power.
280 *
72fd4a35 281 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
282 */
283unsigned long round_jiffies_relative(unsigned long j)
284{
285 return __round_jiffies_relative(j, raw_smp_processor_id());
286}
287EXPORT_SYMBOL_GPL(round_jiffies_relative);
288
9c133c46
AS
289/**
290 * __round_jiffies_up - function to round jiffies up to a full second
291 * @j: the time in (absolute) jiffies that should be rounded
292 * @cpu: the processor number on which the timeout will happen
293 *
294 * This is the same as __round_jiffies() except that it will never
295 * round down. This is useful for timeouts for which the exact time
296 * of firing does not matter too much, as long as they don't fire too
297 * early.
298 */
299unsigned long __round_jiffies_up(unsigned long j, int cpu)
300{
301 return round_jiffies_common(j, cpu, true);
302}
303EXPORT_SYMBOL_GPL(__round_jiffies_up);
304
305/**
306 * __round_jiffies_up_relative - function to round jiffies up to a full second
307 * @j: the time in (relative) jiffies that should be rounded
308 * @cpu: the processor number on which the timeout will happen
309 *
310 * This is the same as __round_jiffies_relative() except that it will never
311 * round down. This is useful for timeouts for which the exact time
312 * of firing does not matter too much, as long as they don't fire too
313 * early.
314 */
315unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
316{
317 unsigned long j0 = jiffies;
318
319 /* Use j0 because jiffies might change while we run */
320 return round_jiffies_common(j + j0, cpu, true) - j0;
321}
322EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
323
324/**
325 * round_jiffies_up - function to round jiffies up to a full second
326 * @j: the time in (absolute) jiffies that should be rounded
327 *
328 * This is the same as round_jiffies() except that it will never
329 * round down. This is useful for timeouts for which the exact time
330 * of firing does not matter too much, as long as they don't fire too
331 * early.
332 */
333unsigned long round_jiffies_up(unsigned long j)
334{
335 return round_jiffies_common(j, raw_smp_processor_id(), true);
336}
337EXPORT_SYMBOL_GPL(round_jiffies_up);
338
339/**
340 * round_jiffies_up_relative - function to round jiffies up to a full second
341 * @j: the time in (relative) jiffies that should be rounded
342 *
343 * This is the same as round_jiffies_relative() except that it will never
344 * round down. This is useful for timeouts for which the exact time
345 * of firing does not matter too much, as long as they don't fire too
346 * early.
347 */
348unsigned long round_jiffies_up_relative(unsigned long j)
349{
350 return __round_jiffies_up_relative(j, raw_smp_processor_id());
351}
352EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
353
3bbb9ec9
AV
354/**
355 * set_timer_slack - set the allowed slack for a timer
0caa6210 356 * @timer: the timer to be modified
3bbb9ec9
AV
357 * @slack_hz: the amount of time (in jiffies) allowed for rounding
358 *
359 * Set the amount of time, in jiffies, that a certain timer has
360 * in terms of slack. By setting this value, the timer subsystem
361 * will schedule the actual timer somewhere between
362 * the time mod_timer() asks for, and that time plus the slack.
363 *
364 * By setting the slack to -1, a percentage of the delay is used
365 * instead.
366 */
367void set_timer_slack(struct timer_list *timer, int slack_hz)
368{
369 timer->slack = slack_hz;
370}
371EXPORT_SYMBOL_GPL(set_timer_slack);
372
facbb4a7
TG
373static void
374__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
375{
376 unsigned long expires = timer->expires;
377 unsigned long idx = expires - base->timer_jiffies;
1dabbcec 378 struct hlist_head *vec;
1da177e4
LT
379
380 if (idx < TVR_SIZE) {
381 int i = expires & TVR_MASK;
382 vec = base->tv1.vec + i;
383 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
384 int i = (expires >> TVR_BITS) & TVN_MASK;
385 vec = base->tv2.vec + i;
386 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
387 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
388 vec = base->tv3.vec + i;
389 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
390 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
391 vec = base->tv4.vec + i;
392 } else if ((signed long) idx < 0) {
393 /*
394 * Can happen if you add a timer with expires == jiffies,
395 * or you set a timer to go off in the past
396 */
397 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
398 } else {
399 int i;
26cff4e2
HC
400 /* If the timeout is larger than MAX_TVAL (on 64-bit
401 * architectures or with CONFIG_BASE_SMALL=1) then we
402 * use the maximum timeout.
1da177e4 403 */
26cff4e2
HC
404 if (idx > MAX_TVAL) {
405 idx = MAX_TVAL;
1da177e4
LT
406 expires = idx + base->timer_jiffies;
407 }
408 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
409 vec = base->tv5.vec + i;
410 }
1bd04bf6 411
1dabbcec 412 hlist_add_head(&timer->entry, vec);
1da177e4
LT
413}
414
facbb4a7
TG
415static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
416{
3bb475a3
TG
417 /* Advance base->jiffies, if the base is empty */
418 if (!base->all_timers++)
419 base->timer_jiffies = jiffies;
420
facbb4a7
TG
421 __internal_add_timer(base, timer);
422 /*
99d5f3aa 423 * Update base->active_timers and base->next_timer
facbb4a7 424 */
0eeda71b 425 if (!(timer->flags & TIMER_DEFERRABLE)) {
aea369b9
ON
426 if (!base->active_timers++ ||
427 time_before(timer->expires, base->next_timer))
99d5f3aa 428 base->next_timer = timer->expires;
99d5f3aa 429 }
9f6d9baa
VK
430
431 /*
432 * Check whether the other CPU is in dynticks mode and needs
433 * to be triggered to reevaluate the timer wheel.
434 * We are protected against the other CPU fiddling
435 * with the timer by holding the timer base lock. This also
436 * makes sure that a CPU on the way to stop its tick can not
437 * evaluate the timer wheel.
438 *
439 * Spare the IPI for deferrable timers on idle targets though.
440 * The next busy ticks will take care of it. Except full dynticks
441 * require special care against races with idle_cpu(), lets deal
442 * with that later.
443 */
683be13a
TG
444 if (base->nohz_active) {
445 if (!(timer->flags & TIMER_DEFERRABLE) ||
446 tick_nohz_full_cpu(base->cpu))
447 wake_up_nohz_cpu(base->cpu);
448 }
facbb4a7
TG
449}
450
82f67cd9
IM
451#ifdef CONFIG_TIMER_STATS
452void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
453{
454 if (timer->start_site)
455 return;
456
457 timer->start_site = addr;
458 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
459 timer->start_pid = current->pid;
460}
c5c061b8
VP
461
462static void timer_stats_account_timer(struct timer_list *timer)
463{
3ed769bd
DV
464 void *site;
465
466 /*
467 * start_site can be concurrently reset by
468 * timer_stats_timer_clear_start_info()
469 */
470 site = READ_ONCE(timer->start_site);
471 if (likely(!site))
507e1231 472 return;
c5c061b8 473
3ed769bd 474 timer_stats_update_stats(timer, timer->start_pid, site,
c74441a1
TG
475 timer->function, timer->start_comm,
476 timer->flags);
c5c061b8
VP
477}
478
479#else
480static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
481#endif
482
c6f3a97f
TG
483#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
484
485static struct debug_obj_descr timer_debug_descr;
486
99777288
SG
487static void *timer_debug_hint(void *addr)
488{
489 return ((struct timer_list *) addr)->function;
490}
491
c6f3a97f
TG
492/*
493 * fixup_init is called when:
494 * - an active object is initialized
55c888d6 495 */
c6f3a97f
TG
496static int timer_fixup_init(void *addr, enum debug_obj_state state)
497{
498 struct timer_list *timer = addr;
499
500 switch (state) {
501 case ODEBUG_STATE_ACTIVE:
502 del_timer_sync(timer);
503 debug_object_init(timer, &timer_debug_descr);
504 return 1;
505 default:
506 return 0;
507 }
508}
509
fb16b8cf
SB
510/* Stub timer callback for improperly used timers. */
511static void stub_timer(unsigned long data)
512{
513 WARN_ON(1);
514}
515
c6f3a97f
TG
516/*
517 * fixup_activate is called when:
518 * - an active object is activated
519 * - an unknown object is activated (might be a statically initialized object)
520 */
521static int timer_fixup_activate(void *addr, enum debug_obj_state state)
522{
523 struct timer_list *timer = addr;
524
525 switch (state) {
526
527 case ODEBUG_STATE_NOTAVAILABLE:
528 /*
529 * This is not really a fixup. The timer was
530 * statically initialized. We just make sure that it
531 * is tracked in the object tracker.
532 */
1dabbcec
TG
533 if (timer->entry.pprev == NULL &&
534 timer->entry.next == TIMER_ENTRY_STATIC) {
c6f3a97f
TG
535 debug_object_init(timer, &timer_debug_descr);
536 debug_object_activate(timer, &timer_debug_descr);
537 return 0;
538 } else {
fb16b8cf
SB
539 setup_timer(timer, stub_timer, 0);
540 return 1;
c6f3a97f
TG
541 }
542 return 0;
543
544 case ODEBUG_STATE_ACTIVE:
545 WARN_ON(1);
546
547 default:
548 return 0;
549 }
550}
551
552/*
553 * fixup_free is called when:
554 * - an active object is freed
555 */
556static int timer_fixup_free(void *addr, enum debug_obj_state state)
557{
558 struct timer_list *timer = addr;
559
560 switch (state) {
561 case ODEBUG_STATE_ACTIVE:
562 del_timer_sync(timer);
563 debug_object_free(timer, &timer_debug_descr);
564 return 1;
565 default:
566 return 0;
567 }
568}
569
dc4218bd
CC
570/*
571 * fixup_assert_init is called when:
572 * - an untracked/uninit-ed object is found
573 */
574static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
575{
576 struct timer_list *timer = addr;
577
578 switch (state) {
579 case ODEBUG_STATE_NOTAVAILABLE:
1dabbcec 580 if (timer->entry.next == TIMER_ENTRY_STATIC) {
dc4218bd
CC
581 /*
582 * This is not really a fixup. The timer was
583 * statically initialized. We just make sure that it
584 * is tracked in the object tracker.
585 */
586 debug_object_init(timer, &timer_debug_descr);
587 return 0;
588 } else {
589 setup_timer(timer, stub_timer, 0);
590 return 1;
591 }
592 default:
593 return 0;
594 }
595}
596
c6f3a97f 597static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
598 .name = "timer_list",
599 .debug_hint = timer_debug_hint,
600 .fixup_init = timer_fixup_init,
601 .fixup_activate = timer_fixup_activate,
602 .fixup_free = timer_fixup_free,
603 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
604};
605
606static inline void debug_timer_init(struct timer_list *timer)
607{
608 debug_object_init(timer, &timer_debug_descr);
609}
610
611static inline void debug_timer_activate(struct timer_list *timer)
612{
613 debug_object_activate(timer, &timer_debug_descr);
614}
615
616static inline void debug_timer_deactivate(struct timer_list *timer)
617{
618 debug_object_deactivate(timer, &timer_debug_descr);
619}
620
621static inline void debug_timer_free(struct timer_list *timer)
622{
623 debug_object_free(timer, &timer_debug_descr);
624}
625
dc4218bd
CC
626static inline void debug_timer_assert_init(struct timer_list *timer)
627{
628 debug_object_assert_init(timer, &timer_debug_descr);
629}
630
fc683995
TH
631static void do_init_timer(struct timer_list *timer, unsigned int flags,
632 const char *name, struct lock_class_key *key);
c6f3a97f 633
fc683995
TH
634void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
635 const char *name, struct lock_class_key *key)
c6f3a97f
TG
636{
637 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 638 do_init_timer(timer, flags, name, key);
c6f3a97f 639}
6f2b9b9a 640EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
641
642void destroy_timer_on_stack(struct timer_list *timer)
643{
644 debug_object_free(timer, &timer_debug_descr);
645}
646EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
647
648#else
649static inline void debug_timer_init(struct timer_list *timer) { }
650static inline void debug_timer_activate(struct timer_list *timer) { }
651static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 652static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
653#endif
654
2b022e3d
XG
655static inline void debug_init(struct timer_list *timer)
656{
657 debug_timer_init(timer);
658 trace_timer_init(timer);
659}
660
661static inline void
662debug_activate(struct timer_list *timer, unsigned long expires)
663{
664 debug_timer_activate(timer);
0eeda71b 665 trace_timer_start(timer, expires, timer->flags);
2b022e3d
XG
666}
667
668static inline void debug_deactivate(struct timer_list *timer)
669{
670 debug_timer_deactivate(timer);
671 trace_timer_cancel(timer);
672}
673
dc4218bd
CC
674static inline void debug_assert_init(struct timer_list *timer)
675{
676 debug_timer_assert_init(timer);
677}
678
fc683995
TH
679static void do_init_timer(struct timer_list *timer, unsigned int flags,
680 const char *name, struct lock_class_key *key)
55c888d6 681{
1dabbcec 682 timer->entry.pprev = NULL;
0eeda71b 683 timer->flags = flags | raw_smp_processor_id();
3bbb9ec9 684 timer->slack = -1;
82f67cd9
IM
685#ifdef CONFIG_TIMER_STATS
686 timer->start_site = NULL;
687 timer->start_pid = -1;
688 memset(timer->start_comm, 0, TASK_COMM_LEN);
689#endif
6f2b9b9a 690 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 691}
c6f3a97f
TG
692
693/**
633fe795 694 * init_timer_key - initialize a timer
c6f3a97f 695 * @timer: the timer to be initialized
fc683995 696 * @flags: timer flags
633fe795
RD
697 * @name: name of the timer
698 * @key: lockdep class key of the fake lock used for tracking timer
699 * sync lock dependencies
c6f3a97f 700 *
633fe795 701 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
702 * other timer functions.
703 */
fc683995
TH
704void init_timer_key(struct timer_list *timer, unsigned int flags,
705 const char *name, struct lock_class_key *key)
c6f3a97f 706{
2b022e3d 707 debug_init(timer);
fc683995 708 do_init_timer(timer, flags, name, key);
c6f3a97f 709}
6f2b9b9a 710EXPORT_SYMBOL(init_timer_key);
55c888d6 711
ec44bc7a 712static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6 713{
1dabbcec 714 struct hlist_node *entry = &timer->entry;
55c888d6 715
2b022e3d 716 debug_deactivate(timer);
c6f3a97f 717
1dabbcec 718 __hlist_del(entry);
55c888d6 719 if (clear_pending)
1dabbcec
TG
720 entry->pprev = NULL;
721 entry->next = LIST_POISON2;
55c888d6
ON
722}
723
99d5f3aa
TG
724static inline void
725detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
726{
727 detach_timer(timer, true);
0eeda71b 728 if (!(timer->flags & TIMER_DEFERRABLE))
e52b1db3 729 base->active_timers--;
fff42158 730 base->all_timers--;
99d5f3aa
TG
731}
732
ec44bc7a
TG
733static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
734 bool clear_pending)
735{
736 if (!timer_pending(timer))
737 return 0;
738
739 detach_timer(timer, clear_pending);
0eeda71b 740 if (!(timer->flags & TIMER_DEFERRABLE)) {
e52b1db3 741 base->active_timers--;
99d5f3aa
TG
742 if (timer->expires == base->next_timer)
743 base->next_timer = base->timer_jiffies;
744 }
3bb475a3
TG
745 /* If this was the last timer, advance base->jiffies */
746 if (!--base->all_timers)
747 base->timer_jiffies = jiffies;
ec44bc7a
TG
748 return 1;
749}
750
55c888d6 751/*
3691c519 752 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
753 * means that all timers which are tied to this base via timer->base are
754 * locked, and the base itself is locked too.
755 *
756 * So __run_timers/migrate_timers can safely modify all timers which could
757 * be found on ->tvX lists.
758 *
0eeda71b
TG
759 * When the timer's base is locked and removed from the list, the
760 * TIMER_MIGRATING flag is set, FIXME
55c888d6 761 */
a6fa8e5a 762static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 763 unsigned long *flags)
89e7e374 764 __acquires(timer->base->lock)
55c888d6 765{
55c888d6 766 for (;;) {
0eeda71b
TG
767 u32 tf = timer->flags;
768 struct tvec_base *base;
769
770 if (!(tf & TIMER_MIGRATING)) {
771 base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK);
55c888d6 772 spin_lock_irqsave(&base->lock, *flags);
0eeda71b 773 if (timer->flags == tf)
55c888d6 774 return base;
55c888d6
ON
775 spin_unlock_irqrestore(&base->lock, *flags);
776 }
777 cpu_relax();
778 }
779}
780
74019224 781static inline int
597d0275 782__mod_timer(struct timer_list *timer, unsigned long expires,
bc7a34b8 783 bool pending_only, int pinned)
1da177e4 784{
a6fa8e5a 785 struct tvec_base *base, *new_base;
1da177e4 786 unsigned long flags;
bc7a34b8 787 int ret = 0;
1da177e4 788
82f67cd9 789 timer_stats_timer_set_start_info(timer);
1da177e4 790 BUG_ON(!timer->function);
1da177e4 791
55c888d6
ON
792 base = lock_timer_base(timer, &flags);
793
ec44bc7a
TG
794 ret = detach_if_pending(timer, base, false);
795 if (!ret && pending_only)
796 goto out_unlock;
55c888d6 797
2b022e3d 798 debug_activate(timer, expires);
c6f3a97f 799
bc7a34b8 800 new_base = get_target_base(base, pinned);
eea08f32 801
3691c519 802 if (base != new_base) {
1da177e4 803 /*
55c888d6
ON
804 * We are trying to schedule the timer on the local CPU.
805 * However we can't change timer's base while it is running,
806 * otherwise del_timer_sync() can't detect that the timer's
807 * handler yet has not finished. This also guarantees that
808 * the timer is serialized wrt itself.
1da177e4 809 */
a2c348fe 810 if (likely(base->running_timer != timer)) {
55c888d6 811 /* See the comment in lock_timer_base() */
0eeda71b
TG
812 timer->flags |= TIMER_MIGRATING;
813
55c888d6 814 spin_unlock(&base->lock);
a2c348fe
ON
815 base = new_base;
816 spin_lock(&base->lock);
d0023a14
ED
817 WRITE_ONCE(timer->flags,
818 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1da177e4
LT
819 }
820 }
821
1da177e4 822 timer->expires = expires;
a2c348fe 823 internal_add_timer(base, timer);
74019224
IM
824
825out_unlock:
a2c348fe 826 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
827
828 return ret;
829}
830
2aae4a10 831/**
74019224
IM
832 * mod_timer_pending - modify a pending timer's timeout
833 * @timer: the pending timer to be modified
834 * @expires: new timeout in jiffies
1da177e4 835 *
74019224
IM
836 * mod_timer_pending() is the same for pending timers as mod_timer(),
837 * but will not re-activate and modify already deleted timers.
838 *
839 * It is useful for unserialized use of timers.
1da177e4 840 */
74019224 841int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 842{
597d0275 843 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 844}
74019224 845EXPORT_SYMBOL(mod_timer_pending);
1da177e4 846
3bbb9ec9
AV
847/*
848 * Decide where to put the timer while taking the slack into account
849 *
850 * Algorithm:
851 * 1) calculate the maximum (absolute) time
852 * 2) calculate the highest bit where the expires and new max are different
853 * 3) use this bit to make a mask
854 * 4) use the bitmask to round down the maximum time, so that all last
855 * bits are zeros
856 */
857static inline
858unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
859{
860 unsigned long expires_limit, mask;
861 int bit;
862
8e63d779 863 if (timer->slack >= 0) {
f00e047e 864 expires_limit = expires + timer->slack;
8e63d779 865 } else {
1c3cc116
SAS
866 long delta = expires - jiffies;
867
868 if (delta < 256)
869 return expires;
3bbb9ec9 870
1c3cc116 871 expires_limit = expires + delta / 256;
8e63d779 872 }
3bbb9ec9 873 mask = expires ^ expires_limit;
3bbb9ec9
AV
874 if (mask == 0)
875 return expires;
876
9fc4468d 877 bit = __fls(mask);
3bbb9ec9 878
98a01e77 879 mask = (1UL << bit) - 1;
3bbb9ec9
AV
880
881 expires_limit = expires_limit & ~(mask);
882
883 return expires_limit;
884}
885
2aae4a10 886/**
1da177e4
LT
887 * mod_timer - modify a timer's timeout
888 * @timer: the timer to be modified
2aae4a10 889 * @expires: new timeout in jiffies
1da177e4 890 *
72fd4a35 891 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
892 * active timer (if the timer is inactive it will be activated)
893 *
894 * mod_timer(timer, expires) is equivalent to:
895 *
896 * del_timer(timer); timer->expires = expires; add_timer(timer);
897 *
898 * Note that if there are multiple unserialized concurrent users of the
899 * same timer, then mod_timer() is the only safe way to modify the timeout,
900 * since add_timer() cannot modify an already running timer.
901 *
902 * The function returns whether it has modified a pending timer or not.
903 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
904 * active timer returns 1.)
905 */
906int mod_timer(struct timer_list *timer, unsigned long expires)
907{
1c3cc116
SAS
908 expires = apply_slack(timer, expires);
909
1da177e4
LT
910 /*
911 * This is a common optimization triggered by the
912 * networking code - if the timer is re-modified
913 * to be the same thing then just return:
914 */
4841158b 915 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
916 return 1;
917
597d0275 918 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 919}
1da177e4
LT
920EXPORT_SYMBOL(mod_timer);
921
597d0275
AB
922/**
923 * mod_timer_pinned - modify a timer's timeout
924 * @timer: the timer to be modified
925 * @expires: new timeout in jiffies
926 *
927 * mod_timer_pinned() is a way to update the expire field of an
928 * active timer (if the timer is inactive it will be activated)
048a0e8f
PM
929 * and to ensure that the timer is scheduled on the current CPU.
930 *
931 * Note that this does not prevent the timer from being migrated
932 * when the current CPU goes offline. If this is a problem for
933 * you, use CPU-hotplug notifiers to handle it correctly, for
934 * example, cancelling the timer when the corresponding CPU goes
935 * offline.
597d0275
AB
936 *
937 * mod_timer_pinned(timer, expires) is equivalent to:
938 *
939 * del_timer(timer); timer->expires = expires; add_timer(timer);
940 */
941int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
942{
943 if (timer->expires == expires && timer_pending(timer))
944 return 1;
945
946 return __mod_timer(timer, expires, false, TIMER_PINNED);
947}
948EXPORT_SYMBOL(mod_timer_pinned);
949
74019224
IM
950/**
951 * add_timer - start a timer
952 * @timer: the timer to be added
953 *
954 * The kernel will do a ->function(->data) callback from the
955 * timer interrupt at the ->expires point in the future. The
956 * current time is 'jiffies'.
957 *
958 * The timer's ->expires, ->function (and if the handler uses it, ->data)
959 * fields must be set prior calling this function.
960 *
961 * Timers with an ->expires field in the past will be executed in the next
962 * timer tick.
963 */
964void add_timer(struct timer_list *timer)
965{
966 BUG_ON(timer_pending(timer));
967 mod_timer(timer, timer->expires);
968}
969EXPORT_SYMBOL(add_timer);
970
971/**
972 * add_timer_on - start a timer on a particular CPU
973 * @timer: the timer to be added
974 * @cpu: the CPU to start it on
975 *
976 * This is not very scalable on SMP. Double adds are not possible.
977 */
978void add_timer_on(struct timer_list *timer, int cpu)
979{
0eeda71b 980 struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
74019224
IM
981 unsigned long flags;
982
983 timer_stats_timer_set_start_info(timer);
984 BUG_ON(timer_pending(timer) || !timer->function);
985 spin_lock_irqsave(&base->lock, flags);
0eeda71b 986 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2b022e3d 987 debug_activate(timer, timer->expires);
74019224 988 internal_add_timer(base, timer);
74019224
IM
989 spin_unlock_irqrestore(&base->lock, flags);
990}
a9862e05 991EXPORT_SYMBOL_GPL(add_timer_on);
74019224 992
2aae4a10 993/**
1da177e4
LT
994 * del_timer - deactive a timer.
995 * @timer: the timer to be deactivated
996 *
997 * del_timer() deactivates a timer - this works on both active and inactive
998 * timers.
999 *
1000 * The function returns whether it has deactivated a pending timer or not.
1001 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1002 * active timer returns 1.)
1003 */
1004int del_timer(struct timer_list *timer)
1005{
a6fa8e5a 1006 struct tvec_base *base;
1da177e4 1007 unsigned long flags;
55c888d6 1008 int ret = 0;
1da177e4 1009
dc4218bd
CC
1010 debug_assert_init(timer);
1011
82f67cd9 1012 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
1013 if (timer_pending(timer)) {
1014 base = lock_timer_base(timer, &flags);
ec44bc7a 1015 ret = detach_if_pending(timer, base, true);
1da177e4 1016 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 1017 }
1da177e4 1018
55c888d6 1019 return ret;
1da177e4 1020}
1da177e4
LT
1021EXPORT_SYMBOL(del_timer);
1022
2aae4a10
REB
1023/**
1024 * try_to_del_timer_sync - Try to deactivate a timer
1025 * @timer: timer do del
1026 *
fd450b73
ON
1027 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1028 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1029 */
1030int try_to_del_timer_sync(struct timer_list *timer)
1031{
a6fa8e5a 1032 struct tvec_base *base;
fd450b73
ON
1033 unsigned long flags;
1034 int ret = -1;
1035
dc4218bd
CC
1036 debug_assert_init(timer);
1037
fd450b73
ON
1038 base = lock_timer_base(timer, &flags);
1039
ec44bc7a
TG
1040 if (base->running_timer != timer) {
1041 timer_stats_timer_clear_start_info(timer);
1042 ret = detach_if_pending(timer, base, true);
fd450b73 1043 }
fd450b73
ON
1044 spin_unlock_irqrestore(&base->lock, flags);
1045
1046 return ret;
1047}
e19dff1f
DH
1048EXPORT_SYMBOL(try_to_del_timer_sync);
1049
6f1bc451 1050#ifdef CONFIG_SMP
2aae4a10 1051/**
1da177e4
LT
1052 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1053 * @timer: the timer to be deactivated
1054 *
1055 * This function only differs from del_timer() on SMP: besides deactivating
1056 * the timer it also makes sure the handler has finished executing on other
1057 * CPUs.
1058 *
72fd4a35 1059 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1060 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1061 * interrupt contexts unless the timer is an irqsafe one. The caller must
1062 * not hold locks which would prevent completion of the timer's
1063 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1064 * timer is not queued and the handler is not running on any CPU.
1da177e4 1065 *
c5f66e99
TH
1066 * Note: For !irqsafe timers, you must not hold locks that are held in
1067 * interrupt context while calling this function. Even if the lock has
1068 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1069 *
1070 * CPU0 CPU1
1071 * ---- ----
1072 * <SOFTIRQ>
1073 * call_timer_fn();
1074 * base->running_timer = mytimer;
1075 * spin_lock_irq(somelock);
1076 * <IRQ>
1077 * spin_lock(somelock);
1078 * del_timer_sync(mytimer);
1079 * while (base->running_timer == mytimer);
1080 *
1081 * Now del_timer_sync() will never return and never release somelock.
1082 * The interrupt on the other CPU is waiting to grab somelock but
1083 * it has interrupted the softirq that CPU0 is waiting to finish.
1084 *
1da177e4 1085 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1086 */
1087int del_timer_sync(struct timer_list *timer)
1088{
6f2b9b9a 1089#ifdef CONFIG_LOCKDEP
f266a511
PZ
1090 unsigned long flags;
1091
48228f7b
SR
1092 /*
1093 * If lockdep gives a backtrace here, please reference
1094 * the synchronization rules above.
1095 */
7ff20792 1096 local_irq_save(flags);
6f2b9b9a
JB
1097 lock_map_acquire(&timer->lockdep_map);
1098 lock_map_release(&timer->lockdep_map);
7ff20792 1099 local_irq_restore(flags);
6f2b9b9a 1100#endif
466bd303
YZ
1101 /*
1102 * don't use it in hardirq context, because it
1103 * could lead to deadlock.
1104 */
0eeda71b 1105 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
fd450b73
ON
1106 for (;;) {
1107 int ret = try_to_del_timer_sync(timer);
1108 if (ret >= 0)
1109 return ret;
a0009652 1110 cpu_relax();
fd450b73 1111 }
1da177e4 1112}
55c888d6 1113EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1114#endif
1115
a6fa8e5a 1116static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1117{
1118 /* cascade all the timers from tv up one level */
1dabbcec
TG
1119 struct timer_list *timer;
1120 struct hlist_node *tmp;
1121 struct hlist_head tv_list;
3439dd86 1122
1dabbcec 1123 hlist_move_list(tv->vec + index, &tv_list);
1da177e4 1124
1da177e4 1125 /*
3439dd86
P
1126 * We are removing _all_ timers from the list, so we
1127 * don't have to detach them individually.
1da177e4 1128 */
1dabbcec 1129 hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
facbb4a7
TG
1130 /* No accounting, while moving them */
1131 __internal_add_timer(base, timer);
1da177e4 1132 }
1da177e4
LT
1133
1134 return index;
1135}
1136
576da126
TG
1137static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1138 unsigned long data)
1139{
4a2b4b22 1140 int count = preempt_count();
576da126
TG
1141
1142#ifdef CONFIG_LOCKDEP
1143 /*
1144 * It is permissible to free the timer from inside the
1145 * function that is called from it, this we need to take into
1146 * account for lockdep too. To avoid bogus "held lock freed"
1147 * warnings as well as problems when looking into
1148 * timer->lockdep_map, make a copy and use that here.
1149 */
4d82a1de
PZ
1150 struct lockdep_map lockdep_map;
1151
1152 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1153#endif
1154 /*
1155 * Couple the lock chain with the lock chain at
1156 * del_timer_sync() by acquiring the lock_map around the fn()
1157 * call here and in del_timer_sync().
1158 */
1159 lock_map_acquire(&lockdep_map);
1160
1161 trace_timer_expire_entry(timer);
1162 fn(data);
1163 trace_timer_expire_exit(timer);
1164
1165 lock_map_release(&lockdep_map);
1166
4a2b4b22 1167 if (count != preempt_count()) {
802702e0 1168 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
4a2b4b22 1169 fn, count, preempt_count());
802702e0
TG
1170 /*
1171 * Restore the preempt count. That gives us a decent
1172 * chance to survive and extract information. If the
1173 * callback kept a lock held, bad luck, but not worse
1174 * than the BUG() we had.
1175 */
4a2b4b22 1176 preempt_count_set(count);
576da126
TG
1177 }
1178}
1179
2aae4a10
REB
1180#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1181
1182/**
1da177e4
LT
1183 * __run_timers - run all expired timers (if any) on this CPU.
1184 * @base: the timer vector to be processed.
1185 *
1186 * This function cascades all vectors and executes all expired timer
1187 * vectors.
1188 */
a6fa8e5a 1189static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1190{
1191 struct timer_list *timer;
1192
3691c519 1193 spin_lock_irq(&base->lock);
3bb475a3 1194
1da177e4 1195 while (time_after_eq(jiffies, base->timer_jiffies)) {
1dabbcec
TG
1196 struct hlist_head work_list;
1197 struct hlist_head *head = &work_list;
3bb475a3
TG
1198 int index;
1199
1200 if (!base->all_timers) {
1201 base->timer_jiffies = jiffies;
1202 break;
1203 }
1204
1205 index = base->timer_jiffies & TVR_MASK;
626ab0e6 1206
1da177e4
LT
1207 /*
1208 * Cascade timers:
1209 */
1210 if (!index &&
1211 (!cascade(base, &base->tv2, INDEX(0))) &&
1212 (!cascade(base, &base->tv3, INDEX(1))) &&
1213 !cascade(base, &base->tv4, INDEX(2)))
1214 cascade(base, &base->tv5, INDEX(3));
626ab0e6 1215 ++base->timer_jiffies;
1dabbcec
TG
1216 hlist_move_list(base->tv1.vec + index, head);
1217 while (!hlist_empty(head)) {
1da177e4
LT
1218 void (*fn)(unsigned long);
1219 unsigned long data;
c5f66e99 1220 bool irqsafe;
1da177e4 1221
1dabbcec 1222 timer = hlist_entry(head->first, struct timer_list, entry);
6819457d
TG
1223 fn = timer->function;
1224 data = timer->data;
0eeda71b 1225 irqsafe = timer->flags & TIMER_IRQSAFE;
1da177e4 1226
82f67cd9
IM
1227 timer_stats_account_timer(timer);
1228
6f1bc451 1229 base->running_timer = timer;
99d5f3aa 1230 detach_expired_timer(timer, base);
6f2b9b9a 1231
c5f66e99
TH
1232 if (irqsafe) {
1233 spin_unlock(&base->lock);
1234 call_timer_fn(timer, fn, data);
1235 spin_lock(&base->lock);
1236 } else {
1237 spin_unlock_irq(&base->lock);
1238 call_timer_fn(timer, fn, data);
1239 spin_lock_irq(&base->lock);
1240 }
1da177e4
LT
1241 }
1242 }
6f1bc451 1243 base->running_timer = NULL;
3691c519 1244 spin_unlock_irq(&base->lock);
1da177e4
LT
1245}
1246
3451d024 1247#ifdef CONFIG_NO_HZ_COMMON
1da177e4
LT
1248/*
1249 * Find out when the next timer event is due to happen. This
90cba64a
RD
1250 * is used on S/390 to stop all activity when a CPU is idle.
1251 * This function needs to be called with interrupts disabled.
1da177e4 1252 */
a6fa8e5a 1253static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1254{
1cfd6849 1255 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1256 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1257 int index, slot, array, found = 0;
1da177e4 1258 struct timer_list *nte;
a6fa8e5a 1259 struct tvec *varray[4];
1da177e4
LT
1260
1261 /* Look for timer events in tv1. */
1cfd6849 1262 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1263 do {
1dabbcec 1264 hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
0eeda71b 1265 if (nte->flags & TIMER_DEFERRABLE)
6819457d 1266 continue;
6e453a67 1267
1cfd6849 1268 found = 1;
1da177e4 1269 expires = nte->expires;
1cfd6849
TG
1270 /* Look at the cascade bucket(s)? */
1271 if (!index || slot < index)
1272 goto cascade;
1273 return expires;
1da177e4 1274 }
1cfd6849
TG
1275 slot = (slot + 1) & TVR_MASK;
1276 } while (slot != index);
1277
1278cascade:
1279 /* Calculate the next cascade event */
1280 if (index)
1281 timer_jiffies += TVR_SIZE - index;
1282 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1283
1284 /* Check tv2-tv5. */
1285 varray[0] = &base->tv2;
1286 varray[1] = &base->tv3;
1287 varray[2] = &base->tv4;
1288 varray[3] = &base->tv5;
1cfd6849
TG
1289
1290 for (array = 0; array < 4; array++) {
a6fa8e5a 1291 struct tvec *varp = varray[array];
1cfd6849
TG
1292
1293 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1294 do {
1dabbcec 1295 hlist_for_each_entry(nte, varp->vec + slot, entry) {
0eeda71b 1296 if (nte->flags & TIMER_DEFERRABLE)
a0419888
JH
1297 continue;
1298
1cfd6849 1299 found = 1;
1da177e4
LT
1300 if (time_before(nte->expires, expires))
1301 expires = nte->expires;
1cfd6849
TG
1302 }
1303 /*
1304 * Do we still search for the first timer or are
1305 * we looking up the cascade buckets ?
1306 */
1307 if (found) {
1308 /* Look at the cascade bucket(s)? */
1309 if (!index || slot < index)
1310 break;
1311 return expires;
1312 }
1313 slot = (slot + 1) & TVN_MASK;
1314 } while (slot != index);
1315
1316 if (index)
1317 timer_jiffies += TVN_SIZE - index;
1318 timer_jiffies >>= TVN_BITS;
1da177e4 1319 }
1cfd6849
TG
1320 return expires;
1321}
69239749 1322
1cfd6849
TG
1323/*
1324 * Check, if the next hrtimer event is before the next timer wheel
1325 * event:
1326 */
c1ad348b 1327static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1cfd6849 1328{
c1ad348b 1329 u64 nextevt = hrtimer_get_next_event();
0662b713 1330
9501b6cf 1331 /*
c1ad348b
TG
1332 * If high resolution timers are enabled
1333 * hrtimer_get_next_event() returns KTIME_MAX.
9501b6cf 1334 */
c1ad348b
TG
1335 if (expires <= nextevt)
1336 return expires;
eaad084b
TG
1337
1338 /*
c1ad348b
TG
1339 * If the next timer is already expired, return the tick base
1340 * time so the tick is fired immediately.
eaad084b 1341 */
c1ad348b
TG
1342 if (nextevt <= basem)
1343 return basem;
eaad084b 1344
9501b6cf 1345 /*
c1ad348b
TG
1346 * Round up to the next jiffie. High resolution timers are
1347 * off, so the hrtimers are expired in the tick and we need to
1348 * make sure that this tick really expires the timer to avoid
1349 * a ping pong of the nohz stop code.
1350 *
1351 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
9501b6cf 1352 */
c1ad348b 1353 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1da177e4 1354}
1cfd6849
TG
1355
1356/**
c1ad348b
TG
1357 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1358 * @basej: base time jiffies
1359 * @basem: base time clock monotonic
1360 *
1361 * Returns the tick aligned clock monotonic time of the next pending
1362 * timer or KTIME_MAX if no timer is pending.
1cfd6849 1363 */
c1ad348b 1364u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1cfd6849 1365{
0eeda71b 1366 struct tvec_base *base = this_cpu_ptr(&tvec_bases);
c1ad348b
TG
1367 u64 expires = KTIME_MAX;
1368 unsigned long nextevt;
1cfd6849 1369
dbd87b5a
HC
1370 /*
1371 * Pretend that there is no timer pending if the cpu is offline.
1372 * Possible pending timers will be migrated later to an active cpu.
1373 */
1374 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1375 return expires;
1376
1cfd6849 1377 spin_lock(&base->lock);
e40468a5
TG
1378 if (base->active_timers) {
1379 if (time_before_eq(base->next_timer, base->timer_jiffies))
1380 base->next_timer = __next_timer_interrupt(base);
c1ad348b
TG
1381 nextevt = base->next_timer;
1382 if (time_before_eq(nextevt, basej))
1383 expires = basem;
1384 else
1385 expires = basem + (nextevt - basej) * TICK_NSEC;
e40468a5 1386 }
1cfd6849
TG
1387 spin_unlock(&base->lock);
1388
c1ad348b 1389 return cmp_next_hrtimer_event(basem, expires);
1cfd6849 1390}
1da177e4
LT
1391#endif
1392
1da177e4 1393/*
5b4db0c2 1394 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1395 * process. user_tick is 1 if the tick is user time, 0 for system.
1396 */
1397void update_process_times(int user_tick)
1398{
1399 struct task_struct *p = current;
1da177e4
LT
1400
1401 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1402 account_process_tick(p, user_tick);
1da177e4 1403 run_local_timers();
c3377c2d 1404 rcu_check_callbacks(user_tick);
e360adbe
PZ
1405#ifdef CONFIG_IRQ_WORK
1406 if (in_irq())
76a33061 1407 irq_work_tick();
e360adbe 1408#endif
1da177e4 1409 scheduler_tick();
6819457d 1410 run_posix_cpu_timers(p);
1da177e4
LT
1411}
1412
1da177e4
LT
1413/*
1414 * This function runs timers and the timer-tq in bottom half context.
1415 */
1416static void run_timer_softirq(struct softirq_action *h)
1417{
0eeda71b 1418 struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1da177e4
LT
1419
1420 if (time_after_eq(jiffies, base->timer_jiffies))
1421 __run_timers(base);
1422}
1423
1424/*
1425 * Called by the local, per-CPU timer interrupt on SMP.
1426 */
1427void run_local_timers(void)
1428{
d3d74453 1429 hrtimer_run_queues();
1da177e4
LT
1430 raise_softirq(TIMER_SOFTIRQ);
1431}
1432
1da177e4
LT
1433#ifdef __ARCH_WANT_SYS_ALARM
1434
1435/*
1436 * For backwards compatibility? This can be done in libc so Alpha
1437 * and all newer ports shouldn't need it.
1438 */
58fd3aa2 1439SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1440{
c08b8a49 1441 return alarm_setitimer(seconds);
1da177e4
LT
1442}
1443
1444#endif
1445
1da177e4
LT
1446static void process_timeout(unsigned long __data)
1447{
36c8b586 1448 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1449}
1450
1451/**
1452 * schedule_timeout - sleep until timeout
1453 * @timeout: timeout value in jiffies
1454 *
1455 * Make the current task sleep until @timeout jiffies have
1456 * elapsed. The routine will return immediately unless
1457 * the current task state has been set (see set_current_state()).
1458 *
1459 * You can set the task state as follows -
1460 *
1461 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1462 * pass before the routine returns. The routine will return 0
1463 *
1464 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1465 * delivered to the current task. In this case the remaining time
1466 * in jiffies will be returned, or 0 if the timer expired in time
1467 *
1468 * The current task state is guaranteed to be TASK_RUNNING when this
1469 * routine returns.
1470 *
1471 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1472 * the CPU away without a bound on the timeout. In this case the return
1473 * value will be %MAX_SCHEDULE_TIMEOUT.
1474 *
1475 * In all cases the return value is guaranteed to be non-negative.
1476 */
7ad5b3a5 1477signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1478{
1479 struct timer_list timer;
1480 unsigned long expire;
1481
1482 switch (timeout)
1483 {
1484 case MAX_SCHEDULE_TIMEOUT:
1485 /*
1486 * These two special cases are useful to be comfortable
1487 * in the caller. Nothing more. We could take
1488 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1489 * but I' d like to return a valid offset (>=0) to allow
1490 * the caller to do everything it want with the retval.
1491 */
1492 schedule();
1493 goto out;
1494 default:
1495 /*
1496 * Another bit of PARANOID. Note that the retval will be
1497 * 0 since no piece of kernel is supposed to do a check
1498 * for a negative retval of schedule_timeout() (since it
1499 * should never happens anyway). You just have the printk()
1500 * that will tell you if something is gone wrong and where.
1501 */
5b149bcc 1502 if (timeout < 0) {
1da177e4 1503 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1504 "value %lx\n", timeout);
1505 dump_stack();
1da177e4
LT
1506 current->state = TASK_RUNNING;
1507 goto out;
1508 }
1509 }
1510
1511 expire = timeout + jiffies;
1512
c6f3a97f 1513 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1514 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1515 schedule();
1516 del_singleshot_timer_sync(&timer);
1517
c6f3a97f
TG
1518 /* Remove the timer from the object tracker */
1519 destroy_timer_on_stack(&timer);
1520
1da177e4
LT
1521 timeout = expire - jiffies;
1522
1523 out:
1524 return timeout < 0 ? 0 : timeout;
1525}
1da177e4
LT
1526EXPORT_SYMBOL(schedule_timeout);
1527
8a1c1757
AM
1528/*
1529 * We can use __set_current_state() here because schedule_timeout() calls
1530 * schedule() unconditionally.
1531 */
64ed93a2
NA
1532signed long __sched schedule_timeout_interruptible(signed long timeout)
1533{
a5a0d52c
AM
1534 __set_current_state(TASK_INTERRUPTIBLE);
1535 return schedule_timeout(timeout);
64ed93a2
NA
1536}
1537EXPORT_SYMBOL(schedule_timeout_interruptible);
1538
294d5cc2
MW
1539signed long __sched schedule_timeout_killable(signed long timeout)
1540{
1541 __set_current_state(TASK_KILLABLE);
1542 return schedule_timeout(timeout);
1543}
1544EXPORT_SYMBOL(schedule_timeout_killable);
1545
64ed93a2
NA
1546signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1547{
a5a0d52c
AM
1548 __set_current_state(TASK_UNINTERRUPTIBLE);
1549 return schedule_timeout(timeout);
64ed93a2
NA
1550}
1551EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1552
1da177e4 1553#ifdef CONFIG_HOTPLUG_CPU
1dabbcec 1554static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
1da177e4
LT
1555{
1556 struct timer_list *timer;
0eeda71b 1557 int cpu = new_base->cpu;
1da177e4 1558
1dabbcec
TG
1559 while (!hlist_empty(head)) {
1560 timer = hlist_entry(head->first, struct timer_list, entry);
99d5f3aa 1561 /* We ignore the accounting on the dying cpu */
ec44bc7a 1562 detach_timer(timer, false);
0eeda71b 1563 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1da177e4 1564 internal_add_timer(new_base, timer);
1da177e4 1565 }
1da177e4
LT
1566}
1567
0db0628d 1568static void migrate_timers(int cpu)
1da177e4 1569{
a6fa8e5a
PM
1570 struct tvec_base *old_base;
1571 struct tvec_base *new_base;
1da177e4
LT
1572 int i;
1573
1574 BUG_ON(cpu_online(cpu));
0eeda71b 1575 old_base = per_cpu_ptr(&tvec_bases, cpu);
24bfcb10 1576 new_base = get_cpu_ptr(&tvec_bases);
d82f0b0f
ON
1577 /*
1578 * The caller is globally serialized and nobody else
1579 * takes two locks at once, deadlock is not possible.
1580 */
1581 spin_lock_irq(&new_base->lock);
0d180406 1582 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1583
1584 BUG_ON(old_base->running_timer);
1da177e4 1585
1da177e4 1586 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1587 migrate_timer_list(new_base, old_base->tv1.vec + i);
1588 for (i = 0; i < TVN_SIZE; i++) {
1589 migrate_timer_list(new_base, old_base->tv2.vec + i);
1590 migrate_timer_list(new_base, old_base->tv3.vec + i);
1591 migrate_timer_list(new_base, old_base->tv4.vec + i);
1592 migrate_timer_list(new_base, old_base->tv5.vec + i);
1593 }
1594
8def9060
VK
1595 old_base->active_timers = 0;
1596 old_base->all_timers = 0;
1597
0d180406 1598 spin_unlock(&old_base->lock);
d82f0b0f 1599 spin_unlock_irq(&new_base->lock);
24bfcb10 1600 put_cpu_ptr(&tvec_bases);
1da177e4 1601}
1da177e4 1602
0db0628d 1603static int timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1604 unsigned long action, void *hcpu)
1605{
8def9060 1606 switch (action) {
1da177e4 1607 case CPU_DEAD:
8bb78442 1608 case CPU_DEAD_FROZEN:
8def9060 1609 migrate_timers((long)hcpu);
1da177e4 1610 break;
1da177e4
LT
1611 default:
1612 break;
1613 }
3650b57f 1614
1da177e4
LT
1615 return NOTIFY_OK;
1616}
1617
3650b57f
PZ
1618static inline void timer_register_cpu_notifier(void)
1619{
1620 cpu_notifier(timer_cpu_notify, 0);
1621}
1622#else
1623static inline void timer_register_cpu_notifier(void) { }
1624#endif /* CONFIG_HOTPLUG_CPU */
1da177e4 1625
0eeda71b 1626static void __init init_timer_cpu(int cpu)
8def9060 1627{
0eeda71b 1628 struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
3650b57f 1629
8def9060 1630 base->cpu = cpu;
8def9060
VK
1631 spin_lock_init(&base->lock);
1632
8def9060
VK
1633 base->timer_jiffies = jiffies;
1634 base->next_timer = base->timer_jiffies;
1635}
1636
1637static void __init init_timer_cpus(void)
1da177e4 1638{
8def9060
VK
1639 int cpu;
1640
0eeda71b
TG
1641 for_each_possible_cpu(cpu)
1642 init_timer_cpu(cpu);
8def9060 1643}
e52b1db3 1644
8def9060
VK
1645void __init init_timers(void)
1646{
8def9060 1647 init_timer_cpus();
c24a4a36 1648 init_timer_stats();
3650b57f 1649 timer_register_cpu_notifier();
962cf36c 1650 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1651}
1652
1da177e4
LT
1653/**
1654 * msleep - sleep safely even with waitqueue interruptions
1655 * @msecs: Time in milliseconds to sleep for
1656 */
1657void msleep(unsigned int msecs)
1658{
1659 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1660
75bcc8c5
NA
1661 while (timeout)
1662 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1663}
1664
1665EXPORT_SYMBOL(msleep);
1666
1667/**
96ec3efd 1668 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1669 * @msecs: Time in milliseconds to sleep for
1670 */
1671unsigned long msleep_interruptible(unsigned int msecs)
1672{
1673 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1674
75bcc8c5
NA
1675 while (timeout && !signal_pending(current))
1676 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1677 return jiffies_to_msecs(timeout);
1678}
1679
1680EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17 1681
6deba083 1682static void __sched do_usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1683{
1684 ktime_t kmin;
1685 unsigned long delta;
1686
1687 kmin = ktime_set(0, min * NSEC_PER_USEC);
1688 delta = (max - min) * NSEC_PER_USEC;
6deba083 1689 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
5e7f5a17
PP
1690}
1691
1692/**
1693 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1694 * @min: Minimum time in usecs to sleep
1695 * @max: Maximum time in usecs to sleep
1696 */
2ad5d327 1697void __sched usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1698{
1699 __set_current_state(TASK_UNINTERRUPTIBLE);
1700 do_usleep_range(min, max);
1701}
1702EXPORT_SYMBOL(usleep_range);