]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/timer.c
timers: Sanitize catchup_timer_jiffies() usage
[mirror_ubuntu-artful-kernel.git] / kernel / time / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4a22f166 4 * Kernel internal timers
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
5a0e3ad6 43#include <linux/slab.h>
1a0df594 44#include <linux/compat.h>
1da177e4
LT
45
46#include <asm/uaccess.h>
47#include <asm/unistd.h>
48#include <asm/div64.h>
49#include <asm/timex.h>
50#include <asm/io.h>
51
c1ad348b
TG
52#include "tick-internal.h"
53
2b022e3d
XG
54#define CREATE_TRACE_POINTS
55#include <trace/events/timer.h>
56
40747ffa 57__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
ecea8d19
TG
58
59EXPORT_SYMBOL(jiffies_64);
60
1da177e4
LT
61/*
62 * per-CPU timer vector definitions:
63 */
1da177e4
LT
64#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
65#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
66#define TVN_SIZE (1 << TVN_BITS)
67#define TVR_SIZE (1 << TVR_BITS)
68#define TVN_MASK (TVN_SIZE - 1)
69#define TVR_MASK (TVR_SIZE - 1)
26cff4e2 70#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
1da177e4 71
a6fa8e5a 72struct tvec {
1da177e4 73 struct list_head vec[TVN_SIZE];
a6fa8e5a 74};
1da177e4 75
a6fa8e5a 76struct tvec_root {
1da177e4 77 struct list_head vec[TVR_SIZE];
a6fa8e5a 78};
1da177e4 79
a6fa8e5a 80struct tvec_base {
3691c519
ON
81 spinlock_t lock;
82 struct timer_list *running_timer;
1da177e4 83 unsigned long timer_jiffies;
97fd9ed4 84 unsigned long next_timer;
99d5f3aa 85 unsigned long active_timers;
fff42158 86 unsigned long all_timers;
d6f93829 87 int cpu;
a6fa8e5a
PM
88 struct tvec_root tv1;
89 struct tvec tv2;
90 struct tvec tv3;
91 struct tvec tv4;
92 struct tvec tv5;
6e453a67 93} ____cacheline_aligned;
1da177e4 94
b337a938
PZ
95/*
96 * __TIMER_INITIALIZER() needs to set ->base to a valid pointer (because we've
97 * made NULL special, hint: lock_timer_base()) and we cannot get a compile time
98 * pointer to per-cpu entries because we don't know where we'll map the section,
99 * even for the boot cpu.
100 *
101 * And so we use boot_tvec_bases for boot CPU and per-cpu __tvec_bases for the
102 * rest of them.
103 */
a6fa8e5a 104struct tvec_base boot_tvec_bases;
3691c519 105EXPORT_SYMBOL(boot_tvec_bases);
b337a938 106
a6fa8e5a 107static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 108
6e453a67 109/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 110static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 111{
e52b1db3 112 return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
6e453a67
VP
113}
114
c5f66e99
TH
115static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
116{
117 return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
118}
119
a6fa8e5a 120static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 121{
e52b1db3 122 return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
6e453a67
VP
123}
124
6e453a67 125static inline void
a6fa8e5a 126timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 127{
e52b1db3
TH
128 unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
129
130 timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
6e453a67
VP
131}
132
9c133c46
AS
133static unsigned long round_jiffies_common(unsigned long j, int cpu,
134 bool force_up)
4c36a5de
AV
135{
136 int rem;
137 unsigned long original = j;
138
139 /*
140 * We don't want all cpus firing their timers at once hitting the
141 * same lock or cachelines, so we skew each extra cpu with an extra
142 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
143 * already did this.
144 * The skew is done by adding 3*cpunr, then round, then subtract this
145 * extra offset again.
146 */
147 j += cpu * 3;
148
149 rem = j % HZ;
150
151 /*
152 * If the target jiffie is just after a whole second (which can happen
153 * due to delays of the timer irq, long irq off times etc etc) then
154 * we should round down to the whole second, not up. Use 1/4th second
155 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 156 * But never round down if @force_up is set.
4c36a5de 157 */
9c133c46 158 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
159 j = j - rem;
160 else /* round up */
161 j = j - rem + HZ;
162
163 /* now that we have rounded, subtract the extra skew again */
164 j -= cpu * 3;
165
9e04d380
BVA
166 /*
167 * Make sure j is still in the future. Otherwise return the
168 * unmodified value.
169 */
170 return time_is_after_jiffies(j) ? j : original;
4c36a5de 171}
9c133c46
AS
172
173/**
174 * __round_jiffies - function to round jiffies to a full second
175 * @j: the time in (absolute) jiffies that should be rounded
176 * @cpu: the processor number on which the timeout will happen
177 *
178 * __round_jiffies() rounds an absolute time in the future (in jiffies)
179 * up or down to (approximately) full seconds. This is useful for timers
180 * for which the exact time they fire does not matter too much, as long as
181 * they fire approximately every X seconds.
182 *
183 * By rounding these timers to whole seconds, all such timers will fire
184 * at the same time, rather than at various times spread out. The goal
185 * of this is to have the CPU wake up less, which saves power.
186 *
187 * The exact rounding is skewed for each processor to avoid all
188 * processors firing at the exact same time, which could lead
189 * to lock contention or spurious cache line bouncing.
190 *
191 * The return value is the rounded version of the @j parameter.
192 */
193unsigned long __round_jiffies(unsigned long j, int cpu)
194{
195 return round_jiffies_common(j, cpu, false);
196}
4c36a5de
AV
197EXPORT_SYMBOL_GPL(__round_jiffies);
198
199/**
200 * __round_jiffies_relative - function to round jiffies to a full second
201 * @j: the time in (relative) jiffies that should be rounded
202 * @cpu: the processor number on which the timeout will happen
203 *
72fd4a35 204 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
205 * up or down to (approximately) full seconds. This is useful for timers
206 * for which the exact time they fire does not matter too much, as long as
207 * they fire approximately every X seconds.
208 *
209 * By rounding these timers to whole seconds, all such timers will fire
210 * at the same time, rather than at various times spread out. The goal
211 * of this is to have the CPU wake up less, which saves power.
212 *
213 * The exact rounding is skewed for each processor to avoid all
214 * processors firing at the exact same time, which could lead
215 * to lock contention or spurious cache line bouncing.
216 *
72fd4a35 217 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
218 */
219unsigned long __round_jiffies_relative(unsigned long j, int cpu)
220{
9c133c46
AS
221 unsigned long j0 = jiffies;
222
223 /* Use j0 because jiffies might change while we run */
224 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
225}
226EXPORT_SYMBOL_GPL(__round_jiffies_relative);
227
228/**
229 * round_jiffies - function to round jiffies to a full second
230 * @j: the time in (absolute) jiffies that should be rounded
231 *
72fd4a35 232 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
236 *
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
240 *
72fd4a35 241 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
242 */
243unsigned long round_jiffies(unsigned long j)
244{
9c133c46 245 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
246}
247EXPORT_SYMBOL_GPL(round_jiffies);
248
249/**
250 * round_jiffies_relative - function to round jiffies to a full second
251 * @j: the time in (relative) jiffies that should be rounded
252 *
72fd4a35 253 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
254 * up or down to (approximately) full seconds. This is useful for timers
255 * for which the exact time they fire does not matter too much, as long as
256 * they fire approximately every X seconds.
257 *
258 * By rounding these timers to whole seconds, all such timers will fire
259 * at the same time, rather than at various times spread out. The goal
260 * of this is to have the CPU wake up less, which saves power.
261 *
72fd4a35 262 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
263 */
264unsigned long round_jiffies_relative(unsigned long j)
265{
266 return __round_jiffies_relative(j, raw_smp_processor_id());
267}
268EXPORT_SYMBOL_GPL(round_jiffies_relative);
269
9c133c46
AS
270/**
271 * __round_jiffies_up - function to round jiffies up to a full second
272 * @j: the time in (absolute) jiffies that should be rounded
273 * @cpu: the processor number on which the timeout will happen
274 *
275 * This is the same as __round_jiffies() except that it will never
276 * round down. This is useful for timeouts for which the exact time
277 * of firing does not matter too much, as long as they don't fire too
278 * early.
279 */
280unsigned long __round_jiffies_up(unsigned long j, int cpu)
281{
282 return round_jiffies_common(j, cpu, true);
283}
284EXPORT_SYMBOL_GPL(__round_jiffies_up);
285
286/**
287 * __round_jiffies_up_relative - function to round jiffies up to a full second
288 * @j: the time in (relative) jiffies that should be rounded
289 * @cpu: the processor number on which the timeout will happen
290 *
291 * This is the same as __round_jiffies_relative() except that it will never
292 * round down. This is useful for timeouts for which the exact time
293 * of firing does not matter too much, as long as they don't fire too
294 * early.
295 */
296unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
297{
298 unsigned long j0 = jiffies;
299
300 /* Use j0 because jiffies might change while we run */
301 return round_jiffies_common(j + j0, cpu, true) - j0;
302}
303EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
304
305/**
306 * round_jiffies_up - function to round jiffies up to a full second
307 * @j: the time in (absolute) jiffies that should be rounded
308 *
309 * This is the same as round_jiffies() except that it will never
310 * round down. This is useful for timeouts for which the exact time
311 * of firing does not matter too much, as long as they don't fire too
312 * early.
313 */
314unsigned long round_jiffies_up(unsigned long j)
315{
316 return round_jiffies_common(j, raw_smp_processor_id(), true);
317}
318EXPORT_SYMBOL_GPL(round_jiffies_up);
319
320/**
321 * round_jiffies_up_relative - function to round jiffies up to a full second
322 * @j: the time in (relative) jiffies that should be rounded
323 *
324 * This is the same as round_jiffies_relative() except that it will never
325 * round down. This is useful for timeouts for which the exact time
326 * of firing does not matter too much, as long as they don't fire too
327 * early.
328 */
329unsigned long round_jiffies_up_relative(unsigned long j)
330{
331 return __round_jiffies_up_relative(j, raw_smp_processor_id());
332}
333EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
334
3bbb9ec9
AV
335/**
336 * set_timer_slack - set the allowed slack for a timer
0caa6210 337 * @timer: the timer to be modified
3bbb9ec9
AV
338 * @slack_hz: the amount of time (in jiffies) allowed for rounding
339 *
340 * Set the amount of time, in jiffies, that a certain timer has
341 * in terms of slack. By setting this value, the timer subsystem
342 * will schedule the actual timer somewhere between
343 * the time mod_timer() asks for, and that time plus the slack.
344 *
345 * By setting the slack to -1, a percentage of the delay is used
346 * instead.
347 */
348void set_timer_slack(struct timer_list *timer, int slack_hz)
349{
350 timer->slack = slack_hz;
351}
352EXPORT_SYMBOL_GPL(set_timer_slack);
353
facbb4a7
TG
354static void
355__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
356{
357 unsigned long expires = timer->expires;
358 unsigned long idx = expires - base->timer_jiffies;
359 struct list_head *vec;
360
361 if (idx < TVR_SIZE) {
362 int i = expires & TVR_MASK;
363 vec = base->tv1.vec + i;
364 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
365 int i = (expires >> TVR_BITS) & TVN_MASK;
366 vec = base->tv2.vec + i;
367 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
368 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
369 vec = base->tv3.vec + i;
370 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
371 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
372 vec = base->tv4.vec + i;
373 } else if ((signed long) idx < 0) {
374 /*
375 * Can happen if you add a timer with expires == jiffies,
376 * or you set a timer to go off in the past
377 */
378 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
379 } else {
380 int i;
26cff4e2
HC
381 /* If the timeout is larger than MAX_TVAL (on 64-bit
382 * architectures or with CONFIG_BASE_SMALL=1) then we
383 * use the maximum timeout.
1da177e4 384 */
26cff4e2
HC
385 if (idx > MAX_TVAL) {
386 idx = MAX_TVAL;
1da177e4
LT
387 expires = idx + base->timer_jiffies;
388 }
389 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
390 vec = base->tv5.vec + i;
391 }
392 /*
393 * Timers are FIFO:
394 */
395 list_add_tail(&timer->entry, vec);
396}
397
facbb4a7
TG
398static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
399{
3bb475a3
TG
400 /* Advance base->jiffies, if the base is empty */
401 if (!base->all_timers++)
402 base->timer_jiffies = jiffies;
403
facbb4a7
TG
404 __internal_add_timer(base, timer);
405 /*
99d5f3aa 406 * Update base->active_timers and base->next_timer
facbb4a7 407 */
99d5f3aa 408 if (!tbase_get_deferrable(timer->base)) {
aea369b9
ON
409 if (!base->active_timers++ ||
410 time_before(timer->expires, base->next_timer))
99d5f3aa 411 base->next_timer = timer->expires;
99d5f3aa 412 }
9f6d9baa
VK
413
414 /*
415 * Check whether the other CPU is in dynticks mode and needs
416 * to be triggered to reevaluate the timer wheel.
417 * We are protected against the other CPU fiddling
418 * with the timer by holding the timer base lock. This also
419 * makes sure that a CPU on the way to stop its tick can not
420 * evaluate the timer wheel.
421 *
422 * Spare the IPI for deferrable timers on idle targets though.
423 * The next busy ticks will take care of it. Except full dynticks
424 * require special care against races with idle_cpu(), lets deal
425 * with that later.
426 */
781978e6 427 if (!tbase_get_deferrable(timer->base) || tick_nohz_full_cpu(base->cpu))
9f6d9baa 428 wake_up_nohz_cpu(base->cpu);
facbb4a7
TG
429}
430
82f67cd9
IM
431#ifdef CONFIG_TIMER_STATS
432void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
433{
434 if (timer->start_site)
435 return;
436
437 timer->start_site = addr;
438 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
439 timer->start_pid = current->pid;
440}
c5c061b8
VP
441
442static void timer_stats_account_timer(struct timer_list *timer)
443{
444 unsigned int flag = 0;
445
507e1231
HC
446 if (likely(!timer->start_site))
447 return;
c5c061b8
VP
448 if (unlikely(tbase_get_deferrable(timer->base)))
449 flag |= TIMER_STATS_FLAG_DEFERRABLE;
450
451 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
452 timer->function, timer->start_comm, flag);
453}
454
455#else
456static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
457#endif
458
c6f3a97f
TG
459#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
460
461static struct debug_obj_descr timer_debug_descr;
462
99777288
SG
463static void *timer_debug_hint(void *addr)
464{
465 return ((struct timer_list *) addr)->function;
466}
467
c6f3a97f
TG
468/*
469 * fixup_init is called when:
470 * - an active object is initialized
55c888d6 471 */
c6f3a97f
TG
472static int timer_fixup_init(void *addr, enum debug_obj_state state)
473{
474 struct timer_list *timer = addr;
475
476 switch (state) {
477 case ODEBUG_STATE_ACTIVE:
478 del_timer_sync(timer);
479 debug_object_init(timer, &timer_debug_descr);
480 return 1;
481 default:
482 return 0;
483 }
484}
485
fb16b8cf
SB
486/* Stub timer callback for improperly used timers. */
487static void stub_timer(unsigned long data)
488{
489 WARN_ON(1);
490}
491
c6f3a97f
TG
492/*
493 * fixup_activate is called when:
494 * - an active object is activated
495 * - an unknown object is activated (might be a statically initialized object)
496 */
497static int timer_fixup_activate(void *addr, enum debug_obj_state state)
498{
499 struct timer_list *timer = addr;
500
501 switch (state) {
502
503 case ODEBUG_STATE_NOTAVAILABLE:
504 /*
505 * This is not really a fixup. The timer was
506 * statically initialized. We just make sure that it
507 * is tracked in the object tracker.
508 */
509 if (timer->entry.next == NULL &&
510 timer->entry.prev == TIMER_ENTRY_STATIC) {
511 debug_object_init(timer, &timer_debug_descr);
512 debug_object_activate(timer, &timer_debug_descr);
513 return 0;
514 } else {
fb16b8cf
SB
515 setup_timer(timer, stub_timer, 0);
516 return 1;
c6f3a97f
TG
517 }
518 return 0;
519
520 case ODEBUG_STATE_ACTIVE:
521 WARN_ON(1);
522
523 default:
524 return 0;
525 }
526}
527
528/*
529 * fixup_free is called when:
530 * - an active object is freed
531 */
532static int timer_fixup_free(void *addr, enum debug_obj_state state)
533{
534 struct timer_list *timer = addr;
535
536 switch (state) {
537 case ODEBUG_STATE_ACTIVE:
538 del_timer_sync(timer);
539 debug_object_free(timer, &timer_debug_descr);
540 return 1;
541 default:
542 return 0;
543 }
544}
545
dc4218bd
CC
546/*
547 * fixup_assert_init is called when:
548 * - an untracked/uninit-ed object is found
549 */
550static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
551{
552 struct timer_list *timer = addr;
553
554 switch (state) {
555 case ODEBUG_STATE_NOTAVAILABLE:
556 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
557 /*
558 * This is not really a fixup. The timer was
559 * statically initialized. We just make sure that it
560 * is tracked in the object tracker.
561 */
562 debug_object_init(timer, &timer_debug_descr);
563 return 0;
564 } else {
565 setup_timer(timer, stub_timer, 0);
566 return 1;
567 }
568 default:
569 return 0;
570 }
571}
572
c6f3a97f 573static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
574 .name = "timer_list",
575 .debug_hint = timer_debug_hint,
576 .fixup_init = timer_fixup_init,
577 .fixup_activate = timer_fixup_activate,
578 .fixup_free = timer_fixup_free,
579 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
580};
581
582static inline void debug_timer_init(struct timer_list *timer)
583{
584 debug_object_init(timer, &timer_debug_descr);
585}
586
587static inline void debug_timer_activate(struct timer_list *timer)
588{
589 debug_object_activate(timer, &timer_debug_descr);
590}
591
592static inline void debug_timer_deactivate(struct timer_list *timer)
593{
594 debug_object_deactivate(timer, &timer_debug_descr);
595}
596
597static inline void debug_timer_free(struct timer_list *timer)
598{
599 debug_object_free(timer, &timer_debug_descr);
600}
601
dc4218bd
CC
602static inline void debug_timer_assert_init(struct timer_list *timer)
603{
604 debug_object_assert_init(timer, &timer_debug_descr);
605}
606
fc683995
TH
607static void do_init_timer(struct timer_list *timer, unsigned int flags,
608 const char *name, struct lock_class_key *key);
c6f3a97f 609
fc683995
TH
610void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
611 const char *name, struct lock_class_key *key)
c6f3a97f
TG
612{
613 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 614 do_init_timer(timer, flags, name, key);
c6f3a97f 615}
6f2b9b9a 616EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
617
618void destroy_timer_on_stack(struct timer_list *timer)
619{
620 debug_object_free(timer, &timer_debug_descr);
621}
622EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
623
624#else
625static inline void debug_timer_init(struct timer_list *timer) { }
626static inline void debug_timer_activate(struct timer_list *timer) { }
627static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 628static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
629#endif
630
2b022e3d
XG
631static inline void debug_init(struct timer_list *timer)
632{
633 debug_timer_init(timer);
634 trace_timer_init(timer);
635}
636
637static inline void
638debug_activate(struct timer_list *timer, unsigned long expires)
639{
640 debug_timer_activate(timer);
4e413e85 641 trace_timer_start(timer, expires, tbase_get_deferrable(timer->base));
2b022e3d
XG
642}
643
644static inline void debug_deactivate(struct timer_list *timer)
645{
646 debug_timer_deactivate(timer);
647 trace_timer_cancel(timer);
648}
649
dc4218bd
CC
650static inline void debug_assert_init(struct timer_list *timer)
651{
652 debug_timer_assert_init(timer);
653}
654
fc683995
TH
655static void do_init_timer(struct timer_list *timer, unsigned int flags,
656 const char *name, struct lock_class_key *key)
55c888d6 657{
22127e93 658 struct tvec_base *base = raw_cpu_read(tvec_bases);
fc683995 659
55c888d6 660 timer->entry.next = NULL;
fc683995 661 timer->base = (void *)((unsigned long)base | flags);
3bbb9ec9 662 timer->slack = -1;
82f67cd9
IM
663#ifdef CONFIG_TIMER_STATS
664 timer->start_site = NULL;
665 timer->start_pid = -1;
666 memset(timer->start_comm, 0, TASK_COMM_LEN);
667#endif
6f2b9b9a 668 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 669}
c6f3a97f
TG
670
671/**
633fe795 672 * init_timer_key - initialize a timer
c6f3a97f 673 * @timer: the timer to be initialized
fc683995 674 * @flags: timer flags
633fe795
RD
675 * @name: name of the timer
676 * @key: lockdep class key of the fake lock used for tracking timer
677 * sync lock dependencies
c6f3a97f 678 *
633fe795 679 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
680 * other timer functions.
681 */
fc683995
TH
682void init_timer_key(struct timer_list *timer, unsigned int flags,
683 const char *name, struct lock_class_key *key)
c6f3a97f 684{
2b022e3d 685 debug_init(timer);
fc683995 686 do_init_timer(timer, flags, name, key);
c6f3a97f 687}
6f2b9b9a 688EXPORT_SYMBOL(init_timer_key);
55c888d6 689
ec44bc7a 690static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6
ON
691{
692 struct list_head *entry = &timer->entry;
693
2b022e3d 694 debug_deactivate(timer);
c6f3a97f 695
55c888d6
ON
696 __list_del(entry->prev, entry->next);
697 if (clear_pending)
698 entry->next = NULL;
699 entry->prev = LIST_POISON2;
700}
701
99d5f3aa
TG
702static inline void
703detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
704{
705 detach_timer(timer, true);
706 if (!tbase_get_deferrable(timer->base))
e52b1db3 707 base->active_timers--;
fff42158 708 base->all_timers--;
99d5f3aa
TG
709}
710
ec44bc7a
TG
711static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
712 bool clear_pending)
713{
714 if (!timer_pending(timer))
715 return 0;
716
717 detach_timer(timer, clear_pending);
99d5f3aa 718 if (!tbase_get_deferrable(timer->base)) {
e52b1db3 719 base->active_timers--;
99d5f3aa
TG
720 if (timer->expires == base->next_timer)
721 base->next_timer = base->timer_jiffies;
722 }
3bb475a3
TG
723 /* If this was the last timer, advance base->jiffies */
724 if (!--base->all_timers)
725 base->timer_jiffies = jiffies;
ec44bc7a
TG
726 return 1;
727}
728
55c888d6 729/*
3691c519 730 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
731 * means that all timers which are tied to this base via timer->base are
732 * locked, and the base itself is locked too.
733 *
734 * So __run_timers/migrate_timers can safely modify all timers which could
735 * be found on ->tvX lists.
736 *
737 * When the timer's base is locked, and the timer removed from list, it is
738 * possible to set timer->base = NULL and drop the lock: the timer remains
739 * locked.
740 */
a6fa8e5a 741static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 742 unsigned long *flags)
89e7e374 743 __acquires(timer->base->lock)
55c888d6 744{
a6fa8e5a 745 struct tvec_base *base;
55c888d6
ON
746
747 for (;;) {
a6fa8e5a 748 struct tvec_base *prelock_base = timer->base;
6e453a67 749 base = tbase_get_base(prelock_base);
55c888d6
ON
750 if (likely(base != NULL)) {
751 spin_lock_irqsave(&base->lock, *flags);
6e453a67 752 if (likely(prelock_base == timer->base))
55c888d6
ON
753 return base;
754 /* The timer has migrated to another CPU */
755 spin_unlock_irqrestore(&base->lock, *flags);
756 }
757 cpu_relax();
758 }
759}
760
74019224 761static inline int
597d0275
AB
762__mod_timer(struct timer_list *timer, unsigned long expires,
763 bool pending_only, int pinned)
1da177e4 764{
a6fa8e5a 765 struct tvec_base *base, *new_base;
1da177e4 766 unsigned long flags;
eea08f32 767 int ret = 0 , cpu;
1da177e4 768
82f67cd9 769 timer_stats_timer_set_start_info(timer);
1da177e4 770 BUG_ON(!timer->function);
1da177e4 771
55c888d6
ON
772 base = lock_timer_base(timer, &flags);
773
ec44bc7a
TG
774 ret = detach_if_pending(timer, base, false);
775 if (!ret && pending_only)
776 goto out_unlock;
55c888d6 777
2b022e3d 778 debug_activate(timer, expires);
c6f3a97f 779
6201b4d6 780 cpu = get_nohz_timer_target(pinned);
eea08f32
AB
781 new_base = per_cpu(tvec_bases, cpu);
782
3691c519 783 if (base != new_base) {
1da177e4 784 /*
55c888d6
ON
785 * We are trying to schedule the timer on the local CPU.
786 * However we can't change timer's base while it is running,
787 * otherwise del_timer_sync() can't detect that the timer's
788 * handler yet has not finished. This also guarantees that
789 * the timer is serialized wrt itself.
1da177e4 790 */
a2c348fe 791 if (likely(base->running_timer != timer)) {
55c888d6 792 /* See the comment in lock_timer_base() */
6e453a67 793 timer_set_base(timer, NULL);
55c888d6 794 spin_unlock(&base->lock);
a2c348fe
ON
795 base = new_base;
796 spin_lock(&base->lock);
6e453a67 797 timer_set_base(timer, base);
1da177e4
LT
798 }
799 }
800
1da177e4 801 timer->expires = expires;
a2c348fe 802 internal_add_timer(base, timer);
74019224
IM
803
804out_unlock:
a2c348fe 805 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
806
807 return ret;
808}
809
2aae4a10 810/**
74019224
IM
811 * mod_timer_pending - modify a pending timer's timeout
812 * @timer: the pending timer to be modified
813 * @expires: new timeout in jiffies
1da177e4 814 *
74019224
IM
815 * mod_timer_pending() is the same for pending timers as mod_timer(),
816 * but will not re-activate and modify already deleted timers.
817 *
818 * It is useful for unserialized use of timers.
1da177e4 819 */
74019224 820int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 821{
597d0275 822 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 823}
74019224 824EXPORT_SYMBOL(mod_timer_pending);
1da177e4 825
3bbb9ec9
AV
826/*
827 * Decide where to put the timer while taking the slack into account
828 *
829 * Algorithm:
830 * 1) calculate the maximum (absolute) time
831 * 2) calculate the highest bit where the expires and new max are different
832 * 3) use this bit to make a mask
833 * 4) use the bitmask to round down the maximum time, so that all last
834 * bits are zeros
835 */
836static inline
837unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
838{
839 unsigned long expires_limit, mask;
840 int bit;
841
8e63d779 842 if (timer->slack >= 0) {
f00e047e 843 expires_limit = expires + timer->slack;
8e63d779 844 } else {
1c3cc116
SAS
845 long delta = expires - jiffies;
846
847 if (delta < 256)
848 return expires;
3bbb9ec9 849
1c3cc116 850 expires_limit = expires + delta / 256;
8e63d779 851 }
3bbb9ec9 852 mask = expires ^ expires_limit;
3bbb9ec9
AV
853 if (mask == 0)
854 return expires;
855
856 bit = find_last_bit(&mask, BITS_PER_LONG);
857
98a01e77 858 mask = (1UL << bit) - 1;
3bbb9ec9
AV
859
860 expires_limit = expires_limit & ~(mask);
861
862 return expires_limit;
863}
864
2aae4a10 865/**
1da177e4
LT
866 * mod_timer - modify a timer's timeout
867 * @timer: the timer to be modified
2aae4a10 868 * @expires: new timeout in jiffies
1da177e4 869 *
72fd4a35 870 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
871 * active timer (if the timer is inactive it will be activated)
872 *
873 * mod_timer(timer, expires) is equivalent to:
874 *
875 * del_timer(timer); timer->expires = expires; add_timer(timer);
876 *
877 * Note that if there are multiple unserialized concurrent users of the
878 * same timer, then mod_timer() is the only safe way to modify the timeout,
879 * since add_timer() cannot modify an already running timer.
880 *
881 * The function returns whether it has modified a pending timer or not.
882 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
883 * active timer returns 1.)
884 */
885int mod_timer(struct timer_list *timer, unsigned long expires)
886{
1c3cc116
SAS
887 expires = apply_slack(timer, expires);
888
1da177e4
LT
889 /*
890 * This is a common optimization triggered by the
891 * networking code - if the timer is re-modified
892 * to be the same thing then just return:
893 */
4841158b 894 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
895 return 1;
896
597d0275 897 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 898}
1da177e4
LT
899EXPORT_SYMBOL(mod_timer);
900
597d0275
AB
901/**
902 * mod_timer_pinned - modify a timer's timeout
903 * @timer: the timer to be modified
904 * @expires: new timeout in jiffies
905 *
906 * mod_timer_pinned() is a way to update the expire field of an
907 * active timer (if the timer is inactive it will be activated)
048a0e8f
PM
908 * and to ensure that the timer is scheduled on the current CPU.
909 *
910 * Note that this does not prevent the timer from being migrated
911 * when the current CPU goes offline. If this is a problem for
912 * you, use CPU-hotplug notifiers to handle it correctly, for
913 * example, cancelling the timer when the corresponding CPU goes
914 * offline.
597d0275
AB
915 *
916 * mod_timer_pinned(timer, expires) is equivalent to:
917 *
918 * del_timer(timer); timer->expires = expires; add_timer(timer);
919 */
920int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
921{
922 if (timer->expires == expires && timer_pending(timer))
923 return 1;
924
925 return __mod_timer(timer, expires, false, TIMER_PINNED);
926}
927EXPORT_SYMBOL(mod_timer_pinned);
928
74019224
IM
929/**
930 * add_timer - start a timer
931 * @timer: the timer to be added
932 *
933 * The kernel will do a ->function(->data) callback from the
934 * timer interrupt at the ->expires point in the future. The
935 * current time is 'jiffies'.
936 *
937 * The timer's ->expires, ->function (and if the handler uses it, ->data)
938 * fields must be set prior calling this function.
939 *
940 * Timers with an ->expires field in the past will be executed in the next
941 * timer tick.
942 */
943void add_timer(struct timer_list *timer)
944{
945 BUG_ON(timer_pending(timer));
946 mod_timer(timer, timer->expires);
947}
948EXPORT_SYMBOL(add_timer);
949
950/**
951 * add_timer_on - start a timer on a particular CPU
952 * @timer: the timer to be added
953 * @cpu: the CPU to start it on
954 *
955 * This is not very scalable on SMP. Double adds are not possible.
956 */
957void add_timer_on(struct timer_list *timer, int cpu)
958{
959 struct tvec_base *base = per_cpu(tvec_bases, cpu);
960 unsigned long flags;
961
962 timer_stats_timer_set_start_info(timer);
963 BUG_ON(timer_pending(timer) || !timer->function);
964 spin_lock_irqsave(&base->lock, flags);
965 timer_set_base(timer, base);
2b022e3d 966 debug_activate(timer, timer->expires);
74019224 967 internal_add_timer(base, timer);
74019224
IM
968 spin_unlock_irqrestore(&base->lock, flags);
969}
a9862e05 970EXPORT_SYMBOL_GPL(add_timer_on);
74019224 971
2aae4a10 972/**
1da177e4
LT
973 * del_timer - deactive a timer.
974 * @timer: the timer to be deactivated
975 *
976 * del_timer() deactivates a timer - this works on both active and inactive
977 * timers.
978 *
979 * The function returns whether it has deactivated a pending timer or not.
980 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
981 * active timer returns 1.)
982 */
983int del_timer(struct timer_list *timer)
984{
a6fa8e5a 985 struct tvec_base *base;
1da177e4 986 unsigned long flags;
55c888d6 987 int ret = 0;
1da177e4 988
dc4218bd
CC
989 debug_assert_init(timer);
990
82f67cd9 991 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
992 if (timer_pending(timer)) {
993 base = lock_timer_base(timer, &flags);
ec44bc7a 994 ret = detach_if_pending(timer, base, true);
1da177e4 995 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 996 }
1da177e4 997
55c888d6 998 return ret;
1da177e4 999}
1da177e4
LT
1000EXPORT_SYMBOL(del_timer);
1001
2aae4a10
REB
1002/**
1003 * try_to_del_timer_sync - Try to deactivate a timer
1004 * @timer: timer do del
1005 *
fd450b73
ON
1006 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1007 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1008 */
1009int try_to_del_timer_sync(struct timer_list *timer)
1010{
a6fa8e5a 1011 struct tvec_base *base;
fd450b73
ON
1012 unsigned long flags;
1013 int ret = -1;
1014
dc4218bd
CC
1015 debug_assert_init(timer);
1016
fd450b73
ON
1017 base = lock_timer_base(timer, &flags);
1018
ec44bc7a
TG
1019 if (base->running_timer != timer) {
1020 timer_stats_timer_clear_start_info(timer);
1021 ret = detach_if_pending(timer, base, true);
fd450b73 1022 }
fd450b73
ON
1023 spin_unlock_irqrestore(&base->lock, flags);
1024
1025 return ret;
1026}
e19dff1f
DH
1027EXPORT_SYMBOL(try_to_del_timer_sync);
1028
6f1bc451 1029#ifdef CONFIG_SMP
3650b57f
PZ
1030static DEFINE_PER_CPU(struct tvec_base, __tvec_bases);
1031
2aae4a10 1032/**
1da177e4
LT
1033 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1034 * @timer: the timer to be deactivated
1035 *
1036 * This function only differs from del_timer() on SMP: besides deactivating
1037 * the timer it also makes sure the handler has finished executing on other
1038 * CPUs.
1039 *
72fd4a35 1040 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1041 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1042 * interrupt contexts unless the timer is an irqsafe one. The caller must
1043 * not hold locks which would prevent completion of the timer's
1044 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1045 * timer is not queued and the handler is not running on any CPU.
1da177e4 1046 *
c5f66e99
TH
1047 * Note: For !irqsafe timers, you must not hold locks that are held in
1048 * interrupt context while calling this function. Even if the lock has
1049 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1050 *
1051 * CPU0 CPU1
1052 * ---- ----
1053 * <SOFTIRQ>
1054 * call_timer_fn();
1055 * base->running_timer = mytimer;
1056 * spin_lock_irq(somelock);
1057 * <IRQ>
1058 * spin_lock(somelock);
1059 * del_timer_sync(mytimer);
1060 * while (base->running_timer == mytimer);
1061 *
1062 * Now del_timer_sync() will never return and never release somelock.
1063 * The interrupt on the other CPU is waiting to grab somelock but
1064 * it has interrupted the softirq that CPU0 is waiting to finish.
1065 *
1da177e4 1066 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1067 */
1068int del_timer_sync(struct timer_list *timer)
1069{
6f2b9b9a 1070#ifdef CONFIG_LOCKDEP
f266a511
PZ
1071 unsigned long flags;
1072
48228f7b
SR
1073 /*
1074 * If lockdep gives a backtrace here, please reference
1075 * the synchronization rules above.
1076 */
7ff20792 1077 local_irq_save(flags);
6f2b9b9a
JB
1078 lock_map_acquire(&timer->lockdep_map);
1079 lock_map_release(&timer->lockdep_map);
7ff20792 1080 local_irq_restore(flags);
6f2b9b9a 1081#endif
466bd303
YZ
1082 /*
1083 * don't use it in hardirq context, because it
1084 * could lead to deadlock.
1085 */
c5f66e99 1086 WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
fd450b73
ON
1087 for (;;) {
1088 int ret = try_to_del_timer_sync(timer);
1089 if (ret >= 0)
1090 return ret;
a0009652 1091 cpu_relax();
fd450b73 1092 }
1da177e4 1093}
55c888d6 1094EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1095#endif
1096
a6fa8e5a 1097static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1098{
1099 /* cascade all the timers from tv up one level */
3439dd86
P
1100 struct timer_list *timer, *tmp;
1101 struct list_head tv_list;
1102
1103 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1104
1da177e4 1105 /*
3439dd86
P
1106 * We are removing _all_ timers from the list, so we
1107 * don't have to detach them individually.
1da177e4 1108 */
3439dd86 1109 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1110 BUG_ON(tbase_get_base(timer->base) != base);
facbb4a7
TG
1111 /* No accounting, while moving them */
1112 __internal_add_timer(base, timer);
1da177e4 1113 }
1da177e4
LT
1114
1115 return index;
1116}
1117
576da126
TG
1118static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1119 unsigned long data)
1120{
4a2b4b22 1121 int count = preempt_count();
576da126
TG
1122
1123#ifdef CONFIG_LOCKDEP
1124 /*
1125 * It is permissible to free the timer from inside the
1126 * function that is called from it, this we need to take into
1127 * account for lockdep too. To avoid bogus "held lock freed"
1128 * warnings as well as problems when looking into
1129 * timer->lockdep_map, make a copy and use that here.
1130 */
4d82a1de
PZ
1131 struct lockdep_map lockdep_map;
1132
1133 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1134#endif
1135 /*
1136 * Couple the lock chain with the lock chain at
1137 * del_timer_sync() by acquiring the lock_map around the fn()
1138 * call here and in del_timer_sync().
1139 */
1140 lock_map_acquire(&lockdep_map);
1141
1142 trace_timer_expire_entry(timer);
1143 fn(data);
1144 trace_timer_expire_exit(timer);
1145
1146 lock_map_release(&lockdep_map);
1147
4a2b4b22 1148 if (count != preempt_count()) {
802702e0 1149 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
4a2b4b22 1150 fn, count, preempt_count());
802702e0
TG
1151 /*
1152 * Restore the preempt count. That gives us a decent
1153 * chance to survive and extract information. If the
1154 * callback kept a lock held, bad luck, but not worse
1155 * than the BUG() we had.
1156 */
4a2b4b22 1157 preempt_count_set(count);
576da126
TG
1158 }
1159}
1160
2aae4a10
REB
1161#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1162
1163/**
1da177e4
LT
1164 * __run_timers - run all expired timers (if any) on this CPU.
1165 * @base: the timer vector to be processed.
1166 *
1167 * This function cascades all vectors and executes all expired timer
1168 * vectors.
1169 */
a6fa8e5a 1170static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1171{
1172 struct timer_list *timer;
1173
3691c519 1174 spin_lock_irq(&base->lock);
3bb475a3 1175
1da177e4 1176 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1177 struct list_head work_list;
1da177e4 1178 struct list_head *head = &work_list;
3bb475a3
TG
1179 int index;
1180
1181 if (!base->all_timers) {
1182 base->timer_jiffies = jiffies;
1183 break;
1184 }
1185
1186 index = base->timer_jiffies & TVR_MASK;
626ab0e6 1187
1da177e4
LT
1188 /*
1189 * Cascade timers:
1190 */
1191 if (!index &&
1192 (!cascade(base, &base->tv2, INDEX(0))) &&
1193 (!cascade(base, &base->tv3, INDEX(1))) &&
1194 !cascade(base, &base->tv4, INDEX(2)))
1195 cascade(base, &base->tv5, INDEX(3));
626ab0e6 1196 ++base->timer_jiffies;
c41eba7d 1197 list_replace_init(base->tv1.vec + index, head);
55c888d6 1198 while (!list_empty(head)) {
1da177e4
LT
1199 void (*fn)(unsigned long);
1200 unsigned long data;
c5f66e99 1201 bool irqsafe;
1da177e4 1202
b5e61818 1203 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1204 fn = timer->function;
1205 data = timer->data;
c5f66e99 1206 irqsafe = tbase_get_irqsafe(timer->base);
1da177e4 1207
82f67cd9
IM
1208 timer_stats_account_timer(timer);
1209
6f1bc451 1210 base->running_timer = timer;
99d5f3aa 1211 detach_expired_timer(timer, base);
6f2b9b9a 1212
c5f66e99
TH
1213 if (irqsafe) {
1214 spin_unlock(&base->lock);
1215 call_timer_fn(timer, fn, data);
1216 spin_lock(&base->lock);
1217 } else {
1218 spin_unlock_irq(&base->lock);
1219 call_timer_fn(timer, fn, data);
1220 spin_lock_irq(&base->lock);
1221 }
1da177e4
LT
1222 }
1223 }
6f1bc451 1224 base->running_timer = NULL;
3691c519 1225 spin_unlock_irq(&base->lock);
1da177e4
LT
1226}
1227
3451d024 1228#ifdef CONFIG_NO_HZ_COMMON
1da177e4
LT
1229/*
1230 * Find out when the next timer event is due to happen. This
90cba64a
RD
1231 * is used on S/390 to stop all activity when a CPU is idle.
1232 * This function needs to be called with interrupts disabled.
1da177e4 1233 */
a6fa8e5a 1234static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1235{
1cfd6849 1236 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1237 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1238 int index, slot, array, found = 0;
1da177e4 1239 struct timer_list *nte;
a6fa8e5a 1240 struct tvec *varray[4];
1da177e4
LT
1241
1242 /* Look for timer events in tv1. */
1cfd6849 1243 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1244 do {
1cfd6849 1245 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1246 if (tbase_get_deferrable(nte->base))
1247 continue;
6e453a67 1248
1cfd6849 1249 found = 1;
1da177e4 1250 expires = nte->expires;
1cfd6849
TG
1251 /* Look at the cascade bucket(s)? */
1252 if (!index || slot < index)
1253 goto cascade;
1254 return expires;
1da177e4 1255 }
1cfd6849
TG
1256 slot = (slot + 1) & TVR_MASK;
1257 } while (slot != index);
1258
1259cascade:
1260 /* Calculate the next cascade event */
1261 if (index)
1262 timer_jiffies += TVR_SIZE - index;
1263 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1264
1265 /* Check tv2-tv5. */
1266 varray[0] = &base->tv2;
1267 varray[1] = &base->tv3;
1268 varray[2] = &base->tv4;
1269 varray[3] = &base->tv5;
1cfd6849
TG
1270
1271 for (array = 0; array < 4; array++) {
a6fa8e5a 1272 struct tvec *varp = varray[array];
1cfd6849
TG
1273
1274 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1275 do {
1cfd6849 1276 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1277 if (tbase_get_deferrable(nte->base))
1278 continue;
1279
1cfd6849 1280 found = 1;
1da177e4
LT
1281 if (time_before(nte->expires, expires))
1282 expires = nte->expires;
1cfd6849
TG
1283 }
1284 /*
1285 * Do we still search for the first timer or are
1286 * we looking up the cascade buckets ?
1287 */
1288 if (found) {
1289 /* Look at the cascade bucket(s)? */
1290 if (!index || slot < index)
1291 break;
1292 return expires;
1293 }
1294 slot = (slot + 1) & TVN_MASK;
1295 } while (slot != index);
1296
1297 if (index)
1298 timer_jiffies += TVN_SIZE - index;
1299 timer_jiffies >>= TVN_BITS;
1da177e4 1300 }
1cfd6849
TG
1301 return expires;
1302}
69239749 1303
1cfd6849
TG
1304/*
1305 * Check, if the next hrtimer event is before the next timer wheel
1306 * event:
1307 */
c1ad348b 1308static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1cfd6849 1309{
c1ad348b 1310 u64 nextevt = hrtimer_get_next_event();
0662b713 1311
9501b6cf 1312 /*
c1ad348b
TG
1313 * If high resolution timers are enabled
1314 * hrtimer_get_next_event() returns KTIME_MAX.
9501b6cf 1315 */
c1ad348b
TG
1316 if (expires <= nextevt)
1317 return expires;
eaad084b
TG
1318
1319 /*
c1ad348b
TG
1320 * If the next timer is already expired, return the tick base
1321 * time so the tick is fired immediately.
eaad084b 1322 */
c1ad348b
TG
1323 if (nextevt <= basem)
1324 return basem;
eaad084b 1325
9501b6cf 1326 /*
c1ad348b
TG
1327 * Round up to the next jiffie. High resolution timers are
1328 * off, so the hrtimers are expired in the tick and we need to
1329 * make sure that this tick really expires the timer to avoid
1330 * a ping pong of the nohz stop code.
1331 *
1332 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
9501b6cf 1333 */
c1ad348b 1334 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1da177e4 1335}
1cfd6849
TG
1336
1337/**
c1ad348b
TG
1338 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1339 * @basej: base time jiffies
1340 * @basem: base time clock monotonic
1341 *
1342 * Returns the tick aligned clock monotonic time of the next pending
1343 * timer or KTIME_MAX if no timer is pending.
1cfd6849 1344 */
c1ad348b 1345u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1cfd6849 1346{
7496351a 1347 struct tvec_base *base = __this_cpu_read(tvec_bases);
c1ad348b
TG
1348 u64 expires = KTIME_MAX;
1349 unsigned long nextevt;
1cfd6849 1350
dbd87b5a
HC
1351 /*
1352 * Pretend that there is no timer pending if the cpu is offline.
1353 * Possible pending timers will be migrated later to an active cpu.
1354 */
1355 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1356 return expires;
1357
1cfd6849 1358 spin_lock(&base->lock);
e40468a5
TG
1359 if (base->active_timers) {
1360 if (time_before_eq(base->next_timer, base->timer_jiffies))
1361 base->next_timer = __next_timer_interrupt(base);
c1ad348b
TG
1362 nextevt = base->next_timer;
1363 if (time_before_eq(nextevt, basej))
1364 expires = basem;
1365 else
1366 expires = basem + (nextevt - basej) * TICK_NSEC;
e40468a5 1367 }
1cfd6849
TG
1368 spin_unlock(&base->lock);
1369
c1ad348b 1370 return cmp_next_hrtimer_event(basem, expires);
1cfd6849 1371}
1da177e4
LT
1372#endif
1373
1da177e4 1374/*
5b4db0c2 1375 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1376 * process. user_tick is 1 if the tick is user time, 0 for system.
1377 */
1378void update_process_times(int user_tick)
1379{
1380 struct task_struct *p = current;
1da177e4
LT
1381
1382 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1383 account_process_tick(p, user_tick);
1da177e4 1384 run_local_timers();
c3377c2d 1385 rcu_check_callbacks(user_tick);
e360adbe
PZ
1386#ifdef CONFIG_IRQ_WORK
1387 if (in_irq())
76a33061 1388 irq_work_tick();
e360adbe 1389#endif
1da177e4 1390 scheduler_tick();
6819457d 1391 run_posix_cpu_timers(p);
1da177e4
LT
1392}
1393
1da177e4
LT
1394/*
1395 * This function runs timers and the timer-tq in bottom half context.
1396 */
1397static void run_timer_softirq(struct softirq_action *h)
1398{
7496351a 1399 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4
LT
1400
1401 if (time_after_eq(jiffies, base->timer_jiffies))
1402 __run_timers(base);
1403}
1404
1405/*
1406 * Called by the local, per-CPU timer interrupt on SMP.
1407 */
1408void run_local_timers(void)
1409{
d3d74453 1410 hrtimer_run_queues();
1da177e4
LT
1411 raise_softirq(TIMER_SOFTIRQ);
1412}
1413
1da177e4
LT
1414#ifdef __ARCH_WANT_SYS_ALARM
1415
1416/*
1417 * For backwards compatibility? This can be done in libc so Alpha
1418 * and all newer ports shouldn't need it.
1419 */
58fd3aa2 1420SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1421{
c08b8a49 1422 return alarm_setitimer(seconds);
1da177e4
LT
1423}
1424
1425#endif
1426
1da177e4
LT
1427static void process_timeout(unsigned long __data)
1428{
36c8b586 1429 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1430}
1431
1432/**
1433 * schedule_timeout - sleep until timeout
1434 * @timeout: timeout value in jiffies
1435 *
1436 * Make the current task sleep until @timeout jiffies have
1437 * elapsed. The routine will return immediately unless
1438 * the current task state has been set (see set_current_state()).
1439 *
1440 * You can set the task state as follows -
1441 *
1442 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1443 * pass before the routine returns. The routine will return 0
1444 *
1445 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1446 * delivered to the current task. In this case the remaining time
1447 * in jiffies will be returned, or 0 if the timer expired in time
1448 *
1449 * The current task state is guaranteed to be TASK_RUNNING when this
1450 * routine returns.
1451 *
1452 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1453 * the CPU away without a bound on the timeout. In this case the return
1454 * value will be %MAX_SCHEDULE_TIMEOUT.
1455 *
1456 * In all cases the return value is guaranteed to be non-negative.
1457 */
7ad5b3a5 1458signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1459{
1460 struct timer_list timer;
1461 unsigned long expire;
1462
1463 switch (timeout)
1464 {
1465 case MAX_SCHEDULE_TIMEOUT:
1466 /*
1467 * These two special cases are useful to be comfortable
1468 * in the caller. Nothing more. We could take
1469 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1470 * but I' d like to return a valid offset (>=0) to allow
1471 * the caller to do everything it want with the retval.
1472 */
1473 schedule();
1474 goto out;
1475 default:
1476 /*
1477 * Another bit of PARANOID. Note that the retval will be
1478 * 0 since no piece of kernel is supposed to do a check
1479 * for a negative retval of schedule_timeout() (since it
1480 * should never happens anyway). You just have the printk()
1481 * that will tell you if something is gone wrong and where.
1482 */
5b149bcc 1483 if (timeout < 0) {
1da177e4 1484 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1485 "value %lx\n", timeout);
1486 dump_stack();
1da177e4
LT
1487 current->state = TASK_RUNNING;
1488 goto out;
1489 }
1490 }
1491
1492 expire = timeout + jiffies;
1493
c6f3a97f 1494 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1495 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1496 schedule();
1497 del_singleshot_timer_sync(&timer);
1498
c6f3a97f
TG
1499 /* Remove the timer from the object tracker */
1500 destroy_timer_on_stack(&timer);
1501
1da177e4
LT
1502 timeout = expire - jiffies;
1503
1504 out:
1505 return timeout < 0 ? 0 : timeout;
1506}
1da177e4
LT
1507EXPORT_SYMBOL(schedule_timeout);
1508
8a1c1757
AM
1509/*
1510 * We can use __set_current_state() here because schedule_timeout() calls
1511 * schedule() unconditionally.
1512 */
64ed93a2
NA
1513signed long __sched schedule_timeout_interruptible(signed long timeout)
1514{
a5a0d52c
AM
1515 __set_current_state(TASK_INTERRUPTIBLE);
1516 return schedule_timeout(timeout);
64ed93a2
NA
1517}
1518EXPORT_SYMBOL(schedule_timeout_interruptible);
1519
294d5cc2
MW
1520signed long __sched schedule_timeout_killable(signed long timeout)
1521{
1522 __set_current_state(TASK_KILLABLE);
1523 return schedule_timeout(timeout);
1524}
1525EXPORT_SYMBOL(schedule_timeout_killable);
1526
64ed93a2
NA
1527signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1528{
a5a0d52c
AM
1529 __set_current_state(TASK_UNINTERRUPTIBLE);
1530 return schedule_timeout(timeout);
64ed93a2
NA
1531}
1532EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1533
1da177e4 1534#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1535static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1536{
1537 struct timer_list *timer;
1538
1539 while (!list_empty(head)) {
b5e61818 1540 timer = list_first_entry(head, struct timer_list, entry);
99d5f3aa 1541 /* We ignore the accounting on the dying cpu */
ec44bc7a 1542 detach_timer(timer, false);
6e453a67 1543 timer_set_base(timer, new_base);
1da177e4 1544 internal_add_timer(new_base, timer);
1da177e4 1545 }
1da177e4
LT
1546}
1547
0db0628d 1548static void migrate_timers(int cpu)
1da177e4 1549{
a6fa8e5a
PM
1550 struct tvec_base *old_base;
1551 struct tvec_base *new_base;
1da177e4
LT
1552 int i;
1553
1554 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1555 old_base = per_cpu(tvec_bases, cpu);
1556 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1557 /*
1558 * The caller is globally serialized and nobody else
1559 * takes two locks at once, deadlock is not possible.
1560 */
1561 spin_lock_irq(&new_base->lock);
0d180406 1562 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1563
1564 BUG_ON(old_base->running_timer);
1da177e4 1565
1da177e4 1566 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1567 migrate_timer_list(new_base, old_base->tv1.vec + i);
1568 for (i = 0; i < TVN_SIZE; i++) {
1569 migrate_timer_list(new_base, old_base->tv2.vec + i);
1570 migrate_timer_list(new_base, old_base->tv3.vec + i);
1571 migrate_timer_list(new_base, old_base->tv4.vec + i);
1572 migrate_timer_list(new_base, old_base->tv5.vec + i);
1573 }
1574
8def9060
VK
1575 old_base->active_timers = 0;
1576 old_base->all_timers = 0;
1577
0d180406 1578 spin_unlock(&old_base->lock);
d82f0b0f 1579 spin_unlock_irq(&new_base->lock);
1da177e4 1580 put_cpu_var(tvec_bases);
1da177e4 1581}
1da177e4 1582
0db0628d 1583static int timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1584 unsigned long action, void *hcpu)
1585{
8def9060 1586 switch (action) {
1da177e4 1587 case CPU_DEAD:
8bb78442 1588 case CPU_DEAD_FROZEN:
8def9060 1589 migrate_timers((long)hcpu);
1da177e4 1590 break;
1da177e4
LT
1591 default:
1592 break;
1593 }
3650b57f 1594
1da177e4
LT
1595 return NOTIFY_OK;
1596}
1597
3650b57f
PZ
1598static inline void timer_register_cpu_notifier(void)
1599{
1600 cpu_notifier(timer_cpu_notify, 0);
1601}
1602#else
1603static inline void timer_register_cpu_notifier(void) { }
1604#endif /* CONFIG_HOTPLUG_CPU */
1da177e4 1605
8def9060
VK
1606static void __init init_timer_cpu(struct tvec_base *base, int cpu)
1607{
1608 int j;
1da177e4 1609
3650b57f
PZ
1610 BUG_ON(base != tbase_get_base(base));
1611
8def9060
VK
1612 base->cpu = cpu;
1613 per_cpu(tvec_bases, cpu) = base;
1614 spin_lock_init(&base->lock);
1615
1616 for (j = 0; j < TVN_SIZE; j++) {
1617 INIT_LIST_HEAD(base->tv5.vec + j);
1618 INIT_LIST_HEAD(base->tv4.vec + j);
1619 INIT_LIST_HEAD(base->tv3.vec + j);
1620 INIT_LIST_HEAD(base->tv2.vec + j);
1621 }
1622 for (j = 0; j < TVR_SIZE; j++)
1623 INIT_LIST_HEAD(base->tv1.vec + j);
1624
1625 base->timer_jiffies = jiffies;
1626 base->next_timer = base->timer_jiffies;
1627}
1628
1629static void __init init_timer_cpus(void)
1da177e4 1630{
8def9060
VK
1631 struct tvec_base *base;
1632 int local_cpu = smp_processor_id();
1633 int cpu;
1634
1635 for_each_possible_cpu(cpu) {
1636 if (cpu == local_cpu)
1637 base = &boot_tvec_bases;
3650b57f 1638#ifdef CONFIG_SMP
8def9060
VK
1639 else
1640 base = per_cpu_ptr(&__tvec_bases, cpu);
3650b57f 1641#endif
8def9060
VK
1642
1643 init_timer_cpu(base, cpu);
1644 }
1645}
e52b1db3 1646
8def9060
VK
1647void __init init_timers(void)
1648{
e52b1db3
TH
1649 /* ensure there are enough low bits for flags in timer->base pointer */
1650 BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
07dccf33 1651
8def9060 1652 init_timer_cpus();
c24a4a36 1653 init_timer_stats();
3650b57f 1654 timer_register_cpu_notifier();
962cf36c 1655 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1656}
1657
1da177e4
LT
1658/**
1659 * msleep - sleep safely even with waitqueue interruptions
1660 * @msecs: Time in milliseconds to sleep for
1661 */
1662void msleep(unsigned int msecs)
1663{
1664 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1665
75bcc8c5
NA
1666 while (timeout)
1667 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1668}
1669
1670EXPORT_SYMBOL(msleep);
1671
1672/**
96ec3efd 1673 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1674 * @msecs: Time in milliseconds to sleep for
1675 */
1676unsigned long msleep_interruptible(unsigned int msecs)
1677{
1678 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1679
75bcc8c5
NA
1680 while (timeout && !signal_pending(current))
1681 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1682 return jiffies_to_msecs(timeout);
1683}
1684
1685EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17 1686
6deba083 1687static void __sched do_usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1688{
1689 ktime_t kmin;
1690 unsigned long delta;
1691
1692 kmin = ktime_set(0, min * NSEC_PER_USEC);
1693 delta = (max - min) * NSEC_PER_USEC;
6deba083 1694 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
5e7f5a17
PP
1695}
1696
1697/**
1698 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1699 * @min: Minimum time in usecs to sleep
1700 * @max: Maximum time in usecs to sleep
1701 */
2ad5d327 1702void __sched usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1703{
1704 __set_current_state(TASK_UNINTERRUPTIBLE);
1705 do_usleep_range(min, max);
1706}
1707EXPORT_SYMBOL(usleep_range);