]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/timer.c
rcu/nocb: Add nocb CB kthread list to show_rcu_nocb_state() output
[mirror_ubuntu-jammy-kernel.git] / kernel / time / timer.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
4a22f166 3 * Kernel internal timers
1da177e4
LT
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
8 *
9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
10 * "A Kernel Model for Precision Timekeeping" by Dave Mills
11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12 * serialize accesses to xtime/lost_ticks).
13 * Copyright (C) 1998 Andrea Arcangeli
14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19 */
20
21#include <linux/kernel_stat.h>
9984de1a 22#include <linux/export.h>
1da177e4
LT
23#include <linux/interrupt.h>
24#include <linux/percpu.h>
25#include <linux/init.h>
26#include <linux/mm.h>
27#include <linux/swap.h>
b488893a 28#include <linux/pid_namespace.h>
1da177e4
LT
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
97a41e26 36#include <linux/delay.h>
79bf2bb3 37#include <linux/tick.h>
82f67cd9 38#include <linux/kallsyms.h>
e360adbe 39#include <linux/irq_work.h>
174cd4b1 40#include <linux/sched/signal.h>
cf4aebc2 41#include <linux/sched/sysctl.h>
370c9135 42#include <linux/sched/nohz.h>
b17b0153 43#include <linux/sched/debug.h>
5a0e3ad6 44#include <linux/slab.h>
1a0df594 45#include <linux/compat.h>
f227e3ec 46#include <linux/random.h>
1da177e4 47
7c0f6ba6 48#include <linux/uaccess.h>
1da177e4
LT
49#include <asm/unistd.h>
50#include <asm/div64.h>
51#include <asm/timex.h>
52#include <asm/io.h>
53
c1ad348b
TG
54#include "tick-internal.h"
55
2b022e3d
XG
56#define CREATE_TRACE_POINTS
57#include <trace/events/timer.h>
58
40747ffa 59__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
ecea8d19
TG
60
61EXPORT_SYMBOL(jiffies_64);
62
1da177e4 63/*
500462a9
TG
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
67 *
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
70 *
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
74 *
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
81 *
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
87 *
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
91 *
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
96 * be an issue.
97 *
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
100 *
101 * This results in the following granularity and range levels:
102 *
103 * HZ 1000 steps
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
114 *
115 * HZ 300
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126 *
127 * HZ 250
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138 *
139 * HZ 100
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
1da177e4 149 */
1da177e4 150
500462a9
TG
151/* Clock divisor for the next level */
152#define LVL_CLK_SHIFT 3
153#define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154#define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155#define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156#define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
1da177e4 157
500462a9
TG
158/*
159 * The time start value for each level to select the bucket at enqueue
44688972
FW
160 * time. We start from the last possible delta of the previous level
161 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
500462a9
TG
162 */
163#define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
164
165/* Size of each clock level */
166#define LVL_BITS 6
167#define LVL_SIZE (1UL << LVL_BITS)
168#define LVL_MASK (LVL_SIZE - 1)
169#define LVL_OFFS(n) ((n) * LVL_SIZE)
170
171/* Level depth */
172#if HZ > 100
173# define LVL_DEPTH 9
174# else
175# define LVL_DEPTH 8
176#endif
177
178/* The cutoff (max. capacity of the wheel) */
179#define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
180#define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
181
182/*
183 * The resulting wheel size. If NOHZ is configured we allocate two
184 * wheels so we have a separate storage for the deferrable timers.
185 */
186#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
187
188#ifdef CONFIG_NO_HZ_COMMON
189# define NR_BASES 2
190# define BASE_STD 0
191# define BASE_DEF 1
192#else
193# define NR_BASES 1
194# define BASE_STD 0
195# define BASE_DEF 0
196#endif
1da177e4 197
494af3ed 198struct timer_base {
2287d866 199 raw_spinlock_t lock;
500462a9 200 struct timer_list *running_timer;
030dcdd1
AMG
201#ifdef CONFIG_PREEMPT_RT
202 spinlock_t expiry_lock;
203 atomic_t timer_waiters;
204#endif
500462a9 205 unsigned long clk;
a683f390 206 unsigned long next_expiry;
500462a9 207 unsigned int cpu;
31cd0e11 208 bool next_expiry_recalc;
a683f390 209 bool is_idle;
500462a9
TG
210 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
211 struct hlist_head vectors[WHEEL_SIZE];
6e453a67 212} ____cacheline_aligned;
e52b1db3 213
500462a9 214static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
6e453a67 215
ae67bada
TG
216#ifdef CONFIG_NO_HZ_COMMON
217
14c80341 218static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
ae67bada
TG
219static DEFINE_MUTEX(timer_keys_mutex);
220
221static void timer_update_keys(struct work_struct *work);
222static DECLARE_WORK(timer_update_work, timer_update_keys);
223
224#ifdef CONFIG_SMP
bc7a34b8
TG
225unsigned int sysctl_timer_migration = 1;
226
ae67bada
TG
227DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
228
229static void timers_update_migration(void)
bc7a34b8 230{
ae67bada
TG
231 if (sysctl_timer_migration && tick_nohz_active)
232 static_branch_enable(&timers_migration_enabled);
233 else
234 static_branch_disable(&timers_migration_enabled);
235}
236#else
237static inline void timers_update_migration(void) { }
238#endif /* !CONFIG_SMP */
bc7a34b8 239
ae67bada
TG
240static void timer_update_keys(struct work_struct *work)
241{
242 mutex_lock(&timer_keys_mutex);
243 timers_update_migration();
244 static_branch_enable(&timers_nohz_active);
245 mutex_unlock(&timer_keys_mutex);
246}
bc7a34b8 247
ae67bada
TG
248void timers_update_nohz(void)
249{
250 schedule_work(&timer_update_work);
bc7a34b8
TG
251}
252
253int timer_migration_handler(struct ctl_table *table, int write,
32927393 254 void *buffer, size_t *lenp, loff_t *ppos)
bc7a34b8 255{
bc7a34b8
TG
256 int ret;
257
ae67bada 258 mutex_lock(&timer_keys_mutex);
b94bf594 259 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
bc7a34b8 260 if (!ret && write)
ae67bada
TG
261 timers_update_migration();
262 mutex_unlock(&timer_keys_mutex);
bc7a34b8
TG
263 return ret;
264}
14c80341
AMG
265
266static inline bool is_timers_nohz_active(void)
267{
268 return static_branch_unlikely(&timers_nohz_active);
269}
270#else
271static inline bool is_timers_nohz_active(void) { return false; }
ae67bada 272#endif /* NO_HZ_COMMON */
bc7a34b8 273
9c133c46
AS
274static unsigned long round_jiffies_common(unsigned long j, int cpu,
275 bool force_up)
4c36a5de
AV
276{
277 int rem;
278 unsigned long original = j;
279
280 /*
281 * We don't want all cpus firing their timers at once hitting the
282 * same lock or cachelines, so we skew each extra cpu with an extra
283 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
284 * already did this.
285 * The skew is done by adding 3*cpunr, then round, then subtract this
286 * extra offset again.
287 */
288 j += cpu * 3;
289
290 rem = j % HZ;
291
292 /*
293 * If the target jiffie is just after a whole second (which can happen
294 * due to delays of the timer irq, long irq off times etc etc) then
295 * we should round down to the whole second, not up. Use 1/4th second
296 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 297 * But never round down if @force_up is set.
4c36a5de 298 */
9c133c46 299 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
300 j = j - rem;
301 else /* round up */
302 j = j - rem + HZ;
303
304 /* now that we have rounded, subtract the extra skew again */
305 j -= cpu * 3;
306
9e04d380
BVA
307 /*
308 * Make sure j is still in the future. Otherwise return the
309 * unmodified value.
310 */
311 return time_is_after_jiffies(j) ? j : original;
4c36a5de 312}
9c133c46
AS
313
314/**
315 * __round_jiffies - function to round jiffies to a full second
316 * @j: the time in (absolute) jiffies that should be rounded
317 * @cpu: the processor number on which the timeout will happen
318 *
319 * __round_jiffies() rounds an absolute time in the future (in jiffies)
320 * up or down to (approximately) full seconds. This is useful for timers
321 * for which the exact time they fire does not matter too much, as long as
322 * they fire approximately every X seconds.
323 *
324 * By rounding these timers to whole seconds, all such timers will fire
325 * at the same time, rather than at various times spread out. The goal
326 * of this is to have the CPU wake up less, which saves power.
327 *
328 * The exact rounding is skewed for each processor to avoid all
329 * processors firing at the exact same time, which could lead
330 * to lock contention or spurious cache line bouncing.
331 *
332 * The return value is the rounded version of the @j parameter.
333 */
334unsigned long __round_jiffies(unsigned long j, int cpu)
335{
336 return round_jiffies_common(j, cpu, false);
337}
4c36a5de
AV
338EXPORT_SYMBOL_GPL(__round_jiffies);
339
340/**
341 * __round_jiffies_relative - function to round jiffies to a full second
342 * @j: the time in (relative) jiffies that should be rounded
343 * @cpu: the processor number on which the timeout will happen
344 *
72fd4a35 345 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
346 * up or down to (approximately) full seconds. This is useful for timers
347 * for which the exact time they fire does not matter too much, as long as
348 * they fire approximately every X seconds.
349 *
350 * By rounding these timers to whole seconds, all such timers will fire
351 * at the same time, rather than at various times spread out. The goal
352 * of this is to have the CPU wake up less, which saves power.
353 *
354 * The exact rounding is skewed for each processor to avoid all
355 * processors firing at the exact same time, which could lead
356 * to lock contention or spurious cache line bouncing.
357 *
72fd4a35 358 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
359 */
360unsigned long __round_jiffies_relative(unsigned long j, int cpu)
361{
9c133c46
AS
362 unsigned long j0 = jiffies;
363
364 /* Use j0 because jiffies might change while we run */
365 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
366}
367EXPORT_SYMBOL_GPL(__round_jiffies_relative);
368
369/**
370 * round_jiffies - function to round jiffies to a full second
371 * @j: the time in (absolute) jiffies that should be rounded
372 *
72fd4a35 373 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
374 * up or down to (approximately) full seconds. This is useful for timers
375 * for which the exact time they fire does not matter too much, as long as
376 * they fire approximately every X seconds.
377 *
378 * By rounding these timers to whole seconds, all such timers will fire
379 * at the same time, rather than at various times spread out. The goal
380 * of this is to have the CPU wake up less, which saves power.
381 *
72fd4a35 382 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
383 */
384unsigned long round_jiffies(unsigned long j)
385{
9c133c46 386 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
387}
388EXPORT_SYMBOL_GPL(round_jiffies);
389
390/**
391 * round_jiffies_relative - function to round jiffies to a full second
392 * @j: the time in (relative) jiffies that should be rounded
393 *
72fd4a35 394 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
395 * up or down to (approximately) full seconds. This is useful for timers
396 * for which the exact time they fire does not matter too much, as long as
397 * they fire approximately every X seconds.
398 *
399 * By rounding these timers to whole seconds, all such timers will fire
400 * at the same time, rather than at various times spread out. The goal
401 * of this is to have the CPU wake up less, which saves power.
402 *
72fd4a35 403 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
404 */
405unsigned long round_jiffies_relative(unsigned long j)
406{
407 return __round_jiffies_relative(j, raw_smp_processor_id());
408}
409EXPORT_SYMBOL_GPL(round_jiffies_relative);
410
9c133c46
AS
411/**
412 * __round_jiffies_up - function to round jiffies up to a full second
413 * @j: the time in (absolute) jiffies that should be rounded
414 * @cpu: the processor number on which the timeout will happen
415 *
416 * This is the same as __round_jiffies() except that it will never
417 * round down. This is useful for timeouts for which the exact time
418 * of firing does not matter too much, as long as they don't fire too
419 * early.
420 */
421unsigned long __round_jiffies_up(unsigned long j, int cpu)
422{
423 return round_jiffies_common(j, cpu, true);
424}
425EXPORT_SYMBOL_GPL(__round_jiffies_up);
426
427/**
428 * __round_jiffies_up_relative - function to round jiffies up to a full second
429 * @j: the time in (relative) jiffies that should be rounded
430 * @cpu: the processor number on which the timeout will happen
431 *
432 * This is the same as __round_jiffies_relative() except that it will never
433 * round down. This is useful for timeouts for which the exact time
434 * of firing does not matter too much, as long as they don't fire too
435 * early.
436 */
437unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
438{
439 unsigned long j0 = jiffies;
440
441 /* Use j0 because jiffies might change while we run */
442 return round_jiffies_common(j + j0, cpu, true) - j0;
443}
444EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
445
446/**
447 * round_jiffies_up - function to round jiffies up to a full second
448 * @j: the time in (absolute) jiffies that should be rounded
449 *
450 * This is the same as round_jiffies() except that it will never
451 * round down. This is useful for timeouts for which the exact time
452 * of firing does not matter too much, as long as they don't fire too
453 * early.
454 */
455unsigned long round_jiffies_up(unsigned long j)
456{
457 return round_jiffies_common(j, raw_smp_processor_id(), true);
458}
459EXPORT_SYMBOL_GPL(round_jiffies_up);
460
461/**
462 * round_jiffies_up_relative - function to round jiffies up to a full second
463 * @j: the time in (relative) jiffies that should be rounded
464 *
465 * This is the same as round_jiffies_relative() except that it will never
466 * round down. This is useful for timeouts for which the exact time
467 * of firing does not matter too much, as long as they don't fire too
468 * early.
469 */
470unsigned long round_jiffies_up_relative(unsigned long j)
471{
472 return __round_jiffies_up_relative(j, raw_smp_processor_id());
473}
474EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
475
3bbb9ec9 476
500462a9 477static inline unsigned int timer_get_idx(struct timer_list *timer)
3bbb9ec9 478{
500462a9 479 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
3bbb9ec9 480}
3bbb9ec9 481
500462a9 482static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
1da177e4 483{
500462a9
TG
484 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
485 idx << TIMER_ARRAYSHIFT;
486}
1da177e4 487
500462a9
TG
488/*
489 * Helper function to calculate the array index for a given expiry
490 * time.
491 */
1f32cab0
AMB
492static inline unsigned calc_index(unsigned long expires, unsigned lvl,
493 unsigned long *bucket_expiry)
500462a9 494{
44688972
FW
495
496 /*
497 * The timer wheel has to guarantee that a timer does not fire
498 * early. Early expiry can happen due to:
499 * - Timer is armed at the edge of a tick
500 * - Truncation of the expiry time in the outer wheel levels
501 *
502 * Round up with level granularity to prevent this.
503 */
500462a9 504 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
1f32cab0 505 *bucket_expiry = expires << LVL_SHIFT(lvl);
500462a9
TG
506 return LVL_OFFS(lvl) + (expires & LVL_MASK);
507}
508
1f32cab0
AMB
509static int calc_wheel_index(unsigned long expires, unsigned long clk,
510 unsigned long *bucket_expiry)
1da177e4 511{
ffdf0477 512 unsigned long delta = expires - clk;
500462a9
TG
513 unsigned int idx;
514
515 if (delta < LVL_START(1)) {
1f32cab0 516 idx = calc_index(expires, 0, bucket_expiry);
500462a9 517 } else if (delta < LVL_START(2)) {
1f32cab0 518 idx = calc_index(expires, 1, bucket_expiry);
500462a9 519 } else if (delta < LVL_START(3)) {
1f32cab0 520 idx = calc_index(expires, 2, bucket_expiry);
500462a9 521 } else if (delta < LVL_START(4)) {
1f32cab0 522 idx = calc_index(expires, 3, bucket_expiry);
500462a9 523 } else if (delta < LVL_START(5)) {
1f32cab0 524 idx = calc_index(expires, 4, bucket_expiry);
500462a9 525 } else if (delta < LVL_START(6)) {
1f32cab0 526 idx = calc_index(expires, 5, bucket_expiry);
500462a9 527 } else if (delta < LVL_START(7)) {
1f32cab0 528 idx = calc_index(expires, 6, bucket_expiry);
500462a9 529 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
1f32cab0 530 idx = calc_index(expires, 7, bucket_expiry);
500462a9 531 } else if ((long) delta < 0) {
ffdf0477 532 idx = clk & LVL_MASK;
1f32cab0 533 *bucket_expiry = clk;
1da177e4 534 } else {
500462a9
TG
535 /*
536 * Force expire obscene large timeouts to expire at the
537 * capacity limit of the wheel.
1da177e4 538 */
e2a71bde
FW
539 if (delta >= WHEEL_TIMEOUT_CUTOFF)
540 expires = clk + WHEEL_TIMEOUT_MAX;
1bd04bf6 541
1f32cab0 542 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
1da177e4 543 }
ffdf0477
AMG
544 return idx;
545}
1bd04bf6 546
ffdf0477
AMG
547static void
548trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
549{
ae67bada 550 if (!is_timers_nohz_active())
a683f390 551 return;
3bb475a3 552
facbb4a7 553 /*
a683f390
TG
554 * TODO: This wants some optimizing similar to the code below, but we
555 * will do that when we switch from push to pull for deferrable timers.
facbb4a7 556 */
a683f390
TG
557 if (timer->flags & TIMER_DEFERRABLE) {
558 if (tick_nohz_full_cpu(base->cpu))
683be13a 559 wake_up_nohz_cpu(base->cpu);
a683f390 560 return;
99d5f3aa 561 }
9f6d9baa
VK
562
563 /*
a683f390
TG
564 * We might have to IPI the remote CPU if the base is idle and the
565 * timer is not deferrable. If the other CPU is on the way to idle
566 * then it can't set base->is_idle as we hold the base lock:
9f6d9baa 567 */
dc2a0f1f
FW
568 if (base->is_idle)
569 wake_up_nohz_cpu(base->cpu);
ffdf0477 570}
a683f390 571
9a2b764b
FW
572/*
573 * Enqueue the timer into the hash bucket, mark it pending in
574 * the bitmap, store the index in the timer flags then wake up
575 * the target CPU if needed.
576 */
577static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
578 unsigned int idx, unsigned long bucket_expiry)
ffdf0477 579{
dc2a0f1f 580
9a2b764b
FW
581 hlist_add_head(&timer->entry, base->vectors + idx);
582 __set_bit(idx, base->pending_map);
583 timer_set_idx(timer, idx);
1f32cab0 584
9a2b764b 585 trace_timer_start(timer, timer->expires, timer->flags);
a683f390
TG
586
587 /*
dc2a0f1f
FW
588 * Check whether this is the new first expiring timer. The
589 * effective expiry time of the timer is required here
590 * (bucket_expiry) instead of timer->expires.
a683f390 591 */
dc2a0f1f 592 if (time_before(bucket_expiry, base->next_expiry)) {
30c66fc3 593 /*
dc2a0f1f
FW
594 * Set the next expiry time and kick the CPU so it
595 * can reevaluate the wheel:
30c66fc3 596 */
dc2a0f1f 597 base->next_expiry = bucket_expiry;
31cd0e11 598 base->next_expiry_recalc = false;
dc2a0f1f 599 trigger_dyntick_cpu(base, timer);
30c66fc3 600 }
ffdf0477
AMG
601}
602
9a2b764b 603static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
ffdf0477 604{
9a2b764b
FW
605 unsigned long bucket_expiry;
606 unsigned int idx;
607
608 idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
609 enqueue_timer(base, timer, idx, bucket_expiry);
facbb4a7
TG
610}
611
c6f3a97f
TG
612#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
613
f9e62f31 614static const struct debug_obj_descr timer_debug_descr;
c6f3a97f 615
99777288
SG
616static void *timer_debug_hint(void *addr)
617{
618 return ((struct timer_list *) addr)->function;
619}
620
b9fdac7f
CD
621static bool timer_is_static_object(void *addr)
622{
623 struct timer_list *timer = addr;
624
625 return (timer->entry.pprev == NULL &&
626 timer->entry.next == TIMER_ENTRY_STATIC);
627}
628
c6f3a97f
TG
629/*
630 * fixup_init is called when:
631 * - an active object is initialized
55c888d6 632 */
e3252464 633static bool timer_fixup_init(void *addr, enum debug_obj_state state)
c6f3a97f
TG
634{
635 struct timer_list *timer = addr;
636
637 switch (state) {
638 case ODEBUG_STATE_ACTIVE:
639 del_timer_sync(timer);
640 debug_object_init(timer, &timer_debug_descr);
e3252464 641 return true;
c6f3a97f 642 default:
e3252464 643 return false;
c6f3a97f
TG
644 }
645}
646
fb16b8cf 647/* Stub timer callback for improperly used timers. */
ba16490e 648static void stub_timer(struct timer_list *unused)
fb16b8cf
SB
649{
650 WARN_ON(1);
651}
652
c6f3a97f
TG
653/*
654 * fixup_activate is called when:
655 * - an active object is activated
b9fdac7f 656 * - an unknown non-static object is activated
c6f3a97f 657 */
e3252464 658static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
c6f3a97f
TG
659{
660 struct timer_list *timer = addr;
661
662 switch (state) {
c6f3a97f 663 case ODEBUG_STATE_NOTAVAILABLE:
ba16490e 664 timer_setup(timer, stub_timer, 0);
b9fdac7f 665 return true;
c6f3a97f
TG
666
667 case ODEBUG_STATE_ACTIVE:
668 WARN_ON(1);
df561f66 669 fallthrough;
c6f3a97f 670 default:
e3252464 671 return false;
c6f3a97f
TG
672 }
673}
674
675/*
676 * fixup_free is called when:
677 * - an active object is freed
678 */
e3252464 679static bool timer_fixup_free(void *addr, enum debug_obj_state state)
c6f3a97f
TG
680{
681 struct timer_list *timer = addr;
682
683 switch (state) {
684 case ODEBUG_STATE_ACTIVE:
685 del_timer_sync(timer);
686 debug_object_free(timer, &timer_debug_descr);
e3252464 687 return true;
c6f3a97f 688 default:
e3252464 689 return false;
c6f3a97f
TG
690 }
691}
692
dc4218bd
CC
693/*
694 * fixup_assert_init is called when:
695 * - an untracked/uninit-ed object is found
696 */
e3252464 697static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
dc4218bd
CC
698{
699 struct timer_list *timer = addr;
700
701 switch (state) {
702 case ODEBUG_STATE_NOTAVAILABLE:
ba16490e 703 timer_setup(timer, stub_timer, 0);
b9fdac7f 704 return true;
dc4218bd 705 default:
e3252464 706 return false;
dc4218bd
CC
707 }
708}
709
f9e62f31 710static const struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
711 .name = "timer_list",
712 .debug_hint = timer_debug_hint,
b9fdac7f 713 .is_static_object = timer_is_static_object,
dc4218bd
CC
714 .fixup_init = timer_fixup_init,
715 .fixup_activate = timer_fixup_activate,
716 .fixup_free = timer_fixup_free,
717 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
718};
719
720static inline void debug_timer_init(struct timer_list *timer)
721{
722 debug_object_init(timer, &timer_debug_descr);
723}
724
725static inline void debug_timer_activate(struct timer_list *timer)
726{
727 debug_object_activate(timer, &timer_debug_descr);
728}
729
730static inline void debug_timer_deactivate(struct timer_list *timer)
731{
732 debug_object_deactivate(timer, &timer_debug_descr);
733}
734
dc4218bd
CC
735static inline void debug_timer_assert_init(struct timer_list *timer)
736{
737 debug_object_assert_init(timer, &timer_debug_descr);
738}
739
188665b2
KC
740static void do_init_timer(struct timer_list *timer,
741 void (*func)(struct timer_list *),
742 unsigned int flags,
fc683995 743 const char *name, struct lock_class_key *key);
c6f3a97f 744
188665b2
KC
745void init_timer_on_stack_key(struct timer_list *timer,
746 void (*func)(struct timer_list *),
747 unsigned int flags,
fc683995 748 const char *name, struct lock_class_key *key)
c6f3a97f
TG
749{
750 debug_object_init_on_stack(timer, &timer_debug_descr);
188665b2 751 do_init_timer(timer, func, flags, name, key);
c6f3a97f 752}
6f2b9b9a 753EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
754
755void destroy_timer_on_stack(struct timer_list *timer)
756{
757 debug_object_free(timer, &timer_debug_descr);
758}
759EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
760
761#else
762static inline void debug_timer_init(struct timer_list *timer) { }
763static inline void debug_timer_activate(struct timer_list *timer) { }
764static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 765static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
766#endif
767
2b022e3d
XG
768static inline void debug_init(struct timer_list *timer)
769{
770 debug_timer_init(timer);
771 trace_timer_init(timer);
772}
773
2b022e3d
XG
774static inline void debug_deactivate(struct timer_list *timer)
775{
776 debug_timer_deactivate(timer);
777 trace_timer_cancel(timer);
778}
779
dc4218bd
CC
780static inline void debug_assert_init(struct timer_list *timer)
781{
782 debug_timer_assert_init(timer);
783}
784
188665b2
KC
785static void do_init_timer(struct timer_list *timer,
786 void (*func)(struct timer_list *),
787 unsigned int flags,
fc683995 788 const char *name, struct lock_class_key *key)
55c888d6 789{
1dabbcec 790 timer->entry.pprev = NULL;
188665b2 791 timer->function = func;
b952caf2
QZ
792 if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
793 flags &= TIMER_INIT_FLAGS;
0eeda71b 794 timer->flags = flags | raw_smp_processor_id();
6f2b9b9a 795 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 796}
c6f3a97f
TG
797
798/**
633fe795 799 * init_timer_key - initialize a timer
c6f3a97f 800 * @timer: the timer to be initialized
188665b2 801 * @func: timer callback function
fc683995 802 * @flags: timer flags
633fe795
RD
803 * @name: name of the timer
804 * @key: lockdep class key of the fake lock used for tracking timer
805 * sync lock dependencies
c6f3a97f 806 *
633fe795 807 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
808 * other timer functions.
809 */
188665b2
KC
810void init_timer_key(struct timer_list *timer,
811 void (*func)(struct timer_list *), unsigned int flags,
fc683995 812 const char *name, struct lock_class_key *key)
c6f3a97f 813{
2b022e3d 814 debug_init(timer);
188665b2 815 do_init_timer(timer, func, flags, name, key);
c6f3a97f 816}
6f2b9b9a 817EXPORT_SYMBOL(init_timer_key);
55c888d6 818
ec44bc7a 819static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6 820{
1dabbcec 821 struct hlist_node *entry = &timer->entry;
55c888d6 822
2b022e3d 823 debug_deactivate(timer);
c6f3a97f 824
1dabbcec 825 __hlist_del(entry);
55c888d6 826 if (clear_pending)
1dabbcec
TG
827 entry->pprev = NULL;
828 entry->next = LIST_POISON2;
55c888d6
ON
829}
830
494af3ed 831static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
ec44bc7a
TG
832 bool clear_pending)
833{
500462a9
TG
834 unsigned idx = timer_get_idx(timer);
835
ec44bc7a
TG
836 if (!timer_pending(timer))
837 return 0;
838
31cd0e11 839 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
500462a9 840 __clear_bit(idx, base->pending_map);
31cd0e11
FW
841 base->next_expiry_recalc = true;
842 }
500462a9 843
ec44bc7a 844 detach_timer(timer, clear_pending);
ec44bc7a
TG
845 return 1;
846}
847
500462a9
TG
848static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
849{
850 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
851
852 /*
ced6d5c1
AMG
853 * If the timer is deferrable and NO_HZ_COMMON is set then we need
854 * to use the deferrable base.
500462a9 855 */
ced6d5c1 856 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
500462a9
TG
857 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
858 return base;
859}
860
861static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
862{
863 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
864
865 /*
ced6d5c1
AMG
866 * If the timer is deferrable and NO_HZ_COMMON is set then we need
867 * to use the deferrable base.
500462a9 868 */
ced6d5c1 869 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
500462a9
TG
870 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
871 return base;
872}
873
874static inline struct timer_base *get_timer_base(u32 tflags)
875{
876 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
877}
878
a683f390 879static inline struct timer_base *
6bad6bcc 880get_target_base(struct timer_base *base, unsigned tflags)
500462a9 881{
ae67bada
TG
882#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
883 if (static_branch_likely(&timers_migration_enabled) &&
884 !(tflags & TIMER_PINNED))
885 return get_timer_cpu_base(tflags, get_nohz_timer_target());
500462a9 886#endif
ae67bada 887 return get_timer_this_cpu_base(tflags);
500462a9
TG
888}
889
a683f390
TG
890static inline void forward_timer_base(struct timer_base *base)
891{
0975fb56 892 unsigned long jnow = READ_ONCE(jiffies);
6bad6bcc 893
a683f390 894 /*
0975fb56
FW
895 * No need to forward if we are close enough below jiffies.
896 * Also while executing timers, base->clk is 1 offset ahead
897 * of jiffies to avoid endless requeuing to current jffies.
a683f390 898 */
36cd28a4 899 if ((long)(jnow - base->clk) < 1)
a683f390
TG
900 return;
901
902 /*
903 * If the next expiry value is > jiffies, then we fast forward to
904 * jiffies otherwise we forward to the next expiry value.
905 */
30c66fc3 906 if (time_after(base->next_expiry, jnow)) {
6bad6bcc 907 base->clk = jnow;
30c66fc3
FW
908 } else {
909 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
910 return;
a683f390 911 base->clk = base->next_expiry;
30c66fc3 912 }
ae67bada 913}
a683f390 914
a683f390 915
55c888d6 916/*
500462a9
TG
917 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
918 * that all timers which are tied to this base are locked, and the base itself
919 * is locked too.
55c888d6
ON
920 *
921 * So __run_timers/migrate_timers can safely modify all timers which could
500462a9 922 * be found in the base->vectors array.
55c888d6 923 *
500462a9
TG
924 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
925 * to wait until the migration is done.
55c888d6 926 */
494af3ed 927static struct timer_base *lock_timer_base(struct timer_list *timer,
500462a9 928 unsigned long *flags)
89e7e374 929 __acquires(timer->base->lock)
55c888d6 930{
55c888d6 931 for (;;) {
494af3ed 932 struct timer_base *base;
b831275a
TG
933 u32 tf;
934
935 /*
936 * We need to use READ_ONCE() here, otherwise the compiler
937 * might re-read @tf between the check for TIMER_MIGRATING
938 * and spin_lock().
939 */
940 tf = READ_ONCE(timer->flags);
0eeda71b
TG
941
942 if (!(tf & TIMER_MIGRATING)) {
500462a9 943 base = get_timer_base(tf);
2287d866 944 raw_spin_lock_irqsave(&base->lock, *flags);
0eeda71b 945 if (timer->flags == tf)
55c888d6 946 return base;
2287d866 947 raw_spin_unlock_irqrestore(&base->lock, *flags);
55c888d6
ON
948 }
949 cpu_relax();
950 }
951}
952
b24591e2
DH
953#define MOD_TIMER_PENDING_ONLY 0x01
954#define MOD_TIMER_REDUCE 0x02
90c01894 955#define MOD_TIMER_NOTPENDING 0x04
b24591e2 956
74019224 957static inline int
b24591e2 958__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1da177e4 959{
1f32cab0 960 unsigned long clk = 0, flags, bucket_expiry;
494af3ed 961 struct timer_base *base, *new_base;
f00c0afd 962 unsigned int idx = UINT_MAX;
bc7a34b8 963 int ret = 0;
1da177e4 964
4da9152a
TG
965 BUG_ON(!timer->function);
966
500462a9 967 /*
f00c0afd
AMG
968 * This is a common optimization triggered by the networking code - if
969 * the timer is re-modified to have the same timeout or ends up in the
970 * same array bucket then just return:
500462a9 971 */
90c01894 972 if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
2fe59f50
NP
973 /*
974 * The downside of this optimization is that it can result in
975 * larger granularity than you would get from adding a new
976 * timer with this expiry.
977 */
b24591e2
DH
978 long diff = timer->expires - expires;
979
980 if (!diff)
981 return 1;
982 if (options & MOD_TIMER_REDUCE && diff <= 0)
500462a9 983 return 1;
4da9152a 984
f00c0afd 985 /*
4da9152a
TG
986 * We lock timer base and calculate the bucket index right
987 * here. If the timer ends up in the same bucket, then we
988 * just update the expiry time and avoid the whole
989 * dequeue/enqueue dance.
f00c0afd 990 */
4da9152a 991 base = lock_timer_base(timer, &flags);
2fe59f50 992 forward_timer_base(base);
f00c0afd 993
b24591e2
DH
994 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
995 time_before_eq(timer->expires, expires)) {
996 ret = 1;
997 goto out_unlock;
998 }
999
4da9152a 1000 clk = base->clk;
1f32cab0 1001 idx = calc_wheel_index(expires, clk, &bucket_expiry);
f00c0afd
AMG
1002
1003 /*
1004 * Retrieve and compare the array index of the pending
1005 * timer. If it matches set the expiry to the new value so a
1006 * subsequent call will exit in the expires check above.
1007 */
1008 if (idx == timer_get_idx(timer)) {
b24591e2
DH
1009 if (!(options & MOD_TIMER_REDUCE))
1010 timer->expires = expires;
1011 else if (time_after(timer->expires, expires))
1012 timer->expires = expires;
4da9152a
TG
1013 ret = 1;
1014 goto out_unlock;
f00c0afd 1015 }
4da9152a
TG
1016 } else {
1017 base = lock_timer_base(timer, &flags);
2fe59f50 1018 forward_timer_base(base);
500462a9
TG
1019 }
1020
ec44bc7a 1021 ret = detach_if_pending(timer, base, false);
b24591e2 1022 if (!ret && (options & MOD_TIMER_PENDING_ONLY))
ec44bc7a 1023 goto out_unlock;
55c888d6 1024
500462a9 1025 new_base = get_target_base(base, timer->flags);
eea08f32 1026
3691c519 1027 if (base != new_base) {
1da177e4 1028 /*
500462a9 1029 * We are trying to schedule the timer on the new base.
55c888d6
ON
1030 * However we can't change timer's base while it is running,
1031 * otherwise del_timer_sync() can't detect that the timer's
500462a9
TG
1032 * handler yet has not finished. This also guarantees that the
1033 * timer is serialized wrt itself.
1da177e4 1034 */
a2c348fe 1035 if (likely(base->running_timer != timer)) {
55c888d6 1036 /* See the comment in lock_timer_base() */
0eeda71b
TG
1037 timer->flags |= TIMER_MIGRATING;
1038
2287d866 1039 raw_spin_unlock(&base->lock);
a2c348fe 1040 base = new_base;
2287d866 1041 raw_spin_lock(&base->lock);
d0023a14
ED
1042 WRITE_ONCE(timer->flags,
1043 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
2fe59f50 1044 forward_timer_base(base);
1da177e4
LT
1045 }
1046 }
1047
dc1e7dc5 1048 debug_timer_activate(timer);
fd45bb77 1049
1da177e4 1050 timer->expires = expires;
f00c0afd
AMG
1051 /*
1052 * If 'idx' was calculated above and the base time did not advance
4da9152a 1053 * between calculating 'idx' and possibly switching the base, only
9a2b764b
FW
1054 * enqueue_timer() is required. Otherwise we need to (re)calculate
1055 * the wheel index via internal_add_timer().
f00c0afd 1056 */
9a2b764b
FW
1057 if (idx != UINT_MAX && clk == base->clk)
1058 enqueue_timer(base, timer, idx, bucket_expiry);
1059 else
f00c0afd 1060 internal_add_timer(base, timer);
74019224
IM
1061
1062out_unlock:
2287d866 1063 raw_spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
1064
1065 return ret;
1066}
1067
2aae4a10 1068/**
74019224
IM
1069 * mod_timer_pending - modify a pending timer's timeout
1070 * @timer: the pending timer to be modified
1071 * @expires: new timeout in jiffies
1da177e4 1072 *
74019224
IM
1073 * mod_timer_pending() is the same for pending timers as mod_timer(),
1074 * but will not re-activate and modify already deleted timers.
1075 *
1076 * It is useful for unserialized use of timers.
1da177e4 1077 */
74019224 1078int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 1079{
b24591e2 1080 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1da177e4 1081}
74019224 1082EXPORT_SYMBOL(mod_timer_pending);
1da177e4 1083
2aae4a10 1084/**
1da177e4
LT
1085 * mod_timer - modify a timer's timeout
1086 * @timer: the timer to be modified
2aae4a10 1087 * @expires: new timeout in jiffies
1da177e4 1088 *
72fd4a35 1089 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
1090 * active timer (if the timer is inactive it will be activated)
1091 *
1092 * mod_timer(timer, expires) is equivalent to:
1093 *
1094 * del_timer(timer); timer->expires = expires; add_timer(timer);
1095 *
1096 * Note that if there are multiple unserialized concurrent users of the
1097 * same timer, then mod_timer() is the only safe way to modify the timeout,
1098 * since add_timer() cannot modify an already running timer.
1099 *
1100 * The function returns whether it has modified a pending timer or not.
1101 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1102 * active timer returns 1.)
1103 */
1104int mod_timer(struct timer_list *timer, unsigned long expires)
1105{
b24591e2 1106 return __mod_timer(timer, expires, 0);
1da177e4 1107}
1da177e4
LT
1108EXPORT_SYMBOL(mod_timer);
1109
b24591e2
DH
1110/**
1111 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1112 * @timer: The timer to be modified
1113 * @expires: New timeout in jiffies
1114 *
1115 * timer_reduce() is very similar to mod_timer(), except that it will only
1116 * modify a running timer if that would reduce the expiration time (it will
1117 * start a timer that isn't running).
1118 */
1119int timer_reduce(struct timer_list *timer, unsigned long expires)
1120{
1121 return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1122}
1123EXPORT_SYMBOL(timer_reduce);
1124
74019224
IM
1125/**
1126 * add_timer - start a timer
1127 * @timer: the timer to be added
1128 *
c1eba5bc 1129 * The kernel will do a ->function(@timer) callback from the
74019224
IM
1130 * timer interrupt at the ->expires point in the future. The
1131 * current time is 'jiffies'.
1132 *
c1eba5bc
KC
1133 * The timer's ->expires, ->function fields must be set prior calling this
1134 * function.
74019224
IM
1135 *
1136 * Timers with an ->expires field in the past will be executed in the next
1137 * timer tick.
1138 */
1139void add_timer(struct timer_list *timer)
1140{
1141 BUG_ON(timer_pending(timer));
90c01894 1142 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
74019224
IM
1143}
1144EXPORT_SYMBOL(add_timer);
1145
1146/**
1147 * add_timer_on - start a timer on a particular CPU
1148 * @timer: the timer to be added
1149 * @cpu: the CPU to start it on
1150 *
1151 * This is not very scalable on SMP. Double adds are not possible.
1152 */
1153void add_timer_on(struct timer_list *timer, int cpu)
1154{
500462a9 1155 struct timer_base *new_base, *base;
74019224
IM
1156 unsigned long flags;
1157
74019224 1158 BUG_ON(timer_pending(timer) || !timer->function);
22b886dd 1159
500462a9
TG
1160 new_base = get_timer_cpu_base(timer->flags, cpu);
1161
22b886dd
TH
1162 /*
1163 * If @timer was on a different CPU, it should be migrated with the
1164 * old base locked to prevent other operations proceeding with the
1165 * wrong base locked. See lock_timer_base().
1166 */
1167 base = lock_timer_base(timer, &flags);
1168 if (base != new_base) {
1169 timer->flags |= TIMER_MIGRATING;
1170
2287d866 1171 raw_spin_unlock(&base->lock);
22b886dd 1172 base = new_base;
2287d866 1173 raw_spin_lock(&base->lock);
22b886dd
TH
1174 WRITE_ONCE(timer->flags,
1175 (timer->flags & ~TIMER_BASEMASK) | cpu);
1176 }
2fe59f50 1177 forward_timer_base(base);
22b886dd 1178
dc1e7dc5 1179 debug_timer_activate(timer);
74019224 1180 internal_add_timer(base, timer);
2287d866 1181 raw_spin_unlock_irqrestore(&base->lock, flags);
74019224 1182}
a9862e05 1183EXPORT_SYMBOL_GPL(add_timer_on);
74019224 1184
2aae4a10 1185/**
0ba42a59 1186 * del_timer - deactivate a timer.
1da177e4
LT
1187 * @timer: the timer to be deactivated
1188 *
1189 * del_timer() deactivates a timer - this works on both active and inactive
1190 * timers.
1191 *
1192 * The function returns whether it has deactivated a pending timer or not.
1193 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1194 * active timer returns 1.)
1195 */
1196int del_timer(struct timer_list *timer)
1197{
494af3ed 1198 struct timer_base *base;
1da177e4 1199 unsigned long flags;
55c888d6 1200 int ret = 0;
1da177e4 1201
dc4218bd
CC
1202 debug_assert_init(timer);
1203
55c888d6
ON
1204 if (timer_pending(timer)) {
1205 base = lock_timer_base(timer, &flags);
ec44bc7a 1206 ret = detach_if_pending(timer, base, true);
2287d866 1207 raw_spin_unlock_irqrestore(&base->lock, flags);
1da177e4 1208 }
1da177e4 1209
55c888d6 1210 return ret;
1da177e4 1211}
1da177e4
LT
1212EXPORT_SYMBOL(del_timer);
1213
2aae4a10
REB
1214/**
1215 * try_to_del_timer_sync - Try to deactivate a timer
d15bc69a 1216 * @timer: timer to delete
2aae4a10 1217 *
fd450b73
ON
1218 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1219 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1220 */
1221int try_to_del_timer_sync(struct timer_list *timer)
1222{
494af3ed 1223 struct timer_base *base;
fd450b73
ON
1224 unsigned long flags;
1225 int ret = -1;
1226
dc4218bd
CC
1227 debug_assert_init(timer);
1228
fd450b73
ON
1229 base = lock_timer_base(timer, &flags);
1230
dfb4357d 1231 if (base->running_timer != timer)
ec44bc7a 1232 ret = detach_if_pending(timer, base, true);
dfb4357d 1233
2287d866 1234 raw_spin_unlock_irqrestore(&base->lock, flags);
fd450b73
ON
1235
1236 return ret;
1237}
e19dff1f
DH
1238EXPORT_SYMBOL(try_to_del_timer_sync);
1239
dcd42591
FW
1240bool timer_curr_running(struct timer_list *timer)
1241{
1242 int i;
1243
1244 for (i = 0; i < NR_BASES; i++) {
1245 struct timer_base *base = this_cpu_ptr(&timer_bases[i]);
1246 if (base->running_timer == timer)
1247 return true;
1248 }
1249
1250 return false;
1251}
1252
030dcdd1
AMG
1253#ifdef CONFIG_PREEMPT_RT
1254static __init void timer_base_init_expiry_lock(struct timer_base *base)
1255{
1256 spin_lock_init(&base->expiry_lock);
1257}
1258
1259static inline void timer_base_lock_expiry(struct timer_base *base)
1260{
1261 spin_lock(&base->expiry_lock);
1262}
1263
1264static inline void timer_base_unlock_expiry(struct timer_base *base)
1265{
1266 spin_unlock(&base->expiry_lock);
1267}
1268
1269/*
1270 * The counterpart to del_timer_wait_running().
1271 *
1272 * If there is a waiter for base->expiry_lock, then it was waiting for the
1273 * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1274 * the waiter to acquire the lock and make progress.
1275 */
1276static void timer_sync_wait_running(struct timer_base *base)
1277{
1278 if (atomic_read(&base->timer_waiters)) {
1279 spin_unlock(&base->expiry_lock);
1280 spin_lock(&base->expiry_lock);
1281 }
1282}
1283
1284/*
1285 * This function is called on PREEMPT_RT kernels when the fast path
1286 * deletion of a timer failed because the timer callback function was
1287 * running.
1288 *
1289 * This prevents priority inversion, if the softirq thread on a remote CPU
1290 * got preempted, and it prevents a life lock when the task which tries to
1291 * delete a timer preempted the softirq thread running the timer callback
1292 * function.
1293 */
1294static void del_timer_wait_running(struct timer_list *timer)
1295{
1296 u32 tf;
1297
1298 tf = READ_ONCE(timer->flags);
c725dafc 1299 if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
030dcdd1
AMG
1300 struct timer_base *base = get_timer_base(tf);
1301
1302 /*
1303 * Mark the base as contended and grab the expiry lock,
1304 * which is held by the softirq across the timer
1305 * callback. Drop the lock immediately so the softirq can
1306 * expire the next timer. In theory the timer could already
1307 * be running again, but that's more than unlikely and just
1308 * causes another wait loop.
1309 */
1310 atomic_inc(&base->timer_waiters);
1311 spin_lock_bh(&base->expiry_lock);
1312 atomic_dec(&base->timer_waiters);
1313 spin_unlock_bh(&base->expiry_lock);
1314 }
1315}
1316#else
1317static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1318static inline void timer_base_lock_expiry(struct timer_base *base) { }
1319static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1320static inline void timer_sync_wait_running(struct timer_base *base) { }
1321static inline void del_timer_wait_running(struct timer_list *timer) { }
1322#endif
1323
1324#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
2aae4a10 1325/**
1da177e4
LT
1326 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1327 * @timer: the timer to be deactivated
1328 *
1329 * This function only differs from del_timer() on SMP: besides deactivating
1330 * the timer it also makes sure the handler has finished executing on other
1331 * CPUs.
1332 *
72fd4a35 1333 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1334 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1335 * interrupt contexts unless the timer is an irqsafe one. The caller must
1336 * not hold locks which would prevent completion of the timer's
1337 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1338 * timer is not queued and the handler is not running on any CPU.
1da177e4 1339 *
c5f66e99
TH
1340 * Note: For !irqsafe timers, you must not hold locks that are held in
1341 * interrupt context while calling this function. Even if the lock has
bf9c96be 1342 * nothing to do with the timer in question. Here's why::
48228f7b
SR
1343 *
1344 * CPU0 CPU1
1345 * ---- ----
bf9c96be
MCC
1346 * <SOFTIRQ>
1347 * call_timer_fn();
1348 * base->running_timer = mytimer;
1349 * spin_lock_irq(somelock);
48228f7b
SR
1350 * <IRQ>
1351 * spin_lock(somelock);
bf9c96be
MCC
1352 * del_timer_sync(mytimer);
1353 * while (base->running_timer == mytimer);
48228f7b
SR
1354 *
1355 * Now del_timer_sync() will never return and never release somelock.
1356 * The interrupt on the other CPU is waiting to grab somelock but
1357 * it has interrupted the softirq that CPU0 is waiting to finish.
1358 *
1da177e4 1359 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1360 */
1361int del_timer_sync(struct timer_list *timer)
1362{
030dcdd1
AMG
1363 int ret;
1364
6f2b9b9a 1365#ifdef CONFIG_LOCKDEP
f266a511
PZ
1366 unsigned long flags;
1367
48228f7b
SR
1368 /*
1369 * If lockdep gives a backtrace here, please reference
1370 * the synchronization rules above.
1371 */
7ff20792 1372 local_irq_save(flags);
6f2b9b9a
JB
1373 lock_map_acquire(&timer->lockdep_map);
1374 lock_map_release(&timer->lockdep_map);
7ff20792 1375 local_irq_restore(flags);
6f2b9b9a 1376#endif
466bd303
YZ
1377 /*
1378 * don't use it in hardirq context, because it
1379 * could lead to deadlock.
1380 */
0eeda71b 1381 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
030dcdd1 1382
c725dafc
SAS
1383 /*
1384 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1385 * del_timer_wait_running().
1386 */
1387 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1388 lockdep_assert_preemption_enabled();
1389
030dcdd1
AMG
1390 do {
1391 ret = try_to_del_timer_sync(timer);
1392
1393 if (unlikely(ret < 0)) {
1394 del_timer_wait_running(timer);
1395 cpu_relax();
1396 }
1397 } while (ret < 0);
1398
1399 return ret;
1da177e4 1400}
55c888d6 1401EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1402#endif
1403
f28d3d53
AMG
1404static void call_timer_fn(struct timer_list *timer,
1405 void (*fn)(struct timer_list *),
1406 unsigned long baseclk)
576da126 1407{
4a2b4b22 1408 int count = preempt_count();
576da126
TG
1409
1410#ifdef CONFIG_LOCKDEP
1411 /*
1412 * It is permissible to free the timer from inside the
1413 * function that is called from it, this we need to take into
1414 * account for lockdep too. To avoid bogus "held lock freed"
1415 * warnings as well as problems when looking into
1416 * timer->lockdep_map, make a copy and use that here.
1417 */
4d82a1de
PZ
1418 struct lockdep_map lockdep_map;
1419
1420 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1421#endif
1422 /*
1423 * Couple the lock chain with the lock chain at
1424 * del_timer_sync() by acquiring the lock_map around the fn()
1425 * call here and in del_timer_sync().
1426 */
1427 lock_map_acquire(&lockdep_map);
1428
f28d3d53 1429 trace_timer_expire_entry(timer, baseclk);
354b46b1 1430 fn(timer);
576da126
TG
1431 trace_timer_expire_exit(timer);
1432
1433 lock_map_release(&lockdep_map);
1434
4a2b4b22 1435 if (count != preempt_count()) {
d75f773c 1436 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
4a2b4b22 1437 fn, count, preempt_count());
802702e0
TG
1438 /*
1439 * Restore the preempt count. That gives us a decent
1440 * chance to survive and extract information. If the
1441 * callback kept a lock held, bad luck, but not worse
1442 * than the BUG() we had.
1443 */
4a2b4b22 1444 preempt_count_set(count);
576da126
TG
1445 }
1446}
1447
500462a9 1448static void expire_timers(struct timer_base *base, struct hlist_head *head)
1da177e4 1449{
f28d3d53
AMG
1450 /*
1451 * This value is required only for tracing. base->clk was
1452 * incremented directly before expire_timers was called. But expiry
1453 * is related to the old base->clk value.
1454 */
1455 unsigned long baseclk = base->clk - 1;
1456
500462a9
TG
1457 while (!hlist_empty(head)) {
1458 struct timer_list *timer;
354b46b1 1459 void (*fn)(struct timer_list *);
1da177e4 1460
500462a9 1461 timer = hlist_entry(head->first, struct timer_list, entry);
3bb475a3 1462
500462a9
TG
1463 base->running_timer = timer;
1464 detach_timer(timer, true);
3bb475a3 1465
500462a9 1466 fn = timer->function;
500462a9
TG
1467
1468 if (timer->flags & TIMER_IRQSAFE) {
2287d866 1469 raw_spin_unlock(&base->lock);
f28d3d53 1470 call_timer_fn(timer, fn, baseclk);
030dcdd1 1471 base->running_timer = NULL;
2287d866 1472 raw_spin_lock(&base->lock);
500462a9 1473 } else {
2287d866 1474 raw_spin_unlock_irq(&base->lock);
f28d3d53 1475 call_timer_fn(timer, fn, baseclk);
030dcdd1
AMG
1476 base->running_timer = NULL;
1477 timer_sync_wait_running(base);
2287d866 1478 raw_spin_lock_irq(&base->lock);
3bb475a3 1479 }
500462a9
TG
1480 }
1481}
3bb475a3 1482
d4f7dae8
FW
1483static int collect_expired_timers(struct timer_base *base,
1484 struct hlist_head *heads)
500462a9 1485{
d4f7dae8 1486 unsigned long clk = base->clk = base->next_expiry;
500462a9
TG
1487 struct hlist_head *vec;
1488 int i, levels = 0;
1489 unsigned int idx;
626ab0e6 1490
500462a9
TG
1491 for (i = 0; i < LVL_DEPTH; i++) {
1492 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1493
1494 if (__test_and_clear_bit(idx, base->pending_map)) {
1495 vec = base->vectors + idx;
1496 hlist_move_list(vec, heads++);
1497 levels++;
1da177e4 1498 }
500462a9
TG
1499 /* Is it time to look at the next level? */
1500 if (clk & LVL_CLK_MASK)
1501 break;
1502 /* Shift clock for the next level granularity */
1503 clk >>= LVL_CLK_SHIFT;
1da177e4 1504 }
500462a9 1505 return levels;
1da177e4
LT
1506}
1507
1da177e4 1508/*
23696838
AMG
1509 * Find the next pending bucket of a level. Search from level start (@offset)
1510 * + @clk upwards and if nothing there, search from start of the level
1511 * (@offset) up to @offset + clk.
1da177e4 1512 */
500462a9
TG
1513static int next_pending_bucket(struct timer_base *base, unsigned offset,
1514 unsigned clk)
1515{
1516 unsigned pos, start = offset + clk;
1517 unsigned end = offset + LVL_SIZE;
1518
1519 pos = find_next_bit(base->pending_map, end, start);
1520 if (pos < end)
1521 return pos - start;
1522
1523 pos = find_next_bit(base->pending_map, start, offset);
1524 return pos < start ? pos + LVL_SIZE - start : -1;
1525}
1526
1527/*
23696838
AMG
1528 * Search the first expiring timer in the various clock levels. Caller must
1529 * hold base->lock.
1da177e4 1530 */
494af3ed 1531static unsigned long __next_timer_interrupt(struct timer_base *base)
1da177e4 1532{
500462a9
TG
1533 unsigned long clk, next, adj;
1534 unsigned lvl, offset = 0;
1535
500462a9
TG
1536 next = base->clk + NEXT_TIMER_MAX_DELTA;
1537 clk = base->clk;
1538 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1539 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
001ec1b3 1540 unsigned long lvl_clk = clk & LVL_CLK_MASK;
500462a9
TG
1541
1542 if (pos >= 0) {
1543 unsigned long tmp = clk + (unsigned long) pos;
1544
1545 tmp <<= LVL_SHIFT(lvl);
1546 if (time_before(tmp, next))
1547 next = tmp;
001ec1b3
FW
1548
1549 /*
1550 * If the next expiration happens before we reach
1551 * the next level, no need to check further.
1552 */
1553 if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1554 break;
1da177e4 1555 }
500462a9
TG
1556 /*
1557 * Clock for the next level. If the current level clock lower
1558 * bits are zero, we look at the next level as is. If not we
1559 * need to advance it by one because that's going to be the
1560 * next expiring bucket in that level. base->clk is the next
1561 * expiring jiffie. So in case of:
1562 *
1563 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1564 * 0 0 0 0 0 0
1565 *
1566 * we have to look at all levels @index 0. With
1567 *
1568 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1569 * 0 0 0 0 0 2
1570 *
1571 * LVL0 has the next expiring bucket @index 2. The upper
1572 * levels have the next expiring bucket @index 1.
1573 *
1574 * In case that the propagation wraps the next level the same
1575 * rules apply:
1576 *
1577 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1578 * 0 0 0 0 F 2
1579 *
1580 * So after looking at LVL0 we get:
1581 *
1582 * LVL5 LVL4 LVL3 LVL2 LVL1
1583 * 0 0 0 1 0
1584 *
1585 * So no propagation from LVL1 to LVL2 because that happened
1586 * with the add already, but then we need to propagate further
1587 * from LVL2 to LVL3.
1588 *
1589 * So the simple check whether the lower bits of the current
1590 * level are 0 or not is sufficient for all cases.
1591 */
001ec1b3 1592 adj = lvl_clk ? 1 : 0;
500462a9
TG
1593 clk >>= LVL_CLK_SHIFT;
1594 clk += adj;
1da177e4 1595 }
31cd0e11
FW
1596
1597 base->next_expiry_recalc = false;
1598
500462a9 1599 return next;
1cfd6849 1600}
69239749 1601
dc2a0f1f 1602#ifdef CONFIG_NO_HZ_COMMON
1cfd6849
TG
1603/*
1604 * Check, if the next hrtimer event is before the next timer wheel
1605 * event:
1606 */
c1ad348b 1607static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1cfd6849 1608{
c1ad348b 1609 u64 nextevt = hrtimer_get_next_event();
0662b713 1610
9501b6cf 1611 /*
c1ad348b
TG
1612 * If high resolution timers are enabled
1613 * hrtimer_get_next_event() returns KTIME_MAX.
9501b6cf 1614 */
c1ad348b
TG
1615 if (expires <= nextevt)
1616 return expires;
eaad084b
TG
1617
1618 /*
c1ad348b
TG
1619 * If the next timer is already expired, return the tick base
1620 * time so the tick is fired immediately.
eaad084b 1621 */
c1ad348b
TG
1622 if (nextevt <= basem)
1623 return basem;
eaad084b 1624
9501b6cf 1625 /*
c1ad348b
TG
1626 * Round up to the next jiffie. High resolution timers are
1627 * off, so the hrtimers are expired in the tick and we need to
1628 * make sure that this tick really expires the timer to avoid
1629 * a ping pong of the nohz stop code.
1630 *
1631 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
9501b6cf 1632 */
c1ad348b 1633 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1da177e4 1634}
1cfd6849
TG
1635
1636/**
c1ad348b
TG
1637 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1638 * @basej: base time jiffies
1639 * @basem: base time clock monotonic
1640 *
1641 * Returns the tick aligned clock monotonic time of the next pending
1642 * timer or KTIME_MAX if no timer is pending.
1cfd6849 1643 */
c1ad348b 1644u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1cfd6849 1645{
500462a9 1646 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
c1ad348b
TG
1647 u64 expires = KTIME_MAX;
1648 unsigned long nextevt;
46c8f0b0 1649 bool is_max_delta;
1cfd6849 1650
dbd87b5a
HC
1651 /*
1652 * Pretend that there is no timer pending if the cpu is offline.
1653 * Possible pending timers will be migrated later to an active cpu.
1654 */
1655 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1656 return expires;
1657
2287d866 1658 raw_spin_lock(&base->lock);
31cd0e11
FW
1659 if (base->next_expiry_recalc)
1660 base->next_expiry = __next_timer_interrupt(base);
1661 nextevt = base->next_expiry;
46c8f0b0 1662 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
31cd0e11 1663
a683f390 1664 /*
041ad7bc
TG
1665 * We have a fresh next event. Check whether we can forward the
1666 * base. We can only do that when @basej is past base->clk
1667 * otherwise we might rewind base->clk.
a683f390 1668 */
041ad7bc
TG
1669 if (time_after(basej, base->clk)) {
1670 if (time_after(nextevt, basej))
1671 base->clk = basej;
1672 else if (time_after(nextevt, base->clk))
1673 base->clk = nextevt;
1674 }
23696838 1675
a683f390 1676 if (time_before_eq(nextevt, basej)) {
500462a9 1677 expires = basem;
a683f390
TG
1678 base->is_idle = false;
1679 } else {
46c8f0b0 1680 if (!is_max_delta)
34f41c03 1681 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
a683f390 1682 /*
2fe59f50
NP
1683 * If we expect to sleep more than a tick, mark the base idle.
1684 * Also the tick is stopped so any added timer must forward
1685 * the base clk itself to keep granularity small. This idle
1686 * logic is only maintained for the BASE_STD base, deferrable
1687 * timers may still see large granularity skew (by design).
a683f390 1688 */
1f8a4212 1689 if ((expires - basem) > TICK_NSEC)
a683f390 1690 base->is_idle = true;
e40468a5 1691 }
2287d866 1692 raw_spin_unlock(&base->lock);
1cfd6849 1693
c1ad348b 1694 return cmp_next_hrtimer_event(basem, expires);
1cfd6849 1695}
23696838 1696
a683f390
TG
1697/**
1698 * timer_clear_idle - Clear the idle state of the timer base
1699 *
1700 * Called with interrupts disabled
1701 */
1702void timer_clear_idle(void)
1703{
1704 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1705
1706 /*
1707 * We do this unlocked. The worst outcome is a remote enqueue sending
1708 * a pointless IPI, but taking the lock would just make the window for
1709 * sending the IPI a few instructions smaller for the cost of taking
1710 * the lock in the exit from idle path.
1711 */
1712 base->is_idle = false;
1713}
1da177e4
LT
1714#endif
1715
73420fea
AMG
1716/**
1717 * __run_timers - run all expired timers (if any) on this CPU.
1718 * @base: the timer vector to be processed.
1719 */
1720static inline void __run_timers(struct timer_base *base)
1721{
1722 struct hlist_head heads[LVL_DEPTH];
1723 int levels;
1724
d4f7dae8 1725 if (time_before(jiffies, base->next_expiry))
73420fea
AMG
1726 return;
1727
030dcdd1 1728 timer_base_lock_expiry(base);
2287d866 1729 raw_spin_lock_irq(&base->lock);
73420fea 1730
d4f7dae8
FW
1731 while (time_after_eq(jiffies, base->clk) &&
1732 time_after_eq(jiffies, base->next_expiry)) {
73420fea 1733 levels = collect_expired_timers(base, heads);
31cd0e11
FW
1734 /*
1735 * The only possible reason for not finding any expired
1736 * timer at this clk is that all matching timers have been
1737 * dequeued.
1738 */
1739 WARN_ON_ONCE(!levels && !base->next_expiry_recalc);
73420fea 1740 base->clk++;
dc2a0f1f 1741 base->next_expiry = __next_timer_interrupt(base);
73420fea
AMG
1742
1743 while (levels--)
1744 expire_timers(base, heads + levels);
1745 }
2287d866 1746 raw_spin_unlock_irq(&base->lock);
030dcdd1 1747 timer_base_unlock_expiry(base);
73420fea
AMG
1748}
1749
1da177e4
LT
1750/*
1751 * This function runs timers and the timer-tq in bottom half context.
1752 */
0766f788 1753static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1da177e4 1754{
500462a9 1755 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1da177e4 1756
500462a9 1757 __run_timers(base);
ced6d5c1 1758 if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
500462a9 1759 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1da177e4
LT
1760}
1761
1762/*
1763 * Called by the local, per-CPU timer interrupt on SMP.
1764 */
cc947f2b 1765static void run_local_timers(void)
1da177e4 1766{
4e85876a
TG
1767 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1768
d3d74453 1769 hrtimer_run_queues();
4e85876a 1770 /* Raise the softirq only if required. */
d4f7dae8 1771 if (time_before(jiffies, base->next_expiry)) {
ed4bbf79 1772 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
4e85876a
TG
1773 return;
1774 /* CPU is awake, so check the deferrable base. */
1775 base++;
d4f7dae8 1776 if (time_before(jiffies, base->next_expiry))
4e85876a
TG
1777 return;
1778 }
1da177e4
LT
1779 raise_softirq(TIMER_SOFTIRQ);
1780}
1781
cc947f2b
TG
1782/*
1783 * Called from the timer interrupt handler to charge one tick to the current
1784 * process. user_tick is 1 if the tick is user time, 0 for system.
1785 */
1786void update_process_times(int user_tick)
1787{
1788 struct task_struct *p = current;
1789
1790 PRANDOM_ADD_NOISE(jiffies, user_tick, p, 0);
1791
1792 /* Note: this timer irq context must be accounted for as well. */
1793 account_process_tick(p, user_tick);
1794 run_local_timers();
1795 rcu_sched_clock_irq(user_tick);
1796#ifdef CONFIG_IRQ_WORK
1797 if (in_irq())
1798 irq_work_tick();
1799#endif
1800 scheduler_tick();
1801 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1802 run_posix_cpu_timers();
1803}
1804
58e1177b
KC
1805/*
1806 * Since schedule_timeout()'s timer is defined on the stack, it must store
1807 * the target task on the stack as well.
1808 */
1809struct process_timer {
1810 struct timer_list timer;
1811 struct task_struct *task;
1812};
1813
1814static void process_timeout(struct timer_list *t)
1da177e4 1815{
58e1177b
KC
1816 struct process_timer *timeout = from_timer(timeout, t, timer);
1817
1818 wake_up_process(timeout->task);
1da177e4
LT
1819}
1820
1821/**
1822 * schedule_timeout - sleep until timeout
1823 * @timeout: timeout value in jiffies
1824 *
6e317c32
AP
1825 * Make the current task sleep until @timeout jiffies have elapsed.
1826 * The function behavior depends on the current task state
1827 * (see also set_current_state() description):
1da177e4 1828 *
6e317c32
AP
1829 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1830 * at all. That happens because sched_submit_work() does nothing for
1831 * tasks in %TASK_RUNNING state.
1da177e4
LT
1832 *
1833 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
4b7e9cf9 1834 * pass before the routine returns unless the current task is explicitly
6e317c32 1835 * woken up, (e.g. by wake_up_process()).
1da177e4
LT
1836 *
1837 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1838 * delivered to the current task or the current task is explicitly woken
1839 * up.
1da177e4 1840 *
6e317c32 1841 * The current task state is guaranteed to be %TASK_RUNNING when this
1da177e4
LT
1842 * routine returns.
1843 *
1844 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1845 * the CPU away without a bound on the timeout. In this case the return
1846 * value will be %MAX_SCHEDULE_TIMEOUT.
1847 *
4b7e9cf9 1848 * Returns 0 when the timer has expired otherwise the remaining time in
6e317c32 1849 * jiffies will be returned. In all cases the return value is guaranteed
4b7e9cf9 1850 * to be non-negative.
1da177e4 1851 */
7ad5b3a5 1852signed long __sched schedule_timeout(signed long timeout)
1da177e4 1853{
58e1177b 1854 struct process_timer timer;
1da177e4
LT
1855 unsigned long expire;
1856
1857 switch (timeout)
1858 {
1859 case MAX_SCHEDULE_TIMEOUT:
1860 /*
1861 * These two special cases are useful to be comfortable
1862 * in the caller. Nothing more. We could take
1863 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1864 * but I' d like to return a valid offset (>=0) to allow
1865 * the caller to do everything it want with the retval.
1866 */
1867 schedule();
1868 goto out;
1869 default:
1870 /*
1871 * Another bit of PARANOID. Note that the retval will be
1872 * 0 since no piece of kernel is supposed to do a check
1873 * for a negative retval of schedule_timeout() (since it
1874 * should never happens anyway). You just have the printk()
1875 * that will tell you if something is gone wrong and where.
1876 */
5b149bcc 1877 if (timeout < 0) {
1da177e4 1878 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1879 "value %lx\n", timeout);
1880 dump_stack();
1da177e4
LT
1881 current->state = TASK_RUNNING;
1882 goto out;
1883 }
1884 }
1885
1886 expire = timeout + jiffies;
1887
58e1177b
KC
1888 timer.task = current;
1889 timer_setup_on_stack(&timer.timer, process_timeout, 0);
90c01894 1890 __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1da177e4 1891 schedule();
58e1177b 1892 del_singleshot_timer_sync(&timer.timer);
1da177e4 1893
c6f3a97f 1894 /* Remove the timer from the object tracker */
58e1177b 1895 destroy_timer_on_stack(&timer.timer);
c6f3a97f 1896
1da177e4
LT
1897 timeout = expire - jiffies;
1898
1899 out:
1900 return timeout < 0 ? 0 : timeout;
1901}
1da177e4
LT
1902EXPORT_SYMBOL(schedule_timeout);
1903
8a1c1757
AM
1904/*
1905 * We can use __set_current_state() here because schedule_timeout() calls
1906 * schedule() unconditionally.
1907 */
64ed93a2
NA
1908signed long __sched schedule_timeout_interruptible(signed long timeout)
1909{
a5a0d52c
AM
1910 __set_current_state(TASK_INTERRUPTIBLE);
1911 return schedule_timeout(timeout);
64ed93a2
NA
1912}
1913EXPORT_SYMBOL(schedule_timeout_interruptible);
1914
294d5cc2
MW
1915signed long __sched schedule_timeout_killable(signed long timeout)
1916{
1917 __set_current_state(TASK_KILLABLE);
1918 return schedule_timeout(timeout);
1919}
1920EXPORT_SYMBOL(schedule_timeout_killable);
1921
64ed93a2
NA
1922signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1923{
a5a0d52c
AM
1924 __set_current_state(TASK_UNINTERRUPTIBLE);
1925 return schedule_timeout(timeout);
64ed93a2
NA
1926}
1927EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1928
69b27baf
AM
1929/*
1930 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1931 * to load average.
1932 */
1933signed long __sched schedule_timeout_idle(signed long timeout)
1934{
1935 __set_current_state(TASK_IDLE);
1936 return schedule_timeout(timeout);
1937}
1938EXPORT_SYMBOL(schedule_timeout_idle);
1939
1da177e4 1940#ifdef CONFIG_HOTPLUG_CPU
494af3ed 1941static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1da177e4
LT
1942{
1943 struct timer_list *timer;
0eeda71b 1944 int cpu = new_base->cpu;
1da177e4 1945
1dabbcec
TG
1946 while (!hlist_empty(head)) {
1947 timer = hlist_entry(head->first, struct timer_list, entry);
ec44bc7a 1948 detach_timer(timer, false);
0eeda71b 1949 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1da177e4 1950 internal_add_timer(new_base, timer);
1da177e4 1951 }
1da177e4
LT
1952}
1953
26456f87
TG
1954int timers_prepare_cpu(unsigned int cpu)
1955{
1956 struct timer_base *base;
1957 int b;
1958
1959 for (b = 0; b < NR_BASES; b++) {
1960 base = per_cpu_ptr(&timer_bases[b], cpu);
1961 base->clk = jiffies;
1962 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1963 base->is_idle = false;
26456f87
TG
1964 }
1965 return 0;
1966}
1967
24f73b99 1968int timers_dead_cpu(unsigned int cpu)
1da177e4 1969{
494af3ed
TG
1970 struct timer_base *old_base;
1971 struct timer_base *new_base;
500462a9 1972 int b, i;
1da177e4
LT
1973
1974 BUG_ON(cpu_online(cpu));
55c888d6 1975
500462a9
TG
1976 for (b = 0; b < NR_BASES; b++) {
1977 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1978 new_base = get_cpu_ptr(&timer_bases[b]);
1979 /*
1980 * The caller is globally serialized and nobody else
1981 * takes two locks at once, deadlock is not possible.
1982 */
2287d866
SAS
1983 raw_spin_lock_irq(&new_base->lock);
1984 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
500462a9 1985
c52232a4
LC
1986 /*
1987 * The current CPUs base clock might be stale. Update it
1988 * before moving the timers over.
1989 */
1990 forward_timer_base(new_base);
1991
500462a9
TG
1992 BUG_ON(old_base->running_timer);
1993
1994 for (i = 0; i < WHEEL_SIZE; i++)
1995 migrate_timer_list(new_base, old_base->vectors + i);
8def9060 1996
2287d866
SAS
1997 raw_spin_unlock(&old_base->lock);
1998 raw_spin_unlock_irq(&new_base->lock);
500462a9
TG
1999 put_cpu_ptr(&timer_bases);
2000 }
24f73b99 2001 return 0;
1da177e4 2002}
1da177e4 2003
3650b57f 2004#endif /* CONFIG_HOTPLUG_CPU */
1da177e4 2005
0eeda71b 2006static void __init init_timer_cpu(int cpu)
8def9060 2007{
500462a9
TG
2008 struct timer_base *base;
2009 int i;
8def9060 2010
500462a9
TG
2011 for (i = 0; i < NR_BASES; i++) {
2012 base = per_cpu_ptr(&timer_bases[i], cpu);
2013 base->cpu = cpu;
2287d866 2014 raw_spin_lock_init(&base->lock);
500462a9 2015 base->clk = jiffies;
dc2a0f1f 2016 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
030dcdd1 2017 timer_base_init_expiry_lock(base);
500462a9 2018 }
8def9060
VK
2019}
2020
2021static void __init init_timer_cpus(void)
1da177e4 2022{
8def9060
VK
2023 int cpu;
2024
0eeda71b
TG
2025 for_each_possible_cpu(cpu)
2026 init_timer_cpu(cpu);
8def9060 2027}
e52b1db3 2028
8def9060
VK
2029void __init init_timers(void)
2030{
8def9060 2031 init_timer_cpus();
1fb497dd 2032 posix_cputimers_init_work();
962cf36c 2033 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
2034}
2035
1da177e4
LT
2036/**
2037 * msleep - sleep safely even with waitqueue interruptions
2038 * @msecs: Time in milliseconds to sleep for
2039 */
2040void msleep(unsigned int msecs)
2041{
2042 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2043
75bcc8c5
NA
2044 while (timeout)
2045 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
2046}
2047
2048EXPORT_SYMBOL(msleep);
2049
2050/**
96ec3efd 2051 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
2052 * @msecs: Time in milliseconds to sleep for
2053 */
2054unsigned long msleep_interruptible(unsigned int msecs)
2055{
2056 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2057
75bcc8c5
NA
2058 while (timeout && !signal_pending(current))
2059 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
2060 return jiffies_to_msecs(timeout);
2061}
2062
2063EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17 2064
5e7f5a17 2065/**
b5227d03 2066 * usleep_range - Sleep for an approximate time
5e7f5a17
PP
2067 * @min: Minimum time in usecs to sleep
2068 * @max: Maximum time in usecs to sleep
b5227d03
BH
2069 *
2070 * In non-atomic context where the exact wakeup time is flexible, use
2071 * usleep_range() instead of udelay(). The sleep improves responsiveness
2072 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2073 * power usage by allowing hrtimers to take advantage of an already-
2074 * scheduled interrupt instead of scheduling a new one just for this sleep.
5e7f5a17 2075 */
2ad5d327 2076void __sched usleep_range(unsigned long min, unsigned long max)
5e7f5a17 2077{
6c5e9059
DA
2078 ktime_t exp = ktime_add_us(ktime_get(), min);
2079 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2080
2081 for (;;) {
2082 __set_current_state(TASK_UNINTERRUPTIBLE);
2083 /* Do not return before the requested sleep time has elapsed */
2084 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2085 break;
2086 }
5e7f5a17
PP
2087}
2088EXPORT_SYMBOL(usleep_range);