]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/time/timer.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-bionic-kernel.git] / kernel / time / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4a22f166 4 * Kernel internal timers
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
5a0e3ad6 43#include <linux/slab.h>
1a0df594 44#include <linux/compat.h>
1da177e4
LT
45
46#include <asm/uaccess.h>
47#include <asm/unistd.h>
48#include <asm/div64.h>
49#include <asm/timex.h>
50#include <asm/io.h>
51
c1ad348b
TG
52#include "tick-internal.h"
53
2b022e3d
XG
54#define CREATE_TRACE_POINTS
55#include <trace/events/timer.h>
56
40747ffa 57__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
ecea8d19
TG
58
59EXPORT_SYMBOL(jiffies_64);
60
1da177e4
LT
61/*
62 * per-CPU timer vector definitions:
63 */
1da177e4
LT
64#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
65#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
66#define TVN_SIZE (1 << TVN_BITS)
67#define TVR_SIZE (1 << TVR_BITS)
68#define TVN_MASK (TVN_SIZE - 1)
69#define TVR_MASK (TVR_SIZE - 1)
26cff4e2 70#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
1da177e4 71
a6fa8e5a 72struct tvec {
1dabbcec 73 struct hlist_head vec[TVN_SIZE];
a6fa8e5a 74};
1da177e4 75
a6fa8e5a 76struct tvec_root {
1dabbcec 77 struct hlist_head vec[TVR_SIZE];
a6fa8e5a 78};
1da177e4 79
a6fa8e5a 80struct tvec_base {
3691c519
ON
81 spinlock_t lock;
82 struct timer_list *running_timer;
1da177e4 83 unsigned long timer_jiffies;
97fd9ed4 84 unsigned long next_timer;
99d5f3aa 85 unsigned long active_timers;
fff42158 86 unsigned long all_timers;
d6f93829 87 int cpu;
bc7a34b8 88 bool migration_enabled;
683be13a 89 bool nohz_active;
a6fa8e5a
PM
90 struct tvec_root tv1;
91 struct tvec tv2;
92 struct tvec tv3;
93 struct tvec tv4;
94 struct tvec tv5;
6e453a67 95} ____cacheline_aligned;
1da177e4 96
e52b1db3 97
0eeda71b 98static DEFINE_PER_CPU(struct tvec_base, tvec_bases);
6e453a67 99
bc7a34b8
TG
100#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
101unsigned int sysctl_timer_migration = 1;
102
683be13a 103void timers_update_migration(bool update_nohz)
bc7a34b8
TG
104{
105 bool on = sysctl_timer_migration && tick_nohz_active;
106 unsigned int cpu;
107
108 /* Avoid the loop, if nothing to update */
109 if (this_cpu_read(tvec_bases.migration_enabled) == on)
110 return;
111
112 for_each_possible_cpu(cpu) {
113 per_cpu(tvec_bases.migration_enabled, cpu) = on;
114 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
683be13a
TG
115 if (!update_nohz)
116 continue;
117 per_cpu(tvec_bases.nohz_active, cpu) = true;
118 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
bc7a34b8
TG
119 }
120}
121
122int timer_migration_handler(struct ctl_table *table, int write,
123 void __user *buffer, size_t *lenp,
124 loff_t *ppos)
125{
126 static DEFINE_MUTEX(mutex);
127 int ret;
128
129 mutex_lock(&mutex);
130 ret = proc_dointvec(table, write, buffer, lenp, ppos);
131 if (!ret && write)
683be13a 132 timers_update_migration(false);
bc7a34b8
TG
133 mutex_unlock(&mutex);
134 return ret;
135}
136
137static inline struct tvec_base *get_target_base(struct tvec_base *base,
138 int pinned)
139{
140 if (pinned || !base->migration_enabled)
141 return this_cpu_ptr(&tvec_bases);
142 return per_cpu_ptr(&tvec_bases, get_nohz_timer_target());
143}
144#else
145static inline struct tvec_base *get_target_base(struct tvec_base *base,
146 int pinned)
147{
148 return this_cpu_ptr(&tvec_bases);
149}
150#endif
151
9c133c46
AS
152static unsigned long round_jiffies_common(unsigned long j, int cpu,
153 bool force_up)
4c36a5de
AV
154{
155 int rem;
156 unsigned long original = j;
157
158 /*
159 * We don't want all cpus firing their timers at once hitting the
160 * same lock or cachelines, so we skew each extra cpu with an extra
161 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
162 * already did this.
163 * The skew is done by adding 3*cpunr, then round, then subtract this
164 * extra offset again.
165 */
166 j += cpu * 3;
167
168 rem = j % HZ;
169
170 /*
171 * If the target jiffie is just after a whole second (which can happen
172 * due to delays of the timer irq, long irq off times etc etc) then
173 * we should round down to the whole second, not up. Use 1/4th second
174 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 175 * But never round down if @force_up is set.
4c36a5de 176 */
9c133c46 177 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
178 j = j - rem;
179 else /* round up */
180 j = j - rem + HZ;
181
182 /* now that we have rounded, subtract the extra skew again */
183 j -= cpu * 3;
184
9e04d380
BVA
185 /*
186 * Make sure j is still in the future. Otherwise return the
187 * unmodified value.
188 */
189 return time_is_after_jiffies(j) ? j : original;
4c36a5de 190}
9c133c46
AS
191
192/**
193 * __round_jiffies - function to round jiffies to a full second
194 * @j: the time in (absolute) jiffies that should be rounded
195 * @cpu: the processor number on which the timeout will happen
196 *
197 * __round_jiffies() rounds an absolute time in the future (in jiffies)
198 * up or down to (approximately) full seconds. This is useful for timers
199 * for which the exact time they fire does not matter too much, as long as
200 * they fire approximately every X seconds.
201 *
202 * By rounding these timers to whole seconds, all such timers will fire
203 * at the same time, rather than at various times spread out. The goal
204 * of this is to have the CPU wake up less, which saves power.
205 *
206 * The exact rounding is skewed for each processor to avoid all
207 * processors firing at the exact same time, which could lead
208 * to lock contention or spurious cache line bouncing.
209 *
210 * The return value is the rounded version of the @j parameter.
211 */
212unsigned long __round_jiffies(unsigned long j, int cpu)
213{
214 return round_jiffies_common(j, cpu, false);
215}
4c36a5de
AV
216EXPORT_SYMBOL_GPL(__round_jiffies);
217
218/**
219 * __round_jiffies_relative - function to round jiffies to a full second
220 * @j: the time in (relative) jiffies that should be rounded
221 * @cpu: the processor number on which the timeout will happen
222 *
72fd4a35 223 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
224 * up or down to (approximately) full seconds. This is useful for timers
225 * for which the exact time they fire does not matter too much, as long as
226 * they fire approximately every X seconds.
227 *
228 * By rounding these timers to whole seconds, all such timers will fire
229 * at the same time, rather than at various times spread out. The goal
230 * of this is to have the CPU wake up less, which saves power.
231 *
232 * The exact rounding is skewed for each processor to avoid all
233 * processors firing at the exact same time, which could lead
234 * to lock contention or spurious cache line bouncing.
235 *
72fd4a35 236 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
237 */
238unsigned long __round_jiffies_relative(unsigned long j, int cpu)
239{
9c133c46
AS
240 unsigned long j0 = jiffies;
241
242 /* Use j0 because jiffies might change while we run */
243 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
244}
245EXPORT_SYMBOL_GPL(__round_jiffies_relative);
246
247/**
248 * round_jiffies - function to round jiffies to a full second
249 * @j: the time in (absolute) jiffies that should be rounded
250 *
72fd4a35 251 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
252 * up or down to (approximately) full seconds. This is useful for timers
253 * for which the exact time they fire does not matter too much, as long as
254 * they fire approximately every X seconds.
255 *
256 * By rounding these timers to whole seconds, all such timers will fire
257 * at the same time, rather than at various times spread out. The goal
258 * of this is to have the CPU wake up less, which saves power.
259 *
72fd4a35 260 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
261 */
262unsigned long round_jiffies(unsigned long j)
263{
9c133c46 264 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
265}
266EXPORT_SYMBOL_GPL(round_jiffies);
267
268/**
269 * round_jiffies_relative - function to round jiffies to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 *
72fd4a35 272 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
273 * up or down to (approximately) full seconds. This is useful for timers
274 * for which the exact time they fire does not matter too much, as long as
275 * they fire approximately every X seconds.
276 *
277 * By rounding these timers to whole seconds, all such timers will fire
278 * at the same time, rather than at various times spread out. The goal
279 * of this is to have the CPU wake up less, which saves power.
280 *
72fd4a35 281 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
282 */
283unsigned long round_jiffies_relative(unsigned long j)
284{
285 return __round_jiffies_relative(j, raw_smp_processor_id());
286}
287EXPORT_SYMBOL_GPL(round_jiffies_relative);
288
9c133c46
AS
289/**
290 * __round_jiffies_up - function to round jiffies up to a full second
291 * @j: the time in (absolute) jiffies that should be rounded
292 * @cpu: the processor number on which the timeout will happen
293 *
294 * This is the same as __round_jiffies() except that it will never
295 * round down. This is useful for timeouts for which the exact time
296 * of firing does not matter too much, as long as they don't fire too
297 * early.
298 */
299unsigned long __round_jiffies_up(unsigned long j, int cpu)
300{
301 return round_jiffies_common(j, cpu, true);
302}
303EXPORT_SYMBOL_GPL(__round_jiffies_up);
304
305/**
306 * __round_jiffies_up_relative - function to round jiffies up to a full second
307 * @j: the time in (relative) jiffies that should be rounded
308 * @cpu: the processor number on which the timeout will happen
309 *
310 * This is the same as __round_jiffies_relative() except that it will never
311 * round down. This is useful for timeouts for which the exact time
312 * of firing does not matter too much, as long as they don't fire too
313 * early.
314 */
315unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
316{
317 unsigned long j0 = jiffies;
318
319 /* Use j0 because jiffies might change while we run */
320 return round_jiffies_common(j + j0, cpu, true) - j0;
321}
322EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
323
324/**
325 * round_jiffies_up - function to round jiffies up to a full second
326 * @j: the time in (absolute) jiffies that should be rounded
327 *
328 * This is the same as round_jiffies() except that it will never
329 * round down. This is useful for timeouts for which the exact time
330 * of firing does not matter too much, as long as they don't fire too
331 * early.
332 */
333unsigned long round_jiffies_up(unsigned long j)
334{
335 return round_jiffies_common(j, raw_smp_processor_id(), true);
336}
337EXPORT_SYMBOL_GPL(round_jiffies_up);
338
339/**
340 * round_jiffies_up_relative - function to round jiffies up to a full second
341 * @j: the time in (relative) jiffies that should be rounded
342 *
343 * This is the same as round_jiffies_relative() except that it will never
344 * round down. This is useful for timeouts for which the exact time
345 * of firing does not matter too much, as long as they don't fire too
346 * early.
347 */
348unsigned long round_jiffies_up_relative(unsigned long j)
349{
350 return __round_jiffies_up_relative(j, raw_smp_processor_id());
351}
352EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
353
3bbb9ec9
AV
354/**
355 * set_timer_slack - set the allowed slack for a timer
0caa6210 356 * @timer: the timer to be modified
3bbb9ec9
AV
357 * @slack_hz: the amount of time (in jiffies) allowed for rounding
358 *
359 * Set the amount of time, in jiffies, that a certain timer has
360 * in terms of slack. By setting this value, the timer subsystem
361 * will schedule the actual timer somewhere between
362 * the time mod_timer() asks for, and that time plus the slack.
363 *
364 * By setting the slack to -1, a percentage of the delay is used
365 * instead.
366 */
367void set_timer_slack(struct timer_list *timer, int slack_hz)
368{
369 timer->slack = slack_hz;
370}
371EXPORT_SYMBOL_GPL(set_timer_slack);
372
facbb4a7
TG
373static void
374__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
375{
376 unsigned long expires = timer->expires;
377 unsigned long idx = expires - base->timer_jiffies;
1dabbcec 378 struct hlist_head *vec;
1da177e4
LT
379
380 if (idx < TVR_SIZE) {
381 int i = expires & TVR_MASK;
382 vec = base->tv1.vec + i;
383 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
384 int i = (expires >> TVR_BITS) & TVN_MASK;
385 vec = base->tv2.vec + i;
386 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
387 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
388 vec = base->tv3.vec + i;
389 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
390 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
391 vec = base->tv4.vec + i;
392 } else if ((signed long) idx < 0) {
393 /*
394 * Can happen if you add a timer with expires == jiffies,
395 * or you set a timer to go off in the past
396 */
397 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
398 } else {
399 int i;
26cff4e2
HC
400 /* If the timeout is larger than MAX_TVAL (on 64-bit
401 * architectures or with CONFIG_BASE_SMALL=1) then we
402 * use the maximum timeout.
1da177e4 403 */
26cff4e2
HC
404 if (idx > MAX_TVAL) {
405 idx = MAX_TVAL;
1da177e4
LT
406 expires = idx + base->timer_jiffies;
407 }
408 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
409 vec = base->tv5.vec + i;
410 }
1bd04bf6 411
1dabbcec 412 hlist_add_head(&timer->entry, vec);
1da177e4
LT
413}
414
facbb4a7
TG
415static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
416{
3bb475a3
TG
417 /* Advance base->jiffies, if the base is empty */
418 if (!base->all_timers++)
419 base->timer_jiffies = jiffies;
420
facbb4a7
TG
421 __internal_add_timer(base, timer);
422 /*
99d5f3aa 423 * Update base->active_timers and base->next_timer
facbb4a7 424 */
0eeda71b 425 if (!(timer->flags & TIMER_DEFERRABLE)) {
aea369b9
ON
426 if (!base->active_timers++ ||
427 time_before(timer->expires, base->next_timer))
99d5f3aa 428 base->next_timer = timer->expires;
99d5f3aa 429 }
9f6d9baa
VK
430
431 /*
432 * Check whether the other CPU is in dynticks mode and needs
433 * to be triggered to reevaluate the timer wheel.
434 * We are protected against the other CPU fiddling
435 * with the timer by holding the timer base lock. This also
436 * makes sure that a CPU on the way to stop its tick can not
437 * evaluate the timer wheel.
438 *
439 * Spare the IPI for deferrable timers on idle targets though.
440 * The next busy ticks will take care of it. Except full dynticks
441 * require special care against races with idle_cpu(), lets deal
442 * with that later.
443 */
683be13a
TG
444 if (base->nohz_active) {
445 if (!(timer->flags & TIMER_DEFERRABLE) ||
446 tick_nohz_full_cpu(base->cpu))
447 wake_up_nohz_cpu(base->cpu);
448 }
facbb4a7
TG
449}
450
82f67cd9
IM
451#ifdef CONFIG_TIMER_STATS
452void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
453{
454 if (timer->start_site)
455 return;
456
457 timer->start_site = addr;
458 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
459 timer->start_pid = current->pid;
460}
c5c061b8
VP
461
462static void timer_stats_account_timer(struct timer_list *timer)
463{
507e1231
HC
464 if (likely(!timer->start_site))
465 return;
c5c061b8
VP
466
467 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
c74441a1
TG
468 timer->function, timer->start_comm,
469 timer->flags);
c5c061b8
VP
470}
471
472#else
473static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
474#endif
475
c6f3a97f
TG
476#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
477
478static struct debug_obj_descr timer_debug_descr;
479
99777288
SG
480static void *timer_debug_hint(void *addr)
481{
482 return ((struct timer_list *) addr)->function;
483}
484
c6f3a97f
TG
485/*
486 * fixup_init is called when:
487 * - an active object is initialized
55c888d6 488 */
c6f3a97f
TG
489static int timer_fixup_init(void *addr, enum debug_obj_state state)
490{
491 struct timer_list *timer = addr;
492
493 switch (state) {
494 case ODEBUG_STATE_ACTIVE:
495 del_timer_sync(timer);
496 debug_object_init(timer, &timer_debug_descr);
497 return 1;
498 default:
499 return 0;
500 }
501}
502
fb16b8cf
SB
503/* Stub timer callback for improperly used timers. */
504static void stub_timer(unsigned long data)
505{
506 WARN_ON(1);
507}
508
c6f3a97f
TG
509/*
510 * fixup_activate is called when:
511 * - an active object is activated
512 * - an unknown object is activated (might be a statically initialized object)
513 */
514static int timer_fixup_activate(void *addr, enum debug_obj_state state)
515{
516 struct timer_list *timer = addr;
517
518 switch (state) {
519
520 case ODEBUG_STATE_NOTAVAILABLE:
521 /*
522 * This is not really a fixup. The timer was
523 * statically initialized. We just make sure that it
524 * is tracked in the object tracker.
525 */
1dabbcec
TG
526 if (timer->entry.pprev == NULL &&
527 timer->entry.next == TIMER_ENTRY_STATIC) {
c6f3a97f
TG
528 debug_object_init(timer, &timer_debug_descr);
529 debug_object_activate(timer, &timer_debug_descr);
530 return 0;
531 } else {
fb16b8cf
SB
532 setup_timer(timer, stub_timer, 0);
533 return 1;
c6f3a97f
TG
534 }
535 return 0;
536
537 case ODEBUG_STATE_ACTIVE:
538 WARN_ON(1);
539
540 default:
541 return 0;
542 }
543}
544
545/*
546 * fixup_free is called when:
547 * - an active object is freed
548 */
549static int timer_fixup_free(void *addr, enum debug_obj_state state)
550{
551 struct timer_list *timer = addr;
552
553 switch (state) {
554 case ODEBUG_STATE_ACTIVE:
555 del_timer_sync(timer);
556 debug_object_free(timer, &timer_debug_descr);
557 return 1;
558 default:
559 return 0;
560 }
561}
562
dc4218bd
CC
563/*
564 * fixup_assert_init is called when:
565 * - an untracked/uninit-ed object is found
566 */
567static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
568{
569 struct timer_list *timer = addr;
570
571 switch (state) {
572 case ODEBUG_STATE_NOTAVAILABLE:
1dabbcec 573 if (timer->entry.next == TIMER_ENTRY_STATIC) {
dc4218bd
CC
574 /*
575 * This is not really a fixup. The timer was
576 * statically initialized. We just make sure that it
577 * is tracked in the object tracker.
578 */
579 debug_object_init(timer, &timer_debug_descr);
580 return 0;
581 } else {
582 setup_timer(timer, stub_timer, 0);
583 return 1;
584 }
585 default:
586 return 0;
587 }
588}
589
c6f3a97f 590static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
591 .name = "timer_list",
592 .debug_hint = timer_debug_hint,
593 .fixup_init = timer_fixup_init,
594 .fixup_activate = timer_fixup_activate,
595 .fixup_free = timer_fixup_free,
596 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
597};
598
599static inline void debug_timer_init(struct timer_list *timer)
600{
601 debug_object_init(timer, &timer_debug_descr);
602}
603
604static inline void debug_timer_activate(struct timer_list *timer)
605{
606 debug_object_activate(timer, &timer_debug_descr);
607}
608
609static inline void debug_timer_deactivate(struct timer_list *timer)
610{
611 debug_object_deactivate(timer, &timer_debug_descr);
612}
613
614static inline void debug_timer_free(struct timer_list *timer)
615{
616 debug_object_free(timer, &timer_debug_descr);
617}
618
dc4218bd
CC
619static inline void debug_timer_assert_init(struct timer_list *timer)
620{
621 debug_object_assert_init(timer, &timer_debug_descr);
622}
623
fc683995
TH
624static void do_init_timer(struct timer_list *timer, unsigned int flags,
625 const char *name, struct lock_class_key *key);
c6f3a97f 626
fc683995
TH
627void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
628 const char *name, struct lock_class_key *key)
c6f3a97f
TG
629{
630 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 631 do_init_timer(timer, flags, name, key);
c6f3a97f 632}
6f2b9b9a 633EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
634
635void destroy_timer_on_stack(struct timer_list *timer)
636{
637 debug_object_free(timer, &timer_debug_descr);
638}
639EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
640
641#else
642static inline void debug_timer_init(struct timer_list *timer) { }
643static inline void debug_timer_activate(struct timer_list *timer) { }
644static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 645static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
646#endif
647
2b022e3d
XG
648static inline void debug_init(struct timer_list *timer)
649{
650 debug_timer_init(timer);
651 trace_timer_init(timer);
652}
653
654static inline void
655debug_activate(struct timer_list *timer, unsigned long expires)
656{
657 debug_timer_activate(timer);
0eeda71b 658 trace_timer_start(timer, expires, timer->flags);
2b022e3d
XG
659}
660
661static inline void debug_deactivate(struct timer_list *timer)
662{
663 debug_timer_deactivate(timer);
664 trace_timer_cancel(timer);
665}
666
dc4218bd
CC
667static inline void debug_assert_init(struct timer_list *timer)
668{
669 debug_timer_assert_init(timer);
670}
671
fc683995
TH
672static void do_init_timer(struct timer_list *timer, unsigned int flags,
673 const char *name, struct lock_class_key *key)
55c888d6 674{
1dabbcec 675 timer->entry.pprev = NULL;
0eeda71b 676 timer->flags = flags | raw_smp_processor_id();
3bbb9ec9 677 timer->slack = -1;
82f67cd9
IM
678#ifdef CONFIG_TIMER_STATS
679 timer->start_site = NULL;
680 timer->start_pid = -1;
681 memset(timer->start_comm, 0, TASK_COMM_LEN);
682#endif
6f2b9b9a 683 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 684}
c6f3a97f
TG
685
686/**
633fe795 687 * init_timer_key - initialize a timer
c6f3a97f 688 * @timer: the timer to be initialized
fc683995 689 * @flags: timer flags
633fe795
RD
690 * @name: name of the timer
691 * @key: lockdep class key of the fake lock used for tracking timer
692 * sync lock dependencies
c6f3a97f 693 *
633fe795 694 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
695 * other timer functions.
696 */
fc683995
TH
697void init_timer_key(struct timer_list *timer, unsigned int flags,
698 const char *name, struct lock_class_key *key)
c6f3a97f 699{
2b022e3d 700 debug_init(timer);
fc683995 701 do_init_timer(timer, flags, name, key);
c6f3a97f 702}
6f2b9b9a 703EXPORT_SYMBOL(init_timer_key);
55c888d6 704
ec44bc7a 705static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6 706{
1dabbcec 707 struct hlist_node *entry = &timer->entry;
55c888d6 708
2b022e3d 709 debug_deactivate(timer);
c6f3a97f 710
1dabbcec 711 __hlist_del(entry);
55c888d6 712 if (clear_pending)
1dabbcec
TG
713 entry->pprev = NULL;
714 entry->next = LIST_POISON2;
55c888d6
ON
715}
716
99d5f3aa
TG
717static inline void
718detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
719{
720 detach_timer(timer, true);
0eeda71b 721 if (!(timer->flags & TIMER_DEFERRABLE))
e52b1db3 722 base->active_timers--;
fff42158 723 base->all_timers--;
99d5f3aa
TG
724}
725
ec44bc7a
TG
726static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
727 bool clear_pending)
728{
729 if (!timer_pending(timer))
730 return 0;
731
732 detach_timer(timer, clear_pending);
0eeda71b 733 if (!(timer->flags & TIMER_DEFERRABLE)) {
e52b1db3 734 base->active_timers--;
99d5f3aa
TG
735 if (timer->expires == base->next_timer)
736 base->next_timer = base->timer_jiffies;
737 }
3bb475a3
TG
738 /* If this was the last timer, advance base->jiffies */
739 if (!--base->all_timers)
740 base->timer_jiffies = jiffies;
ec44bc7a
TG
741 return 1;
742}
743
55c888d6 744/*
3691c519 745 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
746 * means that all timers which are tied to this base via timer->base are
747 * locked, and the base itself is locked too.
748 *
749 * So __run_timers/migrate_timers can safely modify all timers which could
750 * be found on ->tvX lists.
751 *
0eeda71b
TG
752 * When the timer's base is locked and removed from the list, the
753 * TIMER_MIGRATING flag is set, FIXME
55c888d6 754 */
a6fa8e5a 755static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 756 unsigned long *flags)
89e7e374 757 __acquires(timer->base->lock)
55c888d6 758{
55c888d6 759 for (;;) {
0eeda71b
TG
760 u32 tf = timer->flags;
761 struct tvec_base *base;
762
763 if (!(tf & TIMER_MIGRATING)) {
764 base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK);
55c888d6 765 spin_lock_irqsave(&base->lock, *flags);
0eeda71b 766 if (timer->flags == tf)
55c888d6 767 return base;
55c888d6
ON
768 spin_unlock_irqrestore(&base->lock, *flags);
769 }
770 cpu_relax();
771 }
772}
773
74019224 774static inline int
597d0275 775__mod_timer(struct timer_list *timer, unsigned long expires,
bc7a34b8 776 bool pending_only, int pinned)
1da177e4 777{
a6fa8e5a 778 struct tvec_base *base, *new_base;
1da177e4 779 unsigned long flags;
bc7a34b8 780 int ret = 0;
1da177e4 781
82f67cd9 782 timer_stats_timer_set_start_info(timer);
1da177e4 783 BUG_ON(!timer->function);
1da177e4 784
55c888d6
ON
785 base = lock_timer_base(timer, &flags);
786
ec44bc7a
TG
787 ret = detach_if_pending(timer, base, false);
788 if (!ret && pending_only)
789 goto out_unlock;
55c888d6 790
2b022e3d 791 debug_activate(timer, expires);
c6f3a97f 792
bc7a34b8 793 new_base = get_target_base(base, pinned);
eea08f32 794
3691c519 795 if (base != new_base) {
1da177e4 796 /*
55c888d6
ON
797 * We are trying to schedule the timer on the local CPU.
798 * However we can't change timer's base while it is running,
799 * otherwise del_timer_sync() can't detect that the timer's
800 * handler yet has not finished. This also guarantees that
801 * the timer is serialized wrt itself.
1da177e4 802 */
a2c348fe 803 if (likely(base->running_timer != timer)) {
55c888d6 804 /* See the comment in lock_timer_base() */
0eeda71b
TG
805 timer->flags |= TIMER_MIGRATING;
806
55c888d6 807 spin_unlock(&base->lock);
a2c348fe
ON
808 base = new_base;
809 spin_lock(&base->lock);
bc7a34b8
TG
810 timer->flags &= ~TIMER_BASEMASK;
811 timer->flags |= base->cpu;
1da177e4
LT
812 }
813 }
814
1da177e4 815 timer->expires = expires;
a2c348fe 816 internal_add_timer(base, timer);
74019224
IM
817
818out_unlock:
a2c348fe 819 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
820
821 return ret;
822}
823
2aae4a10 824/**
74019224
IM
825 * mod_timer_pending - modify a pending timer's timeout
826 * @timer: the pending timer to be modified
827 * @expires: new timeout in jiffies
1da177e4 828 *
74019224
IM
829 * mod_timer_pending() is the same for pending timers as mod_timer(),
830 * but will not re-activate and modify already deleted timers.
831 *
832 * It is useful for unserialized use of timers.
1da177e4 833 */
74019224 834int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 835{
597d0275 836 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 837}
74019224 838EXPORT_SYMBOL(mod_timer_pending);
1da177e4 839
3bbb9ec9
AV
840/*
841 * Decide where to put the timer while taking the slack into account
842 *
843 * Algorithm:
844 * 1) calculate the maximum (absolute) time
845 * 2) calculate the highest bit where the expires and new max are different
846 * 3) use this bit to make a mask
847 * 4) use the bitmask to round down the maximum time, so that all last
848 * bits are zeros
849 */
850static inline
851unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
852{
853 unsigned long expires_limit, mask;
854 int bit;
855
8e63d779 856 if (timer->slack >= 0) {
f00e047e 857 expires_limit = expires + timer->slack;
8e63d779 858 } else {
1c3cc116
SAS
859 long delta = expires - jiffies;
860
861 if (delta < 256)
862 return expires;
3bbb9ec9 863
1c3cc116 864 expires_limit = expires + delta / 256;
8e63d779 865 }
3bbb9ec9 866 mask = expires ^ expires_limit;
3bbb9ec9
AV
867 if (mask == 0)
868 return expires;
869
870 bit = find_last_bit(&mask, BITS_PER_LONG);
871
98a01e77 872 mask = (1UL << bit) - 1;
3bbb9ec9
AV
873
874 expires_limit = expires_limit & ~(mask);
875
876 return expires_limit;
877}
878
2aae4a10 879/**
1da177e4
LT
880 * mod_timer - modify a timer's timeout
881 * @timer: the timer to be modified
2aae4a10 882 * @expires: new timeout in jiffies
1da177e4 883 *
72fd4a35 884 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
885 * active timer (if the timer is inactive it will be activated)
886 *
887 * mod_timer(timer, expires) is equivalent to:
888 *
889 * del_timer(timer); timer->expires = expires; add_timer(timer);
890 *
891 * Note that if there are multiple unserialized concurrent users of the
892 * same timer, then mod_timer() is the only safe way to modify the timeout,
893 * since add_timer() cannot modify an already running timer.
894 *
895 * The function returns whether it has modified a pending timer or not.
896 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
897 * active timer returns 1.)
898 */
899int mod_timer(struct timer_list *timer, unsigned long expires)
900{
1c3cc116
SAS
901 expires = apply_slack(timer, expires);
902
1da177e4
LT
903 /*
904 * This is a common optimization triggered by the
905 * networking code - if the timer is re-modified
906 * to be the same thing then just return:
907 */
4841158b 908 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
909 return 1;
910
597d0275 911 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 912}
1da177e4
LT
913EXPORT_SYMBOL(mod_timer);
914
597d0275
AB
915/**
916 * mod_timer_pinned - modify a timer's timeout
917 * @timer: the timer to be modified
918 * @expires: new timeout in jiffies
919 *
920 * mod_timer_pinned() is a way to update the expire field of an
921 * active timer (if the timer is inactive it will be activated)
048a0e8f
PM
922 * and to ensure that the timer is scheduled on the current CPU.
923 *
924 * Note that this does not prevent the timer from being migrated
925 * when the current CPU goes offline. If this is a problem for
926 * you, use CPU-hotplug notifiers to handle it correctly, for
927 * example, cancelling the timer when the corresponding CPU goes
928 * offline.
597d0275
AB
929 *
930 * mod_timer_pinned(timer, expires) is equivalent to:
931 *
932 * del_timer(timer); timer->expires = expires; add_timer(timer);
933 */
934int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
935{
936 if (timer->expires == expires && timer_pending(timer))
937 return 1;
938
939 return __mod_timer(timer, expires, false, TIMER_PINNED);
940}
941EXPORT_SYMBOL(mod_timer_pinned);
942
74019224
IM
943/**
944 * add_timer - start a timer
945 * @timer: the timer to be added
946 *
947 * The kernel will do a ->function(->data) callback from the
948 * timer interrupt at the ->expires point in the future. The
949 * current time is 'jiffies'.
950 *
951 * The timer's ->expires, ->function (and if the handler uses it, ->data)
952 * fields must be set prior calling this function.
953 *
954 * Timers with an ->expires field in the past will be executed in the next
955 * timer tick.
956 */
957void add_timer(struct timer_list *timer)
958{
959 BUG_ON(timer_pending(timer));
960 mod_timer(timer, timer->expires);
961}
962EXPORT_SYMBOL(add_timer);
963
964/**
965 * add_timer_on - start a timer on a particular CPU
966 * @timer: the timer to be added
967 * @cpu: the CPU to start it on
968 *
969 * This is not very scalable on SMP. Double adds are not possible.
970 */
971void add_timer_on(struct timer_list *timer, int cpu)
972{
0eeda71b 973 struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
74019224
IM
974 unsigned long flags;
975
976 timer_stats_timer_set_start_info(timer);
977 BUG_ON(timer_pending(timer) || !timer->function);
978 spin_lock_irqsave(&base->lock, flags);
0eeda71b 979 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2b022e3d 980 debug_activate(timer, timer->expires);
74019224 981 internal_add_timer(base, timer);
74019224
IM
982 spin_unlock_irqrestore(&base->lock, flags);
983}
a9862e05 984EXPORT_SYMBOL_GPL(add_timer_on);
74019224 985
2aae4a10 986/**
1da177e4
LT
987 * del_timer - deactive a timer.
988 * @timer: the timer to be deactivated
989 *
990 * del_timer() deactivates a timer - this works on both active and inactive
991 * timers.
992 *
993 * The function returns whether it has deactivated a pending timer or not.
994 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
995 * active timer returns 1.)
996 */
997int del_timer(struct timer_list *timer)
998{
a6fa8e5a 999 struct tvec_base *base;
1da177e4 1000 unsigned long flags;
55c888d6 1001 int ret = 0;
1da177e4 1002
dc4218bd
CC
1003 debug_assert_init(timer);
1004
82f67cd9 1005 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
1006 if (timer_pending(timer)) {
1007 base = lock_timer_base(timer, &flags);
ec44bc7a 1008 ret = detach_if_pending(timer, base, true);
1da177e4 1009 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 1010 }
1da177e4 1011
55c888d6 1012 return ret;
1da177e4 1013}
1da177e4
LT
1014EXPORT_SYMBOL(del_timer);
1015
2aae4a10
REB
1016/**
1017 * try_to_del_timer_sync - Try to deactivate a timer
1018 * @timer: timer do del
1019 *
fd450b73
ON
1020 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1021 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1022 */
1023int try_to_del_timer_sync(struct timer_list *timer)
1024{
a6fa8e5a 1025 struct tvec_base *base;
fd450b73
ON
1026 unsigned long flags;
1027 int ret = -1;
1028
dc4218bd
CC
1029 debug_assert_init(timer);
1030
fd450b73
ON
1031 base = lock_timer_base(timer, &flags);
1032
ec44bc7a
TG
1033 if (base->running_timer != timer) {
1034 timer_stats_timer_clear_start_info(timer);
1035 ret = detach_if_pending(timer, base, true);
fd450b73 1036 }
fd450b73
ON
1037 spin_unlock_irqrestore(&base->lock, flags);
1038
1039 return ret;
1040}
e19dff1f
DH
1041EXPORT_SYMBOL(try_to_del_timer_sync);
1042
6f1bc451 1043#ifdef CONFIG_SMP
2aae4a10 1044/**
1da177e4
LT
1045 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1046 * @timer: the timer to be deactivated
1047 *
1048 * This function only differs from del_timer() on SMP: besides deactivating
1049 * the timer it also makes sure the handler has finished executing on other
1050 * CPUs.
1051 *
72fd4a35 1052 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1053 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1054 * interrupt contexts unless the timer is an irqsafe one. The caller must
1055 * not hold locks which would prevent completion of the timer's
1056 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1057 * timer is not queued and the handler is not running on any CPU.
1da177e4 1058 *
c5f66e99
TH
1059 * Note: For !irqsafe timers, you must not hold locks that are held in
1060 * interrupt context while calling this function. Even if the lock has
1061 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1062 *
1063 * CPU0 CPU1
1064 * ---- ----
1065 * <SOFTIRQ>
1066 * call_timer_fn();
1067 * base->running_timer = mytimer;
1068 * spin_lock_irq(somelock);
1069 * <IRQ>
1070 * spin_lock(somelock);
1071 * del_timer_sync(mytimer);
1072 * while (base->running_timer == mytimer);
1073 *
1074 * Now del_timer_sync() will never return and never release somelock.
1075 * The interrupt on the other CPU is waiting to grab somelock but
1076 * it has interrupted the softirq that CPU0 is waiting to finish.
1077 *
1da177e4 1078 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1079 */
1080int del_timer_sync(struct timer_list *timer)
1081{
6f2b9b9a 1082#ifdef CONFIG_LOCKDEP
f266a511
PZ
1083 unsigned long flags;
1084
48228f7b
SR
1085 /*
1086 * If lockdep gives a backtrace here, please reference
1087 * the synchronization rules above.
1088 */
7ff20792 1089 local_irq_save(flags);
6f2b9b9a
JB
1090 lock_map_acquire(&timer->lockdep_map);
1091 lock_map_release(&timer->lockdep_map);
7ff20792 1092 local_irq_restore(flags);
6f2b9b9a 1093#endif
466bd303
YZ
1094 /*
1095 * don't use it in hardirq context, because it
1096 * could lead to deadlock.
1097 */
0eeda71b 1098 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
fd450b73
ON
1099 for (;;) {
1100 int ret = try_to_del_timer_sync(timer);
1101 if (ret >= 0)
1102 return ret;
a0009652 1103 cpu_relax();
fd450b73 1104 }
1da177e4 1105}
55c888d6 1106EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1107#endif
1108
a6fa8e5a 1109static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1110{
1111 /* cascade all the timers from tv up one level */
1dabbcec
TG
1112 struct timer_list *timer;
1113 struct hlist_node *tmp;
1114 struct hlist_head tv_list;
3439dd86 1115
1dabbcec 1116 hlist_move_list(tv->vec + index, &tv_list);
1da177e4 1117
1da177e4 1118 /*
3439dd86
P
1119 * We are removing _all_ timers from the list, so we
1120 * don't have to detach them individually.
1da177e4 1121 */
1dabbcec 1122 hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
facbb4a7
TG
1123 /* No accounting, while moving them */
1124 __internal_add_timer(base, timer);
1da177e4 1125 }
1da177e4
LT
1126
1127 return index;
1128}
1129
576da126
TG
1130static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1131 unsigned long data)
1132{
4a2b4b22 1133 int count = preempt_count();
576da126
TG
1134
1135#ifdef CONFIG_LOCKDEP
1136 /*
1137 * It is permissible to free the timer from inside the
1138 * function that is called from it, this we need to take into
1139 * account for lockdep too. To avoid bogus "held lock freed"
1140 * warnings as well as problems when looking into
1141 * timer->lockdep_map, make a copy and use that here.
1142 */
4d82a1de
PZ
1143 struct lockdep_map lockdep_map;
1144
1145 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1146#endif
1147 /*
1148 * Couple the lock chain with the lock chain at
1149 * del_timer_sync() by acquiring the lock_map around the fn()
1150 * call here and in del_timer_sync().
1151 */
1152 lock_map_acquire(&lockdep_map);
1153
1154 trace_timer_expire_entry(timer);
1155 fn(data);
1156 trace_timer_expire_exit(timer);
1157
1158 lock_map_release(&lockdep_map);
1159
4a2b4b22 1160 if (count != preempt_count()) {
802702e0 1161 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
4a2b4b22 1162 fn, count, preempt_count());
802702e0
TG
1163 /*
1164 * Restore the preempt count. That gives us a decent
1165 * chance to survive and extract information. If the
1166 * callback kept a lock held, bad luck, but not worse
1167 * than the BUG() we had.
1168 */
4a2b4b22 1169 preempt_count_set(count);
576da126
TG
1170 }
1171}
1172
2aae4a10
REB
1173#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1174
1175/**
1da177e4
LT
1176 * __run_timers - run all expired timers (if any) on this CPU.
1177 * @base: the timer vector to be processed.
1178 *
1179 * This function cascades all vectors and executes all expired timer
1180 * vectors.
1181 */
a6fa8e5a 1182static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1183{
1184 struct timer_list *timer;
1185
3691c519 1186 spin_lock_irq(&base->lock);
3bb475a3 1187
1da177e4 1188 while (time_after_eq(jiffies, base->timer_jiffies)) {
1dabbcec
TG
1189 struct hlist_head work_list;
1190 struct hlist_head *head = &work_list;
3bb475a3
TG
1191 int index;
1192
1193 if (!base->all_timers) {
1194 base->timer_jiffies = jiffies;
1195 break;
1196 }
1197
1198 index = base->timer_jiffies & TVR_MASK;
626ab0e6 1199
1da177e4
LT
1200 /*
1201 * Cascade timers:
1202 */
1203 if (!index &&
1204 (!cascade(base, &base->tv2, INDEX(0))) &&
1205 (!cascade(base, &base->tv3, INDEX(1))) &&
1206 !cascade(base, &base->tv4, INDEX(2)))
1207 cascade(base, &base->tv5, INDEX(3));
626ab0e6 1208 ++base->timer_jiffies;
1dabbcec
TG
1209 hlist_move_list(base->tv1.vec + index, head);
1210 while (!hlist_empty(head)) {
1da177e4
LT
1211 void (*fn)(unsigned long);
1212 unsigned long data;
c5f66e99 1213 bool irqsafe;
1da177e4 1214
1dabbcec 1215 timer = hlist_entry(head->first, struct timer_list, entry);
6819457d
TG
1216 fn = timer->function;
1217 data = timer->data;
0eeda71b 1218 irqsafe = timer->flags & TIMER_IRQSAFE;
1da177e4 1219
82f67cd9
IM
1220 timer_stats_account_timer(timer);
1221
6f1bc451 1222 base->running_timer = timer;
99d5f3aa 1223 detach_expired_timer(timer, base);
6f2b9b9a 1224
c5f66e99
TH
1225 if (irqsafe) {
1226 spin_unlock(&base->lock);
1227 call_timer_fn(timer, fn, data);
1228 spin_lock(&base->lock);
1229 } else {
1230 spin_unlock_irq(&base->lock);
1231 call_timer_fn(timer, fn, data);
1232 spin_lock_irq(&base->lock);
1233 }
1da177e4
LT
1234 }
1235 }
6f1bc451 1236 base->running_timer = NULL;
3691c519 1237 spin_unlock_irq(&base->lock);
1da177e4
LT
1238}
1239
3451d024 1240#ifdef CONFIG_NO_HZ_COMMON
1da177e4
LT
1241/*
1242 * Find out when the next timer event is due to happen. This
90cba64a
RD
1243 * is used on S/390 to stop all activity when a CPU is idle.
1244 * This function needs to be called with interrupts disabled.
1da177e4 1245 */
a6fa8e5a 1246static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1247{
1cfd6849 1248 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1249 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1250 int index, slot, array, found = 0;
1da177e4 1251 struct timer_list *nte;
a6fa8e5a 1252 struct tvec *varray[4];
1da177e4
LT
1253
1254 /* Look for timer events in tv1. */
1cfd6849 1255 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1256 do {
1dabbcec 1257 hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
0eeda71b 1258 if (nte->flags & TIMER_DEFERRABLE)
6819457d 1259 continue;
6e453a67 1260
1cfd6849 1261 found = 1;
1da177e4 1262 expires = nte->expires;
1cfd6849
TG
1263 /* Look at the cascade bucket(s)? */
1264 if (!index || slot < index)
1265 goto cascade;
1266 return expires;
1da177e4 1267 }
1cfd6849
TG
1268 slot = (slot + 1) & TVR_MASK;
1269 } while (slot != index);
1270
1271cascade:
1272 /* Calculate the next cascade event */
1273 if (index)
1274 timer_jiffies += TVR_SIZE - index;
1275 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1276
1277 /* Check tv2-tv5. */
1278 varray[0] = &base->tv2;
1279 varray[1] = &base->tv3;
1280 varray[2] = &base->tv4;
1281 varray[3] = &base->tv5;
1cfd6849
TG
1282
1283 for (array = 0; array < 4; array++) {
a6fa8e5a 1284 struct tvec *varp = varray[array];
1cfd6849
TG
1285
1286 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1287 do {
1dabbcec 1288 hlist_for_each_entry(nte, varp->vec + slot, entry) {
0eeda71b 1289 if (nte->flags & TIMER_DEFERRABLE)
a0419888
JH
1290 continue;
1291
1cfd6849 1292 found = 1;
1da177e4
LT
1293 if (time_before(nte->expires, expires))
1294 expires = nte->expires;
1cfd6849
TG
1295 }
1296 /*
1297 * Do we still search for the first timer or are
1298 * we looking up the cascade buckets ?
1299 */
1300 if (found) {
1301 /* Look at the cascade bucket(s)? */
1302 if (!index || slot < index)
1303 break;
1304 return expires;
1305 }
1306 slot = (slot + 1) & TVN_MASK;
1307 } while (slot != index);
1308
1309 if (index)
1310 timer_jiffies += TVN_SIZE - index;
1311 timer_jiffies >>= TVN_BITS;
1da177e4 1312 }
1cfd6849
TG
1313 return expires;
1314}
69239749 1315
1cfd6849
TG
1316/*
1317 * Check, if the next hrtimer event is before the next timer wheel
1318 * event:
1319 */
c1ad348b 1320static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1cfd6849 1321{
c1ad348b 1322 u64 nextevt = hrtimer_get_next_event();
0662b713 1323
9501b6cf 1324 /*
c1ad348b
TG
1325 * If high resolution timers are enabled
1326 * hrtimer_get_next_event() returns KTIME_MAX.
9501b6cf 1327 */
c1ad348b
TG
1328 if (expires <= nextevt)
1329 return expires;
eaad084b
TG
1330
1331 /*
c1ad348b
TG
1332 * If the next timer is already expired, return the tick base
1333 * time so the tick is fired immediately.
eaad084b 1334 */
c1ad348b
TG
1335 if (nextevt <= basem)
1336 return basem;
eaad084b 1337
9501b6cf 1338 /*
c1ad348b
TG
1339 * Round up to the next jiffie. High resolution timers are
1340 * off, so the hrtimers are expired in the tick and we need to
1341 * make sure that this tick really expires the timer to avoid
1342 * a ping pong of the nohz stop code.
1343 *
1344 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
9501b6cf 1345 */
c1ad348b 1346 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1da177e4 1347}
1cfd6849
TG
1348
1349/**
c1ad348b
TG
1350 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1351 * @basej: base time jiffies
1352 * @basem: base time clock monotonic
1353 *
1354 * Returns the tick aligned clock monotonic time of the next pending
1355 * timer or KTIME_MAX if no timer is pending.
1cfd6849 1356 */
c1ad348b 1357u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1cfd6849 1358{
0eeda71b 1359 struct tvec_base *base = this_cpu_ptr(&tvec_bases);
c1ad348b
TG
1360 u64 expires = KTIME_MAX;
1361 unsigned long nextevt;
1cfd6849 1362
dbd87b5a
HC
1363 /*
1364 * Pretend that there is no timer pending if the cpu is offline.
1365 * Possible pending timers will be migrated later to an active cpu.
1366 */
1367 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1368 return expires;
1369
1cfd6849 1370 spin_lock(&base->lock);
e40468a5
TG
1371 if (base->active_timers) {
1372 if (time_before_eq(base->next_timer, base->timer_jiffies))
1373 base->next_timer = __next_timer_interrupt(base);
c1ad348b
TG
1374 nextevt = base->next_timer;
1375 if (time_before_eq(nextevt, basej))
1376 expires = basem;
1377 else
1378 expires = basem + (nextevt - basej) * TICK_NSEC;
e40468a5 1379 }
1cfd6849
TG
1380 spin_unlock(&base->lock);
1381
c1ad348b 1382 return cmp_next_hrtimer_event(basem, expires);
1cfd6849 1383}
1da177e4
LT
1384#endif
1385
1da177e4 1386/*
5b4db0c2 1387 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1388 * process. user_tick is 1 if the tick is user time, 0 for system.
1389 */
1390void update_process_times(int user_tick)
1391{
1392 struct task_struct *p = current;
1da177e4
LT
1393
1394 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1395 account_process_tick(p, user_tick);
1da177e4 1396 run_local_timers();
c3377c2d 1397 rcu_check_callbacks(user_tick);
e360adbe
PZ
1398#ifdef CONFIG_IRQ_WORK
1399 if (in_irq())
76a33061 1400 irq_work_tick();
e360adbe 1401#endif
1da177e4 1402 scheduler_tick();
6819457d 1403 run_posix_cpu_timers(p);
1da177e4
LT
1404}
1405
1da177e4
LT
1406/*
1407 * This function runs timers and the timer-tq in bottom half context.
1408 */
1409static void run_timer_softirq(struct softirq_action *h)
1410{
0eeda71b 1411 struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1da177e4
LT
1412
1413 if (time_after_eq(jiffies, base->timer_jiffies))
1414 __run_timers(base);
1415}
1416
1417/*
1418 * Called by the local, per-CPU timer interrupt on SMP.
1419 */
1420void run_local_timers(void)
1421{
d3d74453 1422 hrtimer_run_queues();
1da177e4
LT
1423 raise_softirq(TIMER_SOFTIRQ);
1424}
1425
1da177e4
LT
1426#ifdef __ARCH_WANT_SYS_ALARM
1427
1428/*
1429 * For backwards compatibility? This can be done in libc so Alpha
1430 * and all newer ports shouldn't need it.
1431 */
58fd3aa2 1432SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1433{
c08b8a49 1434 return alarm_setitimer(seconds);
1da177e4
LT
1435}
1436
1437#endif
1438
1da177e4
LT
1439static void process_timeout(unsigned long __data)
1440{
36c8b586 1441 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1442}
1443
1444/**
1445 * schedule_timeout - sleep until timeout
1446 * @timeout: timeout value in jiffies
1447 *
1448 * Make the current task sleep until @timeout jiffies have
1449 * elapsed. The routine will return immediately unless
1450 * the current task state has been set (see set_current_state()).
1451 *
1452 * You can set the task state as follows -
1453 *
1454 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1455 * pass before the routine returns. The routine will return 0
1456 *
1457 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1458 * delivered to the current task. In this case the remaining time
1459 * in jiffies will be returned, or 0 if the timer expired in time
1460 *
1461 * The current task state is guaranteed to be TASK_RUNNING when this
1462 * routine returns.
1463 *
1464 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1465 * the CPU away without a bound on the timeout. In this case the return
1466 * value will be %MAX_SCHEDULE_TIMEOUT.
1467 *
1468 * In all cases the return value is guaranteed to be non-negative.
1469 */
7ad5b3a5 1470signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1471{
1472 struct timer_list timer;
1473 unsigned long expire;
1474
1475 switch (timeout)
1476 {
1477 case MAX_SCHEDULE_TIMEOUT:
1478 /*
1479 * These two special cases are useful to be comfortable
1480 * in the caller. Nothing more. We could take
1481 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1482 * but I' d like to return a valid offset (>=0) to allow
1483 * the caller to do everything it want with the retval.
1484 */
1485 schedule();
1486 goto out;
1487 default:
1488 /*
1489 * Another bit of PARANOID. Note that the retval will be
1490 * 0 since no piece of kernel is supposed to do a check
1491 * for a negative retval of schedule_timeout() (since it
1492 * should never happens anyway). You just have the printk()
1493 * that will tell you if something is gone wrong and where.
1494 */
5b149bcc 1495 if (timeout < 0) {
1da177e4 1496 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1497 "value %lx\n", timeout);
1498 dump_stack();
1da177e4
LT
1499 current->state = TASK_RUNNING;
1500 goto out;
1501 }
1502 }
1503
1504 expire = timeout + jiffies;
1505
c6f3a97f 1506 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1507 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1508 schedule();
1509 del_singleshot_timer_sync(&timer);
1510
c6f3a97f
TG
1511 /* Remove the timer from the object tracker */
1512 destroy_timer_on_stack(&timer);
1513
1da177e4
LT
1514 timeout = expire - jiffies;
1515
1516 out:
1517 return timeout < 0 ? 0 : timeout;
1518}
1da177e4
LT
1519EXPORT_SYMBOL(schedule_timeout);
1520
8a1c1757
AM
1521/*
1522 * We can use __set_current_state() here because schedule_timeout() calls
1523 * schedule() unconditionally.
1524 */
64ed93a2
NA
1525signed long __sched schedule_timeout_interruptible(signed long timeout)
1526{
a5a0d52c
AM
1527 __set_current_state(TASK_INTERRUPTIBLE);
1528 return schedule_timeout(timeout);
64ed93a2
NA
1529}
1530EXPORT_SYMBOL(schedule_timeout_interruptible);
1531
294d5cc2
MW
1532signed long __sched schedule_timeout_killable(signed long timeout)
1533{
1534 __set_current_state(TASK_KILLABLE);
1535 return schedule_timeout(timeout);
1536}
1537EXPORT_SYMBOL(schedule_timeout_killable);
1538
64ed93a2
NA
1539signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1540{
a5a0d52c
AM
1541 __set_current_state(TASK_UNINTERRUPTIBLE);
1542 return schedule_timeout(timeout);
64ed93a2
NA
1543}
1544EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1545
1da177e4 1546#ifdef CONFIG_HOTPLUG_CPU
1dabbcec 1547static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
1da177e4
LT
1548{
1549 struct timer_list *timer;
0eeda71b 1550 int cpu = new_base->cpu;
1da177e4 1551
1dabbcec
TG
1552 while (!hlist_empty(head)) {
1553 timer = hlist_entry(head->first, struct timer_list, entry);
99d5f3aa 1554 /* We ignore the accounting on the dying cpu */
ec44bc7a 1555 detach_timer(timer, false);
0eeda71b 1556 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1da177e4 1557 internal_add_timer(new_base, timer);
1da177e4 1558 }
1da177e4
LT
1559}
1560
0db0628d 1561static void migrate_timers(int cpu)
1da177e4 1562{
a6fa8e5a
PM
1563 struct tvec_base *old_base;
1564 struct tvec_base *new_base;
1da177e4
LT
1565 int i;
1566
1567 BUG_ON(cpu_online(cpu));
0eeda71b 1568 old_base = per_cpu_ptr(&tvec_bases, cpu);
24bfcb10 1569 new_base = get_cpu_ptr(&tvec_bases);
d82f0b0f
ON
1570 /*
1571 * The caller is globally serialized and nobody else
1572 * takes two locks at once, deadlock is not possible.
1573 */
1574 spin_lock_irq(&new_base->lock);
0d180406 1575 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1576
1577 BUG_ON(old_base->running_timer);
1da177e4 1578
1da177e4 1579 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1580 migrate_timer_list(new_base, old_base->tv1.vec + i);
1581 for (i = 0; i < TVN_SIZE; i++) {
1582 migrate_timer_list(new_base, old_base->tv2.vec + i);
1583 migrate_timer_list(new_base, old_base->tv3.vec + i);
1584 migrate_timer_list(new_base, old_base->tv4.vec + i);
1585 migrate_timer_list(new_base, old_base->tv5.vec + i);
1586 }
1587
8def9060
VK
1588 old_base->active_timers = 0;
1589 old_base->all_timers = 0;
1590
0d180406 1591 spin_unlock(&old_base->lock);
d82f0b0f 1592 spin_unlock_irq(&new_base->lock);
24bfcb10 1593 put_cpu_ptr(&tvec_bases);
1da177e4 1594}
1da177e4 1595
0db0628d 1596static int timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1597 unsigned long action, void *hcpu)
1598{
8def9060 1599 switch (action) {
1da177e4 1600 case CPU_DEAD:
8bb78442 1601 case CPU_DEAD_FROZEN:
8def9060 1602 migrate_timers((long)hcpu);
1da177e4 1603 break;
1da177e4
LT
1604 default:
1605 break;
1606 }
3650b57f 1607
1da177e4
LT
1608 return NOTIFY_OK;
1609}
1610
3650b57f
PZ
1611static inline void timer_register_cpu_notifier(void)
1612{
1613 cpu_notifier(timer_cpu_notify, 0);
1614}
1615#else
1616static inline void timer_register_cpu_notifier(void) { }
1617#endif /* CONFIG_HOTPLUG_CPU */
1da177e4 1618
0eeda71b 1619static void __init init_timer_cpu(int cpu)
8def9060 1620{
0eeda71b 1621 struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
3650b57f 1622
8def9060 1623 base->cpu = cpu;
8def9060
VK
1624 spin_lock_init(&base->lock);
1625
8def9060
VK
1626 base->timer_jiffies = jiffies;
1627 base->next_timer = base->timer_jiffies;
1628}
1629
1630static void __init init_timer_cpus(void)
1da177e4 1631{
8def9060
VK
1632 int cpu;
1633
0eeda71b
TG
1634 for_each_possible_cpu(cpu)
1635 init_timer_cpu(cpu);
8def9060 1636}
e52b1db3 1637
8def9060
VK
1638void __init init_timers(void)
1639{
8def9060 1640 init_timer_cpus();
c24a4a36 1641 init_timer_stats();
3650b57f 1642 timer_register_cpu_notifier();
962cf36c 1643 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1644}
1645
1da177e4
LT
1646/**
1647 * msleep - sleep safely even with waitqueue interruptions
1648 * @msecs: Time in milliseconds to sleep for
1649 */
1650void msleep(unsigned int msecs)
1651{
1652 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1653
75bcc8c5
NA
1654 while (timeout)
1655 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1656}
1657
1658EXPORT_SYMBOL(msleep);
1659
1660/**
96ec3efd 1661 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1662 * @msecs: Time in milliseconds to sleep for
1663 */
1664unsigned long msleep_interruptible(unsigned int msecs)
1665{
1666 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1667
75bcc8c5
NA
1668 while (timeout && !signal_pending(current))
1669 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1670 return jiffies_to_msecs(timeout);
1671}
1672
1673EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17 1674
6deba083 1675static void __sched do_usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1676{
1677 ktime_t kmin;
1678 unsigned long delta;
1679
1680 kmin = ktime_set(0, min * NSEC_PER_USEC);
1681 delta = (max - min) * NSEC_PER_USEC;
6deba083 1682 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
5e7f5a17
PP
1683}
1684
1685/**
1686 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1687 * @min: Minimum time in usecs to sleep
1688 * @max: Maximum time in usecs to sleep
1689 */
2ad5d327 1690void __sched usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1691{
1692 __set_current_state(TASK_UNINTERRUPTIBLE);
1693 do_usleep_range(min, max);
1694}
1695EXPORT_SYMBOL(usleep_range);