]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/timer.c
timers: Forward the wheel clock whenever possible
[mirror_ubuntu-jammy-kernel.git] / kernel / time / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4a22f166 4 * Kernel internal timers
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
5a0e3ad6 43#include <linux/slab.h>
1a0df594 44#include <linux/compat.h>
1da177e4
LT
45
46#include <asm/uaccess.h>
47#include <asm/unistd.h>
48#include <asm/div64.h>
49#include <asm/timex.h>
50#include <asm/io.h>
51
c1ad348b
TG
52#include "tick-internal.h"
53
2b022e3d
XG
54#define CREATE_TRACE_POINTS
55#include <trace/events/timer.h>
56
40747ffa 57__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
ecea8d19
TG
58
59EXPORT_SYMBOL(jiffies_64);
60
1da177e4 61/*
500462a9
TG
62 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
63 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
64 * level has a different granularity.
65 *
66 * The level granularity is: LVL_CLK_DIV ^ lvl
67 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
68 *
69 * The array level of a newly armed timer depends on the relative expiry
70 * time. The farther the expiry time is away the higher the array level and
71 * therefor the granularity becomes.
72 *
73 * Contrary to the original timer wheel implementation, which aims for 'exact'
74 * expiry of the timers, this implementation removes the need for recascading
75 * the timers into the lower array levels. The previous 'classic' timer wheel
76 * implementation of the kernel already violated the 'exact' expiry by adding
77 * slack to the expiry time to provide batched expiration. The granularity
78 * levels provide implicit batching.
79 *
80 * This is an optimization of the original timer wheel implementation for the
81 * majority of the timer wheel use cases: timeouts. The vast majority of
82 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
83 * the timeout expires it indicates that normal operation is disturbed, so it
84 * does not matter much whether the timeout comes with a slight delay.
85 *
86 * The only exception to this are networking timers with a small expiry
87 * time. They rely on the granularity. Those fit into the first wheel level,
88 * which has HZ granularity.
89 *
90 * We don't have cascading anymore. timers with a expiry time above the
91 * capacity of the last wheel level are force expired at the maximum timeout
92 * value of the last wheel level. From data sampling we know that the maximum
93 * value observed is 5 days (network connection tracking), so this should not
94 * be an issue.
95 *
96 * The currently chosen array constants values are a good compromise between
97 * array size and granularity.
98 *
99 * This results in the following granularity and range levels:
100 *
101 * HZ 1000 steps
102 * Level Offset Granularity Range
103 * 0 0 1 ms 0 ms - 63 ms
104 * 1 64 8 ms 64 ms - 511 ms
105 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
106 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
107 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
108 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
109 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
110 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
111 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
112 *
113 * HZ 300
114 * Level Offset Granularity Range
115 * 0 0 3 ms 0 ms - 210 ms
116 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
117 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
118 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
119 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
120 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
121 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
122 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
123 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
124 *
125 * HZ 250
126 * Level Offset Granularity Range
127 * 0 0 4 ms 0 ms - 255 ms
128 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
129 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
130 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
131 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
132 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
133 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
134 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
135 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
136 *
137 * HZ 100
138 * Level Offset Granularity Range
139 * 0 0 10 ms 0 ms - 630 ms
140 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
141 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
142 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
143 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
144 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
145 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
146 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
1da177e4 147 */
1da177e4 148
500462a9
TG
149/* Clock divisor for the next level */
150#define LVL_CLK_SHIFT 3
151#define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
152#define LVL_CLK_MASK (LVL_CLK_DIV - 1)
153#define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
154#define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
155
156/*
157 * The time start value for each level to select the bucket at enqueue
158 * time.
159 */
160#define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
161
162/* Size of each clock level */
163#define LVL_BITS 6
164#define LVL_SIZE (1UL << LVL_BITS)
165#define LVL_MASK (LVL_SIZE - 1)
166#define LVL_OFFS(n) ((n) * LVL_SIZE)
167
168/* Level depth */
169#if HZ > 100
170# define LVL_DEPTH 9
171# else
172# define LVL_DEPTH 8
173#endif
174
175/* The cutoff (max. capacity of the wheel) */
176#define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
177#define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
178
179/*
180 * The resulting wheel size. If NOHZ is configured we allocate two
181 * wheels so we have a separate storage for the deferrable timers.
182 */
183#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
184
185#ifdef CONFIG_NO_HZ_COMMON
186# define NR_BASES 2
187# define BASE_STD 0
188# define BASE_DEF 1
189#else
190# define NR_BASES 1
191# define BASE_STD 0
192# define BASE_DEF 0
193#endif
1da177e4 194
494af3ed 195struct timer_base {
500462a9
TG
196 spinlock_t lock;
197 struct timer_list *running_timer;
198 unsigned long clk;
a683f390 199 unsigned long next_expiry;
500462a9
TG
200 unsigned int cpu;
201 bool migration_enabled;
202 bool nohz_active;
a683f390 203 bool is_idle;
500462a9
TG
204 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
205 struct hlist_head vectors[WHEEL_SIZE];
6e453a67 206} ____cacheline_aligned;
1da177e4 207
500462a9 208static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
6e453a67 209
bc7a34b8
TG
210#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
211unsigned int sysctl_timer_migration = 1;
212
683be13a 213void timers_update_migration(bool update_nohz)
bc7a34b8
TG
214{
215 bool on = sysctl_timer_migration && tick_nohz_active;
216 unsigned int cpu;
217
218 /* Avoid the loop, if nothing to update */
500462a9 219 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
bc7a34b8
TG
220 return;
221
222 for_each_possible_cpu(cpu) {
500462a9
TG
223 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
224 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
bc7a34b8 225 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
683be13a
TG
226 if (!update_nohz)
227 continue;
500462a9
TG
228 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
229 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
683be13a 230 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
bc7a34b8
TG
231 }
232}
233
234int timer_migration_handler(struct ctl_table *table, int write,
235 void __user *buffer, size_t *lenp,
236 loff_t *ppos)
237{
238 static DEFINE_MUTEX(mutex);
239 int ret;
240
241 mutex_lock(&mutex);
242 ret = proc_dointvec(table, write, buffer, lenp, ppos);
243 if (!ret && write)
683be13a 244 timers_update_migration(false);
bc7a34b8
TG
245 mutex_unlock(&mutex);
246 return ret;
247}
bc7a34b8
TG
248#endif
249
9c133c46
AS
250static unsigned long round_jiffies_common(unsigned long j, int cpu,
251 bool force_up)
4c36a5de
AV
252{
253 int rem;
254 unsigned long original = j;
255
256 /*
257 * We don't want all cpus firing their timers at once hitting the
258 * same lock or cachelines, so we skew each extra cpu with an extra
259 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
260 * already did this.
261 * The skew is done by adding 3*cpunr, then round, then subtract this
262 * extra offset again.
263 */
264 j += cpu * 3;
265
266 rem = j % HZ;
267
268 /*
269 * If the target jiffie is just after a whole second (which can happen
270 * due to delays of the timer irq, long irq off times etc etc) then
271 * we should round down to the whole second, not up. Use 1/4th second
272 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 273 * But never round down if @force_up is set.
4c36a5de 274 */
9c133c46 275 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
276 j = j - rem;
277 else /* round up */
278 j = j - rem + HZ;
279
280 /* now that we have rounded, subtract the extra skew again */
281 j -= cpu * 3;
282
9e04d380
BVA
283 /*
284 * Make sure j is still in the future. Otherwise return the
285 * unmodified value.
286 */
287 return time_is_after_jiffies(j) ? j : original;
4c36a5de 288}
9c133c46
AS
289
290/**
291 * __round_jiffies - function to round jiffies to a full second
292 * @j: the time in (absolute) jiffies that should be rounded
293 * @cpu: the processor number on which the timeout will happen
294 *
295 * __round_jiffies() rounds an absolute time in the future (in jiffies)
296 * up or down to (approximately) full seconds. This is useful for timers
297 * for which the exact time they fire does not matter too much, as long as
298 * they fire approximately every X seconds.
299 *
300 * By rounding these timers to whole seconds, all such timers will fire
301 * at the same time, rather than at various times spread out. The goal
302 * of this is to have the CPU wake up less, which saves power.
303 *
304 * The exact rounding is skewed for each processor to avoid all
305 * processors firing at the exact same time, which could lead
306 * to lock contention or spurious cache line bouncing.
307 *
308 * The return value is the rounded version of the @j parameter.
309 */
310unsigned long __round_jiffies(unsigned long j, int cpu)
311{
312 return round_jiffies_common(j, cpu, false);
313}
4c36a5de
AV
314EXPORT_SYMBOL_GPL(__round_jiffies);
315
316/**
317 * __round_jiffies_relative - function to round jiffies to a full second
318 * @j: the time in (relative) jiffies that should be rounded
319 * @cpu: the processor number on which the timeout will happen
320 *
72fd4a35 321 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
322 * up or down to (approximately) full seconds. This is useful for timers
323 * for which the exact time they fire does not matter too much, as long as
324 * they fire approximately every X seconds.
325 *
326 * By rounding these timers to whole seconds, all such timers will fire
327 * at the same time, rather than at various times spread out. The goal
328 * of this is to have the CPU wake up less, which saves power.
329 *
330 * The exact rounding is skewed for each processor to avoid all
331 * processors firing at the exact same time, which could lead
332 * to lock contention or spurious cache line bouncing.
333 *
72fd4a35 334 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
335 */
336unsigned long __round_jiffies_relative(unsigned long j, int cpu)
337{
9c133c46
AS
338 unsigned long j0 = jiffies;
339
340 /* Use j0 because jiffies might change while we run */
341 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
342}
343EXPORT_SYMBOL_GPL(__round_jiffies_relative);
344
345/**
346 * round_jiffies - function to round jiffies to a full second
347 * @j: the time in (absolute) jiffies that should be rounded
348 *
72fd4a35 349 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
350 * up or down to (approximately) full seconds. This is useful for timers
351 * for which the exact time they fire does not matter too much, as long as
352 * they fire approximately every X seconds.
353 *
354 * By rounding these timers to whole seconds, all such timers will fire
355 * at the same time, rather than at various times spread out. The goal
356 * of this is to have the CPU wake up less, which saves power.
357 *
72fd4a35 358 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
359 */
360unsigned long round_jiffies(unsigned long j)
361{
9c133c46 362 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
363}
364EXPORT_SYMBOL_GPL(round_jiffies);
365
366/**
367 * round_jiffies_relative - function to round jiffies to a full second
368 * @j: the time in (relative) jiffies that should be rounded
369 *
72fd4a35 370 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
371 * up or down to (approximately) full seconds. This is useful for timers
372 * for which the exact time they fire does not matter too much, as long as
373 * they fire approximately every X seconds.
374 *
375 * By rounding these timers to whole seconds, all such timers will fire
376 * at the same time, rather than at various times spread out. The goal
377 * of this is to have the CPU wake up less, which saves power.
378 *
72fd4a35 379 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
380 */
381unsigned long round_jiffies_relative(unsigned long j)
382{
383 return __round_jiffies_relative(j, raw_smp_processor_id());
384}
385EXPORT_SYMBOL_GPL(round_jiffies_relative);
386
9c133c46
AS
387/**
388 * __round_jiffies_up - function to round jiffies up to a full second
389 * @j: the time in (absolute) jiffies that should be rounded
390 * @cpu: the processor number on which the timeout will happen
391 *
392 * This is the same as __round_jiffies() except that it will never
393 * round down. This is useful for timeouts for which the exact time
394 * of firing does not matter too much, as long as they don't fire too
395 * early.
396 */
397unsigned long __round_jiffies_up(unsigned long j, int cpu)
398{
399 return round_jiffies_common(j, cpu, true);
400}
401EXPORT_SYMBOL_GPL(__round_jiffies_up);
402
403/**
404 * __round_jiffies_up_relative - function to round jiffies up to a full second
405 * @j: the time in (relative) jiffies that should be rounded
406 * @cpu: the processor number on which the timeout will happen
407 *
408 * This is the same as __round_jiffies_relative() except that it will never
409 * round down. This is useful for timeouts for which the exact time
410 * of firing does not matter too much, as long as they don't fire too
411 * early.
412 */
413unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
414{
415 unsigned long j0 = jiffies;
416
417 /* Use j0 because jiffies might change while we run */
418 return round_jiffies_common(j + j0, cpu, true) - j0;
419}
420EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
421
422/**
423 * round_jiffies_up - function to round jiffies up to a full second
424 * @j: the time in (absolute) jiffies that should be rounded
425 *
426 * This is the same as round_jiffies() except that it will never
427 * round down. This is useful for timeouts for which the exact time
428 * of firing does not matter too much, as long as they don't fire too
429 * early.
430 */
431unsigned long round_jiffies_up(unsigned long j)
432{
433 return round_jiffies_common(j, raw_smp_processor_id(), true);
434}
435EXPORT_SYMBOL_GPL(round_jiffies_up);
436
437/**
438 * round_jiffies_up_relative - function to round jiffies up to a full second
439 * @j: the time in (relative) jiffies that should be rounded
440 *
441 * This is the same as round_jiffies_relative() except that it will never
442 * round down. This is useful for timeouts for which the exact time
443 * of firing does not matter too much, as long as they don't fire too
444 * early.
445 */
446unsigned long round_jiffies_up_relative(unsigned long j)
447{
448 return __round_jiffies_up_relative(j, raw_smp_processor_id());
449}
450EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
451
3bbb9ec9 452
500462a9
TG
453static inline unsigned int timer_get_idx(struct timer_list *timer)
454{
455 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
456}
457
458static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
459{
460 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
461 idx << TIMER_ARRAYSHIFT;
462}
463
464/*
465 * Helper function to calculate the array index for a given expiry
466 * time.
467 */
468static inline unsigned calc_index(unsigned expires, unsigned lvl)
469{
470 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
471 return LVL_OFFS(lvl) + (expires & LVL_MASK);
472}
473
facbb4a7 474static void
494af3ed 475__internal_add_timer(struct timer_base *base, struct timer_list *timer)
1da177e4
LT
476{
477 unsigned long expires = timer->expires;
500462a9 478 unsigned long delta = expires - base->clk;
1dabbcec 479 struct hlist_head *vec;
500462a9
TG
480 unsigned int idx;
481
482 if (delta < LVL_START(1)) {
483 idx = calc_index(expires, 0);
484 } else if (delta < LVL_START(2)) {
485 idx = calc_index(expires, 1);
486 } else if (delta < LVL_START(3)) {
487 idx = calc_index(expires, 2);
488 } else if (delta < LVL_START(4)) {
489 idx = calc_index(expires, 3);
490 } else if (delta < LVL_START(5)) {
491 idx = calc_index(expires, 4);
492 } else if (delta < LVL_START(6)) {
493 idx = calc_index(expires, 5);
494 } else if (delta < LVL_START(7)) {
495 idx = calc_index(expires, 6);
496 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
497 idx = calc_index(expires, 7);
498 } else if ((long) delta < 0) {
499 idx = base->clk & LVL_MASK;
1da177e4 500 } else {
500462a9
TG
501 /*
502 * Force expire obscene large timeouts to expire at the
503 * capacity limit of the wheel.
1da177e4 504 */
500462a9
TG
505 if (expires >= WHEEL_TIMEOUT_CUTOFF)
506 expires = WHEEL_TIMEOUT_MAX;
1bd04bf6 507
500462a9
TG
508 idx = calc_index(expires, LVL_DEPTH - 1);
509 }
510 /*
511 * Enqueue the timer into the array bucket, mark it pending in
512 * the bitmap and store the index in the timer flags.
513 */
514 vec = base->vectors + idx;
1dabbcec 515 hlist_add_head(&timer->entry, vec);
500462a9
TG
516 __set_bit(idx, base->pending_map);
517 timer_set_idx(timer, idx);
1da177e4
LT
518}
519
494af3ed 520static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
facbb4a7
TG
521{
522 __internal_add_timer(base, timer);
9f6d9baa 523
a683f390
TG
524 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
525 return;
526
9f6d9baa 527 /*
a683f390
TG
528 * TODO: This wants some optimizing similar to the code below, but we
529 * will do that when we switch from push to pull for deferrable timers.
9f6d9baa 530 */
a683f390
TG
531 if (timer->flags & TIMER_DEFERRABLE) {
532 if (tick_nohz_full_cpu(base->cpu))
683be13a 533 wake_up_nohz_cpu(base->cpu);
a683f390 534 return;
683be13a 535 }
a683f390
TG
536
537 /*
538 * We might have to IPI the remote CPU if the base is idle and the
539 * timer is not deferrable. If the other CPU is on the way to idle
540 * then it can't set base->is_idle as we hold the base lock:
541 */
542 if (!base->is_idle)
543 return;
544
545 /* Check whether this is the new first expiring timer: */
546 if (time_after_eq(timer->expires, base->next_expiry))
547 return;
548
549 /*
550 * Set the next expiry time and kick the CPU so it can reevaluate the
551 * wheel:
552 */
553 base->next_expiry = timer->expires;
554 wake_up_nohz_cpu(base->cpu);
facbb4a7
TG
555}
556
82f67cd9
IM
557#ifdef CONFIG_TIMER_STATS
558void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
559{
560 if (timer->start_site)
561 return;
562
563 timer->start_site = addr;
564 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
565 timer->start_pid = current->pid;
566}
c5c061b8
VP
567
568static void timer_stats_account_timer(struct timer_list *timer)
569{
3ed769bd
DV
570 void *site;
571
572 /*
573 * start_site can be concurrently reset by
574 * timer_stats_timer_clear_start_info()
575 */
576 site = READ_ONCE(timer->start_site);
577 if (likely(!site))
507e1231 578 return;
c5c061b8 579
3ed769bd 580 timer_stats_update_stats(timer, timer->start_pid, site,
c74441a1
TG
581 timer->function, timer->start_comm,
582 timer->flags);
c5c061b8
VP
583}
584
585#else
586static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
587#endif
588
c6f3a97f
TG
589#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
590
591static struct debug_obj_descr timer_debug_descr;
592
99777288
SG
593static void *timer_debug_hint(void *addr)
594{
595 return ((struct timer_list *) addr)->function;
596}
597
b9fdac7f
CD
598static bool timer_is_static_object(void *addr)
599{
600 struct timer_list *timer = addr;
601
602 return (timer->entry.pprev == NULL &&
603 timer->entry.next == TIMER_ENTRY_STATIC);
604}
605
c6f3a97f
TG
606/*
607 * fixup_init is called when:
608 * - an active object is initialized
55c888d6 609 */
e3252464 610static bool timer_fixup_init(void *addr, enum debug_obj_state state)
c6f3a97f
TG
611{
612 struct timer_list *timer = addr;
613
614 switch (state) {
615 case ODEBUG_STATE_ACTIVE:
616 del_timer_sync(timer);
617 debug_object_init(timer, &timer_debug_descr);
e3252464 618 return true;
c6f3a97f 619 default:
e3252464 620 return false;
c6f3a97f
TG
621 }
622}
623
fb16b8cf
SB
624/* Stub timer callback for improperly used timers. */
625static void stub_timer(unsigned long data)
626{
627 WARN_ON(1);
628}
629
c6f3a97f
TG
630/*
631 * fixup_activate is called when:
632 * - an active object is activated
b9fdac7f 633 * - an unknown non-static object is activated
c6f3a97f 634 */
e3252464 635static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
c6f3a97f
TG
636{
637 struct timer_list *timer = addr;
638
639 switch (state) {
c6f3a97f 640 case ODEBUG_STATE_NOTAVAILABLE:
b9fdac7f
CD
641 setup_timer(timer, stub_timer, 0);
642 return true;
c6f3a97f
TG
643
644 case ODEBUG_STATE_ACTIVE:
645 WARN_ON(1);
646
647 default:
e3252464 648 return false;
c6f3a97f
TG
649 }
650}
651
652/*
653 * fixup_free is called when:
654 * - an active object is freed
655 */
e3252464 656static bool timer_fixup_free(void *addr, enum debug_obj_state state)
c6f3a97f
TG
657{
658 struct timer_list *timer = addr;
659
660 switch (state) {
661 case ODEBUG_STATE_ACTIVE:
662 del_timer_sync(timer);
663 debug_object_free(timer, &timer_debug_descr);
e3252464 664 return true;
c6f3a97f 665 default:
e3252464 666 return false;
c6f3a97f
TG
667 }
668}
669
dc4218bd
CC
670/*
671 * fixup_assert_init is called when:
672 * - an untracked/uninit-ed object is found
673 */
e3252464 674static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
dc4218bd
CC
675{
676 struct timer_list *timer = addr;
677
678 switch (state) {
679 case ODEBUG_STATE_NOTAVAILABLE:
b9fdac7f
CD
680 setup_timer(timer, stub_timer, 0);
681 return true;
dc4218bd 682 default:
e3252464 683 return false;
dc4218bd
CC
684 }
685}
686
c6f3a97f 687static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
688 .name = "timer_list",
689 .debug_hint = timer_debug_hint,
b9fdac7f 690 .is_static_object = timer_is_static_object,
dc4218bd
CC
691 .fixup_init = timer_fixup_init,
692 .fixup_activate = timer_fixup_activate,
693 .fixup_free = timer_fixup_free,
694 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
695};
696
697static inline void debug_timer_init(struct timer_list *timer)
698{
699 debug_object_init(timer, &timer_debug_descr);
700}
701
702static inline void debug_timer_activate(struct timer_list *timer)
703{
704 debug_object_activate(timer, &timer_debug_descr);
705}
706
707static inline void debug_timer_deactivate(struct timer_list *timer)
708{
709 debug_object_deactivate(timer, &timer_debug_descr);
710}
711
712static inline void debug_timer_free(struct timer_list *timer)
713{
714 debug_object_free(timer, &timer_debug_descr);
715}
716
dc4218bd
CC
717static inline void debug_timer_assert_init(struct timer_list *timer)
718{
719 debug_object_assert_init(timer, &timer_debug_descr);
720}
721
fc683995
TH
722static void do_init_timer(struct timer_list *timer, unsigned int flags,
723 const char *name, struct lock_class_key *key);
c6f3a97f 724
fc683995
TH
725void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
726 const char *name, struct lock_class_key *key)
c6f3a97f
TG
727{
728 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 729 do_init_timer(timer, flags, name, key);
c6f3a97f 730}
6f2b9b9a 731EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
732
733void destroy_timer_on_stack(struct timer_list *timer)
734{
735 debug_object_free(timer, &timer_debug_descr);
736}
737EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
738
739#else
740static inline void debug_timer_init(struct timer_list *timer) { }
741static inline void debug_timer_activate(struct timer_list *timer) { }
742static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 743static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
744#endif
745
2b022e3d
XG
746static inline void debug_init(struct timer_list *timer)
747{
748 debug_timer_init(timer);
749 trace_timer_init(timer);
750}
751
752static inline void
753debug_activate(struct timer_list *timer, unsigned long expires)
754{
755 debug_timer_activate(timer);
0eeda71b 756 trace_timer_start(timer, expires, timer->flags);
2b022e3d
XG
757}
758
759static inline void debug_deactivate(struct timer_list *timer)
760{
761 debug_timer_deactivate(timer);
762 trace_timer_cancel(timer);
763}
764
dc4218bd
CC
765static inline void debug_assert_init(struct timer_list *timer)
766{
767 debug_timer_assert_init(timer);
768}
769
fc683995
TH
770static void do_init_timer(struct timer_list *timer, unsigned int flags,
771 const char *name, struct lock_class_key *key)
55c888d6 772{
1dabbcec 773 timer->entry.pprev = NULL;
0eeda71b 774 timer->flags = flags | raw_smp_processor_id();
82f67cd9
IM
775#ifdef CONFIG_TIMER_STATS
776 timer->start_site = NULL;
777 timer->start_pid = -1;
778 memset(timer->start_comm, 0, TASK_COMM_LEN);
779#endif
6f2b9b9a 780 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 781}
c6f3a97f
TG
782
783/**
633fe795 784 * init_timer_key - initialize a timer
c6f3a97f 785 * @timer: the timer to be initialized
fc683995 786 * @flags: timer flags
633fe795
RD
787 * @name: name of the timer
788 * @key: lockdep class key of the fake lock used for tracking timer
789 * sync lock dependencies
c6f3a97f 790 *
633fe795 791 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
792 * other timer functions.
793 */
fc683995
TH
794void init_timer_key(struct timer_list *timer, unsigned int flags,
795 const char *name, struct lock_class_key *key)
c6f3a97f 796{
2b022e3d 797 debug_init(timer);
fc683995 798 do_init_timer(timer, flags, name, key);
c6f3a97f 799}
6f2b9b9a 800EXPORT_SYMBOL(init_timer_key);
55c888d6 801
ec44bc7a 802static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6 803{
1dabbcec 804 struct hlist_node *entry = &timer->entry;
55c888d6 805
2b022e3d 806 debug_deactivate(timer);
c6f3a97f 807
1dabbcec 808 __hlist_del(entry);
55c888d6 809 if (clear_pending)
1dabbcec
TG
810 entry->pprev = NULL;
811 entry->next = LIST_POISON2;
55c888d6
ON
812}
813
494af3ed 814static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
ec44bc7a
TG
815 bool clear_pending)
816{
500462a9
TG
817 unsigned idx = timer_get_idx(timer);
818
ec44bc7a
TG
819 if (!timer_pending(timer))
820 return 0;
821
500462a9
TG
822 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
823 __clear_bit(idx, base->pending_map);
824
ec44bc7a 825 detach_timer(timer, clear_pending);
ec44bc7a
TG
826 return 1;
827}
828
500462a9
TG
829static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
830{
831 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
832
833 /*
834 * If the timer is deferrable and nohz is active then we need to use
835 * the deferrable base.
836 */
837 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
838 (tflags & TIMER_DEFERRABLE))
839 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
840 return base;
841}
842
843static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
844{
845 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
846
847 /*
848 * If the timer is deferrable and nohz is active then we need to use
849 * the deferrable base.
850 */
851 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
852 (tflags & TIMER_DEFERRABLE))
853 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
854 return base;
855}
856
857static inline struct timer_base *get_timer_base(u32 tflags)
858{
859 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
860}
861
a683f390
TG
862#ifdef CONFIG_NO_HZ_COMMON
863static inline struct timer_base *
864__get_target_base(struct timer_base *base, unsigned tflags)
500462a9 865{
a683f390 866#ifdef CONFIG_SMP
500462a9
TG
867 if ((tflags & TIMER_PINNED) || !base->migration_enabled)
868 return get_timer_this_cpu_base(tflags);
869 return get_timer_cpu_base(tflags, get_nohz_timer_target());
870#else
871 return get_timer_this_cpu_base(tflags);
872#endif
873}
874
a683f390
TG
875static inline void forward_timer_base(struct timer_base *base)
876{
877 /*
878 * We only forward the base when it's idle and we have a delta between
879 * base clock and jiffies.
880 */
881 if (!base->is_idle || (long) (jiffies - base->clk) < 2)
882 return;
883
884 /*
885 * If the next expiry value is > jiffies, then we fast forward to
886 * jiffies otherwise we forward to the next expiry value.
887 */
888 if (time_after(base->next_expiry, jiffies))
889 base->clk = jiffies;
890 else
891 base->clk = base->next_expiry;
892}
893#else
894static inline struct timer_base *
895__get_target_base(struct timer_base *base, unsigned tflags)
896{
897 return get_timer_this_cpu_base(tflags);
898}
899
900static inline void forward_timer_base(struct timer_base *base) { }
901#endif
902
903static inline struct timer_base *
904get_target_base(struct timer_base *base, unsigned tflags)
905{
906 struct timer_base *target = __get_target_base(base, tflags);
907
908 forward_timer_base(target);
909 return target;
910}
911
55c888d6 912/*
500462a9
TG
913 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
914 * that all timers which are tied to this base are locked, and the base itself
915 * is locked too.
55c888d6
ON
916 *
917 * So __run_timers/migrate_timers can safely modify all timers which could
500462a9 918 * be found in the base->vectors array.
55c888d6 919 *
500462a9
TG
920 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
921 * to wait until the migration is done.
55c888d6 922 */
494af3ed 923static struct timer_base *lock_timer_base(struct timer_list *timer,
500462a9 924 unsigned long *flags)
89e7e374 925 __acquires(timer->base->lock)
55c888d6 926{
55c888d6 927 for (;;) {
494af3ed 928 struct timer_base *base;
500462a9 929 u32 tf = timer->flags;
0eeda71b
TG
930
931 if (!(tf & TIMER_MIGRATING)) {
500462a9 932 base = get_timer_base(tf);
55c888d6 933 spin_lock_irqsave(&base->lock, *flags);
0eeda71b 934 if (timer->flags == tf)
55c888d6 935 return base;
55c888d6
ON
936 spin_unlock_irqrestore(&base->lock, *flags);
937 }
938 cpu_relax();
939 }
940}
941
74019224 942static inline int
177ec0a0 943__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
1da177e4 944{
494af3ed 945 struct timer_base *base, *new_base;
1da177e4 946 unsigned long flags;
bc7a34b8 947 int ret = 0;
1da177e4 948
500462a9
TG
949 /*
950 * TODO: Calculate the array bucket of the timer right here w/o
951 * holding the base lock. This allows to check not only
952 * timer->expires == expires below, but also whether the timer
953 * ends up in the same bucket. If we really need to requeue
954 * the timer then we check whether base->clk have
955 * advanced between here and locking the timer base. If
956 * jiffies advanced we have to recalc the array bucket with the
957 * lock held.
958 */
959
960 /*
961 * This is a common optimization triggered by the
962 * networking code - if the timer is re-modified
963 * to be the same thing then just return:
964 */
965 if (timer_pending(timer)) {
966 if (timer->expires == expires)
967 return 1;
968 }
969
82f67cd9 970 timer_stats_timer_set_start_info(timer);
1da177e4 971 BUG_ON(!timer->function);
1da177e4 972
55c888d6
ON
973 base = lock_timer_base(timer, &flags);
974
ec44bc7a
TG
975 ret = detach_if_pending(timer, base, false);
976 if (!ret && pending_only)
977 goto out_unlock;
55c888d6 978
2b022e3d 979 debug_activate(timer, expires);
c6f3a97f 980
500462a9 981 new_base = get_target_base(base, timer->flags);
eea08f32 982
3691c519 983 if (base != new_base) {
1da177e4 984 /*
500462a9 985 * We are trying to schedule the timer on the new base.
55c888d6
ON
986 * However we can't change timer's base while it is running,
987 * otherwise del_timer_sync() can't detect that the timer's
500462a9
TG
988 * handler yet has not finished. This also guarantees that the
989 * timer is serialized wrt itself.
1da177e4 990 */
a2c348fe 991 if (likely(base->running_timer != timer)) {
55c888d6 992 /* See the comment in lock_timer_base() */
0eeda71b
TG
993 timer->flags |= TIMER_MIGRATING;
994
55c888d6 995 spin_unlock(&base->lock);
a2c348fe
ON
996 base = new_base;
997 spin_lock(&base->lock);
d0023a14
ED
998 WRITE_ONCE(timer->flags,
999 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1da177e4
LT
1000 }
1001 }
1002
1da177e4 1003 timer->expires = expires;
a2c348fe 1004 internal_add_timer(base, timer);
74019224
IM
1005
1006out_unlock:
a2c348fe 1007 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
1008
1009 return ret;
1010}
1011
2aae4a10 1012/**
74019224
IM
1013 * mod_timer_pending - modify a pending timer's timeout
1014 * @timer: the pending timer to be modified
1015 * @expires: new timeout in jiffies
1da177e4 1016 *
74019224
IM
1017 * mod_timer_pending() is the same for pending timers as mod_timer(),
1018 * but will not re-activate and modify already deleted timers.
1019 *
1020 * It is useful for unserialized use of timers.
1da177e4 1021 */
74019224 1022int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 1023{
177ec0a0 1024 return __mod_timer(timer, expires, true);
1da177e4 1025}
74019224 1026EXPORT_SYMBOL(mod_timer_pending);
1da177e4 1027
2aae4a10 1028/**
1da177e4
LT
1029 * mod_timer - modify a timer's timeout
1030 * @timer: the timer to be modified
2aae4a10 1031 * @expires: new timeout in jiffies
1da177e4 1032 *
72fd4a35 1033 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
1034 * active timer (if the timer is inactive it will be activated)
1035 *
1036 * mod_timer(timer, expires) is equivalent to:
1037 *
1038 * del_timer(timer); timer->expires = expires; add_timer(timer);
1039 *
1040 * Note that if there are multiple unserialized concurrent users of the
1041 * same timer, then mod_timer() is the only safe way to modify the timeout,
1042 * since add_timer() cannot modify an already running timer.
1043 *
1044 * The function returns whether it has modified a pending timer or not.
1045 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1046 * active timer returns 1.)
1047 */
1048int mod_timer(struct timer_list *timer, unsigned long expires)
1049{
177ec0a0 1050 return __mod_timer(timer, expires, false);
1da177e4 1051}
1da177e4
LT
1052EXPORT_SYMBOL(mod_timer);
1053
74019224
IM
1054/**
1055 * add_timer - start a timer
1056 * @timer: the timer to be added
1057 *
1058 * The kernel will do a ->function(->data) callback from the
1059 * timer interrupt at the ->expires point in the future. The
1060 * current time is 'jiffies'.
1061 *
1062 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1063 * fields must be set prior calling this function.
1064 *
1065 * Timers with an ->expires field in the past will be executed in the next
1066 * timer tick.
1067 */
1068void add_timer(struct timer_list *timer)
1069{
1070 BUG_ON(timer_pending(timer));
1071 mod_timer(timer, timer->expires);
1072}
1073EXPORT_SYMBOL(add_timer);
1074
1075/**
1076 * add_timer_on - start a timer on a particular CPU
1077 * @timer: the timer to be added
1078 * @cpu: the CPU to start it on
1079 *
1080 * This is not very scalable on SMP. Double adds are not possible.
1081 */
1082void add_timer_on(struct timer_list *timer, int cpu)
1083{
500462a9 1084 struct timer_base *new_base, *base;
74019224
IM
1085 unsigned long flags;
1086
1087 timer_stats_timer_set_start_info(timer);
1088 BUG_ON(timer_pending(timer) || !timer->function);
22b886dd 1089
500462a9
TG
1090 new_base = get_timer_cpu_base(timer->flags, cpu);
1091
22b886dd
TH
1092 /*
1093 * If @timer was on a different CPU, it should be migrated with the
1094 * old base locked to prevent other operations proceeding with the
1095 * wrong base locked. See lock_timer_base().
1096 */
1097 base = lock_timer_base(timer, &flags);
1098 if (base != new_base) {
1099 timer->flags |= TIMER_MIGRATING;
1100
1101 spin_unlock(&base->lock);
1102 base = new_base;
1103 spin_lock(&base->lock);
1104 WRITE_ONCE(timer->flags,
1105 (timer->flags & ~TIMER_BASEMASK) | cpu);
1106 }
1107
2b022e3d 1108 debug_activate(timer, timer->expires);
74019224 1109 internal_add_timer(base, timer);
74019224
IM
1110 spin_unlock_irqrestore(&base->lock, flags);
1111}
a9862e05 1112EXPORT_SYMBOL_GPL(add_timer_on);
74019224 1113
2aae4a10 1114/**
1da177e4
LT
1115 * del_timer - deactive a timer.
1116 * @timer: the timer to be deactivated
1117 *
1118 * del_timer() deactivates a timer - this works on both active and inactive
1119 * timers.
1120 *
1121 * The function returns whether it has deactivated a pending timer or not.
1122 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1123 * active timer returns 1.)
1124 */
1125int del_timer(struct timer_list *timer)
1126{
494af3ed 1127 struct timer_base *base;
1da177e4 1128 unsigned long flags;
55c888d6 1129 int ret = 0;
1da177e4 1130
dc4218bd
CC
1131 debug_assert_init(timer);
1132
82f67cd9 1133 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
1134 if (timer_pending(timer)) {
1135 base = lock_timer_base(timer, &flags);
ec44bc7a 1136 ret = detach_if_pending(timer, base, true);
1da177e4 1137 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 1138 }
1da177e4 1139
55c888d6 1140 return ret;
1da177e4 1141}
1da177e4
LT
1142EXPORT_SYMBOL(del_timer);
1143
2aae4a10
REB
1144/**
1145 * try_to_del_timer_sync - Try to deactivate a timer
1146 * @timer: timer do del
1147 *
fd450b73
ON
1148 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1149 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1150 */
1151int try_to_del_timer_sync(struct timer_list *timer)
1152{
494af3ed 1153 struct timer_base *base;
fd450b73
ON
1154 unsigned long flags;
1155 int ret = -1;
1156
dc4218bd
CC
1157 debug_assert_init(timer);
1158
fd450b73
ON
1159 base = lock_timer_base(timer, &flags);
1160
ec44bc7a
TG
1161 if (base->running_timer != timer) {
1162 timer_stats_timer_clear_start_info(timer);
1163 ret = detach_if_pending(timer, base, true);
fd450b73 1164 }
fd450b73
ON
1165 spin_unlock_irqrestore(&base->lock, flags);
1166
1167 return ret;
1168}
e19dff1f
DH
1169EXPORT_SYMBOL(try_to_del_timer_sync);
1170
6f1bc451 1171#ifdef CONFIG_SMP
2aae4a10 1172/**
1da177e4
LT
1173 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1174 * @timer: the timer to be deactivated
1175 *
1176 * This function only differs from del_timer() on SMP: besides deactivating
1177 * the timer it also makes sure the handler has finished executing on other
1178 * CPUs.
1179 *
72fd4a35 1180 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1181 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1182 * interrupt contexts unless the timer is an irqsafe one. The caller must
1183 * not hold locks which would prevent completion of the timer's
1184 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1185 * timer is not queued and the handler is not running on any CPU.
1da177e4 1186 *
c5f66e99
TH
1187 * Note: For !irqsafe timers, you must not hold locks that are held in
1188 * interrupt context while calling this function. Even if the lock has
1189 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1190 *
1191 * CPU0 CPU1
1192 * ---- ----
1193 * <SOFTIRQ>
1194 * call_timer_fn();
1195 * base->running_timer = mytimer;
1196 * spin_lock_irq(somelock);
1197 * <IRQ>
1198 * spin_lock(somelock);
1199 * del_timer_sync(mytimer);
1200 * while (base->running_timer == mytimer);
1201 *
1202 * Now del_timer_sync() will never return and never release somelock.
1203 * The interrupt on the other CPU is waiting to grab somelock but
1204 * it has interrupted the softirq that CPU0 is waiting to finish.
1205 *
1da177e4 1206 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1207 */
1208int del_timer_sync(struct timer_list *timer)
1209{
6f2b9b9a 1210#ifdef CONFIG_LOCKDEP
f266a511
PZ
1211 unsigned long flags;
1212
48228f7b
SR
1213 /*
1214 * If lockdep gives a backtrace here, please reference
1215 * the synchronization rules above.
1216 */
7ff20792 1217 local_irq_save(flags);
6f2b9b9a
JB
1218 lock_map_acquire(&timer->lockdep_map);
1219 lock_map_release(&timer->lockdep_map);
7ff20792 1220 local_irq_restore(flags);
6f2b9b9a 1221#endif
466bd303
YZ
1222 /*
1223 * don't use it in hardirq context, because it
1224 * could lead to deadlock.
1225 */
0eeda71b 1226 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
fd450b73
ON
1227 for (;;) {
1228 int ret = try_to_del_timer_sync(timer);
1229 if (ret >= 0)
1230 return ret;
a0009652 1231 cpu_relax();
fd450b73 1232 }
1da177e4 1233}
55c888d6 1234EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1235#endif
1236
576da126
TG
1237static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1238 unsigned long data)
1239{
4a2b4b22 1240 int count = preempt_count();
576da126
TG
1241
1242#ifdef CONFIG_LOCKDEP
1243 /*
1244 * It is permissible to free the timer from inside the
1245 * function that is called from it, this we need to take into
1246 * account for lockdep too. To avoid bogus "held lock freed"
1247 * warnings as well as problems when looking into
1248 * timer->lockdep_map, make a copy and use that here.
1249 */
4d82a1de
PZ
1250 struct lockdep_map lockdep_map;
1251
1252 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1253#endif
1254 /*
1255 * Couple the lock chain with the lock chain at
1256 * del_timer_sync() by acquiring the lock_map around the fn()
1257 * call here and in del_timer_sync().
1258 */
1259 lock_map_acquire(&lockdep_map);
1260
1261 trace_timer_expire_entry(timer);
1262 fn(data);
1263 trace_timer_expire_exit(timer);
1264
1265 lock_map_release(&lockdep_map);
1266
4a2b4b22 1267 if (count != preempt_count()) {
802702e0 1268 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
4a2b4b22 1269 fn, count, preempt_count());
802702e0
TG
1270 /*
1271 * Restore the preempt count. That gives us a decent
1272 * chance to survive and extract information. If the
1273 * callback kept a lock held, bad luck, but not worse
1274 * than the BUG() we had.
1275 */
4a2b4b22 1276 preempt_count_set(count);
576da126
TG
1277 }
1278}
1279
500462a9
TG
1280static void expire_timers(struct timer_base *base, struct hlist_head *head)
1281{
1282 while (!hlist_empty(head)) {
1283 struct timer_list *timer;
1284 void (*fn)(unsigned long);
1285 unsigned long data;
1286
1287 timer = hlist_entry(head->first, struct timer_list, entry);
1288 timer_stats_account_timer(timer);
1289
1290 base->running_timer = timer;
1291 detach_timer(timer, true);
1292
1293 fn = timer->function;
1294 data = timer->data;
1295
1296 if (timer->flags & TIMER_IRQSAFE) {
1297 spin_unlock(&base->lock);
1298 call_timer_fn(timer, fn, data);
1299 spin_lock(&base->lock);
1300 } else {
1301 spin_unlock_irq(&base->lock);
1302 call_timer_fn(timer, fn, data);
1303 spin_lock_irq(&base->lock);
1304 }
1305 }
1306}
1307
23696838
AMG
1308static int __collect_expired_timers(struct timer_base *base,
1309 struct hlist_head *heads)
500462a9
TG
1310{
1311 unsigned long clk = base->clk;
1312 struct hlist_head *vec;
1313 int i, levels = 0;
1314 unsigned int idx;
1315
1316 for (i = 0; i < LVL_DEPTH; i++) {
1317 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1318
1319 if (__test_and_clear_bit(idx, base->pending_map)) {
1320 vec = base->vectors + idx;
1321 hlist_move_list(vec, heads++);
1322 levels++;
1323 }
1324 /* Is it time to look at the next level? */
1325 if (clk & LVL_CLK_MASK)
1326 break;
1327 /* Shift clock for the next level granularity */
1328 clk >>= LVL_CLK_SHIFT;
1329 }
1330 return levels;
1331}
2aae4a10 1332
3451d024 1333#ifdef CONFIG_NO_HZ_COMMON
1da177e4 1334/*
23696838
AMG
1335 * Find the next pending bucket of a level. Search from level start (@offset)
1336 * + @clk upwards and if nothing there, search from start of the level
1337 * (@offset) up to @offset + clk.
500462a9
TG
1338 */
1339static int next_pending_bucket(struct timer_base *base, unsigned offset,
1340 unsigned clk)
1341{
1342 unsigned pos, start = offset + clk;
1343 unsigned end = offset + LVL_SIZE;
1344
1345 pos = find_next_bit(base->pending_map, end, start);
1346 if (pos < end)
1347 return pos - start;
1348
1349 pos = find_next_bit(base->pending_map, start, offset);
1350 return pos < start ? pos + LVL_SIZE - start : -1;
1351}
1352
1353/*
23696838
AMG
1354 * Search the first expiring timer in the various clock levels. Caller must
1355 * hold base->lock.
1da177e4 1356 */
494af3ed 1357static unsigned long __next_timer_interrupt(struct timer_base *base)
1da177e4 1358{
500462a9
TG
1359 unsigned long clk, next, adj;
1360 unsigned lvl, offset = 0;
1361
500462a9
TG
1362 next = base->clk + NEXT_TIMER_MAX_DELTA;
1363 clk = base->clk;
1364 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1365 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1366
1367 if (pos >= 0) {
1368 unsigned long tmp = clk + (unsigned long) pos;
1369
1370 tmp <<= LVL_SHIFT(lvl);
1371 if (time_before(tmp, next))
1372 next = tmp;
1da177e4 1373 }
500462a9
TG
1374 /*
1375 * Clock for the next level. If the current level clock lower
1376 * bits are zero, we look at the next level as is. If not we
1377 * need to advance it by one because that's going to be the
1378 * next expiring bucket in that level. base->clk is the next
1379 * expiring jiffie. So in case of:
1380 *
1381 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1382 * 0 0 0 0 0 0
1383 *
1384 * we have to look at all levels @index 0. With
1385 *
1386 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1387 * 0 0 0 0 0 2
1388 *
1389 * LVL0 has the next expiring bucket @index 2. The upper
1390 * levels have the next expiring bucket @index 1.
1391 *
1392 * In case that the propagation wraps the next level the same
1393 * rules apply:
1394 *
1395 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1396 * 0 0 0 0 F 2
1397 *
1398 * So after looking at LVL0 we get:
1399 *
1400 * LVL5 LVL4 LVL3 LVL2 LVL1
1401 * 0 0 0 1 0
1402 *
1403 * So no propagation from LVL1 to LVL2 because that happened
1404 * with the add already, but then we need to propagate further
1405 * from LVL2 to LVL3.
1406 *
1407 * So the simple check whether the lower bits of the current
1408 * level are 0 or not is sufficient for all cases.
1409 */
1410 adj = clk & LVL_CLK_MASK ? 1 : 0;
1411 clk >>= LVL_CLK_SHIFT;
1412 clk += adj;
1da177e4 1413 }
500462a9 1414 return next;
1cfd6849 1415}
69239749 1416
1cfd6849
TG
1417/*
1418 * Check, if the next hrtimer event is before the next timer wheel
1419 * event:
1420 */
c1ad348b 1421static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1cfd6849 1422{
c1ad348b 1423 u64 nextevt = hrtimer_get_next_event();
0662b713 1424
9501b6cf 1425 /*
c1ad348b
TG
1426 * If high resolution timers are enabled
1427 * hrtimer_get_next_event() returns KTIME_MAX.
9501b6cf 1428 */
c1ad348b
TG
1429 if (expires <= nextevt)
1430 return expires;
eaad084b
TG
1431
1432 /*
c1ad348b
TG
1433 * If the next timer is already expired, return the tick base
1434 * time so the tick is fired immediately.
eaad084b 1435 */
c1ad348b
TG
1436 if (nextevt <= basem)
1437 return basem;
eaad084b 1438
9501b6cf 1439 /*
c1ad348b
TG
1440 * Round up to the next jiffie. High resolution timers are
1441 * off, so the hrtimers are expired in the tick and we need to
1442 * make sure that this tick really expires the timer to avoid
1443 * a ping pong of the nohz stop code.
1444 *
1445 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
9501b6cf 1446 */
c1ad348b 1447 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1da177e4 1448}
1cfd6849
TG
1449
1450/**
c1ad348b
TG
1451 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1452 * @basej: base time jiffies
1453 * @basem: base time clock monotonic
1454 *
1455 * Returns the tick aligned clock monotonic time of the next pending
1456 * timer or KTIME_MAX if no timer is pending.
1cfd6849 1457 */
c1ad348b 1458u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1cfd6849 1459{
500462a9 1460 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
c1ad348b
TG
1461 u64 expires = KTIME_MAX;
1462 unsigned long nextevt;
1cfd6849 1463
dbd87b5a
HC
1464 /*
1465 * Pretend that there is no timer pending if the cpu is offline.
1466 * Possible pending timers will be migrated later to an active cpu.
1467 */
1468 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1469 return expires;
1470
23696838 1471 spin_lock(&base->lock);
500462a9 1472 nextevt = __next_timer_interrupt(base);
a683f390
TG
1473 base->next_expiry = nextevt;
1474 /*
1475 * We have a fresh next event. Check whether we can forward the base:
1476 */
1477 if (time_after(nextevt, jiffies))
1478 base->clk = jiffies;
1479 else if (time_after(nextevt, base->clk))
1480 base->clk = nextevt;
23696838 1481
a683f390 1482 if (time_before_eq(nextevt, basej)) {
500462a9 1483 expires = basem;
a683f390
TG
1484 base->is_idle = false;
1485 } else {
500462a9 1486 expires = basem + (nextevt - basej) * TICK_NSEC;
a683f390
TG
1487 /*
1488 * If we expect to sleep more than a tick, mark the base idle:
1489 */
1490 if ((expires - basem) > TICK_NSEC)
1491 base->is_idle = true;
1492 }
1493 spin_unlock(&base->lock);
1cfd6849 1494
c1ad348b 1495 return cmp_next_hrtimer_event(basem, expires);
1cfd6849 1496}
23696838 1497
a683f390
TG
1498/**
1499 * timer_clear_idle - Clear the idle state of the timer base
1500 *
1501 * Called with interrupts disabled
1502 */
1503void timer_clear_idle(void)
1504{
1505 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1506
1507 /*
1508 * We do this unlocked. The worst outcome is a remote enqueue sending
1509 * a pointless IPI, but taking the lock would just make the window for
1510 * sending the IPI a few instructions smaller for the cost of taking
1511 * the lock in the exit from idle path.
1512 */
1513 base->is_idle = false;
1514}
1515
23696838
AMG
1516static int collect_expired_timers(struct timer_base *base,
1517 struct hlist_head *heads)
1518{
1519 /*
1520 * NOHZ optimization. After a long idle sleep we need to forward the
1521 * base to current jiffies. Avoid a loop by searching the bitfield for
1522 * the next expiring timer.
1523 */
1524 if ((long)(jiffies - base->clk) > 2) {
1525 unsigned long next = __next_timer_interrupt(base);
1526
1527 /*
1528 * If the next timer is ahead of time forward to current
a683f390 1529 * jiffies, otherwise forward to the next expiry time:
23696838
AMG
1530 */
1531 if (time_after(next, jiffies)) {
1532 /* The call site will increment clock! */
1533 base->clk = jiffies - 1;
1534 return 0;
1535 }
1536 base->clk = next;
1537 }
1538 return __collect_expired_timers(base, heads);
1539}
1540#else
1541static inline int collect_expired_timers(struct timer_base *base,
1542 struct hlist_head *heads)
1543{
1544 return __collect_expired_timers(base, heads);
1545}
1da177e4
LT
1546#endif
1547
1da177e4 1548/*
5b4db0c2 1549 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1550 * process. user_tick is 1 if the tick is user time, 0 for system.
1551 */
1552void update_process_times(int user_tick)
1553{
1554 struct task_struct *p = current;
1da177e4
LT
1555
1556 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1557 account_process_tick(p, user_tick);
1da177e4 1558 run_local_timers();
c3377c2d 1559 rcu_check_callbacks(user_tick);
e360adbe
PZ
1560#ifdef CONFIG_IRQ_WORK
1561 if (in_irq())
76a33061 1562 irq_work_tick();
e360adbe 1563#endif
1da177e4 1564 scheduler_tick();
6819457d 1565 run_posix_cpu_timers(p);
1da177e4
LT
1566}
1567
73420fea
AMG
1568/**
1569 * __run_timers - run all expired timers (if any) on this CPU.
1570 * @base: the timer vector to be processed.
1571 */
1572static inline void __run_timers(struct timer_base *base)
1573{
1574 struct hlist_head heads[LVL_DEPTH];
1575 int levels;
1576
1577 if (!time_after_eq(jiffies, base->clk))
1578 return;
1579
1580 spin_lock_irq(&base->lock);
1581
1582 while (time_after_eq(jiffies, base->clk)) {
1583
1584 levels = collect_expired_timers(base, heads);
1585 base->clk++;
1586
1587 while (levels--)
1588 expire_timers(base, heads + levels);
1589 }
1590 base->running_timer = NULL;
1591 spin_unlock_irq(&base->lock);
1592}
1593
1da177e4
LT
1594/*
1595 * This function runs timers and the timer-tq in bottom half context.
1596 */
1597static void run_timer_softirq(struct softirq_action *h)
1598{
500462a9 1599 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1da177e4 1600
500462a9
TG
1601 __run_timers(base);
1602 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1603 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1da177e4
LT
1604}
1605
1606/*
1607 * Called by the local, per-CPU timer interrupt on SMP.
1608 */
1609void run_local_timers(void)
1610{
d3d74453 1611 hrtimer_run_queues();
1da177e4
LT
1612 raise_softirq(TIMER_SOFTIRQ);
1613}
1614
1da177e4
LT
1615#ifdef __ARCH_WANT_SYS_ALARM
1616
1617/*
1618 * For backwards compatibility? This can be done in libc so Alpha
1619 * and all newer ports shouldn't need it.
1620 */
58fd3aa2 1621SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1622{
c08b8a49 1623 return alarm_setitimer(seconds);
1da177e4
LT
1624}
1625
1626#endif
1627
1da177e4
LT
1628static void process_timeout(unsigned long __data)
1629{
36c8b586 1630 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1631}
1632
1633/**
1634 * schedule_timeout - sleep until timeout
1635 * @timeout: timeout value in jiffies
1636 *
1637 * Make the current task sleep until @timeout jiffies have
1638 * elapsed. The routine will return immediately unless
1639 * the current task state has been set (see set_current_state()).
1640 *
1641 * You can set the task state as follows -
1642 *
1643 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1644 * pass before the routine returns. The routine will return 0
1645 *
1646 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1647 * delivered to the current task. In this case the remaining time
1648 * in jiffies will be returned, or 0 if the timer expired in time
1649 *
1650 * The current task state is guaranteed to be TASK_RUNNING when this
1651 * routine returns.
1652 *
1653 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1654 * the CPU away without a bound on the timeout. In this case the return
1655 * value will be %MAX_SCHEDULE_TIMEOUT.
1656 *
1657 * In all cases the return value is guaranteed to be non-negative.
1658 */
7ad5b3a5 1659signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1660{
1661 struct timer_list timer;
1662 unsigned long expire;
1663
1664 switch (timeout)
1665 {
1666 case MAX_SCHEDULE_TIMEOUT:
1667 /*
1668 * These two special cases are useful to be comfortable
1669 * in the caller. Nothing more. We could take
1670 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1671 * but I' d like to return a valid offset (>=0) to allow
1672 * the caller to do everything it want with the retval.
1673 */
1674 schedule();
1675 goto out;
1676 default:
1677 /*
1678 * Another bit of PARANOID. Note that the retval will be
1679 * 0 since no piece of kernel is supposed to do a check
1680 * for a negative retval of schedule_timeout() (since it
1681 * should never happens anyway). You just have the printk()
1682 * that will tell you if something is gone wrong and where.
1683 */
5b149bcc 1684 if (timeout < 0) {
1da177e4 1685 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1686 "value %lx\n", timeout);
1687 dump_stack();
1da177e4
LT
1688 current->state = TASK_RUNNING;
1689 goto out;
1690 }
1691 }
1692
1693 expire = timeout + jiffies;
1694
c6f3a97f 1695 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
177ec0a0 1696 __mod_timer(&timer, expire, false);
1da177e4
LT
1697 schedule();
1698 del_singleshot_timer_sync(&timer);
1699
c6f3a97f
TG
1700 /* Remove the timer from the object tracker */
1701 destroy_timer_on_stack(&timer);
1702
1da177e4
LT
1703 timeout = expire - jiffies;
1704
1705 out:
1706 return timeout < 0 ? 0 : timeout;
1707}
1da177e4
LT
1708EXPORT_SYMBOL(schedule_timeout);
1709
8a1c1757
AM
1710/*
1711 * We can use __set_current_state() here because schedule_timeout() calls
1712 * schedule() unconditionally.
1713 */
64ed93a2
NA
1714signed long __sched schedule_timeout_interruptible(signed long timeout)
1715{
a5a0d52c
AM
1716 __set_current_state(TASK_INTERRUPTIBLE);
1717 return schedule_timeout(timeout);
64ed93a2
NA
1718}
1719EXPORT_SYMBOL(schedule_timeout_interruptible);
1720
294d5cc2
MW
1721signed long __sched schedule_timeout_killable(signed long timeout)
1722{
1723 __set_current_state(TASK_KILLABLE);
1724 return schedule_timeout(timeout);
1725}
1726EXPORT_SYMBOL(schedule_timeout_killable);
1727
64ed93a2
NA
1728signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1729{
a5a0d52c
AM
1730 __set_current_state(TASK_UNINTERRUPTIBLE);
1731 return schedule_timeout(timeout);
64ed93a2
NA
1732}
1733EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1734
69b27baf
AM
1735/*
1736 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1737 * to load average.
1738 */
1739signed long __sched schedule_timeout_idle(signed long timeout)
1740{
1741 __set_current_state(TASK_IDLE);
1742 return schedule_timeout(timeout);
1743}
1744EXPORT_SYMBOL(schedule_timeout_idle);
1745
1da177e4 1746#ifdef CONFIG_HOTPLUG_CPU
494af3ed 1747static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1da177e4
LT
1748{
1749 struct timer_list *timer;
0eeda71b 1750 int cpu = new_base->cpu;
1da177e4 1751
1dabbcec
TG
1752 while (!hlist_empty(head)) {
1753 timer = hlist_entry(head->first, struct timer_list, entry);
ec44bc7a 1754 detach_timer(timer, false);
0eeda71b 1755 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1da177e4 1756 internal_add_timer(new_base, timer);
1da177e4 1757 }
1da177e4
LT
1758}
1759
0db0628d 1760static void migrate_timers(int cpu)
1da177e4 1761{
494af3ed
TG
1762 struct timer_base *old_base;
1763 struct timer_base *new_base;
500462a9 1764 int b, i;
1da177e4
LT
1765
1766 BUG_ON(cpu_online(cpu));
55c888d6 1767
500462a9
TG
1768 for (b = 0; b < NR_BASES; b++) {
1769 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1770 new_base = get_cpu_ptr(&timer_bases[b]);
1771 /*
1772 * The caller is globally serialized and nobody else
1773 * takes two locks at once, deadlock is not possible.
1774 */
1775 spin_lock_irq(&new_base->lock);
1776 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1777
1778 BUG_ON(old_base->running_timer);
1779
1780 for (i = 0; i < WHEEL_SIZE; i++)
1781 migrate_timer_list(new_base, old_base->vectors + i);
8def9060 1782
500462a9
TG
1783 spin_unlock(&old_base->lock);
1784 spin_unlock_irq(&new_base->lock);
1785 put_cpu_ptr(&timer_bases);
1786 }
1da177e4 1787}
1da177e4 1788
0db0628d 1789static int timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1790 unsigned long action, void *hcpu)
1791{
8def9060 1792 switch (action) {
1da177e4 1793 case CPU_DEAD:
8bb78442 1794 case CPU_DEAD_FROZEN:
8def9060 1795 migrate_timers((long)hcpu);
1da177e4 1796 break;
1da177e4
LT
1797 default:
1798 break;
1799 }
3650b57f 1800
1da177e4
LT
1801 return NOTIFY_OK;
1802}
1803
3650b57f
PZ
1804static inline void timer_register_cpu_notifier(void)
1805{
1806 cpu_notifier(timer_cpu_notify, 0);
1807}
1808#else
1809static inline void timer_register_cpu_notifier(void) { }
1810#endif /* CONFIG_HOTPLUG_CPU */
1da177e4 1811
0eeda71b 1812static void __init init_timer_cpu(int cpu)
8def9060 1813{
500462a9
TG
1814 struct timer_base *base;
1815 int i;
8def9060 1816
500462a9
TG
1817 for (i = 0; i < NR_BASES; i++) {
1818 base = per_cpu_ptr(&timer_bases[i], cpu);
1819 base->cpu = cpu;
1820 spin_lock_init(&base->lock);
1821 base->clk = jiffies;
1822 }
8def9060
VK
1823}
1824
1825static void __init init_timer_cpus(void)
1da177e4 1826{
8def9060
VK
1827 int cpu;
1828
0eeda71b
TG
1829 for_each_possible_cpu(cpu)
1830 init_timer_cpu(cpu);
8def9060 1831}
e52b1db3 1832
8def9060
VK
1833void __init init_timers(void)
1834{
8def9060 1835 init_timer_cpus();
c24a4a36 1836 init_timer_stats();
3650b57f 1837 timer_register_cpu_notifier();
962cf36c 1838 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1839}
1840
1da177e4
LT
1841/**
1842 * msleep - sleep safely even with waitqueue interruptions
1843 * @msecs: Time in milliseconds to sleep for
1844 */
1845void msleep(unsigned int msecs)
1846{
1847 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1848
75bcc8c5
NA
1849 while (timeout)
1850 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1851}
1852
1853EXPORT_SYMBOL(msleep);
1854
1855/**
96ec3efd 1856 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1857 * @msecs: Time in milliseconds to sleep for
1858 */
1859unsigned long msleep_interruptible(unsigned int msecs)
1860{
1861 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1862
75bcc8c5
NA
1863 while (timeout && !signal_pending(current))
1864 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1865 return jiffies_to_msecs(timeout);
1866}
1867
1868EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17 1869
6deba083 1870static void __sched do_usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1871{
1872 ktime_t kmin;
da8b44d5 1873 u64 delta;
5e7f5a17
PP
1874
1875 kmin = ktime_set(0, min * NSEC_PER_USEC);
da8b44d5 1876 delta = (u64)(max - min) * NSEC_PER_USEC;
6deba083 1877 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
5e7f5a17
PP
1878}
1879
1880/**
1881 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1882 * @min: Minimum time in usecs to sleep
1883 * @max: Maximum time in usecs to sleep
1884 */
2ad5d327 1885void __sched usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1886{
1887 __set_current_state(TASK_UNINTERRUPTIBLE);
1888 do_usleep_range(min, max);
1889}
1890EXPORT_SYMBOL(usleep_range);