]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/timer.c
timers: Reduce the CPU index space to 256k
[mirror_ubuntu-artful-kernel.git] / kernel / time / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4a22f166 4 * Kernel internal timers
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
5a0e3ad6 43#include <linux/slab.h>
1a0df594 44#include <linux/compat.h>
1da177e4
LT
45
46#include <asm/uaccess.h>
47#include <asm/unistd.h>
48#include <asm/div64.h>
49#include <asm/timex.h>
50#include <asm/io.h>
51
c1ad348b
TG
52#include "tick-internal.h"
53
2b022e3d
XG
54#define CREATE_TRACE_POINTS
55#include <trace/events/timer.h>
56
40747ffa 57__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
ecea8d19
TG
58
59EXPORT_SYMBOL(jiffies_64);
60
1da177e4
LT
61/*
62 * per-CPU timer vector definitions:
63 */
1da177e4
LT
64#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
65#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
66#define TVN_SIZE (1 << TVN_BITS)
67#define TVR_SIZE (1 << TVR_BITS)
68#define TVN_MASK (TVN_SIZE - 1)
69#define TVR_MASK (TVR_SIZE - 1)
26cff4e2 70#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
1da177e4 71
a6fa8e5a 72struct tvec {
1dabbcec 73 struct hlist_head vec[TVN_SIZE];
a6fa8e5a 74};
1da177e4 75
a6fa8e5a 76struct tvec_root {
1dabbcec 77 struct hlist_head vec[TVR_SIZE];
a6fa8e5a 78};
1da177e4 79
494af3ed 80struct timer_base {
3691c519
ON
81 spinlock_t lock;
82 struct timer_list *running_timer;
494af3ed 83 unsigned long clk;
97fd9ed4 84 unsigned long next_timer;
99d5f3aa 85 unsigned long active_timers;
fff42158 86 unsigned long all_timers;
d6f93829 87 int cpu;
bc7a34b8 88 bool migration_enabled;
683be13a 89 bool nohz_active;
a6fa8e5a
PM
90 struct tvec_root tv1;
91 struct tvec tv2;
92 struct tvec tv3;
93 struct tvec tv4;
94 struct tvec tv5;
6e453a67 95} ____cacheline_aligned;
1da177e4 96
e52b1db3 97
494af3ed 98static DEFINE_PER_CPU(struct timer_base, timer_bases);
6e453a67 99
bc7a34b8
TG
100#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
101unsigned int sysctl_timer_migration = 1;
102
683be13a 103void timers_update_migration(bool update_nohz)
bc7a34b8
TG
104{
105 bool on = sysctl_timer_migration && tick_nohz_active;
106 unsigned int cpu;
107
108 /* Avoid the loop, if nothing to update */
494af3ed 109 if (this_cpu_read(timer_bases.migration_enabled) == on)
bc7a34b8
TG
110 return;
111
112 for_each_possible_cpu(cpu) {
494af3ed 113 per_cpu(timer_bases.migration_enabled, cpu) = on;
bc7a34b8 114 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
683be13a
TG
115 if (!update_nohz)
116 continue;
494af3ed 117 per_cpu(timer_bases.nohz_active, cpu) = true;
683be13a 118 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
bc7a34b8
TG
119 }
120}
121
122int timer_migration_handler(struct ctl_table *table, int write,
123 void __user *buffer, size_t *lenp,
124 loff_t *ppos)
125{
126 static DEFINE_MUTEX(mutex);
127 int ret;
128
129 mutex_lock(&mutex);
130 ret = proc_dointvec(table, write, buffer, lenp, ppos);
131 if (!ret && write)
683be13a 132 timers_update_migration(false);
bc7a34b8
TG
133 mutex_unlock(&mutex);
134 return ret;
135}
136
494af3ed 137static inline struct timer_base *get_target_base(struct timer_base *base,
bc7a34b8
TG
138 int pinned)
139{
140 if (pinned || !base->migration_enabled)
494af3ed
TG
141 return this_cpu_ptr(&timer_bases);
142 return per_cpu_ptr(&timer_bases, get_nohz_timer_target());
bc7a34b8
TG
143}
144#else
494af3ed 145static inline struct timer_base *get_target_base(struct timer_base *base,
bc7a34b8
TG
146 int pinned)
147{
494af3ed 148 return this_cpu_ptr(&timer_bases);
bc7a34b8
TG
149}
150#endif
151
9c133c46
AS
152static unsigned long round_jiffies_common(unsigned long j, int cpu,
153 bool force_up)
4c36a5de
AV
154{
155 int rem;
156 unsigned long original = j;
157
158 /*
159 * We don't want all cpus firing their timers at once hitting the
160 * same lock or cachelines, so we skew each extra cpu with an extra
161 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
162 * already did this.
163 * The skew is done by adding 3*cpunr, then round, then subtract this
164 * extra offset again.
165 */
166 j += cpu * 3;
167
168 rem = j % HZ;
169
170 /*
171 * If the target jiffie is just after a whole second (which can happen
172 * due to delays of the timer irq, long irq off times etc etc) then
173 * we should round down to the whole second, not up. Use 1/4th second
174 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 175 * But never round down if @force_up is set.
4c36a5de 176 */
9c133c46 177 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
178 j = j - rem;
179 else /* round up */
180 j = j - rem + HZ;
181
182 /* now that we have rounded, subtract the extra skew again */
183 j -= cpu * 3;
184
9e04d380
BVA
185 /*
186 * Make sure j is still in the future. Otherwise return the
187 * unmodified value.
188 */
189 return time_is_after_jiffies(j) ? j : original;
4c36a5de 190}
9c133c46
AS
191
192/**
193 * __round_jiffies - function to round jiffies to a full second
194 * @j: the time in (absolute) jiffies that should be rounded
195 * @cpu: the processor number on which the timeout will happen
196 *
197 * __round_jiffies() rounds an absolute time in the future (in jiffies)
198 * up or down to (approximately) full seconds. This is useful for timers
199 * for which the exact time they fire does not matter too much, as long as
200 * they fire approximately every X seconds.
201 *
202 * By rounding these timers to whole seconds, all such timers will fire
203 * at the same time, rather than at various times spread out. The goal
204 * of this is to have the CPU wake up less, which saves power.
205 *
206 * The exact rounding is skewed for each processor to avoid all
207 * processors firing at the exact same time, which could lead
208 * to lock contention or spurious cache line bouncing.
209 *
210 * The return value is the rounded version of the @j parameter.
211 */
212unsigned long __round_jiffies(unsigned long j, int cpu)
213{
214 return round_jiffies_common(j, cpu, false);
215}
4c36a5de
AV
216EXPORT_SYMBOL_GPL(__round_jiffies);
217
218/**
219 * __round_jiffies_relative - function to round jiffies to a full second
220 * @j: the time in (relative) jiffies that should be rounded
221 * @cpu: the processor number on which the timeout will happen
222 *
72fd4a35 223 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
224 * up or down to (approximately) full seconds. This is useful for timers
225 * for which the exact time they fire does not matter too much, as long as
226 * they fire approximately every X seconds.
227 *
228 * By rounding these timers to whole seconds, all such timers will fire
229 * at the same time, rather than at various times spread out. The goal
230 * of this is to have the CPU wake up less, which saves power.
231 *
232 * The exact rounding is skewed for each processor to avoid all
233 * processors firing at the exact same time, which could lead
234 * to lock contention or spurious cache line bouncing.
235 *
72fd4a35 236 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
237 */
238unsigned long __round_jiffies_relative(unsigned long j, int cpu)
239{
9c133c46
AS
240 unsigned long j0 = jiffies;
241
242 /* Use j0 because jiffies might change while we run */
243 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
244}
245EXPORT_SYMBOL_GPL(__round_jiffies_relative);
246
247/**
248 * round_jiffies - function to round jiffies to a full second
249 * @j: the time in (absolute) jiffies that should be rounded
250 *
72fd4a35 251 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
252 * up or down to (approximately) full seconds. This is useful for timers
253 * for which the exact time they fire does not matter too much, as long as
254 * they fire approximately every X seconds.
255 *
256 * By rounding these timers to whole seconds, all such timers will fire
257 * at the same time, rather than at various times spread out. The goal
258 * of this is to have the CPU wake up less, which saves power.
259 *
72fd4a35 260 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
261 */
262unsigned long round_jiffies(unsigned long j)
263{
9c133c46 264 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
265}
266EXPORT_SYMBOL_GPL(round_jiffies);
267
268/**
269 * round_jiffies_relative - function to round jiffies to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 *
72fd4a35 272 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
273 * up or down to (approximately) full seconds. This is useful for timers
274 * for which the exact time they fire does not matter too much, as long as
275 * they fire approximately every X seconds.
276 *
277 * By rounding these timers to whole seconds, all such timers will fire
278 * at the same time, rather than at various times spread out. The goal
279 * of this is to have the CPU wake up less, which saves power.
280 *
72fd4a35 281 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
282 */
283unsigned long round_jiffies_relative(unsigned long j)
284{
285 return __round_jiffies_relative(j, raw_smp_processor_id());
286}
287EXPORT_SYMBOL_GPL(round_jiffies_relative);
288
9c133c46
AS
289/**
290 * __round_jiffies_up - function to round jiffies up to a full second
291 * @j: the time in (absolute) jiffies that should be rounded
292 * @cpu: the processor number on which the timeout will happen
293 *
294 * This is the same as __round_jiffies() except that it will never
295 * round down. This is useful for timeouts for which the exact time
296 * of firing does not matter too much, as long as they don't fire too
297 * early.
298 */
299unsigned long __round_jiffies_up(unsigned long j, int cpu)
300{
301 return round_jiffies_common(j, cpu, true);
302}
303EXPORT_SYMBOL_GPL(__round_jiffies_up);
304
305/**
306 * __round_jiffies_up_relative - function to round jiffies up to a full second
307 * @j: the time in (relative) jiffies that should be rounded
308 * @cpu: the processor number on which the timeout will happen
309 *
310 * This is the same as __round_jiffies_relative() except that it will never
311 * round down. This is useful for timeouts for which the exact time
312 * of firing does not matter too much, as long as they don't fire too
313 * early.
314 */
315unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
316{
317 unsigned long j0 = jiffies;
318
319 /* Use j0 because jiffies might change while we run */
320 return round_jiffies_common(j + j0, cpu, true) - j0;
321}
322EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
323
324/**
325 * round_jiffies_up - function to round jiffies up to a full second
326 * @j: the time in (absolute) jiffies that should be rounded
327 *
328 * This is the same as round_jiffies() except that it will never
329 * round down. This is useful for timeouts for which the exact time
330 * of firing does not matter too much, as long as they don't fire too
331 * early.
332 */
333unsigned long round_jiffies_up(unsigned long j)
334{
335 return round_jiffies_common(j, raw_smp_processor_id(), true);
336}
337EXPORT_SYMBOL_GPL(round_jiffies_up);
338
339/**
340 * round_jiffies_up_relative - function to round jiffies up to a full second
341 * @j: the time in (relative) jiffies that should be rounded
342 *
343 * This is the same as round_jiffies_relative() except that it will never
344 * round down. This is useful for timeouts for which the exact time
345 * of firing does not matter too much, as long as they don't fire too
346 * early.
347 */
348unsigned long round_jiffies_up_relative(unsigned long j)
349{
350 return __round_jiffies_up_relative(j, raw_smp_processor_id());
351}
352EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
353
3bbb9ec9
AV
354/**
355 * set_timer_slack - set the allowed slack for a timer
0caa6210 356 * @timer: the timer to be modified
3bbb9ec9
AV
357 * @slack_hz: the amount of time (in jiffies) allowed for rounding
358 *
359 * Set the amount of time, in jiffies, that a certain timer has
360 * in terms of slack. By setting this value, the timer subsystem
361 * will schedule the actual timer somewhere between
362 * the time mod_timer() asks for, and that time plus the slack.
363 *
364 * By setting the slack to -1, a percentage of the delay is used
365 * instead.
366 */
367void set_timer_slack(struct timer_list *timer, int slack_hz)
368{
369 timer->slack = slack_hz;
370}
371EXPORT_SYMBOL_GPL(set_timer_slack);
372
facbb4a7 373static void
494af3ed 374__internal_add_timer(struct timer_base *base, struct timer_list *timer)
1da177e4
LT
375{
376 unsigned long expires = timer->expires;
494af3ed 377 unsigned long idx = expires - base->clk;
1dabbcec 378 struct hlist_head *vec;
1da177e4
LT
379
380 if (idx < TVR_SIZE) {
381 int i = expires & TVR_MASK;
382 vec = base->tv1.vec + i;
383 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
384 int i = (expires >> TVR_BITS) & TVN_MASK;
385 vec = base->tv2.vec + i;
386 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
387 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
388 vec = base->tv3.vec + i;
389 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
390 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
391 vec = base->tv4.vec + i;
392 } else if ((signed long) idx < 0) {
393 /*
394 * Can happen if you add a timer with expires == jiffies,
395 * or you set a timer to go off in the past
396 */
494af3ed 397 vec = base->tv1.vec + (base->clk & TVR_MASK);
1da177e4
LT
398 } else {
399 int i;
26cff4e2
HC
400 /* If the timeout is larger than MAX_TVAL (on 64-bit
401 * architectures or with CONFIG_BASE_SMALL=1) then we
402 * use the maximum timeout.
1da177e4 403 */
26cff4e2
HC
404 if (idx > MAX_TVAL) {
405 idx = MAX_TVAL;
494af3ed 406 expires = idx + base->clk;
1da177e4
LT
407 }
408 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
409 vec = base->tv5.vec + i;
410 }
1bd04bf6 411
1dabbcec 412 hlist_add_head(&timer->entry, vec);
1da177e4
LT
413}
414
494af3ed 415static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
facbb4a7 416{
3bb475a3
TG
417 /* Advance base->jiffies, if the base is empty */
418 if (!base->all_timers++)
494af3ed 419 base->clk = jiffies;
3bb475a3 420
facbb4a7
TG
421 __internal_add_timer(base, timer);
422 /*
99d5f3aa 423 * Update base->active_timers and base->next_timer
facbb4a7 424 */
0eeda71b 425 if (!(timer->flags & TIMER_DEFERRABLE)) {
aea369b9
ON
426 if (!base->active_timers++ ||
427 time_before(timer->expires, base->next_timer))
99d5f3aa 428 base->next_timer = timer->expires;
99d5f3aa 429 }
9f6d9baa
VK
430
431 /*
432 * Check whether the other CPU is in dynticks mode and needs
433 * to be triggered to reevaluate the timer wheel.
434 * We are protected against the other CPU fiddling
435 * with the timer by holding the timer base lock. This also
436 * makes sure that a CPU on the way to stop its tick can not
437 * evaluate the timer wheel.
438 *
439 * Spare the IPI for deferrable timers on idle targets though.
440 * The next busy ticks will take care of it. Except full dynticks
441 * require special care against races with idle_cpu(), lets deal
442 * with that later.
443 */
683be13a
TG
444 if (base->nohz_active) {
445 if (!(timer->flags & TIMER_DEFERRABLE) ||
446 tick_nohz_full_cpu(base->cpu))
447 wake_up_nohz_cpu(base->cpu);
448 }
facbb4a7
TG
449}
450
82f67cd9
IM
451#ifdef CONFIG_TIMER_STATS
452void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
453{
454 if (timer->start_site)
455 return;
456
457 timer->start_site = addr;
458 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
459 timer->start_pid = current->pid;
460}
c5c061b8
VP
461
462static void timer_stats_account_timer(struct timer_list *timer)
463{
3ed769bd
DV
464 void *site;
465
466 /*
467 * start_site can be concurrently reset by
468 * timer_stats_timer_clear_start_info()
469 */
470 site = READ_ONCE(timer->start_site);
471 if (likely(!site))
507e1231 472 return;
c5c061b8 473
3ed769bd 474 timer_stats_update_stats(timer, timer->start_pid, site,
c74441a1
TG
475 timer->function, timer->start_comm,
476 timer->flags);
c5c061b8
VP
477}
478
479#else
480static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
481#endif
482
c6f3a97f
TG
483#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
484
485static struct debug_obj_descr timer_debug_descr;
486
99777288
SG
487static void *timer_debug_hint(void *addr)
488{
489 return ((struct timer_list *) addr)->function;
490}
491
b9fdac7f
DC
492static bool timer_is_static_object(void *addr)
493{
494 struct timer_list *timer = addr;
495
496 return (timer->entry.pprev == NULL &&
497 timer->entry.next == TIMER_ENTRY_STATIC);
498}
499
c6f3a97f
TG
500/*
501 * fixup_init is called when:
502 * - an active object is initialized
55c888d6 503 */
e3252464 504static bool timer_fixup_init(void *addr, enum debug_obj_state state)
c6f3a97f
TG
505{
506 struct timer_list *timer = addr;
507
508 switch (state) {
509 case ODEBUG_STATE_ACTIVE:
510 del_timer_sync(timer);
511 debug_object_init(timer, &timer_debug_descr);
e3252464 512 return true;
c6f3a97f 513 default:
e3252464 514 return false;
c6f3a97f
TG
515 }
516}
517
fb16b8cf
SB
518/* Stub timer callback for improperly used timers. */
519static void stub_timer(unsigned long data)
520{
521 WARN_ON(1);
522}
523
c6f3a97f
TG
524/*
525 * fixup_activate is called when:
526 * - an active object is activated
b9fdac7f 527 * - an unknown non-static object is activated
c6f3a97f 528 */
e3252464 529static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
c6f3a97f
TG
530{
531 struct timer_list *timer = addr;
532
533 switch (state) {
c6f3a97f 534 case ODEBUG_STATE_NOTAVAILABLE:
b9fdac7f
DC
535 setup_timer(timer, stub_timer, 0);
536 return true;
c6f3a97f
TG
537
538 case ODEBUG_STATE_ACTIVE:
539 WARN_ON(1);
540
541 default:
e3252464 542 return false;
c6f3a97f
TG
543 }
544}
545
546/*
547 * fixup_free is called when:
548 * - an active object is freed
549 */
e3252464 550static bool timer_fixup_free(void *addr, enum debug_obj_state state)
c6f3a97f
TG
551{
552 struct timer_list *timer = addr;
553
554 switch (state) {
555 case ODEBUG_STATE_ACTIVE:
556 del_timer_sync(timer);
557 debug_object_free(timer, &timer_debug_descr);
e3252464 558 return true;
c6f3a97f 559 default:
e3252464 560 return false;
c6f3a97f
TG
561 }
562}
563
dc4218bd
CC
564/*
565 * fixup_assert_init is called when:
566 * - an untracked/uninit-ed object is found
567 */
e3252464 568static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
dc4218bd
CC
569{
570 struct timer_list *timer = addr;
571
572 switch (state) {
573 case ODEBUG_STATE_NOTAVAILABLE:
b9fdac7f
DC
574 setup_timer(timer, stub_timer, 0);
575 return true;
dc4218bd 576 default:
e3252464 577 return false;
dc4218bd
CC
578 }
579}
580
c6f3a97f 581static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
582 .name = "timer_list",
583 .debug_hint = timer_debug_hint,
b9fdac7f 584 .is_static_object = timer_is_static_object,
dc4218bd
CC
585 .fixup_init = timer_fixup_init,
586 .fixup_activate = timer_fixup_activate,
587 .fixup_free = timer_fixup_free,
588 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
589};
590
591static inline void debug_timer_init(struct timer_list *timer)
592{
593 debug_object_init(timer, &timer_debug_descr);
594}
595
596static inline void debug_timer_activate(struct timer_list *timer)
597{
598 debug_object_activate(timer, &timer_debug_descr);
599}
600
601static inline void debug_timer_deactivate(struct timer_list *timer)
602{
603 debug_object_deactivate(timer, &timer_debug_descr);
604}
605
606static inline void debug_timer_free(struct timer_list *timer)
607{
608 debug_object_free(timer, &timer_debug_descr);
609}
610
dc4218bd
CC
611static inline void debug_timer_assert_init(struct timer_list *timer)
612{
613 debug_object_assert_init(timer, &timer_debug_descr);
614}
615
fc683995
TH
616static void do_init_timer(struct timer_list *timer, unsigned int flags,
617 const char *name, struct lock_class_key *key);
c6f3a97f 618
fc683995
TH
619void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
620 const char *name, struct lock_class_key *key)
c6f3a97f
TG
621{
622 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 623 do_init_timer(timer, flags, name, key);
c6f3a97f 624}
6f2b9b9a 625EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
626
627void destroy_timer_on_stack(struct timer_list *timer)
628{
629 debug_object_free(timer, &timer_debug_descr);
630}
631EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
632
633#else
634static inline void debug_timer_init(struct timer_list *timer) { }
635static inline void debug_timer_activate(struct timer_list *timer) { }
636static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 637static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
638#endif
639
2b022e3d
XG
640static inline void debug_init(struct timer_list *timer)
641{
642 debug_timer_init(timer);
643 trace_timer_init(timer);
644}
645
646static inline void
647debug_activate(struct timer_list *timer, unsigned long expires)
648{
649 debug_timer_activate(timer);
0eeda71b 650 trace_timer_start(timer, expires, timer->flags);
2b022e3d
XG
651}
652
653static inline void debug_deactivate(struct timer_list *timer)
654{
655 debug_timer_deactivate(timer);
656 trace_timer_cancel(timer);
657}
658
dc4218bd
CC
659static inline void debug_assert_init(struct timer_list *timer)
660{
661 debug_timer_assert_init(timer);
662}
663
fc683995
TH
664static void do_init_timer(struct timer_list *timer, unsigned int flags,
665 const char *name, struct lock_class_key *key)
55c888d6 666{
1dabbcec 667 timer->entry.pprev = NULL;
0eeda71b 668 timer->flags = flags | raw_smp_processor_id();
3bbb9ec9 669 timer->slack = -1;
82f67cd9
IM
670#ifdef CONFIG_TIMER_STATS
671 timer->start_site = NULL;
672 timer->start_pid = -1;
673 memset(timer->start_comm, 0, TASK_COMM_LEN);
674#endif
6f2b9b9a 675 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 676}
c6f3a97f
TG
677
678/**
633fe795 679 * init_timer_key - initialize a timer
c6f3a97f 680 * @timer: the timer to be initialized
fc683995 681 * @flags: timer flags
633fe795
RD
682 * @name: name of the timer
683 * @key: lockdep class key of the fake lock used for tracking timer
684 * sync lock dependencies
c6f3a97f 685 *
633fe795 686 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
687 * other timer functions.
688 */
fc683995
TH
689void init_timer_key(struct timer_list *timer, unsigned int flags,
690 const char *name, struct lock_class_key *key)
c6f3a97f 691{
2b022e3d 692 debug_init(timer);
fc683995 693 do_init_timer(timer, flags, name, key);
c6f3a97f 694}
6f2b9b9a 695EXPORT_SYMBOL(init_timer_key);
55c888d6 696
ec44bc7a 697static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6 698{
1dabbcec 699 struct hlist_node *entry = &timer->entry;
55c888d6 700
2b022e3d 701 debug_deactivate(timer);
c6f3a97f 702
1dabbcec 703 __hlist_del(entry);
55c888d6 704 if (clear_pending)
1dabbcec
TG
705 entry->pprev = NULL;
706 entry->next = LIST_POISON2;
55c888d6
ON
707}
708
99d5f3aa 709static inline void
494af3ed 710detach_expired_timer(struct timer_list *timer, struct timer_base *base)
99d5f3aa
TG
711{
712 detach_timer(timer, true);
0eeda71b 713 if (!(timer->flags & TIMER_DEFERRABLE))
e52b1db3 714 base->active_timers--;
fff42158 715 base->all_timers--;
99d5f3aa
TG
716}
717
494af3ed 718static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
ec44bc7a
TG
719 bool clear_pending)
720{
721 if (!timer_pending(timer))
722 return 0;
723
724 detach_timer(timer, clear_pending);
0eeda71b 725 if (!(timer->flags & TIMER_DEFERRABLE)) {
e52b1db3 726 base->active_timers--;
99d5f3aa 727 if (timer->expires == base->next_timer)
494af3ed 728 base->next_timer = base->clk;
99d5f3aa 729 }
3bb475a3
TG
730 /* If this was the last timer, advance base->jiffies */
731 if (!--base->all_timers)
494af3ed 732 base->clk = jiffies;
ec44bc7a
TG
733 return 1;
734}
735
55c888d6 736/*
494af3ed 737 * We are using hashed locking: holding per_cpu(timer_bases).lock
55c888d6
ON
738 * means that all timers which are tied to this base via timer->base are
739 * locked, and the base itself is locked too.
740 *
741 * So __run_timers/migrate_timers can safely modify all timers which could
742 * be found on ->tvX lists.
743 *
0eeda71b
TG
744 * When the timer's base is locked and removed from the list, the
745 * TIMER_MIGRATING flag is set, FIXME
55c888d6 746 */
494af3ed 747static struct timer_base *lock_timer_base(struct timer_list *timer,
55c888d6 748 unsigned long *flags)
89e7e374 749 __acquires(timer->base->lock)
55c888d6 750{
55c888d6 751 for (;;) {
0eeda71b 752 u32 tf = timer->flags;
494af3ed 753 struct timer_base *base;
0eeda71b
TG
754
755 if (!(tf & TIMER_MIGRATING)) {
494af3ed 756 base = per_cpu_ptr(&timer_bases, tf & TIMER_CPUMASK);
55c888d6 757 spin_lock_irqsave(&base->lock, *flags);
0eeda71b 758 if (timer->flags == tf)
55c888d6 759 return base;
55c888d6
ON
760 spin_unlock_irqrestore(&base->lock, *flags);
761 }
762 cpu_relax();
763 }
764}
765
74019224 766static inline int
177ec0a0 767__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
1da177e4 768{
494af3ed 769 struct timer_base *base, *new_base;
1da177e4 770 unsigned long flags;
bc7a34b8 771 int ret = 0;
1da177e4 772
82f67cd9 773 timer_stats_timer_set_start_info(timer);
1da177e4 774 BUG_ON(!timer->function);
1da177e4 775
55c888d6
ON
776 base = lock_timer_base(timer, &flags);
777
ec44bc7a
TG
778 ret = detach_if_pending(timer, base, false);
779 if (!ret && pending_only)
780 goto out_unlock;
55c888d6 781
2b022e3d 782 debug_activate(timer, expires);
c6f3a97f 783
177ec0a0 784 new_base = get_target_base(base, timer->flags & TIMER_PINNED);
eea08f32 785
3691c519 786 if (base != new_base) {
1da177e4 787 /*
55c888d6
ON
788 * We are trying to schedule the timer on the local CPU.
789 * However we can't change timer's base while it is running,
790 * otherwise del_timer_sync() can't detect that the timer's
791 * handler yet has not finished. This also guarantees that
792 * the timer is serialized wrt itself.
1da177e4 793 */
a2c348fe 794 if (likely(base->running_timer != timer)) {
55c888d6 795 /* See the comment in lock_timer_base() */
0eeda71b
TG
796 timer->flags |= TIMER_MIGRATING;
797
55c888d6 798 spin_unlock(&base->lock);
a2c348fe
ON
799 base = new_base;
800 spin_lock(&base->lock);
d0023a14
ED
801 WRITE_ONCE(timer->flags,
802 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1da177e4
LT
803 }
804 }
805
1da177e4 806 timer->expires = expires;
a2c348fe 807 internal_add_timer(base, timer);
74019224
IM
808
809out_unlock:
a2c348fe 810 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
811
812 return ret;
813}
814
2aae4a10 815/**
74019224
IM
816 * mod_timer_pending - modify a pending timer's timeout
817 * @timer: the pending timer to be modified
818 * @expires: new timeout in jiffies
1da177e4 819 *
74019224
IM
820 * mod_timer_pending() is the same for pending timers as mod_timer(),
821 * but will not re-activate and modify already deleted timers.
822 *
823 * It is useful for unserialized use of timers.
1da177e4 824 */
74019224 825int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 826{
177ec0a0 827 return __mod_timer(timer, expires, true);
1da177e4 828}
74019224 829EXPORT_SYMBOL(mod_timer_pending);
1da177e4 830
3bbb9ec9
AV
831/*
832 * Decide where to put the timer while taking the slack into account
833 *
834 * Algorithm:
835 * 1) calculate the maximum (absolute) time
836 * 2) calculate the highest bit where the expires and new max are different
837 * 3) use this bit to make a mask
838 * 4) use the bitmask to round down the maximum time, so that all last
839 * bits are zeros
840 */
841static inline
842unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
843{
844 unsigned long expires_limit, mask;
845 int bit;
846
8e63d779 847 if (timer->slack >= 0) {
f00e047e 848 expires_limit = expires + timer->slack;
8e63d779 849 } else {
1c3cc116
SAS
850 long delta = expires - jiffies;
851
852 if (delta < 256)
853 return expires;
3bbb9ec9 854
1c3cc116 855 expires_limit = expires + delta / 256;
8e63d779 856 }
3bbb9ec9 857 mask = expires ^ expires_limit;
3bbb9ec9
AV
858 if (mask == 0)
859 return expires;
860
9fc4468d 861 bit = __fls(mask);
3bbb9ec9 862
98a01e77 863 mask = (1UL << bit) - 1;
3bbb9ec9
AV
864
865 expires_limit = expires_limit & ~(mask);
866
867 return expires_limit;
868}
869
2aae4a10 870/**
1da177e4
LT
871 * mod_timer - modify a timer's timeout
872 * @timer: the timer to be modified
2aae4a10 873 * @expires: new timeout in jiffies
1da177e4 874 *
72fd4a35 875 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
876 * active timer (if the timer is inactive it will be activated)
877 *
878 * mod_timer(timer, expires) is equivalent to:
879 *
880 * del_timer(timer); timer->expires = expires; add_timer(timer);
881 *
882 * Note that if there are multiple unserialized concurrent users of the
883 * same timer, then mod_timer() is the only safe way to modify the timeout,
884 * since add_timer() cannot modify an already running timer.
885 *
886 * The function returns whether it has modified a pending timer or not.
887 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
888 * active timer returns 1.)
889 */
890int mod_timer(struct timer_list *timer, unsigned long expires)
891{
1c3cc116
SAS
892 expires = apply_slack(timer, expires);
893
1da177e4
LT
894 /*
895 * This is a common optimization triggered by the
896 * networking code - if the timer is re-modified
897 * to be the same thing then just return:
898 */
4841158b 899 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
900 return 1;
901
177ec0a0 902 return __mod_timer(timer, expires, false);
1da177e4 903}
1da177e4
LT
904EXPORT_SYMBOL(mod_timer);
905
74019224
IM
906/**
907 * add_timer - start a timer
908 * @timer: the timer to be added
909 *
910 * The kernel will do a ->function(->data) callback from the
911 * timer interrupt at the ->expires point in the future. The
912 * current time is 'jiffies'.
913 *
914 * The timer's ->expires, ->function (and if the handler uses it, ->data)
915 * fields must be set prior calling this function.
916 *
917 * Timers with an ->expires field in the past will be executed in the next
918 * timer tick.
919 */
920void add_timer(struct timer_list *timer)
921{
922 BUG_ON(timer_pending(timer));
923 mod_timer(timer, timer->expires);
924}
925EXPORT_SYMBOL(add_timer);
926
927/**
928 * add_timer_on - start a timer on a particular CPU
929 * @timer: the timer to be added
930 * @cpu: the CPU to start it on
931 *
932 * This is not very scalable on SMP. Double adds are not possible.
933 */
934void add_timer_on(struct timer_list *timer, int cpu)
935{
494af3ed
TG
936 struct timer_base *new_base = per_cpu_ptr(&timer_bases, cpu);
937 struct timer_base *base;
74019224
IM
938 unsigned long flags;
939
940 timer_stats_timer_set_start_info(timer);
941 BUG_ON(timer_pending(timer) || !timer->function);
22b886dd
TH
942
943 /*
944 * If @timer was on a different CPU, it should be migrated with the
945 * old base locked to prevent other operations proceeding with the
946 * wrong base locked. See lock_timer_base().
947 */
948 base = lock_timer_base(timer, &flags);
949 if (base != new_base) {
950 timer->flags |= TIMER_MIGRATING;
951
952 spin_unlock(&base->lock);
953 base = new_base;
954 spin_lock(&base->lock);
955 WRITE_ONCE(timer->flags,
956 (timer->flags & ~TIMER_BASEMASK) | cpu);
957 }
958
2b022e3d 959 debug_activate(timer, timer->expires);
74019224 960 internal_add_timer(base, timer);
74019224
IM
961 spin_unlock_irqrestore(&base->lock, flags);
962}
a9862e05 963EXPORT_SYMBOL_GPL(add_timer_on);
74019224 964
2aae4a10 965/**
1da177e4
LT
966 * del_timer - deactive a timer.
967 * @timer: the timer to be deactivated
968 *
969 * del_timer() deactivates a timer - this works on both active and inactive
970 * timers.
971 *
972 * The function returns whether it has deactivated a pending timer or not.
973 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
974 * active timer returns 1.)
975 */
976int del_timer(struct timer_list *timer)
977{
494af3ed 978 struct timer_base *base;
1da177e4 979 unsigned long flags;
55c888d6 980 int ret = 0;
1da177e4 981
dc4218bd
CC
982 debug_assert_init(timer);
983
82f67cd9 984 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
985 if (timer_pending(timer)) {
986 base = lock_timer_base(timer, &flags);
ec44bc7a 987 ret = detach_if_pending(timer, base, true);
1da177e4 988 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 989 }
1da177e4 990
55c888d6 991 return ret;
1da177e4 992}
1da177e4
LT
993EXPORT_SYMBOL(del_timer);
994
2aae4a10
REB
995/**
996 * try_to_del_timer_sync - Try to deactivate a timer
997 * @timer: timer do del
998 *
fd450b73
ON
999 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1000 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1001 */
1002int try_to_del_timer_sync(struct timer_list *timer)
1003{
494af3ed 1004 struct timer_base *base;
fd450b73
ON
1005 unsigned long flags;
1006 int ret = -1;
1007
dc4218bd
CC
1008 debug_assert_init(timer);
1009
fd450b73
ON
1010 base = lock_timer_base(timer, &flags);
1011
ec44bc7a
TG
1012 if (base->running_timer != timer) {
1013 timer_stats_timer_clear_start_info(timer);
1014 ret = detach_if_pending(timer, base, true);
fd450b73 1015 }
fd450b73
ON
1016 spin_unlock_irqrestore(&base->lock, flags);
1017
1018 return ret;
1019}
e19dff1f
DH
1020EXPORT_SYMBOL(try_to_del_timer_sync);
1021
6f1bc451 1022#ifdef CONFIG_SMP
2aae4a10 1023/**
1da177e4
LT
1024 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1025 * @timer: the timer to be deactivated
1026 *
1027 * This function only differs from del_timer() on SMP: besides deactivating
1028 * the timer it also makes sure the handler has finished executing on other
1029 * CPUs.
1030 *
72fd4a35 1031 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1032 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1033 * interrupt contexts unless the timer is an irqsafe one. The caller must
1034 * not hold locks which would prevent completion of the timer's
1035 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1036 * timer is not queued and the handler is not running on any CPU.
1da177e4 1037 *
c5f66e99
TH
1038 * Note: For !irqsafe timers, you must not hold locks that are held in
1039 * interrupt context while calling this function. Even if the lock has
1040 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1041 *
1042 * CPU0 CPU1
1043 * ---- ----
1044 * <SOFTIRQ>
1045 * call_timer_fn();
1046 * base->running_timer = mytimer;
1047 * spin_lock_irq(somelock);
1048 * <IRQ>
1049 * spin_lock(somelock);
1050 * del_timer_sync(mytimer);
1051 * while (base->running_timer == mytimer);
1052 *
1053 * Now del_timer_sync() will never return and never release somelock.
1054 * The interrupt on the other CPU is waiting to grab somelock but
1055 * it has interrupted the softirq that CPU0 is waiting to finish.
1056 *
1da177e4 1057 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1058 */
1059int del_timer_sync(struct timer_list *timer)
1060{
6f2b9b9a 1061#ifdef CONFIG_LOCKDEP
f266a511
PZ
1062 unsigned long flags;
1063
48228f7b
SR
1064 /*
1065 * If lockdep gives a backtrace here, please reference
1066 * the synchronization rules above.
1067 */
7ff20792 1068 local_irq_save(flags);
6f2b9b9a
JB
1069 lock_map_acquire(&timer->lockdep_map);
1070 lock_map_release(&timer->lockdep_map);
7ff20792 1071 local_irq_restore(flags);
6f2b9b9a 1072#endif
466bd303
YZ
1073 /*
1074 * don't use it in hardirq context, because it
1075 * could lead to deadlock.
1076 */
0eeda71b 1077 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
fd450b73
ON
1078 for (;;) {
1079 int ret = try_to_del_timer_sync(timer);
1080 if (ret >= 0)
1081 return ret;
a0009652 1082 cpu_relax();
fd450b73 1083 }
1da177e4 1084}
55c888d6 1085EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1086#endif
1087
494af3ed 1088static int cascade(struct timer_base *base, struct tvec *tv, int index)
1da177e4
LT
1089{
1090 /* cascade all the timers from tv up one level */
1dabbcec
TG
1091 struct timer_list *timer;
1092 struct hlist_node *tmp;
1093 struct hlist_head tv_list;
3439dd86 1094
1dabbcec 1095 hlist_move_list(tv->vec + index, &tv_list);
1da177e4 1096
1da177e4 1097 /*
3439dd86
P
1098 * We are removing _all_ timers from the list, so we
1099 * don't have to detach them individually.
1da177e4 1100 */
1dabbcec 1101 hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
facbb4a7
TG
1102 /* No accounting, while moving them */
1103 __internal_add_timer(base, timer);
1da177e4 1104 }
1da177e4
LT
1105
1106 return index;
1107}
1108
576da126
TG
1109static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1110 unsigned long data)
1111{
4a2b4b22 1112 int count = preempt_count();
576da126
TG
1113
1114#ifdef CONFIG_LOCKDEP
1115 /*
1116 * It is permissible to free the timer from inside the
1117 * function that is called from it, this we need to take into
1118 * account for lockdep too. To avoid bogus "held lock freed"
1119 * warnings as well as problems when looking into
1120 * timer->lockdep_map, make a copy and use that here.
1121 */
4d82a1de
PZ
1122 struct lockdep_map lockdep_map;
1123
1124 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1125#endif
1126 /*
1127 * Couple the lock chain with the lock chain at
1128 * del_timer_sync() by acquiring the lock_map around the fn()
1129 * call here and in del_timer_sync().
1130 */
1131 lock_map_acquire(&lockdep_map);
1132
1133 trace_timer_expire_entry(timer);
1134 fn(data);
1135 trace_timer_expire_exit(timer);
1136
1137 lock_map_release(&lockdep_map);
1138
4a2b4b22 1139 if (count != preempt_count()) {
802702e0 1140 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
4a2b4b22 1141 fn, count, preempt_count());
802702e0
TG
1142 /*
1143 * Restore the preempt count. That gives us a decent
1144 * chance to survive and extract information. If the
1145 * callback kept a lock held, bad luck, but not worse
1146 * than the BUG() we had.
1147 */
4a2b4b22 1148 preempt_count_set(count);
576da126
TG
1149 }
1150}
1151
494af3ed 1152#define INDEX(N) ((base->clk >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
2aae4a10
REB
1153
1154/**
1da177e4
LT
1155 * __run_timers - run all expired timers (if any) on this CPU.
1156 * @base: the timer vector to be processed.
1157 *
1158 * This function cascades all vectors and executes all expired timer
1159 * vectors.
1160 */
494af3ed 1161static inline void __run_timers(struct timer_base *base)
1da177e4
LT
1162{
1163 struct timer_list *timer;
1164
3691c519 1165 spin_lock_irq(&base->lock);
3bb475a3 1166
494af3ed 1167 while (time_after_eq(jiffies, base->clk)) {
1dabbcec
TG
1168 struct hlist_head work_list;
1169 struct hlist_head *head = &work_list;
3bb475a3
TG
1170 int index;
1171
1172 if (!base->all_timers) {
494af3ed 1173 base->clk = jiffies;
3bb475a3
TG
1174 break;
1175 }
1176
494af3ed 1177 index = base->clk & TVR_MASK;
626ab0e6 1178
1da177e4
LT
1179 /*
1180 * Cascade timers:
1181 */
1182 if (!index &&
1183 (!cascade(base, &base->tv2, INDEX(0))) &&
1184 (!cascade(base, &base->tv3, INDEX(1))) &&
1185 !cascade(base, &base->tv4, INDEX(2)))
1186 cascade(base, &base->tv5, INDEX(3));
494af3ed 1187 ++base->clk;
1dabbcec
TG
1188 hlist_move_list(base->tv1.vec + index, head);
1189 while (!hlist_empty(head)) {
1da177e4
LT
1190 void (*fn)(unsigned long);
1191 unsigned long data;
c5f66e99 1192 bool irqsafe;
1da177e4 1193
1dabbcec 1194 timer = hlist_entry(head->first, struct timer_list, entry);
6819457d
TG
1195 fn = timer->function;
1196 data = timer->data;
0eeda71b 1197 irqsafe = timer->flags & TIMER_IRQSAFE;
1da177e4 1198
82f67cd9
IM
1199 timer_stats_account_timer(timer);
1200
6f1bc451 1201 base->running_timer = timer;
99d5f3aa 1202 detach_expired_timer(timer, base);
6f2b9b9a 1203
c5f66e99
TH
1204 if (irqsafe) {
1205 spin_unlock(&base->lock);
1206 call_timer_fn(timer, fn, data);
1207 spin_lock(&base->lock);
1208 } else {
1209 spin_unlock_irq(&base->lock);
1210 call_timer_fn(timer, fn, data);
1211 spin_lock_irq(&base->lock);
1212 }
1da177e4
LT
1213 }
1214 }
6f1bc451 1215 base->running_timer = NULL;
3691c519 1216 spin_unlock_irq(&base->lock);
1da177e4
LT
1217}
1218
3451d024 1219#ifdef CONFIG_NO_HZ_COMMON
1da177e4
LT
1220/*
1221 * Find out when the next timer event is due to happen. This
90cba64a
RD
1222 * is used on S/390 to stop all activity when a CPU is idle.
1223 * This function needs to be called with interrupts disabled.
1da177e4 1224 */
494af3ed 1225static unsigned long __next_timer_interrupt(struct timer_base *base)
1da177e4 1226{
494af3ed
TG
1227 unsigned long clk = base->clk;
1228 unsigned long expires = clk + NEXT_TIMER_MAX_DELTA;
1cfd6849 1229 int index, slot, array, found = 0;
1da177e4 1230 struct timer_list *nte;
a6fa8e5a 1231 struct tvec *varray[4];
1da177e4
LT
1232
1233 /* Look for timer events in tv1. */
494af3ed 1234 index = slot = clk & TVR_MASK;
1da177e4 1235 do {
1dabbcec 1236 hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
0eeda71b 1237 if (nte->flags & TIMER_DEFERRABLE)
6819457d 1238 continue;
6e453a67 1239
1cfd6849 1240 found = 1;
1da177e4 1241 expires = nte->expires;
1cfd6849
TG
1242 /* Look at the cascade bucket(s)? */
1243 if (!index || slot < index)
1244 goto cascade;
1245 return expires;
1da177e4 1246 }
1cfd6849
TG
1247 slot = (slot + 1) & TVR_MASK;
1248 } while (slot != index);
1249
1250cascade:
1251 /* Calculate the next cascade event */
1252 if (index)
494af3ed
TG
1253 clk += TVR_SIZE - index;
1254 clk >>= TVR_BITS;
1da177e4
LT
1255
1256 /* Check tv2-tv5. */
1257 varray[0] = &base->tv2;
1258 varray[1] = &base->tv3;
1259 varray[2] = &base->tv4;
1260 varray[3] = &base->tv5;
1cfd6849
TG
1261
1262 for (array = 0; array < 4; array++) {
a6fa8e5a 1263 struct tvec *varp = varray[array];
1cfd6849 1264
494af3ed 1265 index = slot = clk & TVN_MASK;
1da177e4 1266 do {
1dabbcec 1267 hlist_for_each_entry(nte, varp->vec + slot, entry) {
0eeda71b 1268 if (nte->flags & TIMER_DEFERRABLE)
a0419888
JH
1269 continue;
1270
1cfd6849 1271 found = 1;
1da177e4
LT
1272 if (time_before(nte->expires, expires))
1273 expires = nte->expires;
1cfd6849
TG
1274 }
1275 /*
1276 * Do we still search for the first timer or are
1277 * we looking up the cascade buckets ?
1278 */
1279 if (found) {
1280 /* Look at the cascade bucket(s)? */
1281 if (!index || slot < index)
1282 break;
1283 return expires;
1284 }
1285 slot = (slot + 1) & TVN_MASK;
1286 } while (slot != index);
1287
1288 if (index)
494af3ed
TG
1289 clk += TVN_SIZE - index;
1290 clk >>= TVN_BITS;
1da177e4 1291 }
1cfd6849
TG
1292 return expires;
1293}
69239749 1294
1cfd6849
TG
1295/*
1296 * Check, if the next hrtimer event is before the next timer wheel
1297 * event:
1298 */
c1ad348b 1299static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1cfd6849 1300{
c1ad348b 1301 u64 nextevt = hrtimer_get_next_event();
0662b713 1302
9501b6cf 1303 /*
c1ad348b
TG
1304 * If high resolution timers are enabled
1305 * hrtimer_get_next_event() returns KTIME_MAX.
9501b6cf 1306 */
c1ad348b
TG
1307 if (expires <= nextevt)
1308 return expires;
eaad084b
TG
1309
1310 /*
c1ad348b
TG
1311 * If the next timer is already expired, return the tick base
1312 * time so the tick is fired immediately.
eaad084b 1313 */
c1ad348b
TG
1314 if (nextevt <= basem)
1315 return basem;
eaad084b 1316
9501b6cf 1317 /*
c1ad348b
TG
1318 * Round up to the next jiffie. High resolution timers are
1319 * off, so the hrtimers are expired in the tick and we need to
1320 * make sure that this tick really expires the timer to avoid
1321 * a ping pong of the nohz stop code.
1322 *
1323 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
9501b6cf 1324 */
c1ad348b 1325 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1da177e4 1326}
1cfd6849
TG
1327
1328/**
c1ad348b
TG
1329 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1330 * @basej: base time jiffies
1331 * @basem: base time clock monotonic
1332 *
1333 * Returns the tick aligned clock monotonic time of the next pending
1334 * timer or KTIME_MAX if no timer is pending.
1cfd6849 1335 */
c1ad348b 1336u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1cfd6849 1337{
494af3ed 1338 struct timer_base *base = this_cpu_ptr(&timer_bases);
c1ad348b
TG
1339 u64 expires = KTIME_MAX;
1340 unsigned long nextevt;
1cfd6849 1341
dbd87b5a
HC
1342 /*
1343 * Pretend that there is no timer pending if the cpu is offline.
1344 * Possible pending timers will be migrated later to an active cpu.
1345 */
1346 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1347 return expires;
1348
1cfd6849 1349 spin_lock(&base->lock);
e40468a5 1350 if (base->active_timers) {
494af3ed 1351 if (time_before_eq(base->next_timer, base->clk))
e40468a5 1352 base->next_timer = __next_timer_interrupt(base);
c1ad348b
TG
1353 nextevt = base->next_timer;
1354 if (time_before_eq(nextevt, basej))
1355 expires = basem;
1356 else
1357 expires = basem + (nextevt - basej) * TICK_NSEC;
e40468a5 1358 }
1cfd6849
TG
1359 spin_unlock(&base->lock);
1360
c1ad348b 1361 return cmp_next_hrtimer_event(basem, expires);
1cfd6849 1362}
1da177e4
LT
1363#endif
1364
1da177e4 1365/*
5b4db0c2 1366 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1367 * process. user_tick is 1 if the tick is user time, 0 for system.
1368 */
1369void update_process_times(int user_tick)
1370{
1371 struct task_struct *p = current;
1da177e4
LT
1372
1373 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1374 account_process_tick(p, user_tick);
1da177e4 1375 run_local_timers();
c3377c2d 1376 rcu_check_callbacks(user_tick);
e360adbe
PZ
1377#ifdef CONFIG_IRQ_WORK
1378 if (in_irq())
76a33061 1379 irq_work_tick();
e360adbe 1380#endif
1da177e4 1381 scheduler_tick();
6819457d 1382 run_posix_cpu_timers(p);
1da177e4
LT
1383}
1384
1da177e4
LT
1385/*
1386 * This function runs timers and the timer-tq in bottom half context.
1387 */
1388static void run_timer_softirq(struct softirq_action *h)
1389{
494af3ed 1390 struct timer_base *base = this_cpu_ptr(&timer_bases);
1da177e4 1391
494af3ed 1392 if (time_after_eq(jiffies, base->clk))
1da177e4
LT
1393 __run_timers(base);
1394}
1395
1396/*
1397 * Called by the local, per-CPU timer interrupt on SMP.
1398 */
1399void run_local_timers(void)
1400{
d3d74453 1401 hrtimer_run_queues();
1da177e4
LT
1402 raise_softirq(TIMER_SOFTIRQ);
1403}
1404
1da177e4
LT
1405#ifdef __ARCH_WANT_SYS_ALARM
1406
1407/*
1408 * For backwards compatibility? This can be done in libc so Alpha
1409 * and all newer ports shouldn't need it.
1410 */
58fd3aa2 1411SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1412{
c08b8a49 1413 return alarm_setitimer(seconds);
1da177e4
LT
1414}
1415
1416#endif
1417
1da177e4
LT
1418static void process_timeout(unsigned long __data)
1419{
36c8b586 1420 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1421}
1422
1423/**
1424 * schedule_timeout - sleep until timeout
1425 * @timeout: timeout value in jiffies
1426 *
1427 * Make the current task sleep until @timeout jiffies have
1428 * elapsed. The routine will return immediately unless
1429 * the current task state has been set (see set_current_state()).
1430 *
1431 * You can set the task state as follows -
1432 *
1433 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1434 * pass before the routine returns. The routine will return 0
1435 *
1436 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1437 * delivered to the current task. In this case the remaining time
1438 * in jiffies will be returned, or 0 if the timer expired in time
1439 *
1440 * The current task state is guaranteed to be TASK_RUNNING when this
1441 * routine returns.
1442 *
1443 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1444 * the CPU away without a bound on the timeout. In this case the return
1445 * value will be %MAX_SCHEDULE_TIMEOUT.
1446 *
1447 * In all cases the return value is guaranteed to be non-negative.
1448 */
7ad5b3a5 1449signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1450{
1451 struct timer_list timer;
1452 unsigned long expire;
1453
1454 switch (timeout)
1455 {
1456 case MAX_SCHEDULE_TIMEOUT:
1457 /*
1458 * These two special cases are useful to be comfortable
1459 * in the caller. Nothing more. We could take
1460 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1461 * but I' d like to return a valid offset (>=0) to allow
1462 * the caller to do everything it want with the retval.
1463 */
1464 schedule();
1465 goto out;
1466 default:
1467 /*
1468 * Another bit of PARANOID. Note that the retval will be
1469 * 0 since no piece of kernel is supposed to do a check
1470 * for a negative retval of schedule_timeout() (since it
1471 * should never happens anyway). You just have the printk()
1472 * that will tell you if something is gone wrong and where.
1473 */
5b149bcc 1474 if (timeout < 0) {
1da177e4 1475 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1476 "value %lx\n", timeout);
1477 dump_stack();
1da177e4
LT
1478 current->state = TASK_RUNNING;
1479 goto out;
1480 }
1481 }
1482
1483 expire = timeout + jiffies;
1484
c6f3a97f 1485 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
177ec0a0 1486 __mod_timer(&timer, expire, false);
1da177e4
LT
1487 schedule();
1488 del_singleshot_timer_sync(&timer);
1489
c6f3a97f
TG
1490 /* Remove the timer from the object tracker */
1491 destroy_timer_on_stack(&timer);
1492
1da177e4
LT
1493 timeout = expire - jiffies;
1494
1495 out:
1496 return timeout < 0 ? 0 : timeout;
1497}
1da177e4
LT
1498EXPORT_SYMBOL(schedule_timeout);
1499
8a1c1757
AM
1500/*
1501 * We can use __set_current_state() here because schedule_timeout() calls
1502 * schedule() unconditionally.
1503 */
64ed93a2
NA
1504signed long __sched schedule_timeout_interruptible(signed long timeout)
1505{
a5a0d52c
AM
1506 __set_current_state(TASK_INTERRUPTIBLE);
1507 return schedule_timeout(timeout);
64ed93a2
NA
1508}
1509EXPORT_SYMBOL(schedule_timeout_interruptible);
1510
294d5cc2
MW
1511signed long __sched schedule_timeout_killable(signed long timeout)
1512{
1513 __set_current_state(TASK_KILLABLE);
1514 return schedule_timeout(timeout);
1515}
1516EXPORT_SYMBOL(schedule_timeout_killable);
1517
64ed93a2
NA
1518signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1519{
a5a0d52c
AM
1520 __set_current_state(TASK_UNINTERRUPTIBLE);
1521 return schedule_timeout(timeout);
64ed93a2
NA
1522}
1523EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1524
69b27baf
AM
1525/*
1526 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1527 * to load average.
1528 */
1529signed long __sched schedule_timeout_idle(signed long timeout)
1530{
1531 __set_current_state(TASK_IDLE);
1532 return schedule_timeout(timeout);
1533}
1534EXPORT_SYMBOL(schedule_timeout_idle);
1535
1da177e4 1536#ifdef CONFIG_HOTPLUG_CPU
494af3ed 1537static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1da177e4
LT
1538{
1539 struct timer_list *timer;
0eeda71b 1540 int cpu = new_base->cpu;
1da177e4 1541
1dabbcec
TG
1542 while (!hlist_empty(head)) {
1543 timer = hlist_entry(head->first, struct timer_list, entry);
99d5f3aa 1544 /* We ignore the accounting on the dying cpu */
ec44bc7a 1545 detach_timer(timer, false);
0eeda71b 1546 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1da177e4 1547 internal_add_timer(new_base, timer);
1da177e4 1548 }
1da177e4
LT
1549}
1550
0db0628d 1551static void migrate_timers(int cpu)
1da177e4 1552{
494af3ed
TG
1553 struct timer_base *old_base;
1554 struct timer_base *new_base;
1da177e4
LT
1555 int i;
1556
1557 BUG_ON(cpu_online(cpu));
494af3ed
TG
1558 old_base = per_cpu_ptr(&timer_bases, cpu);
1559 new_base = get_cpu_ptr(&timer_bases);
d82f0b0f
ON
1560 /*
1561 * The caller is globally serialized and nobody else
1562 * takes two locks at once, deadlock is not possible.
1563 */
1564 spin_lock_irq(&new_base->lock);
0d180406 1565 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1566
1567 BUG_ON(old_base->running_timer);
1da177e4 1568
1da177e4 1569 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1570 migrate_timer_list(new_base, old_base->tv1.vec + i);
1571 for (i = 0; i < TVN_SIZE; i++) {
1572 migrate_timer_list(new_base, old_base->tv2.vec + i);
1573 migrate_timer_list(new_base, old_base->tv3.vec + i);
1574 migrate_timer_list(new_base, old_base->tv4.vec + i);
1575 migrate_timer_list(new_base, old_base->tv5.vec + i);
1576 }
1577
8def9060
VK
1578 old_base->active_timers = 0;
1579 old_base->all_timers = 0;
1580
0d180406 1581 spin_unlock(&old_base->lock);
d82f0b0f 1582 spin_unlock_irq(&new_base->lock);
494af3ed 1583 put_cpu_ptr(&timer_bases);
1da177e4 1584}
1da177e4 1585
0db0628d 1586static int timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1587 unsigned long action, void *hcpu)
1588{
8def9060 1589 switch (action) {
1da177e4 1590 case CPU_DEAD:
8bb78442 1591 case CPU_DEAD_FROZEN:
8def9060 1592 migrate_timers((long)hcpu);
1da177e4 1593 break;
1da177e4
LT
1594 default:
1595 break;
1596 }
3650b57f 1597
1da177e4
LT
1598 return NOTIFY_OK;
1599}
1600
3650b57f
PZ
1601static inline void timer_register_cpu_notifier(void)
1602{
1603 cpu_notifier(timer_cpu_notify, 0);
1604}
1605#else
1606static inline void timer_register_cpu_notifier(void) { }
1607#endif /* CONFIG_HOTPLUG_CPU */
1da177e4 1608
0eeda71b 1609static void __init init_timer_cpu(int cpu)
8def9060 1610{
494af3ed 1611 struct timer_base *base = per_cpu_ptr(&timer_bases, cpu);
3650b57f 1612
8def9060 1613 base->cpu = cpu;
8def9060
VK
1614 spin_lock_init(&base->lock);
1615
494af3ed
TG
1616 base->clk = jiffies;
1617 base->next_timer = base->clk;
8def9060
VK
1618}
1619
1620static void __init init_timer_cpus(void)
1da177e4 1621{
8def9060
VK
1622 int cpu;
1623
0eeda71b
TG
1624 for_each_possible_cpu(cpu)
1625 init_timer_cpu(cpu);
8def9060 1626}
e52b1db3 1627
8def9060
VK
1628void __init init_timers(void)
1629{
8def9060 1630 init_timer_cpus();
c24a4a36 1631 init_timer_stats();
3650b57f 1632 timer_register_cpu_notifier();
962cf36c 1633 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1634}
1635
1da177e4
LT
1636/**
1637 * msleep - sleep safely even with waitqueue interruptions
1638 * @msecs: Time in milliseconds to sleep for
1639 */
1640void msleep(unsigned int msecs)
1641{
1642 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1643
75bcc8c5
NA
1644 while (timeout)
1645 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1646}
1647
1648EXPORT_SYMBOL(msleep);
1649
1650/**
96ec3efd 1651 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1652 * @msecs: Time in milliseconds to sleep for
1653 */
1654unsigned long msleep_interruptible(unsigned int msecs)
1655{
1656 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1657
75bcc8c5
NA
1658 while (timeout && !signal_pending(current))
1659 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1660 return jiffies_to_msecs(timeout);
1661}
1662
1663EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17 1664
6deba083 1665static void __sched do_usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1666{
1667 ktime_t kmin;
da8b44d5 1668 u64 delta;
5e7f5a17
PP
1669
1670 kmin = ktime_set(0, min * NSEC_PER_USEC);
da8b44d5 1671 delta = (u64)(max - min) * NSEC_PER_USEC;
6deba083 1672 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
5e7f5a17
PP
1673}
1674
1675/**
1676 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1677 * @min: Minimum time in usecs to sleep
1678 * @max: Maximum time in usecs to sleep
1679 */
2ad5d327 1680void __sched usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1681{
1682 __set_current_state(TASK_UNINTERRUPTIBLE);
1683 do_usleep_range(min, max);
1684}
1685EXPORT_SYMBOL(usleep_range);