]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/timer.c
timer: Stats: Simplify the flags handling
[mirror_ubuntu-artful-kernel.git] / kernel / time / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4a22f166 4 * Kernel internal timers
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
5a0e3ad6 43#include <linux/slab.h>
1a0df594 44#include <linux/compat.h>
1da177e4
LT
45
46#include <asm/uaccess.h>
47#include <asm/unistd.h>
48#include <asm/div64.h>
49#include <asm/timex.h>
50#include <asm/io.h>
51
c1ad348b
TG
52#include "tick-internal.h"
53
2b022e3d
XG
54#define CREATE_TRACE_POINTS
55#include <trace/events/timer.h>
56
40747ffa 57__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
ecea8d19
TG
58
59EXPORT_SYMBOL(jiffies_64);
60
1da177e4
LT
61/*
62 * per-CPU timer vector definitions:
63 */
1da177e4
LT
64#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
65#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
66#define TVN_SIZE (1 << TVN_BITS)
67#define TVR_SIZE (1 << TVR_BITS)
68#define TVN_MASK (TVN_SIZE - 1)
69#define TVR_MASK (TVR_SIZE - 1)
26cff4e2 70#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
1da177e4 71
a6fa8e5a 72struct tvec {
1dabbcec 73 struct hlist_head vec[TVN_SIZE];
a6fa8e5a 74};
1da177e4 75
a6fa8e5a 76struct tvec_root {
1dabbcec 77 struct hlist_head vec[TVR_SIZE];
a6fa8e5a 78};
1da177e4 79
a6fa8e5a 80struct tvec_base {
3691c519
ON
81 spinlock_t lock;
82 struct timer_list *running_timer;
1da177e4 83 unsigned long timer_jiffies;
97fd9ed4 84 unsigned long next_timer;
99d5f3aa 85 unsigned long active_timers;
fff42158 86 unsigned long all_timers;
d6f93829 87 int cpu;
a6fa8e5a
PM
88 struct tvec_root tv1;
89 struct tvec tv2;
90 struct tvec tv3;
91 struct tvec tv4;
92 struct tvec tv5;
6e453a67 93} ____cacheline_aligned;
1da177e4 94
e52b1db3 95
0eeda71b 96static DEFINE_PER_CPU(struct tvec_base, tvec_bases);
6e453a67 97
9c133c46
AS
98static unsigned long round_jiffies_common(unsigned long j, int cpu,
99 bool force_up)
4c36a5de
AV
100{
101 int rem;
102 unsigned long original = j;
103
104 /*
105 * We don't want all cpus firing their timers at once hitting the
106 * same lock or cachelines, so we skew each extra cpu with an extra
107 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
108 * already did this.
109 * The skew is done by adding 3*cpunr, then round, then subtract this
110 * extra offset again.
111 */
112 j += cpu * 3;
113
114 rem = j % HZ;
115
116 /*
117 * If the target jiffie is just after a whole second (which can happen
118 * due to delays of the timer irq, long irq off times etc etc) then
119 * we should round down to the whole second, not up. Use 1/4th second
120 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 121 * But never round down if @force_up is set.
4c36a5de 122 */
9c133c46 123 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
124 j = j - rem;
125 else /* round up */
126 j = j - rem + HZ;
127
128 /* now that we have rounded, subtract the extra skew again */
129 j -= cpu * 3;
130
9e04d380
BVA
131 /*
132 * Make sure j is still in the future. Otherwise return the
133 * unmodified value.
134 */
135 return time_is_after_jiffies(j) ? j : original;
4c36a5de 136}
9c133c46
AS
137
138/**
139 * __round_jiffies - function to round jiffies to a full second
140 * @j: the time in (absolute) jiffies that should be rounded
141 * @cpu: the processor number on which the timeout will happen
142 *
143 * __round_jiffies() rounds an absolute time in the future (in jiffies)
144 * up or down to (approximately) full seconds. This is useful for timers
145 * for which the exact time they fire does not matter too much, as long as
146 * they fire approximately every X seconds.
147 *
148 * By rounding these timers to whole seconds, all such timers will fire
149 * at the same time, rather than at various times spread out. The goal
150 * of this is to have the CPU wake up less, which saves power.
151 *
152 * The exact rounding is skewed for each processor to avoid all
153 * processors firing at the exact same time, which could lead
154 * to lock contention or spurious cache line bouncing.
155 *
156 * The return value is the rounded version of the @j parameter.
157 */
158unsigned long __round_jiffies(unsigned long j, int cpu)
159{
160 return round_jiffies_common(j, cpu, false);
161}
4c36a5de
AV
162EXPORT_SYMBOL_GPL(__round_jiffies);
163
164/**
165 * __round_jiffies_relative - function to round jiffies to a full second
166 * @j: the time in (relative) jiffies that should be rounded
167 * @cpu: the processor number on which the timeout will happen
168 *
72fd4a35 169 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
170 * up or down to (approximately) full seconds. This is useful for timers
171 * for which the exact time they fire does not matter too much, as long as
172 * they fire approximately every X seconds.
173 *
174 * By rounding these timers to whole seconds, all such timers will fire
175 * at the same time, rather than at various times spread out. The goal
176 * of this is to have the CPU wake up less, which saves power.
177 *
178 * The exact rounding is skewed for each processor to avoid all
179 * processors firing at the exact same time, which could lead
180 * to lock contention or spurious cache line bouncing.
181 *
72fd4a35 182 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
183 */
184unsigned long __round_jiffies_relative(unsigned long j, int cpu)
185{
9c133c46
AS
186 unsigned long j0 = jiffies;
187
188 /* Use j0 because jiffies might change while we run */
189 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
190}
191EXPORT_SYMBOL_GPL(__round_jiffies_relative);
192
193/**
194 * round_jiffies - function to round jiffies to a full second
195 * @j: the time in (absolute) jiffies that should be rounded
196 *
72fd4a35 197 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
198 * up or down to (approximately) full seconds. This is useful for timers
199 * for which the exact time they fire does not matter too much, as long as
200 * they fire approximately every X seconds.
201 *
202 * By rounding these timers to whole seconds, all such timers will fire
203 * at the same time, rather than at various times spread out. The goal
204 * of this is to have the CPU wake up less, which saves power.
205 *
72fd4a35 206 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
207 */
208unsigned long round_jiffies(unsigned long j)
209{
9c133c46 210 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
211}
212EXPORT_SYMBOL_GPL(round_jiffies);
213
214/**
215 * round_jiffies_relative - function to round jiffies to a full second
216 * @j: the time in (relative) jiffies that should be rounded
217 *
72fd4a35 218 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
219 * up or down to (approximately) full seconds. This is useful for timers
220 * for which the exact time they fire does not matter too much, as long as
221 * they fire approximately every X seconds.
222 *
223 * By rounding these timers to whole seconds, all such timers will fire
224 * at the same time, rather than at various times spread out. The goal
225 * of this is to have the CPU wake up less, which saves power.
226 *
72fd4a35 227 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
228 */
229unsigned long round_jiffies_relative(unsigned long j)
230{
231 return __round_jiffies_relative(j, raw_smp_processor_id());
232}
233EXPORT_SYMBOL_GPL(round_jiffies_relative);
234
9c133c46
AS
235/**
236 * __round_jiffies_up - function to round jiffies up to a full second
237 * @j: the time in (absolute) jiffies that should be rounded
238 * @cpu: the processor number on which the timeout will happen
239 *
240 * This is the same as __round_jiffies() except that it will never
241 * round down. This is useful for timeouts for which the exact time
242 * of firing does not matter too much, as long as they don't fire too
243 * early.
244 */
245unsigned long __round_jiffies_up(unsigned long j, int cpu)
246{
247 return round_jiffies_common(j, cpu, true);
248}
249EXPORT_SYMBOL_GPL(__round_jiffies_up);
250
251/**
252 * __round_jiffies_up_relative - function to round jiffies up to a full second
253 * @j: the time in (relative) jiffies that should be rounded
254 * @cpu: the processor number on which the timeout will happen
255 *
256 * This is the same as __round_jiffies_relative() except that it will never
257 * round down. This is useful for timeouts for which the exact time
258 * of firing does not matter too much, as long as they don't fire too
259 * early.
260 */
261unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
262{
263 unsigned long j0 = jiffies;
264
265 /* Use j0 because jiffies might change while we run */
266 return round_jiffies_common(j + j0, cpu, true) - j0;
267}
268EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
269
270/**
271 * round_jiffies_up - function to round jiffies up to a full second
272 * @j: the time in (absolute) jiffies that should be rounded
273 *
274 * This is the same as round_jiffies() except that it will never
275 * round down. This is useful for timeouts for which the exact time
276 * of firing does not matter too much, as long as they don't fire too
277 * early.
278 */
279unsigned long round_jiffies_up(unsigned long j)
280{
281 return round_jiffies_common(j, raw_smp_processor_id(), true);
282}
283EXPORT_SYMBOL_GPL(round_jiffies_up);
284
285/**
286 * round_jiffies_up_relative - function to round jiffies up to a full second
287 * @j: the time in (relative) jiffies that should be rounded
288 *
289 * This is the same as round_jiffies_relative() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
293 */
294unsigned long round_jiffies_up_relative(unsigned long j)
295{
296 return __round_jiffies_up_relative(j, raw_smp_processor_id());
297}
298EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
299
3bbb9ec9
AV
300/**
301 * set_timer_slack - set the allowed slack for a timer
0caa6210 302 * @timer: the timer to be modified
3bbb9ec9
AV
303 * @slack_hz: the amount of time (in jiffies) allowed for rounding
304 *
305 * Set the amount of time, in jiffies, that a certain timer has
306 * in terms of slack. By setting this value, the timer subsystem
307 * will schedule the actual timer somewhere between
308 * the time mod_timer() asks for, and that time plus the slack.
309 *
310 * By setting the slack to -1, a percentage of the delay is used
311 * instead.
312 */
313void set_timer_slack(struct timer_list *timer, int slack_hz)
314{
315 timer->slack = slack_hz;
316}
317EXPORT_SYMBOL_GPL(set_timer_slack);
318
facbb4a7
TG
319static void
320__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
321{
322 unsigned long expires = timer->expires;
323 unsigned long idx = expires - base->timer_jiffies;
1dabbcec 324 struct hlist_head *vec;
1da177e4
LT
325
326 if (idx < TVR_SIZE) {
327 int i = expires & TVR_MASK;
328 vec = base->tv1.vec + i;
329 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
330 int i = (expires >> TVR_BITS) & TVN_MASK;
331 vec = base->tv2.vec + i;
332 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
333 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
334 vec = base->tv3.vec + i;
335 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
336 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
337 vec = base->tv4.vec + i;
338 } else if ((signed long) idx < 0) {
339 /*
340 * Can happen if you add a timer with expires == jiffies,
341 * or you set a timer to go off in the past
342 */
343 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
344 } else {
345 int i;
26cff4e2
HC
346 /* If the timeout is larger than MAX_TVAL (on 64-bit
347 * architectures or with CONFIG_BASE_SMALL=1) then we
348 * use the maximum timeout.
1da177e4 349 */
26cff4e2
HC
350 if (idx > MAX_TVAL) {
351 idx = MAX_TVAL;
1da177e4
LT
352 expires = idx + base->timer_jiffies;
353 }
354 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
355 vec = base->tv5.vec + i;
356 }
1bd04bf6 357
1dabbcec 358 hlist_add_head(&timer->entry, vec);
1da177e4
LT
359}
360
facbb4a7
TG
361static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
362{
3bb475a3
TG
363 /* Advance base->jiffies, if the base is empty */
364 if (!base->all_timers++)
365 base->timer_jiffies = jiffies;
366
facbb4a7
TG
367 __internal_add_timer(base, timer);
368 /*
99d5f3aa 369 * Update base->active_timers and base->next_timer
facbb4a7 370 */
0eeda71b 371 if (!(timer->flags & TIMER_DEFERRABLE)) {
aea369b9
ON
372 if (!base->active_timers++ ||
373 time_before(timer->expires, base->next_timer))
99d5f3aa 374 base->next_timer = timer->expires;
99d5f3aa 375 }
9f6d9baa
VK
376
377 /*
378 * Check whether the other CPU is in dynticks mode and needs
379 * to be triggered to reevaluate the timer wheel.
380 * We are protected against the other CPU fiddling
381 * with the timer by holding the timer base lock. This also
382 * makes sure that a CPU on the way to stop its tick can not
383 * evaluate the timer wheel.
384 *
385 * Spare the IPI for deferrable timers on idle targets though.
386 * The next busy ticks will take care of it. Except full dynticks
387 * require special care against races with idle_cpu(), lets deal
388 * with that later.
389 */
0eeda71b 390 if (!(timer->flags & TIMER_DEFERRABLE) || tick_nohz_full_cpu(base->cpu))
9f6d9baa 391 wake_up_nohz_cpu(base->cpu);
facbb4a7
TG
392}
393
82f67cd9
IM
394#ifdef CONFIG_TIMER_STATS
395void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
396{
397 if (timer->start_site)
398 return;
399
400 timer->start_site = addr;
401 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
402 timer->start_pid = current->pid;
403}
c5c061b8
VP
404
405static void timer_stats_account_timer(struct timer_list *timer)
406{
507e1231
HC
407 if (likely(!timer->start_site))
408 return;
c5c061b8
VP
409
410 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
c74441a1
TG
411 timer->function, timer->start_comm,
412 timer->flags);
c5c061b8
VP
413}
414
415#else
416static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
417#endif
418
c6f3a97f
TG
419#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
420
421static struct debug_obj_descr timer_debug_descr;
422
99777288
SG
423static void *timer_debug_hint(void *addr)
424{
425 return ((struct timer_list *) addr)->function;
426}
427
c6f3a97f
TG
428/*
429 * fixup_init is called when:
430 * - an active object is initialized
55c888d6 431 */
c6f3a97f
TG
432static int timer_fixup_init(void *addr, enum debug_obj_state state)
433{
434 struct timer_list *timer = addr;
435
436 switch (state) {
437 case ODEBUG_STATE_ACTIVE:
438 del_timer_sync(timer);
439 debug_object_init(timer, &timer_debug_descr);
440 return 1;
441 default:
442 return 0;
443 }
444}
445
fb16b8cf
SB
446/* Stub timer callback for improperly used timers. */
447static void stub_timer(unsigned long data)
448{
449 WARN_ON(1);
450}
451
c6f3a97f
TG
452/*
453 * fixup_activate is called when:
454 * - an active object is activated
455 * - an unknown object is activated (might be a statically initialized object)
456 */
457static int timer_fixup_activate(void *addr, enum debug_obj_state state)
458{
459 struct timer_list *timer = addr;
460
461 switch (state) {
462
463 case ODEBUG_STATE_NOTAVAILABLE:
464 /*
465 * This is not really a fixup. The timer was
466 * statically initialized. We just make sure that it
467 * is tracked in the object tracker.
468 */
1dabbcec
TG
469 if (timer->entry.pprev == NULL &&
470 timer->entry.next == TIMER_ENTRY_STATIC) {
c6f3a97f
TG
471 debug_object_init(timer, &timer_debug_descr);
472 debug_object_activate(timer, &timer_debug_descr);
473 return 0;
474 } else {
fb16b8cf
SB
475 setup_timer(timer, stub_timer, 0);
476 return 1;
c6f3a97f
TG
477 }
478 return 0;
479
480 case ODEBUG_STATE_ACTIVE:
481 WARN_ON(1);
482
483 default:
484 return 0;
485 }
486}
487
488/*
489 * fixup_free is called when:
490 * - an active object is freed
491 */
492static int timer_fixup_free(void *addr, enum debug_obj_state state)
493{
494 struct timer_list *timer = addr;
495
496 switch (state) {
497 case ODEBUG_STATE_ACTIVE:
498 del_timer_sync(timer);
499 debug_object_free(timer, &timer_debug_descr);
500 return 1;
501 default:
502 return 0;
503 }
504}
505
dc4218bd
CC
506/*
507 * fixup_assert_init is called when:
508 * - an untracked/uninit-ed object is found
509 */
510static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
511{
512 struct timer_list *timer = addr;
513
514 switch (state) {
515 case ODEBUG_STATE_NOTAVAILABLE:
1dabbcec 516 if (timer->entry.next == TIMER_ENTRY_STATIC) {
dc4218bd
CC
517 /*
518 * This is not really a fixup. The timer was
519 * statically initialized. We just make sure that it
520 * is tracked in the object tracker.
521 */
522 debug_object_init(timer, &timer_debug_descr);
523 return 0;
524 } else {
525 setup_timer(timer, stub_timer, 0);
526 return 1;
527 }
528 default:
529 return 0;
530 }
531}
532
c6f3a97f 533static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
534 .name = "timer_list",
535 .debug_hint = timer_debug_hint,
536 .fixup_init = timer_fixup_init,
537 .fixup_activate = timer_fixup_activate,
538 .fixup_free = timer_fixup_free,
539 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
540};
541
542static inline void debug_timer_init(struct timer_list *timer)
543{
544 debug_object_init(timer, &timer_debug_descr);
545}
546
547static inline void debug_timer_activate(struct timer_list *timer)
548{
549 debug_object_activate(timer, &timer_debug_descr);
550}
551
552static inline void debug_timer_deactivate(struct timer_list *timer)
553{
554 debug_object_deactivate(timer, &timer_debug_descr);
555}
556
557static inline void debug_timer_free(struct timer_list *timer)
558{
559 debug_object_free(timer, &timer_debug_descr);
560}
561
dc4218bd
CC
562static inline void debug_timer_assert_init(struct timer_list *timer)
563{
564 debug_object_assert_init(timer, &timer_debug_descr);
565}
566
fc683995
TH
567static void do_init_timer(struct timer_list *timer, unsigned int flags,
568 const char *name, struct lock_class_key *key);
c6f3a97f 569
fc683995
TH
570void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
571 const char *name, struct lock_class_key *key)
c6f3a97f
TG
572{
573 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 574 do_init_timer(timer, flags, name, key);
c6f3a97f 575}
6f2b9b9a 576EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
577
578void destroy_timer_on_stack(struct timer_list *timer)
579{
580 debug_object_free(timer, &timer_debug_descr);
581}
582EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
583
584#else
585static inline void debug_timer_init(struct timer_list *timer) { }
586static inline void debug_timer_activate(struct timer_list *timer) { }
587static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 588static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
589#endif
590
2b022e3d
XG
591static inline void debug_init(struct timer_list *timer)
592{
593 debug_timer_init(timer);
594 trace_timer_init(timer);
595}
596
597static inline void
598debug_activate(struct timer_list *timer, unsigned long expires)
599{
600 debug_timer_activate(timer);
0eeda71b 601 trace_timer_start(timer, expires, timer->flags);
2b022e3d
XG
602}
603
604static inline void debug_deactivate(struct timer_list *timer)
605{
606 debug_timer_deactivate(timer);
607 trace_timer_cancel(timer);
608}
609
dc4218bd
CC
610static inline void debug_assert_init(struct timer_list *timer)
611{
612 debug_timer_assert_init(timer);
613}
614
fc683995
TH
615static void do_init_timer(struct timer_list *timer, unsigned int flags,
616 const char *name, struct lock_class_key *key)
55c888d6 617{
1dabbcec 618 timer->entry.pprev = NULL;
0eeda71b 619 timer->flags = flags | raw_smp_processor_id();
3bbb9ec9 620 timer->slack = -1;
82f67cd9
IM
621#ifdef CONFIG_TIMER_STATS
622 timer->start_site = NULL;
623 timer->start_pid = -1;
624 memset(timer->start_comm, 0, TASK_COMM_LEN);
625#endif
6f2b9b9a 626 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 627}
c6f3a97f
TG
628
629/**
633fe795 630 * init_timer_key - initialize a timer
c6f3a97f 631 * @timer: the timer to be initialized
fc683995 632 * @flags: timer flags
633fe795
RD
633 * @name: name of the timer
634 * @key: lockdep class key of the fake lock used for tracking timer
635 * sync lock dependencies
c6f3a97f 636 *
633fe795 637 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
638 * other timer functions.
639 */
fc683995
TH
640void init_timer_key(struct timer_list *timer, unsigned int flags,
641 const char *name, struct lock_class_key *key)
c6f3a97f 642{
2b022e3d 643 debug_init(timer);
fc683995 644 do_init_timer(timer, flags, name, key);
c6f3a97f 645}
6f2b9b9a 646EXPORT_SYMBOL(init_timer_key);
55c888d6 647
ec44bc7a 648static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6 649{
1dabbcec 650 struct hlist_node *entry = &timer->entry;
55c888d6 651
2b022e3d 652 debug_deactivate(timer);
c6f3a97f 653
1dabbcec 654 __hlist_del(entry);
55c888d6 655 if (clear_pending)
1dabbcec
TG
656 entry->pprev = NULL;
657 entry->next = LIST_POISON2;
55c888d6
ON
658}
659
99d5f3aa
TG
660static inline void
661detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
662{
663 detach_timer(timer, true);
0eeda71b 664 if (!(timer->flags & TIMER_DEFERRABLE))
e52b1db3 665 base->active_timers--;
fff42158 666 base->all_timers--;
99d5f3aa
TG
667}
668
ec44bc7a
TG
669static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
670 bool clear_pending)
671{
672 if (!timer_pending(timer))
673 return 0;
674
675 detach_timer(timer, clear_pending);
0eeda71b 676 if (!(timer->flags & TIMER_DEFERRABLE)) {
e52b1db3 677 base->active_timers--;
99d5f3aa
TG
678 if (timer->expires == base->next_timer)
679 base->next_timer = base->timer_jiffies;
680 }
3bb475a3
TG
681 /* If this was the last timer, advance base->jiffies */
682 if (!--base->all_timers)
683 base->timer_jiffies = jiffies;
ec44bc7a
TG
684 return 1;
685}
686
55c888d6 687/*
3691c519 688 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
689 * means that all timers which are tied to this base via timer->base are
690 * locked, and the base itself is locked too.
691 *
692 * So __run_timers/migrate_timers can safely modify all timers which could
693 * be found on ->tvX lists.
694 *
0eeda71b
TG
695 * When the timer's base is locked and removed from the list, the
696 * TIMER_MIGRATING flag is set, FIXME
55c888d6 697 */
a6fa8e5a 698static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 699 unsigned long *flags)
89e7e374 700 __acquires(timer->base->lock)
55c888d6 701{
55c888d6 702 for (;;) {
0eeda71b
TG
703 u32 tf = timer->flags;
704 struct tvec_base *base;
705
706 if (!(tf & TIMER_MIGRATING)) {
707 base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK);
55c888d6 708 spin_lock_irqsave(&base->lock, *flags);
0eeda71b 709 if (timer->flags == tf)
55c888d6 710 return base;
55c888d6
ON
711 spin_unlock_irqrestore(&base->lock, *flags);
712 }
713 cpu_relax();
714 }
715}
716
74019224 717static inline int
597d0275
AB
718__mod_timer(struct timer_list *timer, unsigned long expires,
719 bool pending_only, int pinned)
1da177e4 720{
a6fa8e5a 721 struct tvec_base *base, *new_base;
1da177e4 722 unsigned long flags;
eea08f32 723 int ret = 0 , cpu;
1da177e4 724
82f67cd9 725 timer_stats_timer_set_start_info(timer);
1da177e4 726 BUG_ON(!timer->function);
1da177e4 727
55c888d6
ON
728 base = lock_timer_base(timer, &flags);
729
ec44bc7a
TG
730 ret = detach_if_pending(timer, base, false);
731 if (!ret && pending_only)
732 goto out_unlock;
55c888d6 733
2b022e3d 734 debug_activate(timer, expires);
c6f3a97f 735
6201b4d6 736 cpu = get_nohz_timer_target(pinned);
0eeda71b 737 new_base = per_cpu_ptr(&tvec_bases, cpu);
eea08f32 738
3691c519 739 if (base != new_base) {
1da177e4 740 /*
55c888d6
ON
741 * We are trying to schedule the timer on the local CPU.
742 * However we can't change timer's base while it is running,
743 * otherwise del_timer_sync() can't detect that the timer's
744 * handler yet has not finished. This also guarantees that
745 * the timer is serialized wrt itself.
1da177e4 746 */
a2c348fe 747 if (likely(base->running_timer != timer)) {
55c888d6 748 /* See the comment in lock_timer_base() */
0eeda71b
TG
749 timer->flags |= TIMER_MIGRATING;
750
55c888d6 751 spin_unlock(&base->lock);
a2c348fe
ON
752 base = new_base;
753 spin_lock(&base->lock);
0eeda71b 754 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1da177e4
LT
755 }
756 }
757
1da177e4 758 timer->expires = expires;
a2c348fe 759 internal_add_timer(base, timer);
74019224
IM
760
761out_unlock:
a2c348fe 762 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
763
764 return ret;
765}
766
2aae4a10 767/**
74019224
IM
768 * mod_timer_pending - modify a pending timer's timeout
769 * @timer: the pending timer to be modified
770 * @expires: new timeout in jiffies
1da177e4 771 *
74019224
IM
772 * mod_timer_pending() is the same for pending timers as mod_timer(),
773 * but will not re-activate and modify already deleted timers.
774 *
775 * It is useful for unserialized use of timers.
1da177e4 776 */
74019224 777int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 778{
597d0275 779 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 780}
74019224 781EXPORT_SYMBOL(mod_timer_pending);
1da177e4 782
3bbb9ec9
AV
783/*
784 * Decide where to put the timer while taking the slack into account
785 *
786 * Algorithm:
787 * 1) calculate the maximum (absolute) time
788 * 2) calculate the highest bit where the expires and new max are different
789 * 3) use this bit to make a mask
790 * 4) use the bitmask to round down the maximum time, so that all last
791 * bits are zeros
792 */
793static inline
794unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
795{
796 unsigned long expires_limit, mask;
797 int bit;
798
8e63d779 799 if (timer->slack >= 0) {
f00e047e 800 expires_limit = expires + timer->slack;
8e63d779 801 } else {
1c3cc116
SAS
802 long delta = expires - jiffies;
803
804 if (delta < 256)
805 return expires;
3bbb9ec9 806
1c3cc116 807 expires_limit = expires + delta / 256;
8e63d779 808 }
3bbb9ec9 809 mask = expires ^ expires_limit;
3bbb9ec9
AV
810 if (mask == 0)
811 return expires;
812
813 bit = find_last_bit(&mask, BITS_PER_LONG);
814
98a01e77 815 mask = (1UL << bit) - 1;
3bbb9ec9
AV
816
817 expires_limit = expires_limit & ~(mask);
818
819 return expires_limit;
820}
821
2aae4a10 822/**
1da177e4
LT
823 * mod_timer - modify a timer's timeout
824 * @timer: the timer to be modified
2aae4a10 825 * @expires: new timeout in jiffies
1da177e4 826 *
72fd4a35 827 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
828 * active timer (if the timer is inactive it will be activated)
829 *
830 * mod_timer(timer, expires) is equivalent to:
831 *
832 * del_timer(timer); timer->expires = expires; add_timer(timer);
833 *
834 * Note that if there are multiple unserialized concurrent users of the
835 * same timer, then mod_timer() is the only safe way to modify the timeout,
836 * since add_timer() cannot modify an already running timer.
837 *
838 * The function returns whether it has modified a pending timer or not.
839 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
840 * active timer returns 1.)
841 */
842int mod_timer(struct timer_list *timer, unsigned long expires)
843{
1c3cc116
SAS
844 expires = apply_slack(timer, expires);
845
1da177e4
LT
846 /*
847 * This is a common optimization triggered by the
848 * networking code - if the timer is re-modified
849 * to be the same thing then just return:
850 */
4841158b 851 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
852 return 1;
853
597d0275 854 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 855}
1da177e4
LT
856EXPORT_SYMBOL(mod_timer);
857
597d0275
AB
858/**
859 * mod_timer_pinned - modify a timer's timeout
860 * @timer: the timer to be modified
861 * @expires: new timeout in jiffies
862 *
863 * mod_timer_pinned() is a way to update the expire field of an
864 * active timer (if the timer is inactive it will be activated)
048a0e8f
PM
865 * and to ensure that the timer is scheduled on the current CPU.
866 *
867 * Note that this does not prevent the timer from being migrated
868 * when the current CPU goes offline. If this is a problem for
869 * you, use CPU-hotplug notifiers to handle it correctly, for
870 * example, cancelling the timer when the corresponding CPU goes
871 * offline.
597d0275
AB
872 *
873 * mod_timer_pinned(timer, expires) is equivalent to:
874 *
875 * del_timer(timer); timer->expires = expires; add_timer(timer);
876 */
877int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
878{
879 if (timer->expires == expires && timer_pending(timer))
880 return 1;
881
882 return __mod_timer(timer, expires, false, TIMER_PINNED);
883}
884EXPORT_SYMBOL(mod_timer_pinned);
885
74019224
IM
886/**
887 * add_timer - start a timer
888 * @timer: the timer to be added
889 *
890 * The kernel will do a ->function(->data) callback from the
891 * timer interrupt at the ->expires point in the future. The
892 * current time is 'jiffies'.
893 *
894 * The timer's ->expires, ->function (and if the handler uses it, ->data)
895 * fields must be set prior calling this function.
896 *
897 * Timers with an ->expires field in the past will be executed in the next
898 * timer tick.
899 */
900void add_timer(struct timer_list *timer)
901{
902 BUG_ON(timer_pending(timer));
903 mod_timer(timer, timer->expires);
904}
905EXPORT_SYMBOL(add_timer);
906
907/**
908 * add_timer_on - start a timer on a particular CPU
909 * @timer: the timer to be added
910 * @cpu: the CPU to start it on
911 *
912 * This is not very scalable on SMP. Double adds are not possible.
913 */
914void add_timer_on(struct timer_list *timer, int cpu)
915{
0eeda71b 916 struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
74019224
IM
917 unsigned long flags;
918
919 timer_stats_timer_set_start_info(timer);
920 BUG_ON(timer_pending(timer) || !timer->function);
921 spin_lock_irqsave(&base->lock, flags);
0eeda71b 922 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2b022e3d 923 debug_activate(timer, timer->expires);
74019224 924 internal_add_timer(base, timer);
74019224
IM
925 spin_unlock_irqrestore(&base->lock, flags);
926}
a9862e05 927EXPORT_SYMBOL_GPL(add_timer_on);
74019224 928
2aae4a10 929/**
1da177e4
LT
930 * del_timer - deactive a timer.
931 * @timer: the timer to be deactivated
932 *
933 * del_timer() deactivates a timer - this works on both active and inactive
934 * timers.
935 *
936 * The function returns whether it has deactivated a pending timer or not.
937 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
938 * active timer returns 1.)
939 */
940int del_timer(struct timer_list *timer)
941{
a6fa8e5a 942 struct tvec_base *base;
1da177e4 943 unsigned long flags;
55c888d6 944 int ret = 0;
1da177e4 945
dc4218bd
CC
946 debug_assert_init(timer);
947
82f67cd9 948 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
949 if (timer_pending(timer)) {
950 base = lock_timer_base(timer, &flags);
ec44bc7a 951 ret = detach_if_pending(timer, base, true);
1da177e4 952 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 953 }
1da177e4 954
55c888d6 955 return ret;
1da177e4 956}
1da177e4
LT
957EXPORT_SYMBOL(del_timer);
958
2aae4a10
REB
959/**
960 * try_to_del_timer_sync - Try to deactivate a timer
961 * @timer: timer do del
962 *
fd450b73
ON
963 * This function tries to deactivate a timer. Upon successful (ret >= 0)
964 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
965 */
966int try_to_del_timer_sync(struct timer_list *timer)
967{
a6fa8e5a 968 struct tvec_base *base;
fd450b73
ON
969 unsigned long flags;
970 int ret = -1;
971
dc4218bd
CC
972 debug_assert_init(timer);
973
fd450b73
ON
974 base = lock_timer_base(timer, &flags);
975
ec44bc7a
TG
976 if (base->running_timer != timer) {
977 timer_stats_timer_clear_start_info(timer);
978 ret = detach_if_pending(timer, base, true);
fd450b73 979 }
fd450b73
ON
980 spin_unlock_irqrestore(&base->lock, flags);
981
982 return ret;
983}
e19dff1f
DH
984EXPORT_SYMBOL(try_to_del_timer_sync);
985
6f1bc451 986#ifdef CONFIG_SMP
2aae4a10 987/**
1da177e4
LT
988 * del_timer_sync - deactivate a timer and wait for the handler to finish.
989 * @timer: the timer to be deactivated
990 *
991 * This function only differs from del_timer() on SMP: besides deactivating
992 * the timer it also makes sure the handler has finished executing on other
993 * CPUs.
994 *
72fd4a35 995 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 996 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
997 * interrupt contexts unless the timer is an irqsafe one. The caller must
998 * not hold locks which would prevent completion of the timer's
999 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1000 * timer is not queued and the handler is not running on any CPU.
1da177e4 1001 *
c5f66e99
TH
1002 * Note: For !irqsafe timers, you must not hold locks that are held in
1003 * interrupt context while calling this function. Even if the lock has
1004 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1005 *
1006 * CPU0 CPU1
1007 * ---- ----
1008 * <SOFTIRQ>
1009 * call_timer_fn();
1010 * base->running_timer = mytimer;
1011 * spin_lock_irq(somelock);
1012 * <IRQ>
1013 * spin_lock(somelock);
1014 * del_timer_sync(mytimer);
1015 * while (base->running_timer == mytimer);
1016 *
1017 * Now del_timer_sync() will never return and never release somelock.
1018 * The interrupt on the other CPU is waiting to grab somelock but
1019 * it has interrupted the softirq that CPU0 is waiting to finish.
1020 *
1da177e4 1021 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1022 */
1023int del_timer_sync(struct timer_list *timer)
1024{
6f2b9b9a 1025#ifdef CONFIG_LOCKDEP
f266a511
PZ
1026 unsigned long flags;
1027
48228f7b
SR
1028 /*
1029 * If lockdep gives a backtrace here, please reference
1030 * the synchronization rules above.
1031 */
7ff20792 1032 local_irq_save(flags);
6f2b9b9a
JB
1033 lock_map_acquire(&timer->lockdep_map);
1034 lock_map_release(&timer->lockdep_map);
7ff20792 1035 local_irq_restore(flags);
6f2b9b9a 1036#endif
466bd303
YZ
1037 /*
1038 * don't use it in hardirq context, because it
1039 * could lead to deadlock.
1040 */
0eeda71b 1041 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
fd450b73
ON
1042 for (;;) {
1043 int ret = try_to_del_timer_sync(timer);
1044 if (ret >= 0)
1045 return ret;
a0009652 1046 cpu_relax();
fd450b73 1047 }
1da177e4 1048}
55c888d6 1049EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1050#endif
1051
a6fa8e5a 1052static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1053{
1054 /* cascade all the timers from tv up one level */
1dabbcec
TG
1055 struct timer_list *timer;
1056 struct hlist_node *tmp;
1057 struct hlist_head tv_list;
3439dd86 1058
1dabbcec 1059 hlist_move_list(tv->vec + index, &tv_list);
1da177e4 1060
1da177e4 1061 /*
3439dd86
P
1062 * We are removing _all_ timers from the list, so we
1063 * don't have to detach them individually.
1da177e4 1064 */
1dabbcec 1065 hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
facbb4a7
TG
1066 /* No accounting, while moving them */
1067 __internal_add_timer(base, timer);
1da177e4 1068 }
1da177e4
LT
1069
1070 return index;
1071}
1072
576da126
TG
1073static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1074 unsigned long data)
1075{
4a2b4b22 1076 int count = preempt_count();
576da126
TG
1077
1078#ifdef CONFIG_LOCKDEP
1079 /*
1080 * It is permissible to free the timer from inside the
1081 * function that is called from it, this we need to take into
1082 * account for lockdep too. To avoid bogus "held lock freed"
1083 * warnings as well as problems when looking into
1084 * timer->lockdep_map, make a copy and use that here.
1085 */
4d82a1de
PZ
1086 struct lockdep_map lockdep_map;
1087
1088 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1089#endif
1090 /*
1091 * Couple the lock chain with the lock chain at
1092 * del_timer_sync() by acquiring the lock_map around the fn()
1093 * call here and in del_timer_sync().
1094 */
1095 lock_map_acquire(&lockdep_map);
1096
1097 trace_timer_expire_entry(timer);
1098 fn(data);
1099 trace_timer_expire_exit(timer);
1100
1101 lock_map_release(&lockdep_map);
1102
4a2b4b22 1103 if (count != preempt_count()) {
802702e0 1104 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
4a2b4b22 1105 fn, count, preempt_count());
802702e0
TG
1106 /*
1107 * Restore the preempt count. That gives us a decent
1108 * chance to survive and extract information. If the
1109 * callback kept a lock held, bad luck, but not worse
1110 * than the BUG() we had.
1111 */
4a2b4b22 1112 preempt_count_set(count);
576da126
TG
1113 }
1114}
1115
2aae4a10
REB
1116#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1117
1118/**
1da177e4
LT
1119 * __run_timers - run all expired timers (if any) on this CPU.
1120 * @base: the timer vector to be processed.
1121 *
1122 * This function cascades all vectors and executes all expired timer
1123 * vectors.
1124 */
a6fa8e5a 1125static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1126{
1127 struct timer_list *timer;
1128
3691c519 1129 spin_lock_irq(&base->lock);
3bb475a3 1130
1da177e4 1131 while (time_after_eq(jiffies, base->timer_jiffies)) {
1dabbcec
TG
1132 struct hlist_head work_list;
1133 struct hlist_head *head = &work_list;
3bb475a3
TG
1134 int index;
1135
1136 if (!base->all_timers) {
1137 base->timer_jiffies = jiffies;
1138 break;
1139 }
1140
1141 index = base->timer_jiffies & TVR_MASK;
626ab0e6 1142
1da177e4
LT
1143 /*
1144 * Cascade timers:
1145 */
1146 if (!index &&
1147 (!cascade(base, &base->tv2, INDEX(0))) &&
1148 (!cascade(base, &base->tv3, INDEX(1))) &&
1149 !cascade(base, &base->tv4, INDEX(2)))
1150 cascade(base, &base->tv5, INDEX(3));
626ab0e6 1151 ++base->timer_jiffies;
1dabbcec
TG
1152 hlist_move_list(base->tv1.vec + index, head);
1153 while (!hlist_empty(head)) {
1da177e4
LT
1154 void (*fn)(unsigned long);
1155 unsigned long data;
c5f66e99 1156 bool irqsafe;
1da177e4 1157
1dabbcec 1158 timer = hlist_entry(head->first, struct timer_list, entry);
6819457d
TG
1159 fn = timer->function;
1160 data = timer->data;
0eeda71b 1161 irqsafe = timer->flags & TIMER_IRQSAFE;
1da177e4 1162
82f67cd9
IM
1163 timer_stats_account_timer(timer);
1164
6f1bc451 1165 base->running_timer = timer;
99d5f3aa 1166 detach_expired_timer(timer, base);
6f2b9b9a 1167
c5f66e99
TH
1168 if (irqsafe) {
1169 spin_unlock(&base->lock);
1170 call_timer_fn(timer, fn, data);
1171 spin_lock(&base->lock);
1172 } else {
1173 spin_unlock_irq(&base->lock);
1174 call_timer_fn(timer, fn, data);
1175 spin_lock_irq(&base->lock);
1176 }
1da177e4
LT
1177 }
1178 }
6f1bc451 1179 base->running_timer = NULL;
3691c519 1180 spin_unlock_irq(&base->lock);
1da177e4
LT
1181}
1182
3451d024 1183#ifdef CONFIG_NO_HZ_COMMON
1da177e4
LT
1184/*
1185 * Find out when the next timer event is due to happen. This
90cba64a
RD
1186 * is used on S/390 to stop all activity when a CPU is idle.
1187 * This function needs to be called with interrupts disabled.
1da177e4 1188 */
a6fa8e5a 1189static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1190{
1cfd6849 1191 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1192 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1193 int index, slot, array, found = 0;
1da177e4 1194 struct timer_list *nte;
a6fa8e5a 1195 struct tvec *varray[4];
1da177e4
LT
1196
1197 /* Look for timer events in tv1. */
1cfd6849 1198 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1199 do {
1dabbcec 1200 hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
0eeda71b 1201 if (nte->flags & TIMER_DEFERRABLE)
6819457d 1202 continue;
6e453a67 1203
1cfd6849 1204 found = 1;
1da177e4 1205 expires = nte->expires;
1cfd6849
TG
1206 /* Look at the cascade bucket(s)? */
1207 if (!index || slot < index)
1208 goto cascade;
1209 return expires;
1da177e4 1210 }
1cfd6849
TG
1211 slot = (slot + 1) & TVR_MASK;
1212 } while (slot != index);
1213
1214cascade:
1215 /* Calculate the next cascade event */
1216 if (index)
1217 timer_jiffies += TVR_SIZE - index;
1218 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1219
1220 /* Check tv2-tv5. */
1221 varray[0] = &base->tv2;
1222 varray[1] = &base->tv3;
1223 varray[2] = &base->tv4;
1224 varray[3] = &base->tv5;
1cfd6849
TG
1225
1226 for (array = 0; array < 4; array++) {
a6fa8e5a 1227 struct tvec *varp = varray[array];
1cfd6849
TG
1228
1229 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1230 do {
1dabbcec 1231 hlist_for_each_entry(nte, varp->vec + slot, entry) {
0eeda71b 1232 if (nte->flags & TIMER_DEFERRABLE)
a0419888
JH
1233 continue;
1234
1cfd6849 1235 found = 1;
1da177e4
LT
1236 if (time_before(nte->expires, expires))
1237 expires = nte->expires;
1cfd6849
TG
1238 }
1239 /*
1240 * Do we still search for the first timer or are
1241 * we looking up the cascade buckets ?
1242 */
1243 if (found) {
1244 /* Look at the cascade bucket(s)? */
1245 if (!index || slot < index)
1246 break;
1247 return expires;
1248 }
1249 slot = (slot + 1) & TVN_MASK;
1250 } while (slot != index);
1251
1252 if (index)
1253 timer_jiffies += TVN_SIZE - index;
1254 timer_jiffies >>= TVN_BITS;
1da177e4 1255 }
1cfd6849
TG
1256 return expires;
1257}
69239749 1258
1cfd6849
TG
1259/*
1260 * Check, if the next hrtimer event is before the next timer wheel
1261 * event:
1262 */
c1ad348b 1263static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1cfd6849 1264{
c1ad348b 1265 u64 nextevt = hrtimer_get_next_event();
0662b713 1266
9501b6cf 1267 /*
c1ad348b
TG
1268 * If high resolution timers are enabled
1269 * hrtimer_get_next_event() returns KTIME_MAX.
9501b6cf 1270 */
c1ad348b
TG
1271 if (expires <= nextevt)
1272 return expires;
eaad084b
TG
1273
1274 /*
c1ad348b
TG
1275 * If the next timer is already expired, return the tick base
1276 * time so the tick is fired immediately.
eaad084b 1277 */
c1ad348b
TG
1278 if (nextevt <= basem)
1279 return basem;
eaad084b 1280
9501b6cf 1281 /*
c1ad348b
TG
1282 * Round up to the next jiffie. High resolution timers are
1283 * off, so the hrtimers are expired in the tick and we need to
1284 * make sure that this tick really expires the timer to avoid
1285 * a ping pong of the nohz stop code.
1286 *
1287 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
9501b6cf 1288 */
c1ad348b 1289 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1da177e4 1290}
1cfd6849
TG
1291
1292/**
c1ad348b
TG
1293 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1294 * @basej: base time jiffies
1295 * @basem: base time clock monotonic
1296 *
1297 * Returns the tick aligned clock monotonic time of the next pending
1298 * timer or KTIME_MAX if no timer is pending.
1cfd6849 1299 */
c1ad348b 1300u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1cfd6849 1301{
0eeda71b 1302 struct tvec_base *base = this_cpu_ptr(&tvec_bases);
c1ad348b
TG
1303 u64 expires = KTIME_MAX;
1304 unsigned long nextevt;
1cfd6849 1305
dbd87b5a
HC
1306 /*
1307 * Pretend that there is no timer pending if the cpu is offline.
1308 * Possible pending timers will be migrated later to an active cpu.
1309 */
1310 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1311 return expires;
1312
1cfd6849 1313 spin_lock(&base->lock);
e40468a5
TG
1314 if (base->active_timers) {
1315 if (time_before_eq(base->next_timer, base->timer_jiffies))
1316 base->next_timer = __next_timer_interrupt(base);
c1ad348b
TG
1317 nextevt = base->next_timer;
1318 if (time_before_eq(nextevt, basej))
1319 expires = basem;
1320 else
1321 expires = basem + (nextevt - basej) * TICK_NSEC;
e40468a5 1322 }
1cfd6849
TG
1323 spin_unlock(&base->lock);
1324
c1ad348b 1325 return cmp_next_hrtimer_event(basem, expires);
1cfd6849 1326}
1da177e4
LT
1327#endif
1328
1da177e4 1329/*
5b4db0c2 1330 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1331 * process. user_tick is 1 if the tick is user time, 0 for system.
1332 */
1333void update_process_times(int user_tick)
1334{
1335 struct task_struct *p = current;
1da177e4
LT
1336
1337 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1338 account_process_tick(p, user_tick);
1da177e4 1339 run_local_timers();
c3377c2d 1340 rcu_check_callbacks(user_tick);
e360adbe
PZ
1341#ifdef CONFIG_IRQ_WORK
1342 if (in_irq())
76a33061 1343 irq_work_tick();
e360adbe 1344#endif
1da177e4 1345 scheduler_tick();
6819457d 1346 run_posix_cpu_timers(p);
1da177e4
LT
1347}
1348
1da177e4
LT
1349/*
1350 * This function runs timers and the timer-tq in bottom half context.
1351 */
1352static void run_timer_softirq(struct softirq_action *h)
1353{
0eeda71b 1354 struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1da177e4
LT
1355
1356 if (time_after_eq(jiffies, base->timer_jiffies))
1357 __run_timers(base);
1358}
1359
1360/*
1361 * Called by the local, per-CPU timer interrupt on SMP.
1362 */
1363void run_local_timers(void)
1364{
d3d74453 1365 hrtimer_run_queues();
1da177e4
LT
1366 raise_softirq(TIMER_SOFTIRQ);
1367}
1368
1da177e4
LT
1369#ifdef __ARCH_WANT_SYS_ALARM
1370
1371/*
1372 * For backwards compatibility? This can be done in libc so Alpha
1373 * and all newer ports shouldn't need it.
1374 */
58fd3aa2 1375SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1376{
c08b8a49 1377 return alarm_setitimer(seconds);
1da177e4
LT
1378}
1379
1380#endif
1381
1da177e4
LT
1382static void process_timeout(unsigned long __data)
1383{
36c8b586 1384 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1385}
1386
1387/**
1388 * schedule_timeout - sleep until timeout
1389 * @timeout: timeout value in jiffies
1390 *
1391 * Make the current task sleep until @timeout jiffies have
1392 * elapsed. The routine will return immediately unless
1393 * the current task state has been set (see set_current_state()).
1394 *
1395 * You can set the task state as follows -
1396 *
1397 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1398 * pass before the routine returns. The routine will return 0
1399 *
1400 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1401 * delivered to the current task. In this case the remaining time
1402 * in jiffies will be returned, or 0 if the timer expired in time
1403 *
1404 * The current task state is guaranteed to be TASK_RUNNING when this
1405 * routine returns.
1406 *
1407 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1408 * the CPU away without a bound on the timeout. In this case the return
1409 * value will be %MAX_SCHEDULE_TIMEOUT.
1410 *
1411 * In all cases the return value is guaranteed to be non-negative.
1412 */
7ad5b3a5 1413signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1414{
1415 struct timer_list timer;
1416 unsigned long expire;
1417
1418 switch (timeout)
1419 {
1420 case MAX_SCHEDULE_TIMEOUT:
1421 /*
1422 * These two special cases are useful to be comfortable
1423 * in the caller. Nothing more. We could take
1424 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1425 * but I' d like to return a valid offset (>=0) to allow
1426 * the caller to do everything it want with the retval.
1427 */
1428 schedule();
1429 goto out;
1430 default:
1431 /*
1432 * Another bit of PARANOID. Note that the retval will be
1433 * 0 since no piece of kernel is supposed to do a check
1434 * for a negative retval of schedule_timeout() (since it
1435 * should never happens anyway). You just have the printk()
1436 * that will tell you if something is gone wrong and where.
1437 */
5b149bcc 1438 if (timeout < 0) {
1da177e4 1439 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1440 "value %lx\n", timeout);
1441 dump_stack();
1da177e4
LT
1442 current->state = TASK_RUNNING;
1443 goto out;
1444 }
1445 }
1446
1447 expire = timeout + jiffies;
1448
c6f3a97f 1449 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1450 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1451 schedule();
1452 del_singleshot_timer_sync(&timer);
1453
c6f3a97f
TG
1454 /* Remove the timer from the object tracker */
1455 destroy_timer_on_stack(&timer);
1456
1da177e4
LT
1457 timeout = expire - jiffies;
1458
1459 out:
1460 return timeout < 0 ? 0 : timeout;
1461}
1da177e4
LT
1462EXPORT_SYMBOL(schedule_timeout);
1463
8a1c1757
AM
1464/*
1465 * We can use __set_current_state() here because schedule_timeout() calls
1466 * schedule() unconditionally.
1467 */
64ed93a2
NA
1468signed long __sched schedule_timeout_interruptible(signed long timeout)
1469{
a5a0d52c
AM
1470 __set_current_state(TASK_INTERRUPTIBLE);
1471 return schedule_timeout(timeout);
64ed93a2
NA
1472}
1473EXPORT_SYMBOL(schedule_timeout_interruptible);
1474
294d5cc2
MW
1475signed long __sched schedule_timeout_killable(signed long timeout)
1476{
1477 __set_current_state(TASK_KILLABLE);
1478 return schedule_timeout(timeout);
1479}
1480EXPORT_SYMBOL(schedule_timeout_killable);
1481
64ed93a2
NA
1482signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1483{
a5a0d52c
AM
1484 __set_current_state(TASK_UNINTERRUPTIBLE);
1485 return schedule_timeout(timeout);
64ed93a2
NA
1486}
1487EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1488
1da177e4 1489#ifdef CONFIG_HOTPLUG_CPU
1dabbcec 1490static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
1da177e4
LT
1491{
1492 struct timer_list *timer;
0eeda71b 1493 int cpu = new_base->cpu;
1da177e4 1494
1dabbcec
TG
1495 while (!hlist_empty(head)) {
1496 timer = hlist_entry(head->first, struct timer_list, entry);
99d5f3aa 1497 /* We ignore the accounting on the dying cpu */
ec44bc7a 1498 detach_timer(timer, false);
0eeda71b 1499 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1da177e4 1500 internal_add_timer(new_base, timer);
1da177e4 1501 }
1da177e4
LT
1502}
1503
0db0628d 1504static void migrate_timers(int cpu)
1da177e4 1505{
a6fa8e5a
PM
1506 struct tvec_base *old_base;
1507 struct tvec_base *new_base;
1da177e4
LT
1508 int i;
1509
1510 BUG_ON(cpu_online(cpu));
0eeda71b
TG
1511 old_base = per_cpu_ptr(&tvec_bases, cpu);
1512 new_base = this_cpu_ptr(&tvec_bases);
d82f0b0f
ON
1513 /*
1514 * The caller is globally serialized and nobody else
1515 * takes two locks at once, deadlock is not possible.
1516 */
1517 spin_lock_irq(&new_base->lock);
0d180406 1518 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1519
1520 BUG_ON(old_base->running_timer);
1da177e4 1521
1da177e4 1522 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1523 migrate_timer_list(new_base, old_base->tv1.vec + i);
1524 for (i = 0; i < TVN_SIZE; i++) {
1525 migrate_timer_list(new_base, old_base->tv2.vec + i);
1526 migrate_timer_list(new_base, old_base->tv3.vec + i);
1527 migrate_timer_list(new_base, old_base->tv4.vec + i);
1528 migrate_timer_list(new_base, old_base->tv5.vec + i);
1529 }
1530
8def9060
VK
1531 old_base->active_timers = 0;
1532 old_base->all_timers = 0;
1533
0d180406 1534 spin_unlock(&old_base->lock);
d82f0b0f 1535 spin_unlock_irq(&new_base->lock);
1da177e4 1536}
1da177e4 1537
0db0628d 1538static int timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1539 unsigned long action, void *hcpu)
1540{
8def9060 1541 switch (action) {
1da177e4 1542 case CPU_DEAD:
8bb78442 1543 case CPU_DEAD_FROZEN:
8def9060 1544 migrate_timers((long)hcpu);
1da177e4 1545 break;
1da177e4
LT
1546 default:
1547 break;
1548 }
3650b57f 1549
1da177e4
LT
1550 return NOTIFY_OK;
1551}
1552
3650b57f
PZ
1553static inline void timer_register_cpu_notifier(void)
1554{
1555 cpu_notifier(timer_cpu_notify, 0);
1556}
1557#else
1558static inline void timer_register_cpu_notifier(void) { }
1559#endif /* CONFIG_HOTPLUG_CPU */
1da177e4 1560
0eeda71b 1561static void __init init_timer_cpu(int cpu)
8def9060 1562{
0eeda71b 1563 struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
3650b57f 1564
8def9060 1565 base->cpu = cpu;
8def9060
VK
1566 spin_lock_init(&base->lock);
1567
8def9060
VK
1568 base->timer_jiffies = jiffies;
1569 base->next_timer = base->timer_jiffies;
1570}
1571
1572static void __init init_timer_cpus(void)
1da177e4 1573{
8def9060
VK
1574 int cpu;
1575
0eeda71b
TG
1576 for_each_possible_cpu(cpu)
1577 init_timer_cpu(cpu);
8def9060 1578}
e52b1db3 1579
8def9060
VK
1580void __init init_timers(void)
1581{
8def9060 1582 init_timer_cpus();
c24a4a36 1583 init_timer_stats();
3650b57f 1584 timer_register_cpu_notifier();
962cf36c 1585 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1586}
1587
1da177e4
LT
1588/**
1589 * msleep - sleep safely even with waitqueue interruptions
1590 * @msecs: Time in milliseconds to sleep for
1591 */
1592void msleep(unsigned int msecs)
1593{
1594 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1595
75bcc8c5
NA
1596 while (timeout)
1597 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1598}
1599
1600EXPORT_SYMBOL(msleep);
1601
1602/**
96ec3efd 1603 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1604 * @msecs: Time in milliseconds to sleep for
1605 */
1606unsigned long msleep_interruptible(unsigned int msecs)
1607{
1608 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1609
75bcc8c5
NA
1610 while (timeout && !signal_pending(current))
1611 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1612 return jiffies_to_msecs(timeout);
1613}
1614
1615EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17 1616
6deba083 1617static void __sched do_usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1618{
1619 ktime_t kmin;
1620 unsigned long delta;
1621
1622 kmin = ktime_set(0, min * NSEC_PER_USEC);
1623 delta = (max - min) * NSEC_PER_USEC;
6deba083 1624 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
5e7f5a17
PP
1625}
1626
1627/**
1628 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1629 * @min: Minimum time in usecs to sleep
1630 * @max: Maximum time in usecs to sleep
1631 */
2ad5d327 1632void __sched usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1633{
1634 __set_current_state(TASK_UNINTERRUPTIBLE);
1635 do_usleep_range(min, max);
1636}
1637EXPORT_SYMBOL(usleep_range);