]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/timer.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / kernel / time / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4a22f166 4 * Kernel internal timers
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
174cd4b1 41#include <linux/sched/signal.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
370c9135 43#include <linux/sched/nohz.h>
b17b0153 44#include <linux/sched/debug.h>
5a0e3ad6 45#include <linux/slab.h>
1a0df594 46#include <linux/compat.h>
1da177e4 47
7c0f6ba6 48#include <linux/uaccess.h>
1da177e4
LT
49#include <asm/unistd.h>
50#include <asm/div64.h>
51#include <asm/timex.h>
52#include <asm/io.h>
53
c1ad348b
TG
54#include "tick-internal.h"
55
2b022e3d
XG
56#define CREATE_TRACE_POINTS
57#include <trace/events/timer.h>
58
40747ffa 59__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
ecea8d19
TG
60
61EXPORT_SYMBOL(jiffies_64);
62
1da177e4 63/*
500462a9
TG
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
67 *
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
70 *
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
74 *
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
81 *
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
87 *
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
91 *
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
96 * be an issue.
97 *
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
100 *
101 * This results in the following granularity and range levels:
102 *
103 * HZ 1000 steps
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
114 *
115 * HZ 300
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126 *
127 * HZ 250
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138 *
139 * HZ 100
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
1da177e4 149 */
1da177e4 150
500462a9
TG
151/* Clock divisor for the next level */
152#define LVL_CLK_SHIFT 3
153#define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154#define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155#define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156#define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
1da177e4 157
500462a9
TG
158/*
159 * The time start value for each level to select the bucket at enqueue
160 * time.
161 */
162#define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163
164/* Size of each clock level */
165#define LVL_BITS 6
166#define LVL_SIZE (1UL << LVL_BITS)
167#define LVL_MASK (LVL_SIZE - 1)
168#define LVL_OFFS(n) ((n) * LVL_SIZE)
169
170/* Level depth */
171#if HZ > 100
172# define LVL_DEPTH 9
173# else
174# define LVL_DEPTH 8
175#endif
176
177/* The cutoff (max. capacity of the wheel) */
178#define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
179#define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
180
181/*
182 * The resulting wheel size. If NOHZ is configured we allocate two
183 * wheels so we have a separate storage for the deferrable timers.
184 */
185#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
186
187#ifdef CONFIG_NO_HZ_COMMON
188# define NR_BASES 2
189# define BASE_STD 0
190# define BASE_DEF 1
191#else
192# define NR_BASES 1
193# define BASE_STD 0
194# define BASE_DEF 0
195#endif
1da177e4 196
494af3ed 197struct timer_base {
2287d866 198 raw_spinlock_t lock;
500462a9
TG
199 struct timer_list *running_timer;
200 unsigned long clk;
a683f390 201 unsigned long next_expiry;
500462a9
TG
202 unsigned int cpu;
203 bool migration_enabled;
204 bool nohz_active;
a683f390 205 bool is_idle;
500462a9
TG
206 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
207 struct hlist_head vectors[WHEEL_SIZE];
6e453a67 208} ____cacheline_aligned;
e52b1db3 209
500462a9 210static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
6e453a67 211
bc7a34b8
TG
212#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
213unsigned int sysctl_timer_migration = 1;
214
683be13a 215void timers_update_migration(bool update_nohz)
bc7a34b8
TG
216{
217 bool on = sysctl_timer_migration && tick_nohz_active;
218 unsigned int cpu;
219
220 /* Avoid the loop, if nothing to update */
500462a9 221 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
bc7a34b8
TG
222 return;
223
224 for_each_possible_cpu(cpu) {
500462a9
TG
225 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
226 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
bc7a34b8 227 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
683be13a
TG
228 if (!update_nohz)
229 continue;
500462a9
TG
230 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
231 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
683be13a 232 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
bc7a34b8
TG
233 }
234}
235
236int timer_migration_handler(struct ctl_table *table, int write,
237 void __user *buffer, size_t *lenp,
238 loff_t *ppos)
239{
240 static DEFINE_MUTEX(mutex);
241 int ret;
242
243 mutex_lock(&mutex);
b94bf594 244 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
bc7a34b8 245 if (!ret && write)
683be13a 246 timers_update_migration(false);
bc7a34b8
TG
247 mutex_unlock(&mutex);
248 return ret;
249}
bc7a34b8
TG
250#endif
251
9c133c46
AS
252static unsigned long round_jiffies_common(unsigned long j, int cpu,
253 bool force_up)
4c36a5de
AV
254{
255 int rem;
256 unsigned long original = j;
257
258 /*
259 * We don't want all cpus firing their timers at once hitting the
260 * same lock or cachelines, so we skew each extra cpu with an extra
261 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
262 * already did this.
263 * The skew is done by adding 3*cpunr, then round, then subtract this
264 * extra offset again.
265 */
266 j += cpu * 3;
267
268 rem = j % HZ;
269
270 /*
271 * If the target jiffie is just after a whole second (which can happen
272 * due to delays of the timer irq, long irq off times etc etc) then
273 * we should round down to the whole second, not up. Use 1/4th second
274 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 275 * But never round down if @force_up is set.
4c36a5de 276 */
9c133c46 277 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
278 j = j - rem;
279 else /* round up */
280 j = j - rem + HZ;
281
282 /* now that we have rounded, subtract the extra skew again */
283 j -= cpu * 3;
284
9e04d380
BVA
285 /*
286 * Make sure j is still in the future. Otherwise return the
287 * unmodified value.
288 */
289 return time_is_after_jiffies(j) ? j : original;
4c36a5de 290}
9c133c46
AS
291
292/**
293 * __round_jiffies - function to round jiffies to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
295 * @cpu: the processor number on which the timeout will happen
296 *
297 * __round_jiffies() rounds an absolute time in the future (in jiffies)
298 * up or down to (approximately) full seconds. This is useful for timers
299 * for which the exact time they fire does not matter too much, as long as
300 * they fire approximately every X seconds.
301 *
302 * By rounding these timers to whole seconds, all such timers will fire
303 * at the same time, rather than at various times spread out. The goal
304 * of this is to have the CPU wake up less, which saves power.
305 *
306 * The exact rounding is skewed for each processor to avoid all
307 * processors firing at the exact same time, which could lead
308 * to lock contention or spurious cache line bouncing.
309 *
310 * The return value is the rounded version of the @j parameter.
311 */
312unsigned long __round_jiffies(unsigned long j, int cpu)
313{
314 return round_jiffies_common(j, cpu, false);
315}
4c36a5de
AV
316EXPORT_SYMBOL_GPL(__round_jiffies);
317
318/**
319 * __round_jiffies_relative - function to round jiffies to a full second
320 * @j: the time in (relative) jiffies that should be rounded
321 * @cpu: the processor number on which the timeout will happen
322 *
72fd4a35 323 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
324 * up or down to (approximately) full seconds. This is useful for timers
325 * for which the exact time they fire does not matter too much, as long as
326 * they fire approximately every X seconds.
327 *
328 * By rounding these timers to whole seconds, all such timers will fire
329 * at the same time, rather than at various times spread out. The goal
330 * of this is to have the CPU wake up less, which saves power.
331 *
332 * The exact rounding is skewed for each processor to avoid all
333 * processors firing at the exact same time, which could lead
334 * to lock contention or spurious cache line bouncing.
335 *
72fd4a35 336 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
337 */
338unsigned long __round_jiffies_relative(unsigned long j, int cpu)
339{
9c133c46
AS
340 unsigned long j0 = jiffies;
341
342 /* Use j0 because jiffies might change while we run */
343 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
344}
345EXPORT_SYMBOL_GPL(__round_jiffies_relative);
346
347/**
348 * round_jiffies - function to round jiffies to a full second
349 * @j: the time in (absolute) jiffies that should be rounded
350 *
72fd4a35 351 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
352 * up or down to (approximately) full seconds. This is useful for timers
353 * for which the exact time they fire does not matter too much, as long as
354 * they fire approximately every X seconds.
355 *
356 * By rounding these timers to whole seconds, all such timers will fire
357 * at the same time, rather than at various times spread out. The goal
358 * of this is to have the CPU wake up less, which saves power.
359 *
72fd4a35 360 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
361 */
362unsigned long round_jiffies(unsigned long j)
363{
9c133c46 364 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
365}
366EXPORT_SYMBOL_GPL(round_jiffies);
367
368/**
369 * round_jiffies_relative - function to round jiffies to a full second
370 * @j: the time in (relative) jiffies that should be rounded
371 *
72fd4a35 372 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
373 * up or down to (approximately) full seconds. This is useful for timers
374 * for which the exact time they fire does not matter too much, as long as
375 * they fire approximately every X seconds.
376 *
377 * By rounding these timers to whole seconds, all such timers will fire
378 * at the same time, rather than at various times spread out. The goal
379 * of this is to have the CPU wake up less, which saves power.
380 *
72fd4a35 381 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
382 */
383unsigned long round_jiffies_relative(unsigned long j)
384{
385 return __round_jiffies_relative(j, raw_smp_processor_id());
386}
387EXPORT_SYMBOL_GPL(round_jiffies_relative);
388
9c133c46
AS
389/**
390 * __round_jiffies_up - function to round jiffies up to a full second
391 * @j: the time in (absolute) jiffies that should be rounded
392 * @cpu: the processor number on which the timeout will happen
393 *
394 * This is the same as __round_jiffies() except that it will never
395 * round down. This is useful for timeouts for which the exact time
396 * of firing does not matter too much, as long as they don't fire too
397 * early.
398 */
399unsigned long __round_jiffies_up(unsigned long j, int cpu)
400{
401 return round_jiffies_common(j, cpu, true);
402}
403EXPORT_SYMBOL_GPL(__round_jiffies_up);
404
405/**
406 * __round_jiffies_up_relative - function to round jiffies up to a full second
407 * @j: the time in (relative) jiffies that should be rounded
408 * @cpu: the processor number on which the timeout will happen
409 *
410 * This is the same as __round_jiffies_relative() except that it will never
411 * round down. This is useful for timeouts for which the exact time
412 * of firing does not matter too much, as long as they don't fire too
413 * early.
414 */
415unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
416{
417 unsigned long j0 = jiffies;
418
419 /* Use j0 because jiffies might change while we run */
420 return round_jiffies_common(j + j0, cpu, true) - j0;
421}
422EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
423
424/**
425 * round_jiffies_up - function to round jiffies up to a full second
426 * @j: the time in (absolute) jiffies that should be rounded
427 *
428 * This is the same as round_jiffies() except that it will never
429 * round down. This is useful for timeouts for which the exact time
430 * of firing does not matter too much, as long as they don't fire too
431 * early.
432 */
433unsigned long round_jiffies_up(unsigned long j)
434{
435 return round_jiffies_common(j, raw_smp_processor_id(), true);
436}
437EXPORT_SYMBOL_GPL(round_jiffies_up);
438
439/**
440 * round_jiffies_up_relative - function to round jiffies up to a full second
441 * @j: the time in (relative) jiffies that should be rounded
442 *
443 * This is the same as round_jiffies_relative() except that it will never
444 * round down. This is useful for timeouts for which the exact time
445 * of firing does not matter too much, as long as they don't fire too
446 * early.
447 */
448unsigned long round_jiffies_up_relative(unsigned long j)
449{
450 return __round_jiffies_up_relative(j, raw_smp_processor_id());
451}
452EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
453
3bbb9ec9 454
500462a9 455static inline unsigned int timer_get_idx(struct timer_list *timer)
3bbb9ec9 456{
500462a9 457 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
3bbb9ec9 458}
3bbb9ec9 459
500462a9 460static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
1da177e4 461{
500462a9
TG
462 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
463 idx << TIMER_ARRAYSHIFT;
464}
1da177e4 465
500462a9
TG
466/*
467 * Helper function to calculate the array index for a given expiry
468 * time.
469 */
470static inline unsigned calc_index(unsigned expires, unsigned lvl)
471{
472 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
473 return LVL_OFFS(lvl) + (expires & LVL_MASK);
474}
475
ffdf0477 476static int calc_wheel_index(unsigned long expires, unsigned long clk)
1da177e4 477{
ffdf0477 478 unsigned long delta = expires - clk;
500462a9
TG
479 unsigned int idx;
480
481 if (delta < LVL_START(1)) {
482 idx = calc_index(expires, 0);
483 } else if (delta < LVL_START(2)) {
484 idx = calc_index(expires, 1);
485 } else if (delta < LVL_START(3)) {
486 idx = calc_index(expires, 2);
487 } else if (delta < LVL_START(4)) {
488 idx = calc_index(expires, 3);
489 } else if (delta < LVL_START(5)) {
490 idx = calc_index(expires, 4);
491 } else if (delta < LVL_START(6)) {
492 idx = calc_index(expires, 5);
493 } else if (delta < LVL_START(7)) {
494 idx = calc_index(expires, 6);
495 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
496 idx = calc_index(expires, 7);
497 } else if ((long) delta < 0) {
ffdf0477 498 idx = clk & LVL_MASK;
1da177e4 499 } else {
500462a9
TG
500 /*
501 * Force expire obscene large timeouts to expire at the
502 * capacity limit of the wheel.
1da177e4 503 */
500462a9
TG
504 if (expires >= WHEEL_TIMEOUT_CUTOFF)
505 expires = WHEEL_TIMEOUT_MAX;
1bd04bf6 506
500462a9 507 idx = calc_index(expires, LVL_DEPTH - 1);
1da177e4 508 }
ffdf0477
AMG
509 return idx;
510}
1bd04bf6 511
ffdf0477
AMG
512/*
513 * Enqueue the timer into the hash bucket, mark it pending in
514 * the bitmap and store the index in the timer flags.
515 */
516static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
517 unsigned int idx)
518{
519 hlist_add_head(&timer->entry, base->vectors + idx);
500462a9
TG
520 __set_bit(idx, base->pending_map);
521 timer_set_idx(timer, idx);
1da177e4
LT
522}
523
ffdf0477
AMG
524static void
525__internal_add_timer(struct timer_base *base, struct timer_list *timer)
facbb4a7 526{
ffdf0477
AMG
527 unsigned int idx;
528
529 idx = calc_wheel_index(timer->expires, base->clk);
530 enqueue_timer(base, timer, idx);
531}
9f6d9baa 532
ffdf0477
AMG
533static void
534trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
535{
a683f390
TG
536 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
537 return;
3bb475a3 538
facbb4a7 539 /*
a683f390
TG
540 * TODO: This wants some optimizing similar to the code below, but we
541 * will do that when we switch from push to pull for deferrable timers.
facbb4a7 542 */
a683f390
TG
543 if (timer->flags & TIMER_DEFERRABLE) {
544 if (tick_nohz_full_cpu(base->cpu))
683be13a 545 wake_up_nohz_cpu(base->cpu);
a683f390 546 return;
99d5f3aa 547 }
9f6d9baa
VK
548
549 /*
a683f390
TG
550 * We might have to IPI the remote CPU if the base is idle and the
551 * timer is not deferrable. If the other CPU is on the way to idle
552 * then it can't set base->is_idle as we hold the base lock:
9f6d9baa 553 */
a683f390
TG
554 if (!base->is_idle)
555 return;
556
557 /* Check whether this is the new first expiring timer: */
558 if (time_after_eq(timer->expires, base->next_expiry))
559 return;
560
561 /*
562 * Set the next expiry time and kick the CPU so it can reevaluate the
563 * wheel:
564 */
565 base->next_expiry = timer->expires;
ffdf0477
AMG
566 wake_up_nohz_cpu(base->cpu);
567}
568
569static void
570internal_add_timer(struct timer_base *base, struct timer_list *timer)
571{
572 __internal_add_timer(base, timer);
573 trigger_dyntick_cpu(base, timer);
facbb4a7
TG
574}
575
c6f3a97f
TG
576#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
577
578static struct debug_obj_descr timer_debug_descr;
579
99777288
SG
580static void *timer_debug_hint(void *addr)
581{
582 return ((struct timer_list *) addr)->function;
583}
584
b9fdac7f
DC
585static bool timer_is_static_object(void *addr)
586{
587 struct timer_list *timer = addr;
588
589 return (timer->entry.pprev == NULL &&
590 timer->entry.next == TIMER_ENTRY_STATIC);
591}
592
c6f3a97f
TG
593/*
594 * fixup_init is called when:
595 * - an active object is initialized
55c888d6 596 */
e3252464 597static bool timer_fixup_init(void *addr, enum debug_obj_state state)
c6f3a97f
TG
598{
599 struct timer_list *timer = addr;
600
601 switch (state) {
602 case ODEBUG_STATE_ACTIVE:
603 del_timer_sync(timer);
604 debug_object_init(timer, &timer_debug_descr);
e3252464 605 return true;
c6f3a97f 606 default:
e3252464 607 return false;
c6f3a97f
TG
608 }
609}
610
fb16b8cf
SB
611/* Stub timer callback for improperly used timers. */
612static void stub_timer(unsigned long data)
613{
614 WARN_ON(1);
615}
616
c6f3a97f
TG
617/*
618 * fixup_activate is called when:
619 * - an active object is activated
b9fdac7f 620 * - an unknown non-static object is activated
c6f3a97f 621 */
e3252464 622static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
c6f3a97f
TG
623{
624 struct timer_list *timer = addr;
625
626 switch (state) {
c6f3a97f 627 case ODEBUG_STATE_NOTAVAILABLE:
b9fdac7f
DC
628 setup_timer(timer, stub_timer, 0);
629 return true;
c6f3a97f
TG
630
631 case ODEBUG_STATE_ACTIVE:
632 WARN_ON(1);
633
634 default:
e3252464 635 return false;
c6f3a97f
TG
636 }
637}
638
639/*
640 * fixup_free is called when:
641 * - an active object is freed
642 */
e3252464 643static bool timer_fixup_free(void *addr, enum debug_obj_state state)
c6f3a97f
TG
644{
645 struct timer_list *timer = addr;
646
647 switch (state) {
648 case ODEBUG_STATE_ACTIVE:
649 del_timer_sync(timer);
650 debug_object_free(timer, &timer_debug_descr);
e3252464 651 return true;
c6f3a97f 652 default:
e3252464 653 return false;
c6f3a97f
TG
654 }
655}
656
dc4218bd
CC
657/*
658 * fixup_assert_init is called when:
659 * - an untracked/uninit-ed object is found
660 */
e3252464 661static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
dc4218bd
CC
662{
663 struct timer_list *timer = addr;
664
665 switch (state) {
666 case ODEBUG_STATE_NOTAVAILABLE:
b9fdac7f
DC
667 setup_timer(timer, stub_timer, 0);
668 return true;
dc4218bd 669 default:
e3252464 670 return false;
dc4218bd
CC
671 }
672}
673
c6f3a97f 674static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
675 .name = "timer_list",
676 .debug_hint = timer_debug_hint,
b9fdac7f 677 .is_static_object = timer_is_static_object,
dc4218bd
CC
678 .fixup_init = timer_fixup_init,
679 .fixup_activate = timer_fixup_activate,
680 .fixup_free = timer_fixup_free,
681 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
682};
683
684static inline void debug_timer_init(struct timer_list *timer)
685{
686 debug_object_init(timer, &timer_debug_descr);
687}
688
689static inline void debug_timer_activate(struct timer_list *timer)
690{
691 debug_object_activate(timer, &timer_debug_descr);
692}
693
694static inline void debug_timer_deactivate(struct timer_list *timer)
695{
696 debug_object_deactivate(timer, &timer_debug_descr);
697}
698
699static inline void debug_timer_free(struct timer_list *timer)
700{
701 debug_object_free(timer, &timer_debug_descr);
702}
703
dc4218bd
CC
704static inline void debug_timer_assert_init(struct timer_list *timer)
705{
706 debug_object_assert_init(timer, &timer_debug_descr);
707}
708
fc683995
TH
709static void do_init_timer(struct timer_list *timer, unsigned int flags,
710 const char *name, struct lock_class_key *key);
c6f3a97f 711
fc683995
TH
712void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
713 const char *name, struct lock_class_key *key)
c6f3a97f
TG
714{
715 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 716 do_init_timer(timer, flags, name, key);
c6f3a97f 717}
6f2b9b9a 718EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
719
720void destroy_timer_on_stack(struct timer_list *timer)
721{
722 debug_object_free(timer, &timer_debug_descr);
723}
724EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
725
726#else
727static inline void debug_timer_init(struct timer_list *timer) { }
728static inline void debug_timer_activate(struct timer_list *timer) { }
729static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 730static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
731#endif
732
2b022e3d
XG
733static inline void debug_init(struct timer_list *timer)
734{
735 debug_timer_init(timer);
736 trace_timer_init(timer);
737}
738
739static inline void
740debug_activate(struct timer_list *timer, unsigned long expires)
741{
742 debug_timer_activate(timer);
0eeda71b 743 trace_timer_start(timer, expires, timer->flags);
2b022e3d
XG
744}
745
746static inline void debug_deactivate(struct timer_list *timer)
747{
748 debug_timer_deactivate(timer);
749 trace_timer_cancel(timer);
750}
751
dc4218bd
CC
752static inline void debug_assert_init(struct timer_list *timer)
753{
754 debug_timer_assert_init(timer);
755}
756
fc683995
TH
757static void do_init_timer(struct timer_list *timer, unsigned int flags,
758 const char *name, struct lock_class_key *key)
55c888d6 759{
1dabbcec 760 timer->entry.pprev = NULL;
0eeda71b 761 timer->flags = flags | raw_smp_processor_id();
6f2b9b9a 762 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 763}
c6f3a97f
TG
764
765/**
633fe795 766 * init_timer_key - initialize a timer
c6f3a97f 767 * @timer: the timer to be initialized
fc683995 768 * @flags: timer flags
633fe795
RD
769 * @name: name of the timer
770 * @key: lockdep class key of the fake lock used for tracking timer
771 * sync lock dependencies
c6f3a97f 772 *
633fe795 773 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
774 * other timer functions.
775 */
fc683995
TH
776void init_timer_key(struct timer_list *timer, unsigned int flags,
777 const char *name, struct lock_class_key *key)
c6f3a97f 778{
2b022e3d 779 debug_init(timer);
fc683995 780 do_init_timer(timer, flags, name, key);
c6f3a97f 781}
6f2b9b9a 782EXPORT_SYMBOL(init_timer_key);
55c888d6 783
ec44bc7a 784static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6 785{
1dabbcec 786 struct hlist_node *entry = &timer->entry;
55c888d6 787
2b022e3d 788 debug_deactivate(timer);
c6f3a97f 789
1dabbcec 790 __hlist_del(entry);
55c888d6 791 if (clear_pending)
1dabbcec
TG
792 entry->pprev = NULL;
793 entry->next = LIST_POISON2;
55c888d6
ON
794}
795
494af3ed 796static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
ec44bc7a
TG
797 bool clear_pending)
798{
500462a9
TG
799 unsigned idx = timer_get_idx(timer);
800
ec44bc7a
TG
801 if (!timer_pending(timer))
802 return 0;
803
500462a9
TG
804 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
805 __clear_bit(idx, base->pending_map);
806
ec44bc7a 807 detach_timer(timer, clear_pending);
ec44bc7a
TG
808 return 1;
809}
810
500462a9
TG
811static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
812{
813 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
814
815 /*
816 * If the timer is deferrable and nohz is active then we need to use
817 * the deferrable base.
818 */
819 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
820 (tflags & TIMER_DEFERRABLE))
821 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
822 return base;
823}
824
825static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
826{
827 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
828
829 /*
830 * If the timer is deferrable and nohz is active then we need to use
831 * the deferrable base.
832 */
833 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
834 (tflags & TIMER_DEFERRABLE))
835 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
836 return base;
837}
838
839static inline struct timer_base *get_timer_base(u32 tflags)
840{
841 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
842}
843
a683f390
TG
844#ifdef CONFIG_NO_HZ_COMMON
845static inline struct timer_base *
6bad6bcc 846get_target_base(struct timer_base *base, unsigned tflags)
500462a9 847{
a683f390 848#ifdef CONFIG_SMP
500462a9
TG
849 if ((tflags & TIMER_PINNED) || !base->migration_enabled)
850 return get_timer_this_cpu_base(tflags);
851 return get_timer_cpu_base(tflags, get_nohz_timer_target());
852#else
853 return get_timer_this_cpu_base(tflags);
854#endif
855}
856
a683f390
TG
857static inline void forward_timer_base(struct timer_base *base)
858{
6bad6bcc
TG
859 unsigned long jnow = READ_ONCE(jiffies);
860
a683f390
TG
861 /*
862 * We only forward the base when it's idle and we have a delta between
863 * base clock and jiffies.
864 */
6bad6bcc 865 if (!base->is_idle || (long) (jnow - base->clk) < 2)
a683f390
TG
866 return;
867
868 /*
869 * If the next expiry value is > jiffies, then we fast forward to
870 * jiffies otherwise we forward to the next expiry value.
871 */
6bad6bcc
TG
872 if (time_after(base->next_expiry, jnow))
873 base->clk = jnow;
a683f390
TG
874 else
875 base->clk = base->next_expiry;
876}
877#else
878static inline struct timer_base *
6bad6bcc 879get_target_base(struct timer_base *base, unsigned tflags)
a683f390
TG
880{
881 return get_timer_this_cpu_base(tflags);
882}
883
884static inline void forward_timer_base(struct timer_base *base) { }
885#endif
886
a683f390 887
55c888d6 888/*
500462a9
TG
889 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
890 * that all timers which are tied to this base are locked, and the base itself
891 * is locked too.
55c888d6
ON
892 *
893 * So __run_timers/migrate_timers can safely modify all timers which could
500462a9 894 * be found in the base->vectors array.
55c888d6 895 *
500462a9
TG
896 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
897 * to wait until the migration is done.
55c888d6 898 */
494af3ed 899static struct timer_base *lock_timer_base(struct timer_list *timer,
500462a9 900 unsigned long *flags)
89e7e374 901 __acquires(timer->base->lock)
55c888d6 902{
55c888d6 903 for (;;) {
494af3ed 904 struct timer_base *base;
b831275a
TG
905 u32 tf;
906
907 /*
908 * We need to use READ_ONCE() here, otherwise the compiler
909 * might re-read @tf between the check for TIMER_MIGRATING
910 * and spin_lock().
911 */
912 tf = READ_ONCE(timer->flags);
0eeda71b
TG
913
914 if (!(tf & TIMER_MIGRATING)) {
500462a9 915 base = get_timer_base(tf);
2287d866 916 raw_spin_lock_irqsave(&base->lock, *flags);
0eeda71b 917 if (timer->flags == tf)
55c888d6 918 return base;
2287d866 919 raw_spin_unlock_irqrestore(&base->lock, *flags);
55c888d6
ON
920 }
921 cpu_relax();
922 }
923}
924
74019224 925static inline int
177ec0a0 926__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
1da177e4 927{
494af3ed 928 struct timer_base *base, *new_base;
f00c0afd
AMG
929 unsigned int idx = UINT_MAX;
930 unsigned long clk = 0, flags;
bc7a34b8 931 int ret = 0;
1da177e4 932
4da9152a
TG
933 BUG_ON(!timer->function);
934
500462a9 935 /*
f00c0afd
AMG
936 * This is a common optimization triggered by the networking code - if
937 * the timer is re-modified to have the same timeout or ends up in the
938 * same array bucket then just return:
500462a9
TG
939 */
940 if (timer_pending(timer)) {
941 if (timer->expires == expires)
942 return 1;
4da9152a 943
f00c0afd 944 /*
4da9152a
TG
945 * We lock timer base and calculate the bucket index right
946 * here. If the timer ends up in the same bucket, then we
947 * just update the expiry time and avoid the whole
948 * dequeue/enqueue dance.
f00c0afd 949 */
4da9152a 950 base = lock_timer_base(timer, &flags);
f00c0afd 951
4da9152a 952 clk = base->clk;
f00c0afd
AMG
953 idx = calc_wheel_index(expires, clk);
954
955 /*
956 * Retrieve and compare the array index of the pending
957 * timer. If it matches set the expiry to the new value so a
958 * subsequent call will exit in the expires check above.
959 */
960 if (idx == timer_get_idx(timer)) {
961 timer->expires = expires;
4da9152a
TG
962 ret = 1;
963 goto out_unlock;
f00c0afd 964 }
4da9152a
TG
965 } else {
966 base = lock_timer_base(timer, &flags);
500462a9
TG
967 }
968
ec44bc7a
TG
969 ret = detach_if_pending(timer, base, false);
970 if (!ret && pending_only)
971 goto out_unlock;
55c888d6 972
2b022e3d 973 debug_activate(timer, expires);
c6f3a97f 974
500462a9 975 new_base = get_target_base(base, timer->flags);
eea08f32 976
3691c519 977 if (base != new_base) {
1da177e4 978 /*
500462a9 979 * We are trying to schedule the timer on the new base.
55c888d6
ON
980 * However we can't change timer's base while it is running,
981 * otherwise del_timer_sync() can't detect that the timer's
500462a9
TG
982 * handler yet has not finished. This also guarantees that the
983 * timer is serialized wrt itself.
1da177e4 984 */
a2c348fe 985 if (likely(base->running_timer != timer)) {
55c888d6 986 /* See the comment in lock_timer_base() */
0eeda71b
TG
987 timer->flags |= TIMER_MIGRATING;
988
2287d866 989 raw_spin_unlock(&base->lock);
a2c348fe 990 base = new_base;
2287d866 991 raw_spin_lock(&base->lock);
d0023a14
ED
992 WRITE_ONCE(timer->flags,
993 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1da177e4
LT
994 }
995 }
996
6bad6bcc
TG
997 /* Try to forward a stale timer base clock */
998 forward_timer_base(base);
999
1da177e4 1000 timer->expires = expires;
f00c0afd
AMG
1001 /*
1002 * If 'idx' was calculated above and the base time did not advance
4da9152a
TG
1003 * between calculating 'idx' and possibly switching the base, only
1004 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1005 * we need to (re)calculate the wheel index via
1006 * internal_add_timer().
f00c0afd
AMG
1007 */
1008 if (idx != UINT_MAX && clk == base->clk) {
1009 enqueue_timer(base, timer, idx);
1010 trigger_dyntick_cpu(base, timer);
1011 } else {
1012 internal_add_timer(base, timer);
1013 }
74019224
IM
1014
1015out_unlock:
2287d866 1016 raw_spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
1017
1018 return ret;
1019}
1020
2aae4a10 1021/**
74019224
IM
1022 * mod_timer_pending - modify a pending timer's timeout
1023 * @timer: the pending timer to be modified
1024 * @expires: new timeout in jiffies
1da177e4 1025 *
74019224
IM
1026 * mod_timer_pending() is the same for pending timers as mod_timer(),
1027 * but will not re-activate and modify already deleted timers.
1028 *
1029 * It is useful for unserialized use of timers.
1da177e4 1030 */
74019224 1031int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 1032{
177ec0a0 1033 return __mod_timer(timer, expires, true);
1da177e4 1034}
74019224 1035EXPORT_SYMBOL(mod_timer_pending);
1da177e4 1036
2aae4a10 1037/**
1da177e4
LT
1038 * mod_timer - modify a timer's timeout
1039 * @timer: the timer to be modified
2aae4a10 1040 * @expires: new timeout in jiffies
1da177e4 1041 *
72fd4a35 1042 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
1043 * active timer (if the timer is inactive it will be activated)
1044 *
1045 * mod_timer(timer, expires) is equivalent to:
1046 *
1047 * del_timer(timer); timer->expires = expires; add_timer(timer);
1048 *
1049 * Note that if there are multiple unserialized concurrent users of the
1050 * same timer, then mod_timer() is the only safe way to modify the timeout,
1051 * since add_timer() cannot modify an already running timer.
1052 *
1053 * The function returns whether it has modified a pending timer or not.
1054 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1055 * active timer returns 1.)
1056 */
1057int mod_timer(struct timer_list *timer, unsigned long expires)
1058{
177ec0a0 1059 return __mod_timer(timer, expires, false);
1da177e4 1060}
1da177e4
LT
1061EXPORT_SYMBOL(mod_timer);
1062
74019224
IM
1063/**
1064 * add_timer - start a timer
1065 * @timer: the timer to be added
1066 *
1067 * The kernel will do a ->function(->data) callback from the
1068 * timer interrupt at the ->expires point in the future. The
1069 * current time is 'jiffies'.
1070 *
1071 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1072 * fields must be set prior calling this function.
1073 *
1074 * Timers with an ->expires field in the past will be executed in the next
1075 * timer tick.
1076 */
1077void add_timer(struct timer_list *timer)
1078{
1079 BUG_ON(timer_pending(timer));
1080 mod_timer(timer, timer->expires);
1081}
1082EXPORT_SYMBOL(add_timer);
1083
1084/**
1085 * add_timer_on - start a timer on a particular CPU
1086 * @timer: the timer to be added
1087 * @cpu: the CPU to start it on
1088 *
1089 * This is not very scalable on SMP. Double adds are not possible.
1090 */
1091void add_timer_on(struct timer_list *timer, int cpu)
1092{
500462a9 1093 struct timer_base *new_base, *base;
74019224
IM
1094 unsigned long flags;
1095
74019224 1096 BUG_ON(timer_pending(timer) || !timer->function);
22b886dd 1097
500462a9
TG
1098 new_base = get_timer_cpu_base(timer->flags, cpu);
1099
22b886dd
TH
1100 /*
1101 * If @timer was on a different CPU, it should be migrated with the
1102 * old base locked to prevent other operations proceeding with the
1103 * wrong base locked. See lock_timer_base().
1104 */
1105 base = lock_timer_base(timer, &flags);
1106 if (base != new_base) {
1107 timer->flags |= TIMER_MIGRATING;
1108
2287d866 1109 raw_spin_unlock(&base->lock);
22b886dd 1110 base = new_base;
2287d866 1111 raw_spin_lock(&base->lock);
22b886dd
TH
1112 WRITE_ONCE(timer->flags,
1113 (timer->flags & ~TIMER_BASEMASK) | cpu);
1114 }
1115
2b022e3d 1116 debug_activate(timer, timer->expires);
74019224 1117 internal_add_timer(base, timer);
2287d866 1118 raw_spin_unlock_irqrestore(&base->lock, flags);
74019224 1119}
a9862e05 1120EXPORT_SYMBOL_GPL(add_timer_on);
74019224 1121
2aae4a10 1122/**
0ba42a59 1123 * del_timer - deactivate a timer.
1da177e4
LT
1124 * @timer: the timer to be deactivated
1125 *
1126 * del_timer() deactivates a timer - this works on both active and inactive
1127 * timers.
1128 *
1129 * The function returns whether it has deactivated a pending timer or not.
1130 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1131 * active timer returns 1.)
1132 */
1133int del_timer(struct timer_list *timer)
1134{
494af3ed 1135 struct timer_base *base;
1da177e4 1136 unsigned long flags;
55c888d6 1137 int ret = 0;
1da177e4 1138
dc4218bd
CC
1139 debug_assert_init(timer);
1140
55c888d6
ON
1141 if (timer_pending(timer)) {
1142 base = lock_timer_base(timer, &flags);
ec44bc7a 1143 ret = detach_if_pending(timer, base, true);
2287d866 1144 raw_spin_unlock_irqrestore(&base->lock, flags);
1da177e4 1145 }
1da177e4 1146
55c888d6 1147 return ret;
1da177e4 1148}
1da177e4
LT
1149EXPORT_SYMBOL(del_timer);
1150
2aae4a10
REB
1151/**
1152 * try_to_del_timer_sync - Try to deactivate a timer
d15bc69a 1153 * @timer: timer to delete
2aae4a10 1154 *
fd450b73
ON
1155 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1156 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1157 */
1158int try_to_del_timer_sync(struct timer_list *timer)
1159{
494af3ed 1160 struct timer_base *base;
fd450b73
ON
1161 unsigned long flags;
1162 int ret = -1;
1163
dc4218bd
CC
1164 debug_assert_init(timer);
1165
fd450b73
ON
1166 base = lock_timer_base(timer, &flags);
1167
dfb4357d 1168 if (base->running_timer != timer)
ec44bc7a 1169 ret = detach_if_pending(timer, base, true);
dfb4357d 1170
2287d866 1171 raw_spin_unlock_irqrestore(&base->lock, flags);
fd450b73
ON
1172
1173 return ret;
1174}
e19dff1f
DH
1175EXPORT_SYMBOL(try_to_del_timer_sync);
1176
6f1bc451 1177#ifdef CONFIG_SMP
2aae4a10 1178/**
1da177e4
LT
1179 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1180 * @timer: the timer to be deactivated
1181 *
1182 * This function only differs from del_timer() on SMP: besides deactivating
1183 * the timer it also makes sure the handler has finished executing on other
1184 * CPUs.
1185 *
72fd4a35 1186 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1187 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1188 * interrupt contexts unless the timer is an irqsafe one. The caller must
1189 * not hold locks which would prevent completion of the timer's
1190 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1191 * timer is not queued and the handler is not running on any CPU.
1da177e4 1192 *
c5f66e99
TH
1193 * Note: For !irqsafe timers, you must not hold locks that are held in
1194 * interrupt context while calling this function. Even if the lock has
1195 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1196 *
1197 * CPU0 CPU1
1198 * ---- ----
1199 * <SOFTIRQ>
1200 * call_timer_fn();
1201 * base->running_timer = mytimer;
1202 * spin_lock_irq(somelock);
1203 * <IRQ>
1204 * spin_lock(somelock);
1205 * del_timer_sync(mytimer);
1206 * while (base->running_timer == mytimer);
1207 *
1208 * Now del_timer_sync() will never return and never release somelock.
1209 * The interrupt on the other CPU is waiting to grab somelock but
1210 * it has interrupted the softirq that CPU0 is waiting to finish.
1211 *
1da177e4 1212 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1213 */
1214int del_timer_sync(struct timer_list *timer)
1215{
6f2b9b9a 1216#ifdef CONFIG_LOCKDEP
f266a511
PZ
1217 unsigned long flags;
1218
48228f7b
SR
1219 /*
1220 * If lockdep gives a backtrace here, please reference
1221 * the synchronization rules above.
1222 */
7ff20792 1223 local_irq_save(flags);
6f2b9b9a
JB
1224 lock_map_acquire(&timer->lockdep_map);
1225 lock_map_release(&timer->lockdep_map);
7ff20792 1226 local_irq_restore(flags);
6f2b9b9a 1227#endif
466bd303
YZ
1228 /*
1229 * don't use it in hardirq context, because it
1230 * could lead to deadlock.
1231 */
0eeda71b 1232 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
fd450b73
ON
1233 for (;;) {
1234 int ret = try_to_del_timer_sync(timer);
1235 if (ret >= 0)
1236 return ret;
a0009652 1237 cpu_relax();
fd450b73 1238 }
1da177e4 1239}
55c888d6 1240EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1241#endif
1242
576da126
TG
1243static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1244 unsigned long data)
1245{
4a2b4b22 1246 int count = preempt_count();
576da126
TG
1247
1248#ifdef CONFIG_LOCKDEP
1249 /*
1250 * It is permissible to free the timer from inside the
1251 * function that is called from it, this we need to take into
1252 * account for lockdep too. To avoid bogus "held lock freed"
1253 * warnings as well as problems when looking into
1254 * timer->lockdep_map, make a copy and use that here.
1255 */
4d82a1de
PZ
1256 struct lockdep_map lockdep_map;
1257
1258 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1259#endif
1260 /*
1261 * Couple the lock chain with the lock chain at
1262 * del_timer_sync() by acquiring the lock_map around the fn()
1263 * call here and in del_timer_sync().
1264 */
1265 lock_map_acquire(&lockdep_map);
1266
1267 trace_timer_expire_entry(timer);
1268 fn(data);
1269 trace_timer_expire_exit(timer);
1270
1271 lock_map_release(&lockdep_map);
1272
4a2b4b22 1273 if (count != preempt_count()) {
802702e0 1274 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
4a2b4b22 1275 fn, count, preempt_count());
802702e0
TG
1276 /*
1277 * Restore the preempt count. That gives us a decent
1278 * chance to survive and extract information. If the
1279 * callback kept a lock held, bad luck, but not worse
1280 * than the BUG() we had.
1281 */
4a2b4b22 1282 preempt_count_set(count);
576da126
TG
1283 }
1284}
1285
500462a9 1286static void expire_timers(struct timer_base *base, struct hlist_head *head)
1da177e4 1287{
500462a9
TG
1288 while (!hlist_empty(head)) {
1289 struct timer_list *timer;
1290 void (*fn)(unsigned long);
1291 unsigned long data;
1da177e4 1292
500462a9 1293 timer = hlist_entry(head->first, struct timer_list, entry);
3bb475a3 1294
500462a9
TG
1295 base->running_timer = timer;
1296 detach_timer(timer, true);
3bb475a3 1297
500462a9
TG
1298 fn = timer->function;
1299 data = timer->data;
1300
1301 if (timer->flags & TIMER_IRQSAFE) {
2287d866 1302 raw_spin_unlock(&base->lock);
500462a9 1303 call_timer_fn(timer, fn, data);
2287d866 1304 raw_spin_lock(&base->lock);
500462a9 1305 } else {
2287d866 1306 raw_spin_unlock_irq(&base->lock);
500462a9 1307 call_timer_fn(timer, fn, data);
2287d866 1308 raw_spin_lock_irq(&base->lock);
3bb475a3 1309 }
500462a9
TG
1310 }
1311}
3bb475a3 1312
23696838
AMG
1313static int __collect_expired_timers(struct timer_base *base,
1314 struct hlist_head *heads)
500462a9
TG
1315{
1316 unsigned long clk = base->clk;
1317 struct hlist_head *vec;
1318 int i, levels = 0;
1319 unsigned int idx;
626ab0e6 1320
500462a9
TG
1321 for (i = 0; i < LVL_DEPTH; i++) {
1322 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1323
1324 if (__test_and_clear_bit(idx, base->pending_map)) {
1325 vec = base->vectors + idx;
1326 hlist_move_list(vec, heads++);
1327 levels++;
1da177e4 1328 }
500462a9
TG
1329 /* Is it time to look at the next level? */
1330 if (clk & LVL_CLK_MASK)
1331 break;
1332 /* Shift clock for the next level granularity */
1333 clk >>= LVL_CLK_SHIFT;
1da177e4 1334 }
500462a9 1335 return levels;
1da177e4
LT
1336}
1337
3451d024 1338#ifdef CONFIG_NO_HZ_COMMON
1da177e4 1339/*
23696838
AMG
1340 * Find the next pending bucket of a level. Search from level start (@offset)
1341 * + @clk upwards and if nothing there, search from start of the level
1342 * (@offset) up to @offset + clk.
1da177e4 1343 */
500462a9
TG
1344static int next_pending_bucket(struct timer_base *base, unsigned offset,
1345 unsigned clk)
1346{
1347 unsigned pos, start = offset + clk;
1348 unsigned end = offset + LVL_SIZE;
1349
1350 pos = find_next_bit(base->pending_map, end, start);
1351 if (pos < end)
1352 return pos - start;
1353
1354 pos = find_next_bit(base->pending_map, start, offset);
1355 return pos < start ? pos + LVL_SIZE - start : -1;
1356}
1357
1358/*
23696838
AMG
1359 * Search the first expiring timer in the various clock levels. Caller must
1360 * hold base->lock.
1da177e4 1361 */
494af3ed 1362static unsigned long __next_timer_interrupt(struct timer_base *base)
1da177e4 1363{
500462a9
TG
1364 unsigned long clk, next, adj;
1365 unsigned lvl, offset = 0;
1366
500462a9
TG
1367 next = base->clk + NEXT_TIMER_MAX_DELTA;
1368 clk = base->clk;
1369 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1370 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1371
1372 if (pos >= 0) {
1373 unsigned long tmp = clk + (unsigned long) pos;
1374
1375 tmp <<= LVL_SHIFT(lvl);
1376 if (time_before(tmp, next))
1377 next = tmp;
1da177e4 1378 }
500462a9
TG
1379 /*
1380 * Clock for the next level. If the current level clock lower
1381 * bits are zero, we look at the next level as is. If not we
1382 * need to advance it by one because that's going to be the
1383 * next expiring bucket in that level. base->clk is the next
1384 * expiring jiffie. So in case of:
1385 *
1386 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1387 * 0 0 0 0 0 0
1388 *
1389 * we have to look at all levels @index 0. With
1390 *
1391 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1392 * 0 0 0 0 0 2
1393 *
1394 * LVL0 has the next expiring bucket @index 2. The upper
1395 * levels have the next expiring bucket @index 1.
1396 *
1397 * In case that the propagation wraps the next level the same
1398 * rules apply:
1399 *
1400 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1401 * 0 0 0 0 F 2
1402 *
1403 * So after looking at LVL0 we get:
1404 *
1405 * LVL5 LVL4 LVL3 LVL2 LVL1
1406 * 0 0 0 1 0
1407 *
1408 * So no propagation from LVL1 to LVL2 because that happened
1409 * with the add already, but then we need to propagate further
1410 * from LVL2 to LVL3.
1411 *
1412 * So the simple check whether the lower bits of the current
1413 * level are 0 or not is sufficient for all cases.
1414 */
1415 adj = clk & LVL_CLK_MASK ? 1 : 0;
1416 clk >>= LVL_CLK_SHIFT;
1417 clk += adj;
1da177e4 1418 }
500462a9 1419 return next;
1cfd6849 1420}
69239749 1421
1cfd6849
TG
1422/*
1423 * Check, if the next hrtimer event is before the next timer wheel
1424 * event:
1425 */
c1ad348b 1426static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1cfd6849 1427{
c1ad348b 1428 u64 nextevt = hrtimer_get_next_event();
0662b713 1429
9501b6cf 1430 /*
c1ad348b
TG
1431 * If high resolution timers are enabled
1432 * hrtimer_get_next_event() returns KTIME_MAX.
9501b6cf 1433 */
c1ad348b
TG
1434 if (expires <= nextevt)
1435 return expires;
eaad084b
TG
1436
1437 /*
c1ad348b
TG
1438 * If the next timer is already expired, return the tick base
1439 * time so the tick is fired immediately.
eaad084b 1440 */
c1ad348b
TG
1441 if (nextevt <= basem)
1442 return basem;
eaad084b 1443
9501b6cf 1444 /*
c1ad348b
TG
1445 * Round up to the next jiffie. High resolution timers are
1446 * off, so the hrtimers are expired in the tick and we need to
1447 * make sure that this tick really expires the timer to avoid
1448 * a ping pong of the nohz stop code.
1449 *
1450 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
9501b6cf 1451 */
c1ad348b 1452 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1da177e4 1453}
1cfd6849
TG
1454
1455/**
c1ad348b
TG
1456 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1457 * @basej: base time jiffies
1458 * @basem: base time clock monotonic
1459 *
1460 * Returns the tick aligned clock monotonic time of the next pending
1461 * timer or KTIME_MAX if no timer is pending.
1cfd6849 1462 */
c1ad348b 1463u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1cfd6849 1464{
500462a9 1465 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
c1ad348b
TG
1466 u64 expires = KTIME_MAX;
1467 unsigned long nextevt;
46c8f0b0 1468 bool is_max_delta;
1cfd6849 1469
dbd87b5a
HC
1470 /*
1471 * Pretend that there is no timer pending if the cpu is offline.
1472 * Possible pending timers will be migrated later to an active cpu.
1473 */
1474 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1475 return expires;
1476
2287d866 1477 raw_spin_lock(&base->lock);
500462a9 1478 nextevt = __next_timer_interrupt(base);
46c8f0b0 1479 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
a683f390
TG
1480 base->next_expiry = nextevt;
1481 /*
041ad7bc
TG
1482 * We have a fresh next event. Check whether we can forward the
1483 * base. We can only do that when @basej is past base->clk
1484 * otherwise we might rewind base->clk.
a683f390 1485 */
041ad7bc
TG
1486 if (time_after(basej, base->clk)) {
1487 if (time_after(nextevt, basej))
1488 base->clk = basej;
1489 else if (time_after(nextevt, base->clk))
1490 base->clk = nextevt;
1491 }
23696838 1492
a683f390 1493 if (time_before_eq(nextevt, basej)) {
500462a9 1494 expires = basem;
a683f390
TG
1495 base->is_idle = false;
1496 } else {
46c8f0b0 1497 if (!is_max_delta)
34f41c03 1498 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
a683f390
TG
1499 /*
1500 * If we expect to sleep more than a tick, mark the base idle:
1501 */
1502 if ((expires - basem) > TICK_NSEC)
1503 base->is_idle = true;
e40468a5 1504 }
2287d866 1505 raw_spin_unlock(&base->lock);
1cfd6849 1506
c1ad348b 1507 return cmp_next_hrtimer_event(basem, expires);
1cfd6849 1508}
23696838 1509
a683f390
TG
1510/**
1511 * timer_clear_idle - Clear the idle state of the timer base
1512 *
1513 * Called with interrupts disabled
1514 */
1515void timer_clear_idle(void)
1516{
1517 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1518
1519 /*
1520 * We do this unlocked. The worst outcome is a remote enqueue sending
1521 * a pointless IPI, but taking the lock would just make the window for
1522 * sending the IPI a few instructions smaller for the cost of taking
1523 * the lock in the exit from idle path.
1524 */
1525 base->is_idle = false;
1526}
1527
23696838
AMG
1528static int collect_expired_timers(struct timer_base *base,
1529 struct hlist_head *heads)
1530{
1531 /*
1532 * NOHZ optimization. After a long idle sleep we need to forward the
1533 * base to current jiffies. Avoid a loop by searching the bitfield for
1534 * the next expiring timer.
1535 */
1536 if ((long)(jiffies - base->clk) > 2) {
1537 unsigned long next = __next_timer_interrupt(base);
1538
1539 /*
1540 * If the next timer is ahead of time forward to current
a683f390 1541 * jiffies, otherwise forward to the next expiry time:
23696838
AMG
1542 */
1543 if (time_after(next, jiffies)) {
1544 /* The call site will increment clock! */
1545 base->clk = jiffies - 1;
1546 return 0;
1547 }
1548 base->clk = next;
1549 }
1550 return __collect_expired_timers(base, heads);
1551}
1552#else
1553static inline int collect_expired_timers(struct timer_base *base,
1554 struct hlist_head *heads)
1555{
1556 return __collect_expired_timers(base, heads);
1557}
1da177e4
LT
1558#endif
1559
1da177e4 1560/*
5b4db0c2 1561 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1562 * process. user_tick is 1 if the tick is user time, 0 for system.
1563 */
1564void update_process_times(int user_tick)
1565{
1566 struct task_struct *p = current;
1da177e4
LT
1567
1568 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1569 account_process_tick(p, user_tick);
1da177e4 1570 run_local_timers();
c3377c2d 1571 rcu_check_callbacks(user_tick);
e360adbe
PZ
1572#ifdef CONFIG_IRQ_WORK
1573 if (in_irq())
76a33061 1574 irq_work_tick();
e360adbe 1575#endif
1da177e4 1576 scheduler_tick();
baa73d9e
NP
1577 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1578 run_posix_cpu_timers(p);
1da177e4
LT
1579}
1580
73420fea
AMG
1581/**
1582 * __run_timers - run all expired timers (if any) on this CPU.
1583 * @base: the timer vector to be processed.
1584 */
1585static inline void __run_timers(struct timer_base *base)
1586{
1587 struct hlist_head heads[LVL_DEPTH];
1588 int levels;
1589
1590 if (!time_after_eq(jiffies, base->clk))
1591 return;
1592
2287d866 1593 raw_spin_lock_irq(&base->lock);
73420fea
AMG
1594
1595 while (time_after_eq(jiffies, base->clk)) {
1596
1597 levels = collect_expired_timers(base, heads);
1598 base->clk++;
1599
1600 while (levels--)
1601 expire_timers(base, heads + levels);
1602 }
1603 base->running_timer = NULL;
2287d866 1604 raw_spin_unlock_irq(&base->lock);
73420fea
AMG
1605}
1606
1da177e4
LT
1607/*
1608 * This function runs timers and the timer-tq in bottom half context.
1609 */
0766f788 1610static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1da177e4 1611{
500462a9 1612 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1da177e4 1613
500462a9
TG
1614 __run_timers(base);
1615 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1616 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1da177e4
LT
1617}
1618
1619/*
1620 * Called by the local, per-CPU timer interrupt on SMP.
1621 */
1622void run_local_timers(void)
1623{
4e85876a
TG
1624 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1625
d3d74453 1626 hrtimer_run_queues();
4e85876a
TG
1627 /* Raise the softirq only if required. */
1628 if (time_before(jiffies, base->clk)) {
1629 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1630 return;
1631 /* CPU is awake, so check the deferrable base. */
1632 base++;
1633 if (time_before(jiffies, base->clk))
1634 return;
1635 }
1da177e4
LT
1636 raise_softirq(TIMER_SOFTIRQ);
1637}
1638
1da177e4
LT
1639static void process_timeout(unsigned long __data)
1640{
36c8b586 1641 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1642}
1643
1644/**
1645 * schedule_timeout - sleep until timeout
1646 * @timeout: timeout value in jiffies
1647 *
1648 * Make the current task sleep until @timeout jiffies have
1649 * elapsed. The routine will return immediately unless
1650 * the current task state has been set (see set_current_state()).
1651 *
1652 * You can set the task state as follows -
1653 *
1654 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
4b7e9cf9
DA
1655 * pass before the routine returns unless the current task is explicitly
1656 * woken up, (e.g. by wake_up_process())".
1da177e4
LT
1657 *
1658 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1659 * delivered to the current task or the current task is explicitly woken
1660 * up.
1da177e4
LT
1661 *
1662 * The current task state is guaranteed to be TASK_RUNNING when this
1663 * routine returns.
1664 *
1665 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1666 * the CPU away without a bound on the timeout. In this case the return
1667 * value will be %MAX_SCHEDULE_TIMEOUT.
1668 *
4b7e9cf9
DA
1669 * Returns 0 when the timer has expired otherwise the remaining time in
1670 * jiffies will be returned. In all cases the return value is guaranteed
1671 * to be non-negative.
1da177e4 1672 */
7ad5b3a5 1673signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1674{
1675 struct timer_list timer;
1676 unsigned long expire;
1677
1678 switch (timeout)
1679 {
1680 case MAX_SCHEDULE_TIMEOUT:
1681 /*
1682 * These two special cases are useful to be comfortable
1683 * in the caller. Nothing more. We could take
1684 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1685 * but I' d like to return a valid offset (>=0) to allow
1686 * the caller to do everything it want with the retval.
1687 */
1688 schedule();
1689 goto out;
1690 default:
1691 /*
1692 * Another bit of PARANOID. Note that the retval will be
1693 * 0 since no piece of kernel is supposed to do a check
1694 * for a negative retval of schedule_timeout() (since it
1695 * should never happens anyway). You just have the printk()
1696 * that will tell you if something is gone wrong and where.
1697 */
5b149bcc 1698 if (timeout < 0) {
1da177e4 1699 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1700 "value %lx\n", timeout);
1701 dump_stack();
1da177e4
LT
1702 current->state = TASK_RUNNING;
1703 goto out;
1704 }
1705 }
1706
1707 expire = timeout + jiffies;
1708
c6f3a97f 1709 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
177ec0a0 1710 __mod_timer(&timer, expire, false);
1da177e4
LT
1711 schedule();
1712 del_singleshot_timer_sync(&timer);
1713
c6f3a97f
TG
1714 /* Remove the timer from the object tracker */
1715 destroy_timer_on_stack(&timer);
1716
1da177e4
LT
1717 timeout = expire - jiffies;
1718
1719 out:
1720 return timeout < 0 ? 0 : timeout;
1721}
1da177e4
LT
1722EXPORT_SYMBOL(schedule_timeout);
1723
8a1c1757
AM
1724/*
1725 * We can use __set_current_state() here because schedule_timeout() calls
1726 * schedule() unconditionally.
1727 */
64ed93a2
NA
1728signed long __sched schedule_timeout_interruptible(signed long timeout)
1729{
a5a0d52c
AM
1730 __set_current_state(TASK_INTERRUPTIBLE);
1731 return schedule_timeout(timeout);
64ed93a2
NA
1732}
1733EXPORT_SYMBOL(schedule_timeout_interruptible);
1734
294d5cc2
MW
1735signed long __sched schedule_timeout_killable(signed long timeout)
1736{
1737 __set_current_state(TASK_KILLABLE);
1738 return schedule_timeout(timeout);
1739}
1740EXPORT_SYMBOL(schedule_timeout_killable);
1741
64ed93a2
NA
1742signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1743{
a5a0d52c
AM
1744 __set_current_state(TASK_UNINTERRUPTIBLE);
1745 return schedule_timeout(timeout);
64ed93a2
NA
1746}
1747EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1748
69b27baf
AM
1749/*
1750 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1751 * to load average.
1752 */
1753signed long __sched schedule_timeout_idle(signed long timeout)
1754{
1755 __set_current_state(TASK_IDLE);
1756 return schedule_timeout(timeout);
1757}
1758EXPORT_SYMBOL(schedule_timeout_idle);
1759
1da177e4 1760#ifdef CONFIG_HOTPLUG_CPU
494af3ed 1761static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1da177e4
LT
1762{
1763 struct timer_list *timer;
0eeda71b 1764 int cpu = new_base->cpu;
1da177e4 1765
1dabbcec
TG
1766 while (!hlist_empty(head)) {
1767 timer = hlist_entry(head->first, struct timer_list, entry);
ec44bc7a 1768 detach_timer(timer, false);
0eeda71b 1769 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1da177e4 1770 internal_add_timer(new_base, timer);
1da177e4 1771 }
1da177e4
LT
1772}
1773
24f73b99 1774int timers_dead_cpu(unsigned int cpu)
1da177e4 1775{
494af3ed
TG
1776 struct timer_base *old_base;
1777 struct timer_base *new_base;
500462a9 1778 int b, i;
1da177e4
LT
1779
1780 BUG_ON(cpu_online(cpu));
55c888d6 1781
500462a9
TG
1782 for (b = 0; b < NR_BASES; b++) {
1783 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1784 new_base = get_cpu_ptr(&timer_bases[b]);
1785 /*
1786 * The caller is globally serialized and nobody else
1787 * takes two locks at once, deadlock is not possible.
1788 */
2287d866
SAS
1789 raw_spin_lock_irq(&new_base->lock);
1790 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
500462a9
TG
1791
1792 BUG_ON(old_base->running_timer);
1793
1794 for (i = 0; i < WHEEL_SIZE; i++)
1795 migrate_timer_list(new_base, old_base->vectors + i);
8def9060 1796
2287d866
SAS
1797 raw_spin_unlock(&old_base->lock);
1798 raw_spin_unlock_irq(&new_base->lock);
500462a9
TG
1799 put_cpu_ptr(&timer_bases);
1800 }
24f73b99 1801 return 0;
1da177e4 1802}
1da177e4 1803
3650b57f 1804#endif /* CONFIG_HOTPLUG_CPU */
1da177e4 1805
0eeda71b 1806static void __init init_timer_cpu(int cpu)
8def9060 1807{
500462a9
TG
1808 struct timer_base *base;
1809 int i;
8def9060 1810
500462a9
TG
1811 for (i = 0; i < NR_BASES; i++) {
1812 base = per_cpu_ptr(&timer_bases[i], cpu);
1813 base->cpu = cpu;
2287d866 1814 raw_spin_lock_init(&base->lock);
500462a9
TG
1815 base->clk = jiffies;
1816 }
8def9060
VK
1817}
1818
1819static void __init init_timer_cpus(void)
1da177e4 1820{
8def9060
VK
1821 int cpu;
1822
0eeda71b
TG
1823 for_each_possible_cpu(cpu)
1824 init_timer_cpu(cpu);
8def9060 1825}
e52b1db3 1826
8def9060
VK
1827void __init init_timers(void)
1828{
8def9060 1829 init_timer_cpus();
962cf36c 1830 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1831}
1832
1da177e4
LT
1833/**
1834 * msleep - sleep safely even with waitqueue interruptions
1835 * @msecs: Time in milliseconds to sleep for
1836 */
1837void msleep(unsigned int msecs)
1838{
1839 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1840
75bcc8c5
NA
1841 while (timeout)
1842 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1843}
1844
1845EXPORT_SYMBOL(msleep);
1846
1847/**
96ec3efd 1848 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1849 * @msecs: Time in milliseconds to sleep for
1850 */
1851unsigned long msleep_interruptible(unsigned int msecs)
1852{
1853 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1854
75bcc8c5
NA
1855 while (timeout && !signal_pending(current))
1856 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1857 return jiffies_to_msecs(timeout);
1858}
1859
1860EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17 1861
5e7f5a17 1862/**
b5227d03 1863 * usleep_range - Sleep for an approximate time
5e7f5a17
PP
1864 * @min: Minimum time in usecs to sleep
1865 * @max: Maximum time in usecs to sleep
b5227d03
BH
1866 *
1867 * In non-atomic context where the exact wakeup time is flexible, use
1868 * usleep_range() instead of udelay(). The sleep improves responsiveness
1869 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1870 * power usage by allowing hrtimers to take advantage of an already-
1871 * scheduled interrupt instead of scheduling a new one just for this sleep.
5e7f5a17 1872 */
2ad5d327 1873void __sched usleep_range(unsigned long min, unsigned long max)
5e7f5a17 1874{
6c5e9059
DA
1875 ktime_t exp = ktime_add_us(ktime_get(), min);
1876 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1877
1878 for (;;) {
1879 __set_current_state(TASK_UNINTERRUPTIBLE);
1880 /* Do not return before the requested sleep time has elapsed */
1881 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1882 break;
1883 }
5e7f5a17
PP
1884}
1885EXPORT_SYMBOL(usleep_range);