]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/timer.c
timer_list: Use printk format instead of open-coded symbol lookup
[mirror_ubuntu-jammy-kernel.git] / kernel / time / timer.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
4a22f166 3 * Kernel internal timers
1da177e4
LT
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
8 *
9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
10 * "A Kernel Model for Precision Timekeeping" by Dave Mills
11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12 * serialize accesses to xtime/lost_ticks).
13 * Copyright (C) 1998 Andrea Arcangeli
14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19 */
20
21#include <linux/kernel_stat.h>
9984de1a 22#include <linux/export.h>
1da177e4
LT
23#include <linux/interrupt.h>
24#include <linux/percpu.h>
25#include <linux/init.h>
26#include <linux/mm.h>
27#include <linux/swap.h>
b488893a 28#include <linux/pid_namespace.h>
1da177e4
LT
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
97a41e26 36#include <linux/delay.h>
79bf2bb3 37#include <linux/tick.h>
82f67cd9 38#include <linux/kallsyms.h>
e360adbe 39#include <linux/irq_work.h>
174cd4b1 40#include <linux/sched/signal.h>
cf4aebc2 41#include <linux/sched/sysctl.h>
370c9135 42#include <linux/sched/nohz.h>
b17b0153 43#include <linux/sched/debug.h>
5a0e3ad6 44#include <linux/slab.h>
1a0df594 45#include <linux/compat.h>
f227e3ec 46#include <linux/random.h>
1da177e4 47
7c0f6ba6 48#include <linux/uaccess.h>
1da177e4
LT
49#include <asm/unistd.h>
50#include <asm/div64.h>
51#include <asm/timex.h>
52#include <asm/io.h>
53
c1ad348b
TG
54#include "tick-internal.h"
55
2b022e3d
XG
56#define CREATE_TRACE_POINTS
57#include <trace/events/timer.h>
58
40747ffa 59__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
ecea8d19
TG
60
61EXPORT_SYMBOL(jiffies_64);
62
1da177e4 63/*
500462a9
TG
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
67 *
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
70 *
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
74 *
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
81 *
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
87 *
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
91 *
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
96 * be an issue.
97 *
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
100 *
101 * This results in the following granularity and range levels:
102 *
103 * HZ 1000 steps
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
114 *
115 * HZ 300
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126 *
127 * HZ 250
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138 *
139 * HZ 100
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
1da177e4 149 */
1da177e4 150
500462a9
TG
151/* Clock divisor for the next level */
152#define LVL_CLK_SHIFT 3
153#define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154#define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155#define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156#define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
1da177e4 157
500462a9
TG
158/*
159 * The time start value for each level to select the bucket at enqueue
44688972
FW
160 * time. We start from the last possible delta of the previous level
161 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
500462a9
TG
162 */
163#define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
164
165/* Size of each clock level */
166#define LVL_BITS 6
167#define LVL_SIZE (1UL << LVL_BITS)
168#define LVL_MASK (LVL_SIZE - 1)
169#define LVL_OFFS(n) ((n) * LVL_SIZE)
170
171/* Level depth */
172#if HZ > 100
173# define LVL_DEPTH 9
174# else
175# define LVL_DEPTH 8
176#endif
177
178/* The cutoff (max. capacity of the wheel) */
179#define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
180#define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
181
182/*
183 * The resulting wheel size. If NOHZ is configured we allocate two
184 * wheels so we have a separate storage for the deferrable timers.
185 */
186#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
187
188#ifdef CONFIG_NO_HZ_COMMON
189# define NR_BASES 2
190# define BASE_STD 0
191# define BASE_DEF 1
192#else
193# define NR_BASES 1
194# define BASE_STD 0
195# define BASE_DEF 0
196#endif
1da177e4 197
494af3ed 198struct timer_base {
2287d866 199 raw_spinlock_t lock;
500462a9 200 struct timer_list *running_timer;
030dcdd1
AMG
201#ifdef CONFIG_PREEMPT_RT
202 spinlock_t expiry_lock;
203 atomic_t timer_waiters;
204#endif
500462a9 205 unsigned long clk;
a683f390 206 unsigned long next_expiry;
500462a9 207 unsigned int cpu;
31cd0e11 208 bool next_expiry_recalc;
a683f390 209 bool is_idle;
500462a9
TG
210 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
211 struct hlist_head vectors[WHEEL_SIZE];
6e453a67 212} ____cacheline_aligned;
e52b1db3 213
500462a9 214static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
6e453a67 215
ae67bada
TG
216#ifdef CONFIG_NO_HZ_COMMON
217
14c80341 218static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
ae67bada
TG
219static DEFINE_MUTEX(timer_keys_mutex);
220
221static void timer_update_keys(struct work_struct *work);
222static DECLARE_WORK(timer_update_work, timer_update_keys);
223
224#ifdef CONFIG_SMP
bc7a34b8
TG
225unsigned int sysctl_timer_migration = 1;
226
ae67bada
TG
227DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
228
229static void timers_update_migration(void)
bc7a34b8 230{
ae67bada
TG
231 if (sysctl_timer_migration && tick_nohz_active)
232 static_branch_enable(&timers_migration_enabled);
233 else
234 static_branch_disable(&timers_migration_enabled);
235}
236#else
237static inline void timers_update_migration(void) { }
238#endif /* !CONFIG_SMP */
bc7a34b8 239
ae67bada
TG
240static void timer_update_keys(struct work_struct *work)
241{
242 mutex_lock(&timer_keys_mutex);
243 timers_update_migration();
244 static_branch_enable(&timers_nohz_active);
245 mutex_unlock(&timer_keys_mutex);
246}
bc7a34b8 247
ae67bada
TG
248void timers_update_nohz(void)
249{
250 schedule_work(&timer_update_work);
bc7a34b8
TG
251}
252
253int timer_migration_handler(struct ctl_table *table, int write,
32927393 254 void *buffer, size_t *lenp, loff_t *ppos)
bc7a34b8 255{
bc7a34b8
TG
256 int ret;
257
ae67bada 258 mutex_lock(&timer_keys_mutex);
b94bf594 259 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
bc7a34b8 260 if (!ret && write)
ae67bada
TG
261 timers_update_migration();
262 mutex_unlock(&timer_keys_mutex);
bc7a34b8
TG
263 return ret;
264}
14c80341
AMG
265
266static inline bool is_timers_nohz_active(void)
267{
268 return static_branch_unlikely(&timers_nohz_active);
269}
270#else
271static inline bool is_timers_nohz_active(void) { return false; }
ae67bada 272#endif /* NO_HZ_COMMON */
bc7a34b8 273
9c133c46
AS
274static unsigned long round_jiffies_common(unsigned long j, int cpu,
275 bool force_up)
4c36a5de
AV
276{
277 int rem;
278 unsigned long original = j;
279
280 /*
281 * We don't want all cpus firing their timers at once hitting the
282 * same lock or cachelines, so we skew each extra cpu with an extra
283 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
284 * already did this.
285 * The skew is done by adding 3*cpunr, then round, then subtract this
286 * extra offset again.
287 */
288 j += cpu * 3;
289
290 rem = j % HZ;
291
292 /*
293 * If the target jiffie is just after a whole second (which can happen
294 * due to delays of the timer irq, long irq off times etc etc) then
295 * we should round down to the whole second, not up. Use 1/4th second
296 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 297 * But never round down if @force_up is set.
4c36a5de 298 */
9c133c46 299 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
300 j = j - rem;
301 else /* round up */
302 j = j - rem + HZ;
303
304 /* now that we have rounded, subtract the extra skew again */
305 j -= cpu * 3;
306
9e04d380
BVA
307 /*
308 * Make sure j is still in the future. Otherwise return the
309 * unmodified value.
310 */
311 return time_is_after_jiffies(j) ? j : original;
4c36a5de 312}
9c133c46
AS
313
314/**
315 * __round_jiffies - function to round jiffies to a full second
316 * @j: the time in (absolute) jiffies that should be rounded
317 * @cpu: the processor number on which the timeout will happen
318 *
319 * __round_jiffies() rounds an absolute time in the future (in jiffies)
320 * up or down to (approximately) full seconds. This is useful for timers
321 * for which the exact time they fire does not matter too much, as long as
322 * they fire approximately every X seconds.
323 *
324 * By rounding these timers to whole seconds, all such timers will fire
325 * at the same time, rather than at various times spread out. The goal
326 * of this is to have the CPU wake up less, which saves power.
327 *
328 * The exact rounding is skewed for each processor to avoid all
329 * processors firing at the exact same time, which could lead
330 * to lock contention or spurious cache line bouncing.
331 *
332 * The return value is the rounded version of the @j parameter.
333 */
334unsigned long __round_jiffies(unsigned long j, int cpu)
335{
336 return round_jiffies_common(j, cpu, false);
337}
4c36a5de
AV
338EXPORT_SYMBOL_GPL(__round_jiffies);
339
340/**
341 * __round_jiffies_relative - function to round jiffies to a full second
342 * @j: the time in (relative) jiffies that should be rounded
343 * @cpu: the processor number on which the timeout will happen
344 *
72fd4a35 345 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
346 * up or down to (approximately) full seconds. This is useful for timers
347 * for which the exact time they fire does not matter too much, as long as
348 * they fire approximately every X seconds.
349 *
350 * By rounding these timers to whole seconds, all such timers will fire
351 * at the same time, rather than at various times spread out. The goal
352 * of this is to have the CPU wake up less, which saves power.
353 *
354 * The exact rounding is skewed for each processor to avoid all
355 * processors firing at the exact same time, which could lead
356 * to lock contention or spurious cache line bouncing.
357 *
72fd4a35 358 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
359 */
360unsigned long __round_jiffies_relative(unsigned long j, int cpu)
361{
9c133c46
AS
362 unsigned long j0 = jiffies;
363
364 /* Use j0 because jiffies might change while we run */
365 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
366}
367EXPORT_SYMBOL_GPL(__round_jiffies_relative);
368
369/**
370 * round_jiffies - function to round jiffies to a full second
371 * @j: the time in (absolute) jiffies that should be rounded
372 *
72fd4a35 373 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
374 * up or down to (approximately) full seconds. This is useful for timers
375 * for which the exact time they fire does not matter too much, as long as
376 * they fire approximately every X seconds.
377 *
378 * By rounding these timers to whole seconds, all such timers will fire
379 * at the same time, rather than at various times spread out. The goal
380 * of this is to have the CPU wake up less, which saves power.
381 *
72fd4a35 382 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
383 */
384unsigned long round_jiffies(unsigned long j)
385{
9c133c46 386 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
387}
388EXPORT_SYMBOL_GPL(round_jiffies);
389
390/**
391 * round_jiffies_relative - function to round jiffies to a full second
392 * @j: the time in (relative) jiffies that should be rounded
393 *
72fd4a35 394 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
395 * up or down to (approximately) full seconds. This is useful for timers
396 * for which the exact time they fire does not matter too much, as long as
397 * they fire approximately every X seconds.
398 *
399 * By rounding these timers to whole seconds, all such timers will fire
400 * at the same time, rather than at various times spread out. The goal
401 * of this is to have the CPU wake up less, which saves power.
402 *
72fd4a35 403 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
404 */
405unsigned long round_jiffies_relative(unsigned long j)
406{
407 return __round_jiffies_relative(j, raw_smp_processor_id());
408}
409EXPORT_SYMBOL_GPL(round_jiffies_relative);
410
9c133c46
AS
411/**
412 * __round_jiffies_up - function to round jiffies up to a full second
413 * @j: the time in (absolute) jiffies that should be rounded
414 * @cpu: the processor number on which the timeout will happen
415 *
416 * This is the same as __round_jiffies() except that it will never
417 * round down. This is useful for timeouts for which the exact time
418 * of firing does not matter too much, as long as they don't fire too
419 * early.
420 */
421unsigned long __round_jiffies_up(unsigned long j, int cpu)
422{
423 return round_jiffies_common(j, cpu, true);
424}
425EXPORT_SYMBOL_GPL(__round_jiffies_up);
426
427/**
428 * __round_jiffies_up_relative - function to round jiffies up to a full second
429 * @j: the time in (relative) jiffies that should be rounded
430 * @cpu: the processor number on which the timeout will happen
431 *
432 * This is the same as __round_jiffies_relative() except that it will never
433 * round down. This is useful for timeouts for which the exact time
434 * of firing does not matter too much, as long as they don't fire too
435 * early.
436 */
437unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
438{
439 unsigned long j0 = jiffies;
440
441 /* Use j0 because jiffies might change while we run */
442 return round_jiffies_common(j + j0, cpu, true) - j0;
443}
444EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
445
446/**
447 * round_jiffies_up - function to round jiffies up to a full second
448 * @j: the time in (absolute) jiffies that should be rounded
449 *
450 * This is the same as round_jiffies() except that it will never
451 * round down. This is useful for timeouts for which the exact time
452 * of firing does not matter too much, as long as they don't fire too
453 * early.
454 */
455unsigned long round_jiffies_up(unsigned long j)
456{
457 return round_jiffies_common(j, raw_smp_processor_id(), true);
458}
459EXPORT_SYMBOL_GPL(round_jiffies_up);
460
461/**
462 * round_jiffies_up_relative - function to round jiffies up to a full second
463 * @j: the time in (relative) jiffies that should be rounded
464 *
465 * This is the same as round_jiffies_relative() except that it will never
466 * round down. This is useful for timeouts for which the exact time
467 * of firing does not matter too much, as long as they don't fire too
468 * early.
469 */
470unsigned long round_jiffies_up_relative(unsigned long j)
471{
472 return __round_jiffies_up_relative(j, raw_smp_processor_id());
473}
474EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
475
3bbb9ec9 476
500462a9 477static inline unsigned int timer_get_idx(struct timer_list *timer)
3bbb9ec9 478{
500462a9 479 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
3bbb9ec9 480}
3bbb9ec9 481
500462a9 482static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
1da177e4 483{
500462a9
TG
484 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
485 idx << TIMER_ARRAYSHIFT;
486}
1da177e4 487
500462a9
TG
488/*
489 * Helper function to calculate the array index for a given expiry
490 * time.
491 */
1f32cab0
AMB
492static inline unsigned calc_index(unsigned long expires, unsigned lvl,
493 unsigned long *bucket_expiry)
500462a9 494{
44688972
FW
495
496 /*
497 * The timer wheel has to guarantee that a timer does not fire
498 * early. Early expiry can happen due to:
499 * - Timer is armed at the edge of a tick
500 * - Truncation of the expiry time in the outer wheel levels
501 *
502 * Round up with level granularity to prevent this.
503 */
500462a9 504 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
1f32cab0 505 *bucket_expiry = expires << LVL_SHIFT(lvl);
500462a9
TG
506 return LVL_OFFS(lvl) + (expires & LVL_MASK);
507}
508
1f32cab0
AMB
509static int calc_wheel_index(unsigned long expires, unsigned long clk,
510 unsigned long *bucket_expiry)
1da177e4 511{
ffdf0477 512 unsigned long delta = expires - clk;
500462a9
TG
513 unsigned int idx;
514
515 if (delta < LVL_START(1)) {
1f32cab0 516 idx = calc_index(expires, 0, bucket_expiry);
500462a9 517 } else if (delta < LVL_START(2)) {
1f32cab0 518 idx = calc_index(expires, 1, bucket_expiry);
500462a9 519 } else if (delta < LVL_START(3)) {
1f32cab0 520 idx = calc_index(expires, 2, bucket_expiry);
500462a9 521 } else if (delta < LVL_START(4)) {
1f32cab0 522 idx = calc_index(expires, 3, bucket_expiry);
500462a9 523 } else if (delta < LVL_START(5)) {
1f32cab0 524 idx = calc_index(expires, 4, bucket_expiry);
500462a9 525 } else if (delta < LVL_START(6)) {
1f32cab0 526 idx = calc_index(expires, 5, bucket_expiry);
500462a9 527 } else if (delta < LVL_START(7)) {
1f32cab0 528 idx = calc_index(expires, 6, bucket_expiry);
500462a9 529 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
1f32cab0 530 idx = calc_index(expires, 7, bucket_expiry);
500462a9 531 } else if ((long) delta < 0) {
ffdf0477 532 idx = clk & LVL_MASK;
1f32cab0 533 *bucket_expiry = clk;
1da177e4 534 } else {
500462a9
TG
535 /*
536 * Force expire obscene large timeouts to expire at the
537 * capacity limit of the wheel.
1da177e4 538 */
e2a71bde
FW
539 if (delta >= WHEEL_TIMEOUT_CUTOFF)
540 expires = clk + WHEEL_TIMEOUT_MAX;
1bd04bf6 541
1f32cab0 542 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
1da177e4 543 }
ffdf0477
AMG
544 return idx;
545}
1bd04bf6 546
ffdf0477
AMG
547static void
548trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
549{
ae67bada 550 if (!is_timers_nohz_active())
a683f390 551 return;
3bb475a3 552
facbb4a7 553 /*
a683f390
TG
554 * TODO: This wants some optimizing similar to the code below, but we
555 * will do that when we switch from push to pull for deferrable timers.
facbb4a7 556 */
a683f390
TG
557 if (timer->flags & TIMER_DEFERRABLE) {
558 if (tick_nohz_full_cpu(base->cpu))
683be13a 559 wake_up_nohz_cpu(base->cpu);
a683f390 560 return;
99d5f3aa 561 }
9f6d9baa
VK
562
563 /*
a683f390
TG
564 * We might have to IPI the remote CPU if the base is idle and the
565 * timer is not deferrable. If the other CPU is on the way to idle
566 * then it can't set base->is_idle as we hold the base lock:
9f6d9baa 567 */
dc2a0f1f
FW
568 if (base->is_idle)
569 wake_up_nohz_cpu(base->cpu);
ffdf0477 570}
a683f390 571
9a2b764b
FW
572/*
573 * Enqueue the timer into the hash bucket, mark it pending in
574 * the bitmap, store the index in the timer flags then wake up
575 * the target CPU if needed.
576 */
577static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
578 unsigned int idx, unsigned long bucket_expiry)
ffdf0477 579{
dc2a0f1f 580
9a2b764b
FW
581 hlist_add_head(&timer->entry, base->vectors + idx);
582 __set_bit(idx, base->pending_map);
583 timer_set_idx(timer, idx);
1f32cab0 584
9a2b764b 585 trace_timer_start(timer, timer->expires, timer->flags);
a683f390
TG
586
587 /*
dc2a0f1f
FW
588 * Check whether this is the new first expiring timer. The
589 * effective expiry time of the timer is required here
590 * (bucket_expiry) instead of timer->expires.
a683f390 591 */
dc2a0f1f 592 if (time_before(bucket_expiry, base->next_expiry)) {
30c66fc3 593 /*
dc2a0f1f
FW
594 * Set the next expiry time and kick the CPU so it
595 * can reevaluate the wheel:
30c66fc3 596 */
dc2a0f1f 597 base->next_expiry = bucket_expiry;
31cd0e11 598 base->next_expiry_recalc = false;
dc2a0f1f 599 trigger_dyntick_cpu(base, timer);
30c66fc3 600 }
ffdf0477
AMG
601}
602
9a2b764b 603static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
ffdf0477 604{
9a2b764b
FW
605 unsigned long bucket_expiry;
606 unsigned int idx;
607
608 idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
609 enqueue_timer(base, timer, idx, bucket_expiry);
facbb4a7
TG
610}
611
c6f3a97f
TG
612#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
613
f9e62f31 614static const struct debug_obj_descr timer_debug_descr;
c6f3a97f 615
99777288
SG
616static void *timer_debug_hint(void *addr)
617{
618 return ((struct timer_list *) addr)->function;
619}
620
b9fdac7f
CD
621static bool timer_is_static_object(void *addr)
622{
623 struct timer_list *timer = addr;
624
625 return (timer->entry.pprev == NULL &&
626 timer->entry.next == TIMER_ENTRY_STATIC);
627}
628
c6f3a97f
TG
629/*
630 * fixup_init is called when:
631 * - an active object is initialized
55c888d6 632 */
e3252464 633static bool timer_fixup_init(void *addr, enum debug_obj_state state)
c6f3a97f
TG
634{
635 struct timer_list *timer = addr;
636
637 switch (state) {
638 case ODEBUG_STATE_ACTIVE:
639 del_timer_sync(timer);
640 debug_object_init(timer, &timer_debug_descr);
e3252464 641 return true;
c6f3a97f 642 default:
e3252464 643 return false;
c6f3a97f
TG
644 }
645}
646
fb16b8cf 647/* Stub timer callback for improperly used timers. */
ba16490e 648static void stub_timer(struct timer_list *unused)
fb16b8cf
SB
649{
650 WARN_ON(1);
651}
652
c6f3a97f
TG
653/*
654 * fixup_activate is called when:
655 * - an active object is activated
b9fdac7f 656 * - an unknown non-static object is activated
c6f3a97f 657 */
e3252464 658static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
c6f3a97f
TG
659{
660 struct timer_list *timer = addr;
661
662 switch (state) {
c6f3a97f 663 case ODEBUG_STATE_NOTAVAILABLE:
ba16490e 664 timer_setup(timer, stub_timer, 0);
b9fdac7f 665 return true;
c6f3a97f
TG
666
667 case ODEBUG_STATE_ACTIVE:
668 WARN_ON(1);
df561f66 669 fallthrough;
c6f3a97f 670 default:
e3252464 671 return false;
c6f3a97f
TG
672 }
673}
674
675/*
676 * fixup_free is called when:
677 * - an active object is freed
678 */
e3252464 679static bool timer_fixup_free(void *addr, enum debug_obj_state state)
c6f3a97f
TG
680{
681 struct timer_list *timer = addr;
682
683 switch (state) {
684 case ODEBUG_STATE_ACTIVE:
685 del_timer_sync(timer);
686 debug_object_free(timer, &timer_debug_descr);
e3252464 687 return true;
c6f3a97f 688 default:
e3252464 689 return false;
c6f3a97f
TG
690 }
691}
692
dc4218bd
CC
693/*
694 * fixup_assert_init is called when:
695 * - an untracked/uninit-ed object is found
696 */
e3252464 697static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
dc4218bd
CC
698{
699 struct timer_list *timer = addr;
700
701 switch (state) {
702 case ODEBUG_STATE_NOTAVAILABLE:
ba16490e 703 timer_setup(timer, stub_timer, 0);
b9fdac7f 704 return true;
dc4218bd 705 default:
e3252464 706 return false;
dc4218bd
CC
707 }
708}
709
f9e62f31 710static const struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
711 .name = "timer_list",
712 .debug_hint = timer_debug_hint,
b9fdac7f 713 .is_static_object = timer_is_static_object,
dc4218bd
CC
714 .fixup_init = timer_fixup_init,
715 .fixup_activate = timer_fixup_activate,
716 .fixup_free = timer_fixup_free,
717 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
718};
719
720static inline void debug_timer_init(struct timer_list *timer)
721{
722 debug_object_init(timer, &timer_debug_descr);
723}
724
725static inline void debug_timer_activate(struct timer_list *timer)
726{
727 debug_object_activate(timer, &timer_debug_descr);
728}
729
730static inline void debug_timer_deactivate(struct timer_list *timer)
731{
732 debug_object_deactivate(timer, &timer_debug_descr);
733}
734
735static inline void debug_timer_free(struct timer_list *timer)
736{
737 debug_object_free(timer, &timer_debug_descr);
738}
739
dc4218bd
CC
740static inline void debug_timer_assert_init(struct timer_list *timer)
741{
742 debug_object_assert_init(timer, &timer_debug_descr);
743}
744
188665b2
KC
745static void do_init_timer(struct timer_list *timer,
746 void (*func)(struct timer_list *),
747 unsigned int flags,
fc683995 748 const char *name, struct lock_class_key *key);
c6f3a97f 749
188665b2
KC
750void init_timer_on_stack_key(struct timer_list *timer,
751 void (*func)(struct timer_list *),
752 unsigned int flags,
fc683995 753 const char *name, struct lock_class_key *key)
c6f3a97f
TG
754{
755 debug_object_init_on_stack(timer, &timer_debug_descr);
188665b2 756 do_init_timer(timer, func, flags, name, key);
c6f3a97f 757}
6f2b9b9a 758EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
759
760void destroy_timer_on_stack(struct timer_list *timer)
761{
762 debug_object_free(timer, &timer_debug_descr);
763}
764EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
765
766#else
767static inline void debug_timer_init(struct timer_list *timer) { }
768static inline void debug_timer_activate(struct timer_list *timer) { }
769static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 770static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
771#endif
772
2b022e3d
XG
773static inline void debug_init(struct timer_list *timer)
774{
775 debug_timer_init(timer);
776 trace_timer_init(timer);
777}
778
2b022e3d
XG
779static inline void debug_deactivate(struct timer_list *timer)
780{
781 debug_timer_deactivate(timer);
782 trace_timer_cancel(timer);
783}
784
dc4218bd
CC
785static inline void debug_assert_init(struct timer_list *timer)
786{
787 debug_timer_assert_init(timer);
788}
789
188665b2
KC
790static void do_init_timer(struct timer_list *timer,
791 void (*func)(struct timer_list *),
792 unsigned int flags,
fc683995 793 const char *name, struct lock_class_key *key)
55c888d6 794{
1dabbcec 795 timer->entry.pprev = NULL;
188665b2 796 timer->function = func;
b952caf2
QZ
797 if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
798 flags &= TIMER_INIT_FLAGS;
0eeda71b 799 timer->flags = flags | raw_smp_processor_id();
6f2b9b9a 800 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 801}
c6f3a97f
TG
802
803/**
633fe795 804 * init_timer_key - initialize a timer
c6f3a97f 805 * @timer: the timer to be initialized
188665b2 806 * @func: timer callback function
fc683995 807 * @flags: timer flags
633fe795
RD
808 * @name: name of the timer
809 * @key: lockdep class key of the fake lock used for tracking timer
810 * sync lock dependencies
c6f3a97f 811 *
633fe795 812 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
813 * other timer functions.
814 */
188665b2
KC
815void init_timer_key(struct timer_list *timer,
816 void (*func)(struct timer_list *), unsigned int flags,
fc683995 817 const char *name, struct lock_class_key *key)
c6f3a97f 818{
2b022e3d 819 debug_init(timer);
188665b2 820 do_init_timer(timer, func, flags, name, key);
c6f3a97f 821}
6f2b9b9a 822EXPORT_SYMBOL(init_timer_key);
55c888d6 823
ec44bc7a 824static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6 825{
1dabbcec 826 struct hlist_node *entry = &timer->entry;
55c888d6 827
2b022e3d 828 debug_deactivate(timer);
c6f3a97f 829
1dabbcec 830 __hlist_del(entry);
55c888d6 831 if (clear_pending)
1dabbcec
TG
832 entry->pprev = NULL;
833 entry->next = LIST_POISON2;
55c888d6
ON
834}
835
494af3ed 836static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
ec44bc7a
TG
837 bool clear_pending)
838{
500462a9
TG
839 unsigned idx = timer_get_idx(timer);
840
ec44bc7a
TG
841 if (!timer_pending(timer))
842 return 0;
843
31cd0e11 844 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
500462a9 845 __clear_bit(idx, base->pending_map);
31cd0e11
FW
846 base->next_expiry_recalc = true;
847 }
500462a9 848
ec44bc7a 849 detach_timer(timer, clear_pending);
ec44bc7a
TG
850 return 1;
851}
852
500462a9
TG
853static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
854{
855 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
856
857 /*
ced6d5c1
AMG
858 * If the timer is deferrable and NO_HZ_COMMON is set then we need
859 * to use the deferrable base.
500462a9 860 */
ced6d5c1 861 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
500462a9
TG
862 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
863 return base;
864}
865
866static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
867{
868 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
869
870 /*
ced6d5c1
AMG
871 * If the timer is deferrable and NO_HZ_COMMON is set then we need
872 * to use the deferrable base.
500462a9 873 */
ced6d5c1 874 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
500462a9
TG
875 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
876 return base;
877}
878
879static inline struct timer_base *get_timer_base(u32 tflags)
880{
881 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
882}
883
a683f390 884static inline struct timer_base *
6bad6bcc 885get_target_base(struct timer_base *base, unsigned tflags)
500462a9 886{
ae67bada
TG
887#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
888 if (static_branch_likely(&timers_migration_enabled) &&
889 !(tflags & TIMER_PINNED))
890 return get_timer_cpu_base(tflags, get_nohz_timer_target());
500462a9 891#endif
ae67bada 892 return get_timer_this_cpu_base(tflags);
500462a9
TG
893}
894
a683f390
TG
895static inline void forward_timer_base(struct timer_base *base)
896{
0975fb56 897 unsigned long jnow = READ_ONCE(jiffies);
6bad6bcc 898
a683f390 899 /*
0975fb56
FW
900 * No need to forward if we are close enough below jiffies.
901 * Also while executing timers, base->clk is 1 offset ahead
902 * of jiffies to avoid endless requeuing to current jffies.
a683f390 903 */
36cd28a4 904 if ((long)(jnow - base->clk) < 1)
a683f390
TG
905 return;
906
907 /*
908 * If the next expiry value is > jiffies, then we fast forward to
909 * jiffies otherwise we forward to the next expiry value.
910 */
30c66fc3 911 if (time_after(base->next_expiry, jnow)) {
6bad6bcc 912 base->clk = jnow;
30c66fc3
FW
913 } else {
914 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
915 return;
a683f390 916 base->clk = base->next_expiry;
30c66fc3 917 }
ae67bada 918}
a683f390 919
a683f390 920
55c888d6 921/*
500462a9
TG
922 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
923 * that all timers which are tied to this base are locked, and the base itself
924 * is locked too.
55c888d6
ON
925 *
926 * So __run_timers/migrate_timers can safely modify all timers which could
500462a9 927 * be found in the base->vectors array.
55c888d6 928 *
500462a9
TG
929 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
930 * to wait until the migration is done.
55c888d6 931 */
494af3ed 932static struct timer_base *lock_timer_base(struct timer_list *timer,
500462a9 933 unsigned long *flags)
89e7e374 934 __acquires(timer->base->lock)
55c888d6 935{
55c888d6 936 for (;;) {
494af3ed 937 struct timer_base *base;
b831275a
TG
938 u32 tf;
939
940 /*
941 * We need to use READ_ONCE() here, otherwise the compiler
942 * might re-read @tf between the check for TIMER_MIGRATING
943 * and spin_lock().
944 */
945 tf = READ_ONCE(timer->flags);
0eeda71b
TG
946
947 if (!(tf & TIMER_MIGRATING)) {
500462a9 948 base = get_timer_base(tf);
2287d866 949 raw_spin_lock_irqsave(&base->lock, *flags);
0eeda71b 950 if (timer->flags == tf)
55c888d6 951 return base;
2287d866 952 raw_spin_unlock_irqrestore(&base->lock, *flags);
55c888d6
ON
953 }
954 cpu_relax();
955 }
956}
957
b24591e2
DH
958#define MOD_TIMER_PENDING_ONLY 0x01
959#define MOD_TIMER_REDUCE 0x02
90c01894 960#define MOD_TIMER_NOTPENDING 0x04
b24591e2 961
74019224 962static inline int
b24591e2 963__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1da177e4 964{
1f32cab0 965 unsigned long clk = 0, flags, bucket_expiry;
494af3ed 966 struct timer_base *base, *new_base;
f00c0afd 967 unsigned int idx = UINT_MAX;
bc7a34b8 968 int ret = 0;
1da177e4 969
4da9152a
TG
970 BUG_ON(!timer->function);
971
500462a9 972 /*
f00c0afd
AMG
973 * This is a common optimization triggered by the networking code - if
974 * the timer is re-modified to have the same timeout or ends up in the
975 * same array bucket then just return:
500462a9 976 */
90c01894 977 if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
2fe59f50
NP
978 /*
979 * The downside of this optimization is that it can result in
980 * larger granularity than you would get from adding a new
981 * timer with this expiry.
982 */
b24591e2
DH
983 long diff = timer->expires - expires;
984
985 if (!diff)
986 return 1;
987 if (options & MOD_TIMER_REDUCE && diff <= 0)
500462a9 988 return 1;
4da9152a 989
f00c0afd 990 /*
4da9152a
TG
991 * We lock timer base and calculate the bucket index right
992 * here. If the timer ends up in the same bucket, then we
993 * just update the expiry time and avoid the whole
994 * dequeue/enqueue dance.
f00c0afd 995 */
4da9152a 996 base = lock_timer_base(timer, &flags);
2fe59f50 997 forward_timer_base(base);
f00c0afd 998
b24591e2
DH
999 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1000 time_before_eq(timer->expires, expires)) {
1001 ret = 1;
1002 goto out_unlock;
1003 }
1004
4da9152a 1005 clk = base->clk;
1f32cab0 1006 idx = calc_wheel_index(expires, clk, &bucket_expiry);
f00c0afd
AMG
1007
1008 /*
1009 * Retrieve and compare the array index of the pending
1010 * timer. If it matches set the expiry to the new value so a
1011 * subsequent call will exit in the expires check above.
1012 */
1013 if (idx == timer_get_idx(timer)) {
b24591e2
DH
1014 if (!(options & MOD_TIMER_REDUCE))
1015 timer->expires = expires;
1016 else if (time_after(timer->expires, expires))
1017 timer->expires = expires;
4da9152a
TG
1018 ret = 1;
1019 goto out_unlock;
f00c0afd 1020 }
4da9152a
TG
1021 } else {
1022 base = lock_timer_base(timer, &flags);
2fe59f50 1023 forward_timer_base(base);
500462a9
TG
1024 }
1025
ec44bc7a 1026 ret = detach_if_pending(timer, base, false);
b24591e2 1027 if (!ret && (options & MOD_TIMER_PENDING_ONLY))
ec44bc7a 1028 goto out_unlock;
55c888d6 1029
500462a9 1030 new_base = get_target_base(base, timer->flags);
eea08f32 1031
3691c519 1032 if (base != new_base) {
1da177e4 1033 /*
500462a9 1034 * We are trying to schedule the timer on the new base.
55c888d6
ON
1035 * However we can't change timer's base while it is running,
1036 * otherwise del_timer_sync() can't detect that the timer's
500462a9
TG
1037 * handler yet has not finished. This also guarantees that the
1038 * timer is serialized wrt itself.
1da177e4 1039 */
a2c348fe 1040 if (likely(base->running_timer != timer)) {
55c888d6 1041 /* See the comment in lock_timer_base() */
0eeda71b
TG
1042 timer->flags |= TIMER_MIGRATING;
1043
2287d866 1044 raw_spin_unlock(&base->lock);
a2c348fe 1045 base = new_base;
2287d866 1046 raw_spin_lock(&base->lock);
d0023a14
ED
1047 WRITE_ONCE(timer->flags,
1048 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
2fe59f50 1049 forward_timer_base(base);
1da177e4
LT
1050 }
1051 }
1052
dc1e7dc5 1053 debug_timer_activate(timer);
fd45bb77 1054
1da177e4 1055 timer->expires = expires;
f00c0afd
AMG
1056 /*
1057 * If 'idx' was calculated above and the base time did not advance
4da9152a 1058 * between calculating 'idx' and possibly switching the base, only
9a2b764b
FW
1059 * enqueue_timer() is required. Otherwise we need to (re)calculate
1060 * the wheel index via internal_add_timer().
f00c0afd 1061 */
9a2b764b
FW
1062 if (idx != UINT_MAX && clk == base->clk)
1063 enqueue_timer(base, timer, idx, bucket_expiry);
1064 else
f00c0afd 1065 internal_add_timer(base, timer);
74019224
IM
1066
1067out_unlock:
2287d866 1068 raw_spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
1069
1070 return ret;
1071}
1072
2aae4a10 1073/**
74019224
IM
1074 * mod_timer_pending - modify a pending timer's timeout
1075 * @timer: the pending timer to be modified
1076 * @expires: new timeout in jiffies
1da177e4 1077 *
74019224
IM
1078 * mod_timer_pending() is the same for pending timers as mod_timer(),
1079 * but will not re-activate and modify already deleted timers.
1080 *
1081 * It is useful for unserialized use of timers.
1da177e4 1082 */
74019224 1083int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 1084{
b24591e2 1085 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1da177e4 1086}
74019224 1087EXPORT_SYMBOL(mod_timer_pending);
1da177e4 1088
2aae4a10 1089/**
1da177e4
LT
1090 * mod_timer - modify a timer's timeout
1091 * @timer: the timer to be modified
2aae4a10 1092 * @expires: new timeout in jiffies
1da177e4 1093 *
72fd4a35 1094 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
1095 * active timer (if the timer is inactive it will be activated)
1096 *
1097 * mod_timer(timer, expires) is equivalent to:
1098 *
1099 * del_timer(timer); timer->expires = expires; add_timer(timer);
1100 *
1101 * Note that if there are multiple unserialized concurrent users of the
1102 * same timer, then mod_timer() is the only safe way to modify the timeout,
1103 * since add_timer() cannot modify an already running timer.
1104 *
1105 * The function returns whether it has modified a pending timer or not.
1106 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1107 * active timer returns 1.)
1108 */
1109int mod_timer(struct timer_list *timer, unsigned long expires)
1110{
b24591e2 1111 return __mod_timer(timer, expires, 0);
1da177e4 1112}
1da177e4
LT
1113EXPORT_SYMBOL(mod_timer);
1114
b24591e2
DH
1115/**
1116 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1117 * @timer: The timer to be modified
1118 * @expires: New timeout in jiffies
1119 *
1120 * timer_reduce() is very similar to mod_timer(), except that it will only
1121 * modify a running timer if that would reduce the expiration time (it will
1122 * start a timer that isn't running).
1123 */
1124int timer_reduce(struct timer_list *timer, unsigned long expires)
1125{
1126 return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1127}
1128EXPORT_SYMBOL(timer_reduce);
1129
74019224
IM
1130/**
1131 * add_timer - start a timer
1132 * @timer: the timer to be added
1133 *
c1eba5bc 1134 * The kernel will do a ->function(@timer) callback from the
74019224
IM
1135 * timer interrupt at the ->expires point in the future. The
1136 * current time is 'jiffies'.
1137 *
c1eba5bc
KC
1138 * The timer's ->expires, ->function fields must be set prior calling this
1139 * function.
74019224
IM
1140 *
1141 * Timers with an ->expires field in the past will be executed in the next
1142 * timer tick.
1143 */
1144void add_timer(struct timer_list *timer)
1145{
1146 BUG_ON(timer_pending(timer));
90c01894 1147 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
74019224
IM
1148}
1149EXPORT_SYMBOL(add_timer);
1150
1151/**
1152 * add_timer_on - start a timer on a particular CPU
1153 * @timer: the timer to be added
1154 * @cpu: the CPU to start it on
1155 *
1156 * This is not very scalable on SMP. Double adds are not possible.
1157 */
1158void add_timer_on(struct timer_list *timer, int cpu)
1159{
500462a9 1160 struct timer_base *new_base, *base;
74019224
IM
1161 unsigned long flags;
1162
74019224 1163 BUG_ON(timer_pending(timer) || !timer->function);
22b886dd 1164
500462a9
TG
1165 new_base = get_timer_cpu_base(timer->flags, cpu);
1166
22b886dd
TH
1167 /*
1168 * If @timer was on a different CPU, it should be migrated with the
1169 * old base locked to prevent other operations proceeding with the
1170 * wrong base locked. See lock_timer_base().
1171 */
1172 base = lock_timer_base(timer, &flags);
1173 if (base != new_base) {
1174 timer->flags |= TIMER_MIGRATING;
1175
2287d866 1176 raw_spin_unlock(&base->lock);
22b886dd 1177 base = new_base;
2287d866 1178 raw_spin_lock(&base->lock);
22b886dd
TH
1179 WRITE_ONCE(timer->flags,
1180 (timer->flags & ~TIMER_BASEMASK) | cpu);
1181 }
2fe59f50 1182 forward_timer_base(base);
22b886dd 1183
dc1e7dc5 1184 debug_timer_activate(timer);
74019224 1185 internal_add_timer(base, timer);
2287d866 1186 raw_spin_unlock_irqrestore(&base->lock, flags);
74019224 1187}
a9862e05 1188EXPORT_SYMBOL_GPL(add_timer_on);
74019224 1189
2aae4a10 1190/**
0ba42a59 1191 * del_timer - deactivate a timer.
1da177e4
LT
1192 * @timer: the timer to be deactivated
1193 *
1194 * del_timer() deactivates a timer - this works on both active and inactive
1195 * timers.
1196 *
1197 * The function returns whether it has deactivated a pending timer or not.
1198 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1199 * active timer returns 1.)
1200 */
1201int del_timer(struct timer_list *timer)
1202{
494af3ed 1203 struct timer_base *base;
1da177e4 1204 unsigned long flags;
55c888d6 1205 int ret = 0;
1da177e4 1206
dc4218bd
CC
1207 debug_assert_init(timer);
1208
55c888d6
ON
1209 if (timer_pending(timer)) {
1210 base = lock_timer_base(timer, &flags);
ec44bc7a 1211 ret = detach_if_pending(timer, base, true);
2287d866 1212 raw_spin_unlock_irqrestore(&base->lock, flags);
1da177e4 1213 }
1da177e4 1214
55c888d6 1215 return ret;
1da177e4 1216}
1da177e4
LT
1217EXPORT_SYMBOL(del_timer);
1218
2aae4a10
REB
1219/**
1220 * try_to_del_timer_sync - Try to deactivate a timer
d15bc69a 1221 * @timer: timer to delete
2aae4a10 1222 *
fd450b73
ON
1223 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1224 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1225 */
1226int try_to_del_timer_sync(struct timer_list *timer)
1227{
494af3ed 1228 struct timer_base *base;
fd450b73
ON
1229 unsigned long flags;
1230 int ret = -1;
1231
dc4218bd
CC
1232 debug_assert_init(timer);
1233
fd450b73
ON
1234 base = lock_timer_base(timer, &flags);
1235
dfb4357d 1236 if (base->running_timer != timer)
ec44bc7a 1237 ret = detach_if_pending(timer, base, true);
dfb4357d 1238
2287d866 1239 raw_spin_unlock_irqrestore(&base->lock, flags);
fd450b73
ON
1240
1241 return ret;
1242}
e19dff1f
DH
1243EXPORT_SYMBOL(try_to_del_timer_sync);
1244
030dcdd1
AMG
1245#ifdef CONFIG_PREEMPT_RT
1246static __init void timer_base_init_expiry_lock(struct timer_base *base)
1247{
1248 spin_lock_init(&base->expiry_lock);
1249}
1250
1251static inline void timer_base_lock_expiry(struct timer_base *base)
1252{
1253 spin_lock(&base->expiry_lock);
1254}
1255
1256static inline void timer_base_unlock_expiry(struct timer_base *base)
1257{
1258 spin_unlock(&base->expiry_lock);
1259}
1260
1261/*
1262 * The counterpart to del_timer_wait_running().
1263 *
1264 * If there is a waiter for base->expiry_lock, then it was waiting for the
1265 * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1266 * the waiter to acquire the lock and make progress.
1267 */
1268static void timer_sync_wait_running(struct timer_base *base)
1269{
1270 if (atomic_read(&base->timer_waiters)) {
1271 spin_unlock(&base->expiry_lock);
1272 spin_lock(&base->expiry_lock);
1273 }
1274}
1275
1276/*
1277 * This function is called on PREEMPT_RT kernels when the fast path
1278 * deletion of a timer failed because the timer callback function was
1279 * running.
1280 *
1281 * This prevents priority inversion, if the softirq thread on a remote CPU
1282 * got preempted, and it prevents a life lock when the task which tries to
1283 * delete a timer preempted the softirq thread running the timer callback
1284 * function.
1285 */
1286static void del_timer_wait_running(struct timer_list *timer)
1287{
1288 u32 tf;
1289
1290 tf = READ_ONCE(timer->flags);
1291 if (!(tf & TIMER_MIGRATING)) {
1292 struct timer_base *base = get_timer_base(tf);
1293
1294 /*
1295 * Mark the base as contended and grab the expiry lock,
1296 * which is held by the softirq across the timer
1297 * callback. Drop the lock immediately so the softirq can
1298 * expire the next timer. In theory the timer could already
1299 * be running again, but that's more than unlikely and just
1300 * causes another wait loop.
1301 */
1302 atomic_inc(&base->timer_waiters);
1303 spin_lock_bh(&base->expiry_lock);
1304 atomic_dec(&base->timer_waiters);
1305 spin_unlock_bh(&base->expiry_lock);
1306 }
1307}
1308#else
1309static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1310static inline void timer_base_lock_expiry(struct timer_base *base) { }
1311static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1312static inline void timer_sync_wait_running(struct timer_base *base) { }
1313static inline void del_timer_wait_running(struct timer_list *timer) { }
1314#endif
1315
1316#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
2aae4a10 1317/**
1da177e4
LT
1318 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1319 * @timer: the timer to be deactivated
1320 *
1321 * This function only differs from del_timer() on SMP: besides deactivating
1322 * the timer it also makes sure the handler has finished executing on other
1323 * CPUs.
1324 *
72fd4a35 1325 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1326 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1327 * interrupt contexts unless the timer is an irqsafe one. The caller must
1328 * not hold locks which would prevent completion of the timer's
1329 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1330 * timer is not queued and the handler is not running on any CPU.
1da177e4 1331 *
c5f66e99
TH
1332 * Note: For !irqsafe timers, you must not hold locks that are held in
1333 * interrupt context while calling this function. Even if the lock has
bf9c96be 1334 * nothing to do with the timer in question. Here's why::
48228f7b
SR
1335 *
1336 * CPU0 CPU1
1337 * ---- ----
bf9c96be
MCC
1338 * <SOFTIRQ>
1339 * call_timer_fn();
1340 * base->running_timer = mytimer;
1341 * spin_lock_irq(somelock);
48228f7b
SR
1342 * <IRQ>
1343 * spin_lock(somelock);
bf9c96be
MCC
1344 * del_timer_sync(mytimer);
1345 * while (base->running_timer == mytimer);
48228f7b
SR
1346 *
1347 * Now del_timer_sync() will never return and never release somelock.
1348 * The interrupt on the other CPU is waiting to grab somelock but
1349 * it has interrupted the softirq that CPU0 is waiting to finish.
1350 *
1da177e4 1351 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1352 */
1353int del_timer_sync(struct timer_list *timer)
1354{
030dcdd1
AMG
1355 int ret;
1356
6f2b9b9a 1357#ifdef CONFIG_LOCKDEP
f266a511
PZ
1358 unsigned long flags;
1359
48228f7b
SR
1360 /*
1361 * If lockdep gives a backtrace here, please reference
1362 * the synchronization rules above.
1363 */
7ff20792 1364 local_irq_save(flags);
6f2b9b9a
JB
1365 lock_map_acquire(&timer->lockdep_map);
1366 lock_map_release(&timer->lockdep_map);
7ff20792 1367 local_irq_restore(flags);
6f2b9b9a 1368#endif
466bd303
YZ
1369 /*
1370 * don't use it in hardirq context, because it
1371 * could lead to deadlock.
1372 */
0eeda71b 1373 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
030dcdd1
AMG
1374
1375 do {
1376 ret = try_to_del_timer_sync(timer);
1377
1378 if (unlikely(ret < 0)) {
1379 del_timer_wait_running(timer);
1380 cpu_relax();
1381 }
1382 } while (ret < 0);
1383
1384 return ret;
1da177e4 1385}
55c888d6 1386EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1387#endif
1388
f28d3d53
AMG
1389static void call_timer_fn(struct timer_list *timer,
1390 void (*fn)(struct timer_list *),
1391 unsigned long baseclk)
576da126 1392{
4a2b4b22 1393 int count = preempt_count();
576da126
TG
1394
1395#ifdef CONFIG_LOCKDEP
1396 /*
1397 * It is permissible to free the timer from inside the
1398 * function that is called from it, this we need to take into
1399 * account for lockdep too. To avoid bogus "held lock freed"
1400 * warnings as well as problems when looking into
1401 * timer->lockdep_map, make a copy and use that here.
1402 */
4d82a1de
PZ
1403 struct lockdep_map lockdep_map;
1404
1405 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1406#endif
1407 /*
1408 * Couple the lock chain with the lock chain at
1409 * del_timer_sync() by acquiring the lock_map around the fn()
1410 * call here and in del_timer_sync().
1411 */
1412 lock_map_acquire(&lockdep_map);
1413
f28d3d53 1414 trace_timer_expire_entry(timer, baseclk);
354b46b1 1415 fn(timer);
576da126
TG
1416 trace_timer_expire_exit(timer);
1417
1418 lock_map_release(&lockdep_map);
1419
4a2b4b22 1420 if (count != preempt_count()) {
d75f773c 1421 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
4a2b4b22 1422 fn, count, preempt_count());
802702e0
TG
1423 /*
1424 * Restore the preempt count. That gives us a decent
1425 * chance to survive and extract information. If the
1426 * callback kept a lock held, bad luck, but not worse
1427 * than the BUG() we had.
1428 */
4a2b4b22 1429 preempt_count_set(count);
576da126
TG
1430 }
1431}
1432
500462a9 1433static void expire_timers(struct timer_base *base, struct hlist_head *head)
1da177e4 1434{
f28d3d53
AMG
1435 /*
1436 * This value is required only for tracing. base->clk was
1437 * incremented directly before expire_timers was called. But expiry
1438 * is related to the old base->clk value.
1439 */
1440 unsigned long baseclk = base->clk - 1;
1441
500462a9
TG
1442 while (!hlist_empty(head)) {
1443 struct timer_list *timer;
354b46b1 1444 void (*fn)(struct timer_list *);
1da177e4 1445
500462a9 1446 timer = hlist_entry(head->first, struct timer_list, entry);
3bb475a3 1447
500462a9
TG
1448 base->running_timer = timer;
1449 detach_timer(timer, true);
3bb475a3 1450
500462a9 1451 fn = timer->function;
500462a9
TG
1452
1453 if (timer->flags & TIMER_IRQSAFE) {
2287d866 1454 raw_spin_unlock(&base->lock);
f28d3d53 1455 call_timer_fn(timer, fn, baseclk);
030dcdd1 1456 base->running_timer = NULL;
2287d866 1457 raw_spin_lock(&base->lock);
500462a9 1458 } else {
2287d866 1459 raw_spin_unlock_irq(&base->lock);
f28d3d53 1460 call_timer_fn(timer, fn, baseclk);
030dcdd1
AMG
1461 base->running_timer = NULL;
1462 timer_sync_wait_running(base);
2287d866 1463 raw_spin_lock_irq(&base->lock);
3bb475a3 1464 }
500462a9
TG
1465 }
1466}
3bb475a3 1467
d4f7dae8
FW
1468static int collect_expired_timers(struct timer_base *base,
1469 struct hlist_head *heads)
500462a9 1470{
d4f7dae8 1471 unsigned long clk = base->clk = base->next_expiry;
500462a9
TG
1472 struct hlist_head *vec;
1473 int i, levels = 0;
1474 unsigned int idx;
626ab0e6 1475
500462a9
TG
1476 for (i = 0; i < LVL_DEPTH; i++) {
1477 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1478
1479 if (__test_and_clear_bit(idx, base->pending_map)) {
1480 vec = base->vectors + idx;
1481 hlist_move_list(vec, heads++);
1482 levels++;
1da177e4 1483 }
500462a9
TG
1484 /* Is it time to look at the next level? */
1485 if (clk & LVL_CLK_MASK)
1486 break;
1487 /* Shift clock for the next level granularity */
1488 clk >>= LVL_CLK_SHIFT;
1da177e4 1489 }
500462a9 1490 return levels;
1da177e4
LT
1491}
1492
1da177e4 1493/*
23696838
AMG
1494 * Find the next pending bucket of a level. Search from level start (@offset)
1495 * + @clk upwards and if nothing there, search from start of the level
1496 * (@offset) up to @offset + clk.
1da177e4 1497 */
500462a9
TG
1498static int next_pending_bucket(struct timer_base *base, unsigned offset,
1499 unsigned clk)
1500{
1501 unsigned pos, start = offset + clk;
1502 unsigned end = offset + LVL_SIZE;
1503
1504 pos = find_next_bit(base->pending_map, end, start);
1505 if (pos < end)
1506 return pos - start;
1507
1508 pos = find_next_bit(base->pending_map, start, offset);
1509 return pos < start ? pos + LVL_SIZE - start : -1;
1510}
1511
1512/*
23696838
AMG
1513 * Search the first expiring timer in the various clock levels. Caller must
1514 * hold base->lock.
1da177e4 1515 */
494af3ed 1516static unsigned long __next_timer_interrupt(struct timer_base *base)
1da177e4 1517{
500462a9
TG
1518 unsigned long clk, next, adj;
1519 unsigned lvl, offset = 0;
1520
500462a9
TG
1521 next = base->clk + NEXT_TIMER_MAX_DELTA;
1522 clk = base->clk;
1523 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1524 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
001ec1b3 1525 unsigned long lvl_clk = clk & LVL_CLK_MASK;
500462a9
TG
1526
1527 if (pos >= 0) {
1528 unsigned long tmp = clk + (unsigned long) pos;
1529
1530 tmp <<= LVL_SHIFT(lvl);
1531 if (time_before(tmp, next))
1532 next = tmp;
001ec1b3
FW
1533
1534 /*
1535 * If the next expiration happens before we reach
1536 * the next level, no need to check further.
1537 */
1538 if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1539 break;
1da177e4 1540 }
500462a9
TG
1541 /*
1542 * Clock for the next level. If the current level clock lower
1543 * bits are zero, we look at the next level as is. If not we
1544 * need to advance it by one because that's going to be the
1545 * next expiring bucket in that level. base->clk is the next
1546 * expiring jiffie. So in case of:
1547 *
1548 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1549 * 0 0 0 0 0 0
1550 *
1551 * we have to look at all levels @index 0. With
1552 *
1553 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1554 * 0 0 0 0 0 2
1555 *
1556 * LVL0 has the next expiring bucket @index 2. The upper
1557 * levels have the next expiring bucket @index 1.
1558 *
1559 * In case that the propagation wraps the next level the same
1560 * rules apply:
1561 *
1562 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1563 * 0 0 0 0 F 2
1564 *
1565 * So after looking at LVL0 we get:
1566 *
1567 * LVL5 LVL4 LVL3 LVL2 LVL1
1568 * 0 0 0 1 0
1569 *
1570 * So no propagation from LVL1 to LVL2 because that happened
1571 * with the add already, but then we need to propagate further
1572 * from LVL2 to LVL3.
1573 *
1574 * So the simple check whether the lower bits of the current
1575 * level are 0 or not is sufficient for all cases.
1576 */
001ec1b3 1577 adj = lvl_clk ? 1 : 0;
500462a9
TG
1578 clk >>= LVL_CLK_SHIFT;
1579 clk += adj;
1da177e4 1580 }
31cd0e11
FW
1581
1582 base->next_expiry_recalc = false;
1583
500462a9 1584 return next;
1cfd6849 1585}
69239749 1586
dc2a0f1f 1587#ifdef CONFIG_NO_HZ_COMMON
1cfd6849
TG
1588/*
1589 * Check, if the next hrtimer event is before the next timer wheel
1590 * event:
1591 */
c1ad348b 1592static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1cfd6849 1593{
c1ad348b 1594 u64 nextevt = hrtimer_get_next_event();
0662b713 1595
9501b6cf 1596 /*
c1ad348b
TG
1597 * If high resolution timers are enabled
1598 * hrtimer_get_next_event() returns KTIME_MAX.
9501b6cf 1599 */
c1ad348b
TG
1600 if (expires <= nextevt)
1601 return expires;
eaad084b
TG
1602
1603 /*
c1ad348b
TG
1604 * If the next timer is already expired, return the tick base
1605 * time so the tick is fired immediately.
eaad084b 1606 */
c1ad348b
TG
1607 if (nextevt <= basem)
1608 return basem;
eaad084b 1609
9501b6cf 1610 /*
c1ad348b
TG
1611 * Round up to the next jiffie. High resolution timers are
1612 * off, so the hrtimers are expired in the tick and we need to
1613 * make sure that this tick really expires the timer to avoid
1614 * a ping pong of the nohz stop code.
1615 *
1616 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
9501b6cf 1617 */
c1ad348b 1618 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1da177e4 1619}
1cfd6849
TG
1620
1621/**
c1ad348b
TG
1622 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1623 * @basej: base time jiffies
1624 * @basem: base time clock monotonic
1625 *
1626 * Returns the tick aligned clock monotonic time of the next pending
1627 * timer or KTIME_MAX if no timer is pending.
1cfd6849 1628 */
c1ad348b 1629u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1cfd6849 1630{
500462a9 1631 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
c1ad348b
TG
1632 u64 expires = KTIME_MAX;
1633 unsigned long nextevt;
46c8f0b0 1634 bool is_max_delta;
1cfd6849 1635
dbd87b5a
HC
1636 /*
1637 * Pretend that there is no timer pending if the cpu is offline.
1638 * Possible pending timers will be migrated later to an active cpu.
1639 */
1640 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1641 return expires;
1642
2287d866 1643 raw_spin_lock(&base->lock);
31cd0e11
FW
1644 if (base->next_expiry_recalc)
1645 base->next_expiry = __next_timer_interrupt(base);
1646 nextevt = base->next_expiry;
46c8f0b0 1647 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
31cd0e11 1648
a683f390 1649 /*
041ad7bc
TG
1650 * We have a fresh next event. Check whether we can forward the
1651 * base. We can only do that when @basej is past base->clk
1652 * otherwise we might rewind base->clk.
a683f390 1653 */
041ad7bc
TG
1654 if (time_after(basej, base->clk)) {
1655 if (time_after(nextevt, basej))
1656 base->clk = basej;
1657 else if (time_after(nextevt, base->clk))
1658 base->clk = nextevt;
1659 }
23696838 1660
a683f390 1661 if (time_before_eq(nextevt, basej)) {
500462a9 1662 expires = basem;
a683f390
TG
1663 base->is_idle = false;
1664 } else {
46c8f0b0 1665 if (!is_max_delta)
34f41c03 1666 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
a683f390 1667 /*
2fe59f50
NP
1668 * If we expect to sleep more than a tick, mark the base idle.
1669 * Also the tick is stopped so any added timer must forward
1670 * the base clk itself to keep granularity small. This idle
1671 * logic is only maintained for the BASE_STD base, deferrable
1672 * timers may still see large granularity skew (by design).
a683f390 1673 */
1f8a4212 1674 if ((expires - basem) > TICK_NSEC)
a683f390 1675 base->is_idle = true;
e40468a5 1676 }
2287d866 1677 raw_spin_unlock(&base->lock);
1cfd6849 1678
c1ad348b 1679 return cmp_next_hrtimer_event(basem, expires);
1cfd6849 1680}
23696838 1681
a683f390
TG
1682/**
1683 * timer_clear_idle - Clear the idle state of the timer base
1684 *
1685 * Called with interrupts disabled
1686 */
1687void timer_clear_idle(void)
1688{
1689 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1690
1691 /*
1692 * We do this unlocked. The worst outcome is a remote enqueue sending
1693 * a pointless IPI, but taking the lock would just make the window for
1694 * sending the IPI a few instructions smaller for the cost of taking
1695 * the lock in the exit from idle path.
1696 */
1697 base->is_idle = false;
1698}
1da177e4
LT
1699#endif
1700
1da177e4 1701/*
5b4db0c2 1702 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1703 * process. user_tick is 1 if the tick is user time, 0 for system.
1704 */
1705void update_process_times(int user_tick)
1706{
1707 struct task_struct *p = current;
1da177e4 1708
3744741a
WT
1709 PRANDOM_ADD_NOISE(jiffies, user_tick, p, 0);
1710
1da177e4 1711 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1712 account_process_tick(p, user_tick);
1da177e4 1713 run_local_timers();
c98cac60 1714 rcu_sched_clock_irq(user_tick);
e360adbe
PZ
1715#ifdef CONFIG_IRQ_WORK
1716 if (in_irq())
76a33061 1717 irq_work_tick();
e360adbe 1718#endif
1da177e4 1719 scheduler_tick();
baa73d9e 1720 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
dce3e8fd 1721 run_posix_cpu_timers();
1da177e4
LT
1722}
1723
73420fea
AMG
1724/**
1725 * __run_timers - run all expired timers (if any) on this CPU.
1726 * @base: the timer vector to be processed.
1727 */
1728static inline void __run_timers(struct timer_base *base)
1729{
1730 struct hlist_head heads[LVL_DEPTH];
1731 int levels;
1732
d4f7dae8 1733 if (time_before(jiffies, base->next_expiry))
73420fea
AMG
1734 return;
1735
030dcdd1 1736 timer_base_lock_expiry(base);
2287d866 1737 raw_spin_lock_irq(&base->lock);
73420fea 1738
d4f7dae8
FW
1739 while (time_after_eq(jiffies, base->clk) &&
1740 time_after_eq(jiffies, base->next_expiry)) {
73420fea 1741 levels = collect_expired_timers(base, heads);
31cd0e11
FW
1742 /*
1743 * The only possible reason for not finding any expired
1744 * timer at this clk is that all matching timers have been
1745 * dequeued.
1746 */
1747 WARN_ON_ONCE(!levels && !base->next_expiry_recalc);
73420fea 1748 base->clk++;
dc2a0f1f 1749 base->next_expiry = __next_timer_interrupt(base);
73420fea
AMG
1750
1751 while (levels--)
1752 expire_timers(base, heads + levels);
1753 }
2287d866 1754 raw_spin_unlock_irq(&base->lock);
030dcdd1 1755 timer_base_unlock_expiry(base);
73420fea
AMG
1756}
1757
1da177e4
LT
1758/*
1759 * This function runs timers and the timer-tq in bottom half context.
1760 */
0766f788 1761static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1da177e4 1762{
500462a9 1763 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1da177e4 1764
500462a9 1765 __run_timers(base);
ced6d5c1 1766 if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
500462a9 1767 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1da177e4
LT
1768}
1769
1770/*
1771 * Called by the local, per-CPU timer interrupt on SMP.
1772 */
1773void run_local_timers(void)
1774{
4e85876a
TG
1775 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1776
d3d74453 1777 hrtimer_run_queues();
4e85876a 1778 /* Raise the softirq only if required. */
d4f7dae8 1779 if (time_before(jiffies, base->next_expiry)) {
ed4bbf79 1780 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
4e85876a
TG
1781 return;
1782 /* CPU is awake, so check the deferrable base. */
1783 base++;
d4f7dae8 1784 if (time_before(jiffies, base->next_expiry))
4e85876a
TG
1785 return;
1786 }
1da177e4
LT
1787 raise_softirq(TIMER_SOFTIRQ);
1788}
1789
58e1177b
KC
1790/*
1791 * Since schedule_timeout()'s timer is defined on the stack, it must store
1792 * the target task on the stack as well.
1793 */
1794struct process_timer {
1795 struct timer_list timer;
1796 struct task_struct *task;
1797};
1798
1799static void process_timeout(struct timer_list *t)
1da177e4 1800{
58e1177b
KC
1801 struct process_timer *timeout = from_timer(timeout, t, timer);
1802
1803 wake_up_process(timeout->task);
1da177e4
LT
1804}
1805
1806/**
1807 * schedule_timeout - sleep until timeout
1808 * @timeout: timeout value in jiffies
1809 *
6e317c32
AP
1810 * Make the current task sleep until @timeout jiffies have elapsed.
1811 * The function behavior depends on the current task state
1812 * (see also set_current_state() description):
1da177e4 1813 *
6e317c32
AP
1814 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1815 * at all. That happens because sched_submit_work() does nothing for
1816 * tasks in %TASK_RUNNING state.
1da177e4
LT
1817 *
1818 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
4b7e9cf9 1819 * pass before the routine returns unless the current task is explicitly
6e317c32 1820 * woken up, (e.g. by wake_up_process()).
1da177e4
LT
1821 *
1822 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1823 * delivered to the current task or the current task is explicitly woken
1824 * up.
1da177e4 1825 *
6e317c32 1826 * The current task state is guaranteed to be %TASK_RUNNING when this
1da177e4
LT
1827 * routine returns.
1828 *
1829 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1830 * the CPU away without a bound on the timeout. In this case the return
1831 * value will be %MAX_SCHEDULE_TIMEOUT.
1832 *
4b7e9cf9 1833 * Returns 0 when the timer has expired otherwise the remaining time in
6e317c32 1834 * jiffies will be returned. In all cases the return value is guaranteed
4b7e9cf9 1835 * to be non-negative.
1da177e4 1836 */
7ad5b3a5 1837signed long __sched schedule_timeout(signed long timeout)
1da177e4 1838{
58e1177b 1839 struct process_timer timer;
1da177e4
LT
1840 unsigned long expire;
1841
1842 switch (timeout)
1843 {
1844 case MAX_SCHEDULE_TIMEOUT:
1845 /*
1846 * These two special cases are useful to be comfortable
1847 * in the caller. Nothing more. We could take
1848 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1849 * but I' d like to return a valid offset (>=0) to allow
1850 * the caller to do everything it want with the retval.
1851 */
1852 schedule();
1853 goto out;
1854 default:
1855 /*
1856 * Another bit of PARANOID. Note that the retval will be
1857 * 0 since no piece of kernel is supposed to do a check
1858 * for a negative retval of schedule_timeout() (since it
1859 * should never happens anyway). You just have the printk()
1860 * that will tell you if something is gone wrong and where.
1861 */
5b149bcc 1862 if (timeout < 0) {
1da177e4 1863 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1864 "value %lx\n", timeout);
1865 dump_stack();
1da177e4
LT
1866 current->state = TASK_RUNNING;
1867 goto out;
1868 }
1869 }
1870
1871 expire = timeout + jiffies;
1872
58e1177b
KC
1873 timer.task = current;
1874 timer_setup_on_stack(&timer.timer, process_timeout, 0);
90c01894 1875 __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1da177e4 1876 schedule();
58e1177b 1877 del_singleshot_timer_sync(&timer.timer);
1da177e4 1878
c6f3a97f 1879 /* Remove the timer from the object tracker */
58e1177b 1880 destroy_timer_on_stack(&timer.timer);
c6f3a97f 1881
1da177e4
LT
1882 timeout = expire - jiffies;
1883
1884 out:
1885 return timeout < 0 ? 0 : timeout;
1886}
1da177e4
LT
1887EXPORT_SYMBOL(schedule_timeout);
1888
8a1c1757
AM
1889/*
1890 * We can use __set_current_state() here because schedule_timeout() calls
1891 * schedule() unconditionally.
1892 */
64ed93a2
NA
1893signed long __sched schedule_timeout_interruptible(signed long timeout)
1894{
a5a0d52c
AM
1895 __set_current_state(TASK_INTERRUPTIBLE);
1896 return schedule_timeout(timeout);
64ed93a2
NA
1897}
1898EXPORT_SYMBOL(schedule_timeout_interruptible);
1899
294d5cc2
MW
1900signed long __sched schedule_timeout_killable(signed long timeout)
1901{
1902 __set_current_state(TASK_KILLABLE);
1903 return schedule_timeout(timeout);
1904}
1905EXPORT_SYMBOL(schedule_timeout_killable);
1906
64ed93a2
NA
1907signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1908{
a5a0d52c
AM
1909 __set_current_state(TASK_UNINTERRUPTIBLE);
1910 return schedule_timeout(timeout);
64ed93a2
NA
1911}
1912EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1913
69b27baf
AM
1914/*
1915 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1916 * to load average.
1917 */
1918signed long __sched schedule_timeout_idle(signed long timeout)
1919{
1920 __set_current_state(TASK_IDLE);
1921 return schedule_timeout(timeout);
1922}
1923EXPORT_SYMBOL(schedule_timeout_idle);
1924
1da177e4 1925#ifdef CONFIG_HOTPLUG_CPU
494af3ed 1926static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1da177e4
LT
1927{
1928 struct timer_list *timer;
0eeda71b 1929 int cpu = new_base->cpu;
1da177e4 1930
1dabbcec
TG
1931 while (!hlist_empty(head)) {
1932 timer = hlist_entry(head->first, struct timer_list, entry);
ec44bc7a 1933 detach_timer(timer, false);
0eeda71b 1934 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1da177e4 1935 internal_add_timer(new_base, timer);
1da177e4 1936 }
1da177e4
LT
1937}
1938
26456f87
TG
1939int timers_prepare_cpu(unsigned int cpu)
1940{
1941 struct timer_base *base;
1942 int b;
1943
1944 for (b = 0; b < NR_BASES; b++) {
1945 base = per_cpu_ptr(&timer_bases[b], cpu);
1946 base->clk = jiffies;
1947 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1948 base->is_idle = false;
26456f87
TG
1949 }
1950 return 0;
1951}
1952
24f73b99 1953int timers_dead_cpu(unsigned int cpu)
1da177e4 1954{
494af3ed
TG
1955 struct timer_base *old_base;
1956 struct timer_base *new_base;
500462a9 1957 int b, i;
1da177e4
LT
1958
1959 BUG_ON(cpu_online(cpu));
55c888d6 1960
500462a9
TG
1961 for (b = 0; b < NR_BASES; b++) {
1962 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1963 new_base = get_cpu_ptr(&timer_bases[b]);
1964 /*
1965 * The caller is globally serialized and nobody else
1966 * takes two locks at once, deadlock is not possible.
1967 */
2287d866
SAS
1968 raw_spin_lock_irq(&new_base->lock);
1969 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
500462a9 1970
c52232a4
LC
1971 /*
1972 * The current CPUs base clock might be stale. Update it
1973 * before moving the timers over.
1974 */
1975 forward_timer_base(new_base);
1976
500462a9
TG
1977 BUG_ON(old_base->running_timer);
1978
1979 for (i = 0; i < WHEEL_SIZE; i++)
1980 migrate_timer_list(new_base, old_base->vectors + i);
8def9060 1981
2287d866
SAS
1982 raw_spin_unlock(&old_base->lock);
1983 raw_spin_unlock_irq(&new_base->lock);
500462a9
TG
1984 put_cpu_ptr(&timer_bases);
1985 }
24f73b99 1986 return 0;
1da177e4 1987}
1da177e4 1988
3650b57f 1989#endif /* CONFIG_HOTPLUG_CPU */
1da177e4 1990
0eeda71b 1991static void __init init_timer_cpu(int cpu)
8def9060 1992{
500462a9
TG
1993 struct timer_base *base;
1994 int i;
8def9060 1995
500462a9
TG
1996 for (i = 0; i < NR_BASES; i++) {
1997 base = per_cpu_ptr(&timer_bases[i], cpu);
1998 base->cpu = cpu;
2287d866 1999 raw_spin_lock_init(&base->lock);
500462a9 2000 base->clk = jiffies;
dc2a0f1f 2001 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
030dcdd1 2002 timer_base_init_expiry_lock(base);
500462a9 2003 }
8def9060
VK
2004}
2005
2006static void __init init_timer_cpus(void)
1da177e4 2007{
8def9060
VK
2008 int cpu;
2009
0eeda71b
TG
2010 for_each_possible_cpu(cpu)
2011 init_timer_cpu(cpu);
8def9060 2012}
e52b1db3 2013
8def9060
VK
2014void __init init_timers(void)
2015{
8def9060 2016 init_timer_cpus();
1fb497dd 2017 posix_cputimers_init_work();
962cf36c 2018 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
2019}
2020
1da177e4
LT
2021/**
2022 * msleep - sleep safely even with waitqueue interruptions
2023 * @msecs: Time in milliseconds to sleep for
2024 */
2025void msleep(unsigned int msecs)
2026{
2027 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2028
75bcc8c5
NA
2029 while (timeout)
2030 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
2031}
2032
2033EXPORT_SYMBOL(msleep);
2034
2035/**
96ec3efd 2036 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
2037 * @msecs: Time in milliseconds to sleep for
2038 */
2039unsigned long msleep_interruptible(unsigned int msecs)
2040{
2041 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2042
75bcc8c5
NA
2043 while (timeout && !signal_pending(current))
2044 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
2045 return jiffies_to_msecs(timeout);
2046}
2047
2048EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17 2049
5e7f5a17 2050/**
b5227d03 2051 * usleep_range - Sleep for an approximate time
5e7f5a17
PP
2052 * @min: Minimum time in usecs to sleep
2053 * @max: Maximum time in usecs to sleep
b5227d03
BH
2054 *
2055 * In non-atomic context where the exact wakeup time is flexible, use
2056 * usleep_range() instead of udelay(). The sleep improves responsiveness
2057 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2058 * power usage by allowing hrtimers to take advantage of an already-
2059 * scheduled interrupt instead of scheduling a new one just for this sleep.
5e7f5a17 2060 */
2ad5d327 2061void __sched usleep_range(unsigned long min, unsigned long max)
5e7f5a17 2062{
6c5e9059
DA
2063 ktime_t exp = ktime_add_us(ktime_get(), min);
2064 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2065
2066 for (;;) {
2067 __set_current_state(TASK_UNINTERRUPTIBLE);
2068 /* Do not return before the requested sleep time has elapsed */
2069 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2070 break;
2071 }
5e7f5a17
PP
2072}
2073EXPORT_SYMBOL(usleep_range);