]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/timer.c | |
3 | * | |
4 | * Kernel internal timers, kernel timekeeping, basic process system calls | |
5 | * | |
6 | * Copyright (C) 1991, 1992 Linus Torvalds | |
7 | * | |
8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. | |
9 | * | |
10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | |
11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | |
12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | |
13 | * serialize accesses to xtime/lost_ticks). | |
14 | * Copyright (C) 1998 Andrea Arcangeli | |
15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl | |
16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love | |
17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. | |
18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar | |
19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | |
20 | */ | |
21 | ||
22 | #include <linux/kernel_stat.h> | |
23 | #include <linux/module.h> | |
24 | #include <linux/interrupt.h> | |
25 | #include <linux/percpu.h> | |
26 | #include <linux/init.h> | |
27 | #include <linux/mm.h> | |
28 | #include <linux/swap.h> | |
29 | #include <linux/notifier.h> | |
30 | #include <linux/thread_info.h> | |
31 | #include <linux/time.h> | |
32 | #include <linux/jiffies.h> | |
33 | #include <linux/posix-timers.h> | |
34 | #include <linux/cpu.h> | |
35 | #include <linux/syscalls.h> | |
97a41e26 | 36 | #include <linux/delay.h> |
1da177e4 LT |
37 | |
38 | #include <asm/uaccess.h> | |
39 | #include <asm/unistd.h> | |
40 | #include <asm/div64.h> | |
41 | #include <asm/timex.h> | |
42 | #include <asm/io.h> | |
43 | ||
ecea8d19 TG |
44 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
45 | ||
46 | EXPORT_SYMBOL(jiffies_64); | |
47 | ||
1da177e4 LT |
48 | /* |
49 | * per-CPU timer vector definitions: | |
50 | */ | |
1da177e4 LT |
51 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) |
52 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | |
53 | #define TVN_SIZE (1 << TVN_BITS) | |
54 | #define TVR_SIZE (1 << TVR_BITS) | |
55 | #define TVN_MASK (TVN_SIZE - 1) | |
56 | #define TVR_MASK (TVR_SIZE - 1) | |
57 | ||
58 | typedef struct tvec_s { | |
59 | struct list_head vec[TVN_SIZE]; | |
60 | } tvec_t; | |
61 | ||
62 | typedef struct tvec_root_s { | |
63 | struct list_head vec[TVR_SIZE]; | |
64 | } tvec_root_t; | |
65 | ||
66 | struct tvec_t_base_s { | |
3691c519 ON |
67 | spinlock_t lock; |
68 | struct timer_list *running_timer; | |
1da177e4 | 69 | unsigned long timer_jiffies; |
1da177e4 LT |
70 | tvec_root_t tv1; |
71 | tvec_t tv2; | |
72 | tvec_t tv3; | |
73 | tvec_t tv4; | |
74 | tvec_t tv5; | |
75 | } ____cacheline_aligned_in_smp; | |
76 | ||
77 | typedef struct tvec_t_base_s tvec_base_t; | |
ba6edfcd | 78 | |
3691c519 ON |
79 | tvec_base_t boot_tvec_bases; |
80 | EXPORT_SYMBOL(boot_tvec_bases); | |
51d8c5ed | 81 | static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases; |
1da177e4 LT |
82 | |
83 | static inline void set_running_timer(tvec_base_t *base, | |
84 | struct timer_list *timer) | |
85 | { | |
86 | #ifdef CONFIG_SMP | |
3691c519 | 87 | base->running_timer = timer; |
1da177e4 LT |
88 | #endif |
89 | } | |
90 | ||
1da177e4 LT |
91 | static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) |
92 | { | |
93 | unsigned long expires = timer->expires; | |
94 | unsigned long idx = expires - base->timer_jiffies; | |
95 | struct list_head *vec; | |
96 | ||
97 | if (idx < TVR_SIZE) { | |
98 | int i = expires & TVR_MASK; | |
99 | vec = base->tv1.vec + i; | |
100 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | |
101 | int i = (expires >> TVR_BITS) & TVN_MASK; | |
102 | vec = base->tv2.vec + i; | |
103 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | |
104 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | |
105 | vec = base->tv3.vec + i; | |
106 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | |
107 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | |
108 | vec = base->tv4.vec + i; | |
109 | } else if ((signed long) idx < 0) { | |
110 | /* | |
111 | * Can happen if you add a timer with expires == jiffies, | |
112 | * or you set a timer to go off in the past | |
113 | */ | |
114 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | |
115 | } else { | |
116 | int i; | |
117 | /* If the timeout is larger than 0xffffffff on 64-bit | |
118 | * architectures then we use the maximum timeout: | |
119 | */ | |
120 | if (idx > 0xffffffffUL) { | |
121 | idx = 0xffffffffUL; | |
122 | expires = idx + base->timer_jiffies; | |
123 | } | |
124 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | |
125 | vec = base->tv5.vec + i; | |
126 | } | |
127 | /* | |
128 | * Timers are FIFO: | |
129 | */ | |
130 | list_add_tail(&timer->entry, vec); | |
131 | } | |
132 | ||
2aae4a10 | 133 | /** |
55c888d6 ON |
134 | * init_timer - initialize a timer. |
135 | * @timer: the timer to be initialized | |
136 | * | |
137 | * init_timer() must be done to a timer prior calling *any* of the | |
138 | * other timer functions. | |
139 | */ | |
140 | void fastcall init_timer(struct timer_list *timer) | |
141 | { | |
142 | timer->entry.next = NULL; | |
bfe5d834 | 143 | timer->base = __raw_get_cpu_var(tvec_bases); |
55c888d6 ON |
144 | } |
145 | EXPORT_SYMBOL(init_timer); | |
146 | ||
147 | static inline void detach_timer(struct timer_list *timer, | |
148 | int clear_pending) | |
149 | { | |
150 | struct list_head *entry = &timer->entry; | |
151 | ||
152 | __list_del(entry->prev, entry->next); | |
153 | if (clear_pending) | |
154 | entry->next = NULL; | |
155 | entry->prev = LIST_POISON2; | |
156 | } | |
157 | ||
158 | /* | |
3691c519 | 159 | * We are using hashed locking: holding per_cpu(tvec_bases).lock |
55c888d6 ON |
160 | * means that all timers which are tied to this base via timer->base are |
161 | * locked, and the base itself is locked too. | |
162 | * | |
163 | * So __run_timers/migrate_timers can safely modify all timers which could | |
164 | * be found on ->tvX lists. | |
165 | * | |
166 | * When the timer's base is locked, and the timer removed from list, it is | |
167 | * possible to set timer->base = NULL and drop the lock: the timer remains | |
168 | * locked. | |
169 | */ | |
3691c519 | 170 | static tvec_base_t *lock_timer_base(struct timer_list *timer, |
55c888d6 | 171 | unsigned long *flags) |
89e7e374 | 172 | __acquires(timer->base->lock) |
55c888d6 | 173 | { |
3691c519 | 174 | tvec_base_t *base; |
55c888d6 ON |
175 | |
176 | for (;;) { | |
177 | base = timer->base; | |
178 | if (likely(base != NULL)) { | |
179 | spin_lock_irqsave(&base->lock, *flags); | |
180 | if (likely(base == timer->base)) | |
181 | return base; | |
182 | /* The timer has migrated to another CPU */ | |
183 | spin_unlock_irqrestore(&base->lock, *flags); | |
184 | } | |
185 | cpu_relax(); | |
186 | } | |
187 | } | |
188 | ||
1da177e4 LT |
189 | int __mod_timer(struct timer_list *timer, unsigned long expires) |
190 | { | |
3691c519 | 191 | tvec_base_t *base, *new_base; |
1da177e4 LT |
192 | unsigned long flags; |
193 | int ret = 0; | |
194 | ||
195 | BUG_ON(!timer->function); | |
1da177e4 | 196 | |
55c888d6 ON |
197 | base = lock_timer_base(timer, &flags); |
198 | ||
199 | if (timer_pending(timer)) { | |
200 | detach_timer(timer, 0); | |
201 | ret = 1; | |
202 | } | |
203 | ||
a4a6198b | 204 | new_base = __get_cpu_var(tvec_bases); |
1da177e4 | 205 | |
3691c519 | 206 | if (base != new_base) { |
1da177e4 | 207 | /* |
55c888d6 ON |
208 | * We are trying to schedule the timer on the local CPU. |
209 | * However we can't change timer's base while it is running, | |
210 | * otherwise del_timer_sync() can't detect that the timer's | |
211 | * handler yet has not finished. This also guarantees that | |
212 | * the timer is serialized wrt itself. | |
1da177e4 | 213 | */ |
a2c348fe | 214 | if (likely(base->running_timer != timer)) { |
55c888d6 ON |
215 | /* See the comment in lock_timer_base() */ |
216 | timer->base = NULL; | |
217 | spin_unlock(&base->lock); | |
a2c348fe ON |
218 | base = new_base; |
219 | spin_lock(&base->lock); | |
220 | timer->base = base; | |
1da177e4 LT |
221 | } |
222 | } | |
223 | ||
1da177e4 | 224 | timer->expires = expires; |
a2c348fe ON |
225 | internal_add_timer(base, timer); |
226 | spin_unlock_irqrestore(&base->lock, flags); | |
1da177e4 LT |
227 | |
228 | return ret; | |
229 | } | |
230 | ||
231 | EXPORT_SYMBOL(__mod_timer); | |
232 | ||
2aae4a10 | 233 | /** |
1da177e4 LT |
234 | * add_timer_on - start a timer on a particular CPU |
235 | * @timer: the timer to be added | |
236 | * @cpu: the CPU to start it on | |
237 | * | |
238 | * This is not very scalable on SMP. Double adds are not possible. | |
239 | */ | |
240 | void add_timer_on(struct timer_list *timer, int cpu) | |
241 | { | |
a4a6198b | 242 | tvec_base_t *base = per_cpu(tvec_bases, cpu); |
1da177e4 | 243 | unsigned long flags; |
55c888d6 | 244 | |
1da177e4 | 245 | BUG_ON(timer_pending(timer) || !timer->function); |
3691c519 ON |
246 | spin_lock_irqsave(&base->lock, flags); |
247 | timer->base = base; | |
1da177e4 | 248 | internal_add_timer(base, timer); |
3691c519 | 249 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 LT |
250 | } |
251 | ||
252 | ||
2aae4a10 | 253 | /** |
1da177e4 LT |
254 | * mod_timer - modify a timer's timeout |
255 | * @timer: the timer to be modified | |
2aae4a10 | 256 | * @expires: new timeout in jiffies |
1da177e4 LT |
257 | * |
258 | * mod_timer is a more efficient way to update the expire field of an | |
259 | * active timer (if the timer is inactive it will be activated) | |
260 | * | |
261 | * mod_timer(timer, expires) is equivalent to: | |
262 | * | |
263 | * del_timer(timer); timer->expires = expires; add_timer(timer); | |
264 | * | |
265 | * Note that if there are multiple unserialized concurrent users of the | |
266 | * same timer, then mod_timer() is the only safe way to modify the timeout, | |
267 | * since add_timer() cannot modify an already running timer. | |
268 | * | |
269 | * The function returns whether it has modified a pending timer or not. | |
270 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | |
271 | * active timer returns 1.) | |
272 | */ | |
273 | int mod_timer(struct timer_list *timer, unsigned long expires) | |
274 | { | |
275 | BUG_ON(!timer->function); | |
276 | ||
1da177e4 LT |
277 | /* |
278 | * This is a common optimization triggered by the | |
279 | * networking code - if the timer is re-modified | |
280 | * to be the same thing then just return: | |
281 | */ | |
282 | if (timer->expires == expires && timer_pending(timer)) | |
283 | return 1; | |
284 | ||
285 | return __mod_timer(timer, expires); | |
286 | } | |
287 | ||
288 | EXPORT_SYMBOL(mod_timer); | |
289 | ||
2aae4a10 | 290 | /** |
1da177e4 LT |
291 | * del_timer - deactive a timer. |
292 | * @timer: the timer to be deactivated | |
293 | * | |
294 | * del_timer() deactivates a timer - this works on both active and inactive | |
295 | * timers. | |
296 | * | |
297 | * The function returns whether it has deactivated a pending timer or not. | |
298 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | |
299 | * active timer returns 1.) | |
300 | */ | |
301 | int del_timer(struct timer_list *timer) | |
302 | { | |
3691c519 | 303 | tvec_base_t *base; |
1da177e4 | 304 | unsigned long flags; |
55c888d6 | 305 | int ret = 0; |
1da177e4 | 306 | |
55c888d6 ON |
307 | if (timer_pending(timer)) { |
308 | base = lock_timer_base(timer, &flags); | |
309 | if (timer_pending(timer)) { | |
310 | detach_timer(timer, 1); | |
311 | ret = 1; | |
312 | } | |
1da177e4 | 313 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 | 314 | } |
1da177e4 | 315 | |
55c888d6 | 316 | return ret; |
1da177e4 LT |
317 | } |
318 | ||
319 | EXPORT_SYMBOL(del_timer); | |
320 | ||
321 | #ifdef CONFIG_SMP | |
2aae4a10 REB |
322 | /** |
323 | * try_to_del_timer_sync - Try to deactivate a timer | |
324 | * @timer: timer do del | |
325 | * | |
fd450b73 ON |
326 | * This function tries to deactivate a timer. Upon successful (ret >= 0) |
327 | * exit the timer is not queued and the handler is not running on any CPU. | |
328 | * | |
329 | * It must not be called from interrupt contexts. | |
330 | */ | |
331 | int try_to_del_timer_sync(struct timer_list *timer) | |
332 | { | |
3691c519 | 333 | tvec_base_t *base; |
fd450b73 ON |
334 | unsigned long flags; |
335 | int ret = -1; | |
336 | ||
337 | base = lock_timer_base(timer, &flags); | |
338 | ||
339 | if (base->running_timer == timer) | |
340 | goto out; | |
341 | ||
342 | ret = 0; | |
343 | if (timer_pending(timer)) { | |
344 | detach_timer(timer, 1); | |
345 | ret = 1; | |
346 | } | |
347 | out: | |
348 | spin_unlock_irqrestore(&base->lock, flags); | |
349 | ||
350 | return ret; | |
351 | } | |
352 | ||
2aae4a10 | 353 | /** |
1da177e4 LT |
354 | * del_timer_sync - deactivate a timer and wait for the handler to finish. |
355 | * @timer: the timer to be deactivated | |
356 | * | |
357 | * This function only differs from del_timer() on SMP: besides deactivating | |
358 | * the timer it also makes sure the handler has finished executing on other | |
359 | * CPUs. | |
360 | * | |
361 | * Synchronization rules: callers must prevent restarting of the timer, | |
362 | * otherwise this function is meaningless. It must not be called from | |
363 | * interrupt contexts. The caller must not hold locks which would prevent | |
55c888d6 ON |
364 | * completion of the timer's handler. The timer's handler must not call |
365 | * add_timer_on(). Upon exit the timer is not queued and the handler is | |
366 | * not running on any CPU. | |
1da177e4 LT |
367 | * |
368 | * The function returns whether it has deactivated a pending timer or not. | |
1da177e4 LT |
369 | */ |
370 | int del_timer_sync(struct timer_list *timer) | |
371 | { | |
fd450b73 ON |
372 | for (;;) { |
373 | int ret = try_to_del_timer_sync(timer); | |
374 | if (ret >= 0) | |
375 | return ret; | |
a0009652 | 376 | cpu_relax(); |
fd450b73 | 377 | } |
1da177e4 | 378 | } |
1da177e4 | 379 | |
55c888d6 | 380 | EXPORT_SYMBOL(del_timer_sync); |
1da177e4 LT |
381 | #endif |
382 | ||
383 | static int cascade(tvec_base_t *base, tvec_t *tv, int index) | |
384 | { | |
385 | /* cascade all the timers from tv up one level */ | |
3439dd86 P |
386 | struct timer_list *timer, *tmp; |
387 | struct list_head tv_list; | |
388 | ||
389 | list_replace_init(tv->vec + index, &tv_list); | |
1da177e4 | 390 | |
1da177e4 | 391 | /* |
3439dd86 P |
392 | * We are removing _all_ timers from the list, so we |
393 | * don't have to detach them individually. | |
1da177e4 | 394 | */ |
3439dd86 P |
395 | list_for_each_entry_safe(timer, tmp, &tv_list, entry) { |
396 | BUG_ON(timer->base != base); | |
397 | internal_add_timer(base, timer); | |
1da177e4 | 398 | } |
1da177e4 LT |
399 | |
400 | return index; | |
401 | } | |
402 | ||
2aae4a10 REB |
403 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) |
404 | ||
405 | /** | |
1da177e4 LT |
406 | * __run_timers - run all expired timers (if any) on this CPU. |
407 | * @base: the timer vector to be processed. | |
408 | * | |
409 | * This function cascades all vectors and executes all expired timer | |
410 | * vectors. | |
411 | */ | |
1da177e4 LT |
412 | static inline void __run_timers(tvec_base_t *base) |
413 | { | |
414 | struct timer_list *timer; | |
415 | ||
3691c519 | 416 | spin_lock_irq(&base->lock); |
1da177e4 | 417 | while (time_after_eq(jiffies, base->timer_jiffies)) { |
626ab0e6 | 418 | struct list_head work_list; |
1da177e4 LT |
419 | struct list_head *head = &work_list; |
420 | int index = base->timer_jiffies & TVR_MASK; | |
626ab0e6 | 421 | |
1da177e4 LT |
422 | /* |
423 | * Cascade timers: | |
424 | */ | |
425 | if (!index && | |
426 | (!cascade(base, &base->tv2, INDEX(0))) && | |
427 | (!cascade(base, &base->tv3, INDEX(1))) && | |
428 | !cascade(base, &base->tv4, INDEX(2))) | |
429 | cascade(base, &base->tv5, INDEX(3)); | |
626ab0e6 ON |
430 | ++base->timer_jiffies; |
431 | list_replace_init(base->tv1.vec + index, &work_list); | |
55c888d6 | 432 | while (!list_empty(head)) { |
1da177e4 LT |
433 | void (*fn)(unsigned long); |
434 | unsigned long data; | |
435 | ||
436 | timer = list_entry(head->next,struct timer_list,entry); | |
437 | fn = timer->function; | |
438 | data = timer->data; | |
439 | ||
1da177e4 | 440 | set_running_timer(base, timer); |
55c888d6 | 441 | detach_timer(timer, 1); |
3691c519 | 442 | spin_unlock_irq(&base->lock); |
1da177e4 | 443 | { |
be5b4fbd | 444 | int preempt_count = preempt_count(); |
1da177e4 LT |
445 | fn(data); |
446 | if (preempt_count != preempt_count()) { | |
be5b4fbd JJ |
447 | printk(KERN_WARNING "huh, entered %p " |
448 | "with preempt_count %08x, exited" | |
449 | " with %08x?\n", | |
450 | fn, preempt_count, | |
451 | preempt_count()); | |
1da177e4 LT |
452 | BUG(); |
453 | } | |
454 | } | |
3691c519 | 455 | spin_lock_irq(&base->lock); |
1da177e4 LT |
456 | } |
457 | } | |
458 | set_running_timer(base, NULL); | |
3691c519 | 459 | spin_unlock_irq(&base->lock); |
1da177e4 LT |
460 | } |
461 | ||
462 | #ifdef CONFIG_NO_IDLE_HZ | |
463 | /* | |
464 | * Find out when the next timer event is due to happen. This | |
465 | * is used on S/390 to stop all activity when a cpus is idle. | |
466 | * This functions needs to be called disabled. | |
467 | */ | |
468 | unsigned long next_timer_interrupt(void) | |
469 | { | |
470 | tvec_base_t *base; | |
471 | struct list_head *list; | |
472 | struct timer_list *nte; | |
473 | unsigned long expires; | |
69239749 TL |
474 | unsigned long hr_expires = MAX_JIFFY_OFFSET; |
475 | ktime_t hr_delta; | |
1da177e4 LT |
476 | tvec_t *varray[4]; |
477 | int i, j; | |
478 | ||
69239749 TL |
479 | hr_delta = hrtimer_get_next_event(); |
480 | if (hr_delta.tv64 != KTIME_MAX) { | |
481 | struct timespec tsdelta; | |
482 | tsdelta = ktime_to_timespec(hr_delta); | |
483 | hr_expires = timespec_to_jiffies(&tsdelta); | |
484 | if (hr_expires < 3) | |
485 | return hr_expires + jiffies; | |
486 | } | |
487 | hr_expires += jiffies; | |
488 | ||
a4a6198b | 489 | base = __get_cpu_var(tvec_bases); |
3691c519 | 490 | spin_lock(&base->lock); |
1da177e4 | 491 | expires = base->timer_jiffies + (LONG_MAX >> 1); |
53f087fe | 492 | list = NULL; |
1da177e4 LT |
493 | |
494 | /* Look for timer events in tv1. */ | |
495 | j = base->timer_jiffies & TVR_MASK; | |
496 | do { | |
497 | list_for_each_entry(nte, base->tv1.vec + j, entry) { | |
498 | expires = nte->expires; | |
499 | if (j < (base->timer_jiffies & TVR_MASK)) | |
500 | list = base->tv2.vec + (INDEX(0)); | |
501 | goto found; | |
502 | } | |
503 | j = (j + 1) & TVR_MASK; | |
504 | } while (j != (base->timer_jiffies & TVR_MASK)); | |
505 | ||
506 | /* Check tv2-tv5. */ | |
507 | varray[0] = &base->tv2; | |
508 | varray[1] = &base->tv3; | |
509 | varray[2] = &base->tv4; | |
510 | varray[3] = &base->tv5; | |
511 | for (i = 0; i < 4; i++) { | |
512 | j = INDEX(i); | |
513 | do { | |
514 | if (list_empty(varray[i]->vec + j)) { | |
515 | j = (j + 1) & TVN_MASK; | |
516 | continue; | |
517 | } | |
518 | list_for_each_entry(nte, varray[i]->vec + j, entry) | |
519 | if (time_before(nte->expires, expires)) | |
520 | expires = nte->expires; | |
521 | if (j < (INDEX(i)) && i < 3) | |
522 | list = varray[i + 1]->vec + (INDEX(i + 1)); | |
523 | goto found; | |
524 | } while (j != (INDEX(i))); | |
525 | } | |
526 | found: | |
527 | if (list) { | |
528 | /* | |
529 | * The search wrapped. We need to look at the next list | |
530 | * from next tv element that would cascade into tv element | |
531 | * where we found the timer element. | |
532 | */ | |
533 | list_for_each_entry(nte, list, entry) { | |
534 | if (time_before(nte->expires, expires)) | |
535 | expires = nte->expires; | |
536 | } | |
537 | } | |
3691c519 | 538 | spin_unlock(&base->lock); |
69239749 | 539 | |
0662b713 ZA |
540 | /* |
541 | * It can happen that other CPUs service timer IRQs and increment | |
542 | * jiffies, but we have not yet got a local timer tick to process | |
543 | * the timer wheels. In that case, the expiry time can be before | |
544 | * jiffies, but since the high-resolution timer here is relative to | |
545 | * jiffies, the default expression when high-resolution timers are | |
546 | * not active, | |
547 | * | |
548 | * time_before(MAX_JIFFY_OFFSET + jiffies, expires) | |
549 | * | |
550 | * would falsely evaluate to true. If that is the case, just | |
551 | * return jiffies so that we can immediately fire the local timer | |
552 | */ | |
553 | if (time_before(expires, jiffies)) | |
554 | return jiffies; | |
555 | ||
69239749 TL |
556 | if (time_before(hr_expires, expires)) |
557 | return hr_expires; | |
558 | ||
1da177e4 LT |
559 | return expires; |
560 | } | |
561 | #endif | |
562 | ||
563 | /******************************************************************/ | |
564 | ||
1da177e4 LT |
565 | /* |
566 | * The current time | |
567 | * wall_to_monotonic is what we need to add to xtime (or xtime corrected | |
568 | * for sub jiffie times) to get to monotonic time. Monotonic is pegged | |
569 | * at zero at system boot time, so wall_to_monotonic will be negative, | |
570 | * however, we will ALWAYS keep the tv_nsec part positive so we can use | |
571 | * the usual normalization. | |
572 | */ | |
573 | struct timespec xtime __attribute__ ((aligned (16))); | |
574 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | |
575 | ||
576 | EXPORT_SYMBOL(xtime); | |
577 | ||
726c14bf | 578 | |
ad596171 JS |
579 | /* XXX - all of this timekeeping code should be later moved to time.c */ |
580 | #include <linux/clocksource.h> | |
581 | static struct clocksource *clock; /* pointer to current clocksource */ | |
cf3c769b JS |
582 | |
583 | #ifdef CONFIG_GENERIC_TIME | |
584 | /** | |
585 | * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook | |
586 | * | |
587 | * private function, must hold xtime_lock lock when being | |
588 | * called. Returns the number of nanoseconds since the | |
589 | * last call to update_wall_time() (adjusted by NTP scaling) | |
590 | */ | |
591 | static inline s64 __get_nsec_offset(void) | |
592 | { | |
593 | cycle_t cycle_now, cycle_delta; | |
594 | s64 ns_offset; | |
595 | ||
596 | /* read clocksource: */ | |
a2752549 | 597 | cycle_now = clocksource_read(clock); |
cf3c769b JS |
598 | |
599 | /* calculate the delta since the last update_wall_time: */ | |
19923c19 | 600 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; |
cf3c769b JS |
601 | |
602 | /* convert to nanoseconds: */ | |
603 | ns_offset = cyc2ns(clock, cycle_delta); | |
604 | ||
605 | return ns_offset; | |
606 | } | |
607 | ||
608 | /** | |
609 | * __get_realtime_clock_ts - Returns the time of day in a timespec | |
610 | * @ts: pointer to the timespec to be set | |
611 | * | |
612 | * Returns the time of day in a timespec. Used by | |
613 | * do_gettimeofday() and get_realtime_clock_ts(). | |
614 | */ | |
615 | static inline void __get_realtime_clock_ts(struct timespec *ts) | |
616 | { | |
617 | unsigned long seq; | |
618 | s64 nsecs; | |
619 | ||
620 | do { | |
621 | seq = read_seqbegin(&xtime_lock); | |
622 | ||
623 | *ts = xtime; | |
624 | nsecs = __get_nsec_offset(); | |
625 | ||
626 | } while (read_seqretry(&xtime_lock, seq)); | |
627 | ||
628 | timespec_add_ns(ts, nsecs); | |
629 | } | |
630 | ||
631 | /** | |
a2752549 | 632 | * getnstimeofday - Returns the time of day in a timespec |
cf3c769b JS |
633 | * @ts: pointer to the timespec to be set |
634 | * | |
635 | * Returns the time of day in a timespec. | |
636 | */ | |
637 | void getnstimeofday(struct timespec *ts) | |
638 | { | |
639 | __get_realtime_clock_ts(ts); | |
640 | } | |
641 | ||
642 | EXPORT_SYMBOL(getnstimeofday); | |
643 | ||
644 | /** | |
645 | * do_gettimeofday - Returns the time of day in a timeval | |
646 | * @tv: pointer to the timeval to be set | |
647 | * | |
648 | * NOTE: Users should be converted to using get_realtime_clock_ts() | |
649 | */ | |
650 | void do_gettimeofday(struct timeval *tv) | |
651 | { | |
652 | struct timespec now; | |
653 | ||
654 | __get_realtime_clock_ts(&now); | |
655 | tv->tv_sec = now.tv_sec; | |
656 | tv->tv_usec = now.tv_nsec/1000; | |
657 | } | |
658 | ||
659 | EXPORT_SYMBOL(do_gettimeofday); | |
660 | /** | |
661 | * do_settimeofday - Sets the time of day | |
662 | * @tv: pointer to the timespec variable containing the new time | |
663 | * | |
664 | * Sets the time of day to the new time and update NTP and notify hrtimers | |
665 | */ | |
666 | int do_settimeofday(struct timespec *tv) | |
667 | { | |
668 | unsigned long flags; | |
669 | time_t wtm_sec, sec = tv->tv_sec; | |
670 | long wtm_nsec, nsec = tv->tv_nsec; | |
671 | ||
672 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | |
673 | return -EINVAL; | |
674 | ||
675 | write_seqlock_irqsave(&xtime_lock, flags); | |
676 | ||
677 | nsec -= __get_nsec_offset(); | |
678 | ||
679 | wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | |
680 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | |
681 | ||
682 | set_normalized_timespec(&xtime, sec, nsec); | |
683 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | |
684 | ||
e154ff3d | 685 | clock->error = 0; |
cf3c769b JS |
686 | ntp_clear(); |
687 | ||
688 | write_sequnlock_irqrestore(&xtime_lock, flags); | |
689 | ||
690 | /* signal hrtimers about time change */ | |
691 | clock_was_set(); | |
692 | ||
693 | return 0; | |
694 | } | |
695 | ||
696 | EXPORT_SYMBOL(do_settimeofday); | |
697 | ||
698 | /** | |
699 | * change_clocksource - Swaps clocksources if a new one is available | |
700 | * | |
701 | * Accumulates current time interval and initializes new clocksource | |
702 | */ | |
703 | static int change_clocksource(void) | |
704 | { | |
705 | struct clocksource *new; | |
706 | cycle_t now; | |
707 | u64 nsec; | |
a2752549 | 708 | new = clocksource_get_next(); |
cf3c769b | 709 | if (clock != new) { |
a2752549 | 710 | now = clocksource_read(new); |
cf3c769b JS |
711 | nsec = __get_nsec_offset(); |
712 | timespec_add_ns(&xtime, nsec); | |
713 | ||
714 | clock = new; | |
19923c19 | 715 | clock->cycle_last = now; |
cf3c769b JS |
716 | printk(KERN_INFO "Time: %s clocksource has been installed.\n", |
717 | clock->name); | |
718 | return 1; | |
719 | } else if (clock->update_callback) { | |
720 | return clock->update_callback(); | |
721 | } | |
722 | return 0; | |
723 | } | |
724 | #else | |
725 | #define change_clocksource() (0) | |
726 | #endif | |
727 | ||
728 | /** | |
729 | * timeofday_is_continuous - check to see if timekeeping is free running | |
730 | */ | |
731 | int timekeeping_is_continuous(void) | |
732 | { | |
733 | unsigned long seq; | |
734 | int ret; | |
735 | ||
736 | do { | |
737 | seq = read_seqbegin(&xtime_lock); | |
738 | ||
739 | ret = clock->is_continuous; | |
740 | ||
741 | } while (read_seqretry(&xtime_lock, seq)); | |
742 | ||
743 | return ret; | |
744 | } | |
745 | ||
1da177e4 | 746 | /* |
ad596171 | 747 | * timekeeping_init - Initializes the clocksource and common timekeeping values |
1da177e4 | 748 | */ |
ad596171 | 749 | void __init timekeeping_init(void) |
1da177e4 | 750 | { |
ad596171 JS |
751 | unsigned long flags; |
752 | ||
753 | write_seqlock_irqsave(&xtime_lock, flags); | |
b0ee7556 RZ |
754 | |
755 | ntp_clear(); | |
756 | ||
a2752549 JS |
757 | clock = clocksource_get_next(); |
758 | clocksource_calculate_interval(clock, tick_nsec); | |
19923c19 | 759 | clock->cycle_last = clocksource_read(clock); |
b0ee7556 | 760 | |
ad596171 JS |
761 | write_sequnlock_irqrestore(&xtime_lock, flags); |
762 | } | |
763 | ||
764 | ||
3e143475 | 765 | static int timekeeping_suspended; |
2aae4a10 | 766 | /** |
ad596171 JS |
767 | * timekeeping_resume - Resumes the generic timekeeping subsystem. |
768 | * @dev: unused | |
769 | * | |
770 | * This is for the generic clocksource timekeeping. | |
8ef38609 | 771 | * xtime/wall_to_monotonic/jiffies/etc are |
ad596171 JS |
772 | * still managed by arch specific suspend/resume code. |
773 | */ | |
774 | static int timekeeping_resume(struct sys_device *dev) | |
775 | { | |
776 | unsigned long flags; | |
777 | ||
778 | write_seqlock_irqsave(&xtime_lock, flags); | |
779 | /* restart the last cycle value */ | |
19923c19 | 780 | clock->cycle_last = clocksource_read(clock); |
3e143475 JS |
781 | clock->error = 0; |
782 | timekeeping_suspended = 0; | |
783 | write_sequnlock_irqrestore(&xtime_lock, flags); | |
784 | return 0; | |
785 | } | |
786 | ||
787 | static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) | |
788 | { | |
789 | unsigned long flags; | |
790 | ||
791 | write_seqlock_irqsave(&xtime_lock, flags); | |
792 | timekeeping_suspended = 1; | |
ad596171 JS |
793 | write_sequnlock_irqrestore(&xtime_lock, flags); |
794 | return 0; | |
795 | } | |
796 | ||
797 | /* sysfs resume/suspend bits for timekeeping */ | |
798 | static struct sysdev_class timekeeping_sysclass = { | |
799 | .resume = timekeeping_resume, | |
3e143475 | 800 | .suspend = timekeeping_suspend, |
ad596171 JS |
801 | set_kset_name("timekeeping"), |
802 | }; | |
803 | ||
804 | static struct sys_device device_timer = { | |
805 | .id = 0, | |
806 | .cls = &timekeeping_sysclass, | |
807 | }; | |
808 | ||
809 | static int __init timekeeping_init_device(void) | |
810 | { | |
811 | int error = sysdev_class_register(&timekeeping_sysclass); | |
812 | if (!error) | |
813 | error = sysdev_register(&device_timer); | |
814 | return error; | |
815 | } | |
816 | ||
817 | device_initcall(timekeeping_init_device); | |
818 | ||
19923c19 | 819 | /* |
e154ff3d | 820 | * If the error is already larger, we look ahead even further |
19923c19 RZ |
821 | * to compensate for late or lost adjustments. |
822 | */ | |
e154ff3d | 823 | static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, s64 *offset) |
19923c19 | 824 | { |
e154ff3d RZ |
825 | s64 tick_error, i; |
826 | u32 look_ahead, adj; | |
827 | s32 error2, mult; | |
19923c19 RZ |
828 | |
829 | /* | |
e154ff3d RZ |
830 | * Use the current error value to determine how much to look ahead. |
831 | * The larger the error the slower we adjust for it to avoid problems | |
832 | * with losing too many ticks, otherwise we would overadjust and | |
833 | * produce an even larger error. The smaller the adjustment the | |
834 | * faster we try to adjust for it, as lost ticks can do less harm | |
835 | * here. This is tuned so that an error of about 1 msec is adusted | |
836 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). | |
19923c19 | 837 | */ |
e154ff3d RZ |
838 | error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ); |
839 | error2 = abs(error2); | |
840 | for (look_ahead = 0; error2 > 0; look_ahead++) | |
841 | error2 >>= 2; | |
19923c19 RZ |
842 | |
843 | /* | |
e154ff3d RZ |
844 | * Now calculate the error in (1 << look_ahead) ticks, but first |
845 | * remove the single look ahead already included in the error. | |
19923c19 | 846 | */ |
e154ff3d RZ |
847 | tick_error = current_tick_length() >> (TICK_LENGTH_SHIFT - clock->shift + 1); |
848 | tick_error -= clock->xtime_interval >> 1; | |
849 | error = ((error - tick_error) >> look_ahead) + tick_error; | |
850 | ||
851 | /* Finally calculate the adjustment shift value. */ | |
852 | i = *interval; | |
853 | mult = 1; | |
854 | if (error < 0) { | |
855 | error = -error; | |
856 | *interval = -*interval; | |
857 | *offset = -*offset; | |
858 | mult = -1; | |
19923c19 | 859 | } |
e154ff3d RZ |
860 | for (adj = 0; error > i; adj++) |
861 | error >>= 1; | |
19923c19 RZ |
862 | |
863 | *interval <<= adj; | |
864 | *offset <<= adj; | |
e154ff3d | 865 | return mult << adj; |
19923c19 RZ |
866 | } |
867 | ||
868 | /* | |
869 | * Adjust the multiplier to reduce the error value, | |
870 | * this is optimized for the most common adjustments of -1,0,1, | |
871 | * for other values we can do a bit more work. | |
872 | */ | |
873 | static void clocksource_adjust(struct clocksource *clock, s64 offset) | |
874 | { | |
875 | s64 error, interval = clock->cycle_interval; | |
876 | int adj; | |
877 | ||
878 | error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1); | |
879 | if (error > interval) { | |
e154ff3d RZ |
880 | error >>= 2; |
881 | if (likely(error <= interval)) | |
882 | adj = 1; | |
883 | else | |
884 | adj = clocksource_bigadjust(error, &interval, &offset); | |
19923c19 | 885 | } else if (error < -interval) { |
e154ff3d RZ |
886 | error >>= 2; |
887 | if (likely(error >= -interval)) { | |
888 | adj = -1; | |
889 | interval = -interval; | |
890 | offset = -offset; | |
891 | } else | |
892 | adj = clocksource_bigadjust(error, &interval, &offset); | |
19923c19 RZ |
893 | } else |
894 | return; | |
895 | ||
896 | clock->mult += adj; | |
897 | clock->xtime_interval += interval; | |
898 | clock->xtime_nsec -= offset; | |
899 | clock->error -= (interval - offset) << (TICK_LENGTH_SHIFT - clock->shift); | |
900 | } | |
901 | ||
2aae4a10 | 902 | /** |
ad596171 JS |
903 | * update_wall_time - Uses the current clocksource to increment the wall time |
904 | * | |
905 | * Called from the timer interrupt, must hold a write on xtime_lock. | |
906 | */ | |
907 | static void update_wall_time(void) | |
908 | { | |
19923c19 | 909 | cycle_t offset; |
ad596171 | 910 | |
3e143475 JS |
911 | /* Make sure we're fully resumed: */ |
912 | if (unlikely(timekeeping_suspended)) | |
913 | return; | |
5eb6d205 | 914 | |
19923c19 RZ |
915 | #ifdef CONFIG_GENERIC_TIME |
916 | offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask; | |
917 | #else | |
918 | offset = clock->cycle_interval; | |
919 | #endif | |
3e143475 | 920 | clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift; |
ad596171 JS |
921 | |
922 | /* normally this loop will run just once, however in the | |
923 | * case of lost or late ticks, it will accumulate correctly. | |
924 | */ | |
19923c19 | 925 | while (offset >= clock->cycle_interval) { |
ad596171 | 926 | /* accumulate one interval */ |
19923c19 RZ |
927 | clock->xtime_nsec += clock->xtime_interval; |
928 | clock->cycle_last += clock->cycle_interval; | |
929 | offset -= clock->cycle_interval; | |
930 | ||
931 | if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) { | |
932 | clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift; | |
933 | xtime.tv_sec++; | |
934 | second_overflow(); | |
935 | } | |
ad596171 | 936 | |
5eb6d205 | 937 | /* interpolator bits */ |
19923c19 | 938 | time_interpolator_update(clock->xtime_interval |
5eb6d205 | 939 | >> clock->shift); |
5eb6d205 JS |
940 | |
941 | /* accumulate error between NTP and clock interval */ | |
19923c19 RZ |
942 | clock->error += current_tick_length(); |
943 | clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift); | |
944 | } | |
5eb6d205 | 945 | |
19923c19 RZ |
946 | /* correct the clock when NTP error is too big */ |
947 | clocksource_adjust(clock, offset); | |
5eb6d205 | 948 | |
5eb6d205 | 949 | /* store full nanoseconds into xtime */ |
e154ff3d | 950 | xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift; |
19923c19 | 951 | clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift; |
cf3c769b JS |
952 | |
953 | /* check to see if there is a new clocksource to use */ | |
954 | if (change_clocksource()) { | |
19923c19 RZ |
955 | clock->error = 0; |
956 | clock->xtime_nsec = 0; | |
a2752549 | 957 | clocksource_calculate_interval(clock, tick_nsec); |
cf3c769b | 958 | } |
1da177e4 LT |
959 | } |
960 | ||
961 | /* | |
962 | * Called from the timer interrupt handler to charge one tick to the current | |
963 | * process. user_tick is 1 if the tick is user time, 0 for system. | |
964 | */ | |
965 | void update_process_times(int user_tick) | |
966 | { | |
967 | struct task_struct *p = current; | |
968 | int cpu = smp_processor_id(); | |
969 | ||
970 | /* Note: this timer irq context must be accounted for as well. */ | |
971 | if (user_tick) | |
972 | account_user_time(p, jiffies_to_cputime(1)); | |
973 | else | |
974 | account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); | |
975 | run_local_timers(); | |
976 | if (rcu_pending(cpu)) | |
977 | rcu_check_callbacks(cpu, user_tick); | |
978 | scheduler_tick(); | |
979 | run_posix_cpu_timers(p); | |
980 | } | |
981 | ||
982 | /* | |
983 | * Nr of active tasks - counted in fixed-point numbers | |
984 | */ | |
985 | static unsigned long count_active_tasks(void) | |
986 | { | |
db1b1fef | 987 | return nr_active() * FIXED_1; |
1da177e4 LT |
988 | } |
989 | ||
990 | /* | |
991 | * Hmm.. Changed this, as the GNU make sources (load.c) seems to | |
992 | * imply that avenrun[] is the standard name for this kind of thing. | |
993 | * Nothing else seems to be standardized: the fractional size etc | |
994 | * all seem to differ on different machines. | |
995 | * | |
996 | * Requires xtime_lock to access. | |
997 | */ | |
998 | unsigned long avenrun[3]; | |
999 | ||
1000 | EXPORT_SYMBOL(avenrun); | |
1001 | ||
1002 | /* | |
1003 | * calc_load - given tick count, update the avenrun load estimates. | |
1004 | * This is called while holding a write_lock on xtime_lock. | |
1005 | */ | |
1006 | static inline void calc_load(unsigned long ticks) | |
1007 | { | |
1008 | unsigned long active_tasks; /* fixed-point */ | |
1009 | static int count = LOAD_FREQ; | |
1010 | ||
3171a030 AN |
1011 | active_tasks = count_active_tasks(); |
1012 | for (count -= ticks; count < 0; count += LOAD_FREQ) { | |
1da177e4 LT |
1013 | CALC_LOAD(avenrun[0], EXP_1, active_tasks); |
1014 | CALC_LOAD(avenrun[1], EXP_5, active_tasks); | |
1015 | CALC_LOAD(avenrun[2], EXP_15, active_tasks); | |
1016 | } | |
1017 | } | |
1018 | ||
1da177e4 LT |
1019 | /* |
1020 | * This read-write spinlock protects us from races in SMP while | |
1021 | * playing with xtime and avenrun. | |
1022 | */ | |
1023 | #ifndef ARCH_HAVE_XTIME_LOCK | |
e4d91918 | 1024 | __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); |
1da177e4 LT |
1025 | |
1026 | EXPORT_SYMBOL(xtime_lock); | |
1027 | #endif | |
1028 | ||
1029 | /* | |
1030 | * This function runs timers and the timer-tq in bottom half context. | |
1031 | */ | |
1032 | static void run_timer_softirq(struct softirq_action *h) | |
1033 | { | |
a4a6198b | 1034 | tvec_base_t *base = __get_cpu_var(tvec_bases); |
1da177e4 | 1035 | |
c0a31329 | 1036 | hrtimer_run_queues(); |
1da177e4 LT |
1037 | if (time_after_eq(jiffies, base->timer_jiffies)) |
1038 | __run_timers(base); | |
1039 | } | |
1040 | ||
1041 | /* | |
1042 | * Called by the local, per-CPU timer interrupt on SMP. | |
1043 | */ | |
1044 | void run_local_timers(void) | |
1045 | { | |
1046 | raise_softirq(TIMER_SOFTIRQ); | |
6687a97d | 1047 | softlockup_tick(); |
1da177e4 LT |
1048 | } |
1049 | ||
1050 | /* | |
1051 | * Called by the timer interrupt. xtime_lock must already be taken | |
1052 | * by the timer IRQ! | |
1053 | */ | |
3171a030 | 1054 | static inline void update_times(unsigned long ticks) |
1da177e4 | 1055 | { |
ad596171 | 1056 | update_wall_time(); |
1da177e4 LT |
1057 | calc_load(ticks); |
1058 | } | |
1059 | ||
1060 | /* | |
1061 | * The 64-bit jiffies value is not atomic - you MUST NOT read it | |
1062 | * without sampling the sequence number in xtime_lock. | |
1063 | * jiffies is defined in the linker script... | |
1064 | */ | |
1065 | ||
3171a030 | 1066 | void do_timer(unsigned long ticks) |
1da177e4 | 1067 | { |
3171a030 AN |
1068 | jiffies_64 += ticks; |
1069 | update_times(ticks); | |
1da177e4 LT |
1070 | } |
1071 | ||
1072 | #ifdef __ARCH_WANT_SYS_ALARM | |
1073 | ||
1074 | /* | |
1075 | * For backwards compatibility? This can be done in libc so Alpha | |
1076 | * and all newer ports shouldn't need it. | |
1077 | */ | |
1078 | asmlinkage unsigned long sys_alarm(unsigned int seconds) | |
1079 | { | |
c08b8a49 | 1080 | return alarm_setitimer(seconds); |
1da177e4 LT |
1081 | } |
1082 | ||
1083 | #endif | |
1084 | ||
1085 | #ifndef __alpha__ | |
1086 | ||
1087 | /* | |
1088 | * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this | |
1089 | * should be moved into arch/i386 instead? | |
1090 | */ | |
1091 | ||
1092 | /** | |
1093 | * sys_getpid - return the thread group id of the current process | |
1094 | * | |
1095 | * Note, despite the name, this returns the tgid not the pid. The tgid and | |
1096 | * the pid are identical unless CLONE_THREAD was specified on clone() in | |
1097 | * which case the tgid is the same in all threads of the same group. | |
1098 | * | |
1099 | * This is SMP safe as current->tgid does not change. | |
1100 | */ | |
1101 | asmlinkage long sys_getpid(void) | |
1102 | { | |
1103 | return current->tgid; | |
1104 | } | |
1105 | ||
1106 | /* | |
6997a6fa KK |
1107 | * Accessing ->real_parent is not SMP-safe, it could |
1108 | * change from under us. However, we can use a stale | |
1109 | * value of ->real_parent under rcu_read_lock(), see | |
1110 | * release_task()->call_rcu(delayed_put_task_struct). | |
1da177e4 LT |
1111 | */ |
1112 | asmlinkage long sys_getppid(void) | |
1113 | { | |
1114 | int pid; | |
1da177e4 | 1115 | |
6997a6fa KK |
1116 | rcu_read_lock(); |
1117 | pid = rcu_dereference(current->real_parent)->tgid; | |
1118 | rcu_read_unlock(); | |
1da177e4 | 1119 | |
1da177e4 LT |
1120 | return pid; |
1121 | } | |
1122 | ||
1123 | asmlinkage long sys_getuid(void) | |
1124 | { | |
1125 | /* Only we change this so SMP safe */ | |
1126 | return current->uid; | |
1127 | } | |
1128 | ||
1129 | asmlinkage long sys_geteuid(void) | |
1130 | { | |
1131 | /* Only we change this so SMP safe */ | |
1132 | return current->euid; | |
1133 | } | |
1134 | ||
1135 | asmlinkage long sys_getgid(void) | |
1136 | { | |
1137 | /* Only we change this so SMP safe */ | |
1138 | return current->gid; | |
1139 | } | |
1140 | ||
1141 | asmlinkage long sys_getegid(void) | |
1142 | { | |
1143 | /* Only we change this so SMP safe */ | |
1144 | return current->egid; | |
1145 | } | |
1146 | ||
1147 | #endif | |
1148 | ||
1149 | static void process_timeout(unsigned long __data) | |
1150 | { | |
36c8b586 | 1151 | wake_up_process((struct task_struct *)__data); |
1da177e4 LT |
1152 | } |
1153 | ||
1154 | /** | |
1155 | * schedule_timeout - sleep until timeout | |
1156 | * @timeout: timeout value in jiffies | |
1157 | * | |
1158 | * Make the current task sleep until @timeout jiffies have | |
1159 | * elapsed. The routine will return immediately unless | |
1160 | * the current task state has been set (see set_current_state()). | |
1161 | * | |
1162 | * You can set the task state as follows - | |
1163 | * | |
1164 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | |
1165 | * pass before the routine returns. The routine will return 0 | |
1166 | * | |
1167 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
1168 | * delivered to the current task. In this case the remaining time | |
1169 | * in jiffies will be returned, or 0 if the timer expired in time | |
1170 | * | |
1171 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1172 | * routine returns. | |
1173 | * | |
1174 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | |
1175 | * the CPU away without a bound on the timeout. In this case the return | |
1176 | * value will be %MAX_SCHEDULE_TIMEOUT. | |
1177 | * | |
1178 | * In all cases the return value is guaranteed to be non-negative. | |
1179 | */ | |
1180 | fastcall signed long __sched schedule_timeout(signed long timeout) | |
1181 | { | |
1182 | struct timer_list timer; | |
1183 | unsigned long expire; | |
1184 | ||
1185 | switch (timeout) | |
1186 | { | |
1187 | case MAX_SCHEDULE_TIMEOUT: | |
1188 | /* | |
1189 | * These two special cases are useful to be comfortable | |
1190 | * in the caller. Nothing more. We could take | |
1191 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | |
1192 | * but I' d like to return a valid offset (>=0) to allow | |
1193 | * the caller to do everything it want with the retval. | |
1194 | */ | |
1195 | schedule(); | |
1196 | goto out; | |
1197 | default: | |
1198 | /* | |
1199 | * Another bit of PARANOID. Note that the retval will be | |
1200 | * 0 since no piece of kernel is supposed to do a check | |
1201 | * for a negative retval of schedule_timeout() (since it | |
1202 | * should never happens anyway). You just have the printk() | |
1203 | * that will tell you if something is gone wrong and where. | |
1204 | */ | |
1205 | if (timeout < 0) | |
1206 | { | |
1207 | printk(KERN_ERR "schedule_timeout: wrong timeout " | |
a5a0d52c AM |
1208 | "value %lx from %p\n", timeout, |
1209 | __builtin_return_address(0)); | |
1da177e4 LT |
1210 | current->state = TASK_RUNNING; |
1211 | goto out; | |
1212 | } | |
1213 | } | |
1214 | ||
1215 | expire = timeout + jiffies; | |
1216 | ||
a8db2db1 ON |
1217 | setup_timer(&timer, process_timeout, (unsigned long)current); |
1218 | __mod_timer(&timer, expire); | |
1da177e4 LT |
1219 | schedule(); |
1220 | del_singleshot_timer_sync(&timer); | |
1221 | ||
1222 | timeout = expire - jiffies; | |
1223 | ||
1224 | out: | |
1225 | return timeout < 0 ? 0 : timeout; | |
1226 | } | |
1da177e4 LT |
1227 | EXPORT_SYMBOL(schedule_timeout); |
1228 | ||
8a1c1757 AM |
1229 | /* |
1230 | * We can use __set_current_state() here because schedule_timeout() calls | |
1231 | * schedule() unconditionally. | |
1232 | */ | |
64ed93a2 NA |
1233 | signed long __sched schedule_timeout_interruptible(signed long timeout) |
1234 | { | |
a5a0d52c AM |
1235 | __set_current_state(TASK_INTERRUPTIBLE); |
1236 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1237 | } |
1238 | EXPORT_SYMBOL(schedule_timeout_interruptible); | |
1239 | ||
1240 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) | |
1241 | { | |
a5a0d52c AM |
1242 | __set_current_state(TASK_UNINTERRUPTIBLE); |
1243 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1244 | } |
1245 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | |
1246 | ||
1da177e4 LT |
1247 | /* Thread ID - the internal kernel "pid" */ |
1248 | asmlinkage long sys_gettid(void) | |
1249 | { | |
1250 | return current->pid; | |
1251 | } | |
1252 | ||
2aae4a10 | 1253 | /** |
1da177e4 | 1254 | * sys_sysinfo - fill in sysinfo struct |
2aae4a10 | 1255 | * @info: pointer to buffer to fill |
1da177e4 LT |
1256 | */ |
1257 | asmlinkage long sys_sysinfo(struct sysinfo __user *info) | |
1258 | { | |
1259 | struct sysinfo val; | |
1260 | unsigned long mem_total, sav_total; | |
1261 | unsigned int mem_unit, bitcount; | |
1262 | unsigned long seq; | |
1263 | ||
1264 | memset((char *)&val, 0, sizeof(struct sysinfo)); | |
1265 | ||
1266 | do { | |
1267 | struct timespec tp; | |
1268 | seq = read_seqbegin(&xtime_lock); | |
1269 | ||
1270 | /* | |
1271 | * This is annoying. The below is the same thing | |
1272 | * posix_get_clock_monotonic() does, but it wants to | |
1273 | * take the lock which we want to cover the loads stuff | |
1274 | * too. | |
1275 | */ | |
1276 | ||
1277 | getnstimeofday(&tp); | |
1278 | tp.tv_sec += wall_to_monotonic.tv_sec; | |
1279 | tp.tv_nsec += wall_to_monotonic.tv_nsec; | |
1280 | if (tp.tv_nsec - NSEC_PER_SEC >= 0) { | |
1281 | tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; | |
1282 | tp.tv_sec++; | |
1283 | } | |
1284 | val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | |
1285 | ||
1286 | val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); | |
1287 | val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); | |
1288 | val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); | |
1289 | ||
1290 | val.procs = nr_threads; | |
1291 | } while (read_seqretry(&xtime_lock, seq)); | |
1292 | ||
1293 | si_meminfo(&val); | |
1294 | si_swapinfo(&val); | |
1295 | ||
1296 | /* | |
1297 | * If the sum of all the available memory (i.e. ram + swap) | |
1298 | * is less than can be stored in a 32 bit unsigned long then | |
1299 | * we can be binary compatible with 2.2.x kernels. If not, | |
1300 | * well, in that case 2.2.x was broken anyways... | |
1301 | * | |
1302 | * -Erik Andersen <andersee@debian.org> | |
1303 | */ | |
1304 | ||
1305 | mem_total = val.totalram + val.totalswap; | |
1306 | if (mem_total < val.totalram || mem_total < val.totalswap) | |
1307 | goto out; | |
1308 | bitcount = 0; | |
1309 | mem_unit = val.mem_unit; | |
1310 | while (mem_unit > 1) { | |
1311 | bitcount++; | |
1312 | mem_unit >>= 1; | |
1313 | sav_total = mem_total; | |
1314 | mem_total <<= 1; | |
1315 | if (mem_total < sav_total) | |
1316 | goto out; | |
1317 | } | |
1318 | ||
1319 | /* | |
1320 | * If mem_total did not overflow, multiply all memory values by | |
1321 | * val.mem_unit and set it to 1. This leaves things compatible | |
1322 | * with 2.2.x, and also retains compatibility with earlier 2.4.x | |
1323 | * kernels... | |
1324 | */ | |
1325 | ||
1326 | val.mem_unit = 1; | |
1327 | val.totalram <<= bitcount; | |
1328 | val.freeram <<= bitcount; | |
1329 | val.sharedram <<= bitcount; | |
1330 | val.bufferram <<= bitcount; | |
1331 | val.totalswap <<= bitcount; | |
1332 | val.freeswap <<= bitcount; | |
1333 | val.totalhigh <<= bitcount; | |
1334 | val.freehigh <<= bitcount; | |
1335 | ||
1336 | out: | |
1337 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) | |
1338 | return -EFAULT; | |
1339 | ||
1340 | return 0; | |
1341 | } | |
1342 | ||
d730e882 IM |
1343 | /* |
1344 | * lockdep: we want to track each per-CPU base as a separate lock-class, | |
1345 | * but timer-bases are kmalloc()-ed, so we need to attach separate | |
1346 | * keys to them: | |
1347 | */ | |
1348 | static struct lock_class_key base_lock_keys[NR_CPUS]; | |
1349 | ||
a4a6198b | 1350 | static int __devinit init_timers_cpu(int cpu) |
1da177e4 LT |
1351 | { |
1352 | int j; | |
1353 | tvec_base_t *base; | |
ba6edfcd | 1354 | static char __devinitdata tvec_base_done[NR_CPUS]; |
55c888d6 | 1355 | |
ba6edfcd | 1356 | if (!tvec_base_done[cpu]) { |
a4a6198b JB |
1357 | static char boot_done; |
1358 | ||
a4a6198b | 1359 | if (boot_done) { |
ba6edfcd AM |
1360 | /* |
1361 | * The APs use this path later in boot | |
1362 | */ | |
a4a6198b JB |
1363 | base = kmalloc_node(sizeof(*base), GFP_KERNEL, |
1364 | cpu_to_node(cpu)); | |
1365 | if (!base) | |
1366 | return -ENOMEM; | |
1367 | memset(base, 0, sizeof(*base)); | |
ba6edfcd | 1368 | per_cpu(tvec_bases, cpu) = base; |
a4a6198b | 1369 | } else { |
ba6edfcd AM |
1370 | /* |
1371 | * This is for the boot CPU - we use compile-time | |
1372 | * static initialisation because per-cpu memory isn't | |
1373 | * ready yet and because the memory allocators are not | |
1374 | * initialised either. | |
1375 | */ | |
a4a6198b | 1376 | boot_done = 1; |
ba6edfcd | 1377 | base = &boot_tvec_bases; |
a4a6198b | 1378 | } |
ba6edfcd AM |
1379 | tvec_base_done[cpu] = 1; |
1380 | } else { | |
1381 | base = per_cpu(tvec_bases, cpu); | |
a4a6198b | 1382 | } |
ba6edfcd | 1383 | |
3691c519 | 1384 | spin_lock_init(&base->lock); |
d730e882 IM |
1385 | lockdep_set_class(&base->lock, base_lock_keys + cpu); |
1386 | ||
1da177e4 LT |
1387 | for (j = 0; j < TVN_SIZE; j++) { |
1388 | INIT_LIST_HEAD(base->tv5.vec + j); | |
1389 | INIT_LIST_HEAD(base->tv4.vec + j); | |
1390 | INIT_LIST_HEAD(base->tv3.vec + j); | |
1391 | INIT_LIST_HEAD(base->tv2.vec + j); | |
1392 | } | |
1393 | for (j = 0; j < TVR_SIZE; j++) | |
1394 | INIT_LIST_HEAD(base->tv1.vec + j); | |
1395 | ||
1396 | base->timer_jiffies = jiffies; | |
a4a6198b | 1397 | return 0; |
1da177e4 LT |
1398 | } |
1399 | ||
1400 | #ifdef CONFIG_HOTPLUG_CPU | |
55c888d6 | 1401 | static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head) |
1da177e4 LT |
1402 | { |
1403 | struct timer_list *timer; | |
1404 | ||
1405 | while (!list_empty(head)) { | |
1406 | timer = list_entry(head->next, struct timer_list, entry); | |
55c888d6 | 1407 | detach_timer(timer, 0); |
3691c519 | 1408 | timer->base = new_base; |
1da177e4 | 1409 | internal_add_timer(new_base, timer); |
1da177e4 | 1410 | } |
1da177e4 LT |
1411 | } |
1412 | ||
1413 | static void __devinit migrate_timers(int cpu) | |
1414 | { | |
1415 | tvec_base_t *old_base; | |
1416 | tvec_base_t *new_base; | |
1417 | int i; | |
1418 | ||
1419 | BUG_ON(cpu_online(cpu)); | |
a4a6198b JB |
1420 | old_base = per_cpu(tvec_bases, cpu); |
1421 | new_base = get_cpu_var(tvec_bases); | |
1da177e4 LT |
1422 | |
1423 | local_irq_disable(); | |
3691c519 ON |
1424 | spin_lock(&new_base->lock); |
1425 | spin_lock(&old_base->lock); | |
1426 | ||
1427 | BUG_ON(old_base->running_timer); | |
1da177e4 | 1428 | |
1da177e4 | 1429 | for (i = 0; i < TVR_SIZE; i++) |
55c888d6 ON |
1430 | migrate_timer_list(new_base, old_base->tv1.vec + i); |
1431 | for (i = 0; i < TVN_SIZE; i++) { | |
1432 | migrate_timer_list(new_base, old_base->tv2.vec + i); | |
1433 | migrate_timer_list(new_base, old_base->tv3.vec + i); | |
1434 | migrate_timer_list(new_base, old_base->tv4.vec + i); | |
1435 | migrate_timer_list(new_base, old_base->tv5.vec + i); | |
1436 | } | |
1437 | ||
3691c519 ON |
1438 | spin_unlock(&old_base->lock); |
1439 | spin_unlock(&new_base->lock); | |
1da177e4 LT |
1440 | local_irq_enable(); |
1441 | put_cpu_var(tvec_bases); | |
1da177e4 LT |
1442 | } |
1443 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1444 | ||
8c78f307 | 1445 | static int __cpuinit timer_cpu_notify(struct notifier_block *self, |
1da177e4 LT |
1446 | unsigned long action, void *hcpu) |
1447 | { | |
1448 | long cpu = (long)hcpu; | |
1449 | switch(action) { | |
1450 | case CPU_UP_PREPARE: | |
a4a6198b JB |
1451 | if (init_timers_cpu(cpu) < 0) |
1452 | return NOTIFY_BAD; | |
1da177e4 LT |
1453 | break; |
1454 | #ifdef CONFIG_HOTPLUG_CPU | |
1455 | case CPU_DEAD: | |
1456 | migrate_timers(cpu); | |
1457 | break; | |
1458 | #endif | |
1459 | default: | |
1460 | break; | |
1461 | } | |
1462 | return NOTIFY_OK; | |
1463 | } | |
1464 | ||
8c78f307 | 1465 | static struct notifier_block __cpuinitdata timers_nb = { |
1da177e4 LT |
1466 | .notifier_call = timer_cpu_notify, |
1467 | }; | |
1468 | ||
1469 | ||
1470 | void __init init_timers(void) | |
1471 | { | |
07dccf33 | 1472 | int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, |
1da177e4 | 1473 | (void *)(long)smp_processor_id()); |
07dccf33 AM |
1474 | |
1475 | BUG_ON(err == NOTIFY_BAD); | |
1da177e4 LT |
1476 | register_cpu_notifier(&timers_nb); |
1477 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); | |
1478 | } | |
1479 | ||
1480 | #ifdef CONFIG_TIME_INTERPOLATION | |
1481 | ||
67890d70 CL |
1482 | struct time_interpolator *time_interpolator __read_mostly; |
1483 | static struct time_interpolator *time_interpolator_list __read_mostly; | |
1da177e4 LT |
1484 | static DEFINE_SPINLOCK(time_interpolator_lock); |
1485 | ||
1486 | static inline u64 time_interpolator_get_cycles(unsigned int src) | |
1487 | { | |
1488 | unsigned long (*x)(void); | |
1489 | ||
1490 | switch (src) | |
1491 | { | |
1492 | case TIME_SOURCE_FUNCTION: | |
1493 | x = time_interpolator->addr; | |
1494 | return x(); | |
1495 | ||
1496 | case TIME_SOURCE_MMIO64 : | |
685db65e | 1497 | return readq_relaxed((void __iomem *)time_interpolator->addr); |
1da177e4 LT |
1498 | |
1499 | case TIME_SOURCE_MMIO32 : | |
685db65e | 1500 | return readl_relaxed((void __iomem *)time_interpolator->addr); |
1da177e4 LT |
1501 | |
1502 | default: return get_cycles(); | |
1503 | } | |
1504 | } | |
1505 | ||
486d46ae | 1506 | static inline u64 time_interpolator_get_counter(int writelock) |
1da177e4 LT |
1507 | { |
1508 | unsigned int src = time_interpolator->source; | |
1509 | ||
1510 | if (time_interpolator->jitter) | |
1511 | { | |
1512 | u64 lcycle; | |
1513 | u64 now; | |
1514 | ||
1515 | do { | |
1516 | lcycle = time_interpolator->last_cycle; | |
1517 | now = time_interpolator_get_cycles(src); | |
1518 | if (lcycle && time_after(lcycle, now)) | |
1519 | return lcycle; | |
486d46ae AW |
1520 | |
1521 | /* When holding the xtime write lock, there's no need | |
1522 | * to add the overhead of the cmpxchg. Readers are | |
1523 | * force to retry until the write lock is released. | |
1524 | */ | |
1525 | if (writelock) { | |
1526 | time_interpolator->last_cycle = now; | |
1527 | return now; | |
1528 | } | |
1da177e4 LT |
1529 | /* Keep track of the last timer value returned. The use of cmpxchg here |
1530 | * will cause contention in an SMP environment. | |
1531 | */ | |
1532 | } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); | |
1533 | return now; | |
1534 | } | |
1535 | else | |
1536 | return time_interpolator_get_cycles(src); | |
1537 | } | |
1538 | ||
1539 | void time_interpolator_reset(void) | |
1540 | { | |
1541 | time_interpolator->offset = 0; | |
486d46ae | 1542 | time_interpolator->last_counter = time_interpolator_get_counter(1); |
1da177e4 LT |
1543 | } |
1544 | ||
1545 | #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) | |
1546 | ||
1547 | unsigned long time_interpolator_get_offset(void) | |
1548 | { | |
1549 | /* If we do not have a time interpolator set up then just return zero */ | |
1550 | if (!time_interpolator) | |
1551 | return 0; | |
1552 | ||
1553 | return time_interpolator->offset + | |
486d46ae | 1554 | GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator); |
1da177e4 LT |
1555 | } |
1556 | ||
1557 | #define INTERPOLATOR_ADJUST 65536 | |
1558 | #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST | |
1559 | ||
4c7ee8de | 1560 | void time_interpolator_update(long delta_nsec) |
1da177e4 LT |
1561 | { |
1562 | u64 counter; | |
1563 | unsigned long offset; | |
1564 | ||
1565 | /* If there is no time interpolator set up then do nothing */ | |
1566 | if (!time_interpolator) | |
1567 | return; | |
1568 | ||
a5a0d52c AM |
1569 | /* |
1570 | * The interpolator compensates for late ticks by accumulating the late | |
1571 | * time in time_interpolator->offset. A tick earlier than expected will | |
1572 | * lead to a reset of the offset and a corresponding jump of the clock | |
1573 | * forward. Again this only works if the interpolator clock is running | |
1574 | * slightly slower than the regular clock and the tuning logic insures | |
1575 | * that. | |
1576 | */ | |
1da177e4 | 1577 | |
486d46ae | 1578 | counter = time_interpolator_get_counter(1); |
a5a0d52c AM |
1579 | offset = time_interpolator->offset + |
1580 | GET_TI_NSECS(counter, time_interpolator); | |
1da177e4 LT |
1581 | |
1582 | if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) | |
1583 | time_interpolator->offset = offset - delta_nsec; | |
1584 | else { | |
1585 | time_interpolator->skips++; | |
1586 | time_interpolator->ns_skipped += delta_nsec - offset; | |
1587 | time_interpolator->offset = 0; | |
1588 | } | |
1589 | time_interpolator->last_counter = counter; | |
1590 | ||
1591 | /* Tuning logic for time interpolator invoked every minute or so. | |
1592 | * Decrease interpolator clock speed if no skips occurred and an offset is carried. | |
1593 | * Increase interpolator clock speed if we skip too much time. | |
1594 | */ | |
1595 | if (jiffies % INTERPOLATOR_ADJUST == 0) | |
1596 | { | |
b20367a6 | 1597 | if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec) |
1da177e4 LT |
1598 | time_interpolator->nsec_per_cyc--; |
1599 | if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) | |
1600 | time_interpolator->nsec_per_cyc++; | |
1601 | time_interpolator->skips = 0; | |
1602 | time_interpolator->ns_skipped = 0; | |
1603 | } | |
1604 | } | |
1605 | ||
1606 | static inline int | |
1607 | is_better_time_interpolator(struct time_interpolator *new) | |
1608 | { | |
1609 | if (!time_interpolator) | |
1610 | return 1; | |
1611 | return new->frequency > 2*time_interpolator->frequency || | |
1612 | (unsigned long)new->drift < (unsigned long)time_interpolator->drift; | |
1613 | } | |
1614 | ||
1615 | void | |
1616 | register_time_interpolator(struct time_interpolator *ti) | |
1617 | { | |
1618 | unsigned long flags; | |
1619 | ||
1620 | /* Sanity check */ | |
9f31252c | 1621 | BUG_ON(ti->frequency == 0 || ti->mask == 0); |
1da177e4 LT |
1622 | |
1623 | ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; | |
1624 | spin_lock(&time_interpolator_lock); | |
1625 | write_seqlock_irqsave(&xtime_lock, flags); | |
1626 | if (is_better_time_interpolator(ti)) { | |
1627 | time_interpolator = ti; | |
1628 | time_interpolator_reset(); | |
1629 | } | |
1630 | write_sequnlock_irqrestore(&xtime_lock, flags); | |
1631 | ||
1632 | ti->next = time_interpolator_list; | |
1633 | time_interpolator_list = ti; | |
1634 | spin_unlock(&time_interpolator_lock); | |
1635 | } | |
1636 | ||
1637 | void | |
1638 | unregister_time_interpolator(struct time_interpolator *ti) | |
1639 | { | |
1640 | struct time_interpolator *curr, **prev; | |
1641 | unsigned long flags; | |
1642 | ||
1643 | spin_lock(&time_interpolator_lock); | |
1644 | prev = &time_interpolator_list; | |
1645 | for (curr = *prev; curr; curr = curr->next) { | |
1646 | if (curr == ti) { | |
1647 | *prev = curr->next; | |
1648 | break; | |
1649 | } | |
1650 | prev = &curr->next; | |
1651 | } | |
1652 | ||
1653 | write_seqlock_irqsave(&xtime_lock, flags); | |
1654 | if (ti == time_interpolator) { | |
1655 | /* we lost the best time-interpolator: */ | |
1656 | time_interpolator = NULL; | |
1657 | /* find the next-best interpolator */ | |
1658 | for (curr = time_interpolator_list; curr; curr = curr->next) | |
1659 | if (is_better_time_interpolator(curr)) | |
1660 | time_interpolator = curr; | |
1661 | time_interpolator_reset(); | |
1662 | } | |
1663 | write_sequnlock_irqrestore(&xtime_lock, flags); | |
1664 | spin_unlock(&time_interpolator_lock); | |
1665 | } | |
1666 | #endif /* CONFIG_TIME_INTERPOLATION */ | |
1667 | ||
1668 | /** | |
1669 | * msleep - sleep safely even with waitqueue interruptions | |
1670 | * @msecs: Time in milliseconds to sleep for | |
1671 | */ | |
1672 | void msleep(unsigned int msecs) | |
1673 | { | |
1674 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1675 | ||
75bcc8c5 NA |
1676 | while (timeout) |
1677 | timeout = schedule_timeout_uninterruptible(timeout); | |
1da177e4 LT |
1678 | } |
1679 | ||
1680 | EXPORT_SYMBOL(msleep); | |
1681 | ||
1682 | /** | |
96ec3efd | 1683 | * msleep_interruptible - sleep waiting for signals |
1da177e4 LT |
1684 | * @msecs: Time in milliseconds to sleep for |
1685 | */ | |
1686 | unsigned long msleep_interruptible(unsigned int msecs) | |
1687 | { | |
1688 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1689 | ||
75bcc8c5 NA |
1690 | while (timeout && !signal_pending(current)) |
1691 | timeout = schedule_timeout_interruptible(timeout); | |
1da177e4 LT |
1692 | return jiffies_to_msecs(timeout); |
1693 | } | |
1694 | ||
1695 | EXPORT_SYMBOL(msleep_interruptible); |