]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/timer.c
[PATCH] timers fixes/improvements
[mirror_ubuntu-bionic-kernel.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, kernel timekeeping, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
36
37#include <asm/uaccess.h>
38#include <asm/unistd.h>
39#include <asm/div64.h>
40#include <asm/timex.h>
41#include <asm/io.h>
42
43#ifdef CONFIG_TIME_INTERPOLATION
44static void time_interpolator_update(long delta_nsec);
45#else
46#define time_interpolator_update(x)
47#endif
48
49/*
50 * per-CPU timer vector definitions:
51 */
52
53#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
54#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
55#define TVN_SIZE (1 << TVN_BITS)
56#define TVR_SIZE (1 << TVR_BITS)
57#define TVN_MASK (TVN_SIZE - 1)
58#define TVR_MASK (TVR_SIZE - 1)
59
55c888d6
ON
60struct timer_base_s {
61 spinlock_t lock;
62 struct timer_list *running_timer;
63};
64
1da177e4
LT
65typedef struct tvec_s {
66 struct list_head vec[TVN_SIZE];
67} tvec_t;
68
69typedef struct tvec_root_s {
70 struct list_head vec[TVR_SIZE];
71} tvec_root_t;
72
73struct tvec_t_base_s {
55c888d6 74 struct timer_base_s t_base;
1da177e4 75 unsigned long timer_jiffies;
1da177e4
LT
76 tvec_root_t tv1;
77 tvec_t tv2;
78 tvec_t tv3;
79 tvec_t tv4;
80 tvec_t tv5;
81} ____cacheline_aligned_in_smp;
82
83typedef struct tvec_t_base_s tvec_base_t;
55c888d6 84static DEFINE_PER_CPU(tvec_base_t, tvec_bases);
1da177e4
LT
85
86static inline void set_running_timer(tvec_base_t *base,
87 struct timer_list *timer)
88{
89#ifdef CONFIG_SMP
55c888d6 90 base->t_base.running_timer = timer;
1da177e4
LT
91#endif
92}
93
1da177e4
LT
94static void check_timer_failed(struct timer_list *timer)
95{
96 static int whine_count;
97 if (whine_count < 16) {
98 whine_count++;
99 printk("Uninitialised timer!\n");
100 printk("This is just a warning. Your computer is OK\n");
101 printk("function=0x%p, data=0x%lx\n",
102 timer->function, timer->data);
103 dump_stack();
104 }
105 /*
106 * Now fix it up
107 */
1da177e4
LT
108 timer->magic = TIMER_MAGIC;
109}
110
111static inline void check_timer(struct timer_list *timer)
112{
113 if (timer->magic != TIMER_MAGIC)
114 check_timer_failed(timer);
115}
116
117
118static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
119{
120 unsigned long expires = timer->expires;
121 unsigned long idx = expires - base->timer_jiffies;
122 struct list_head *vec;
123
124 if (idx < TVR_SIZE) {
125 int i = expires & TVR_MASK;
126 vec = base->tv1.vec + i;
127 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
128 int i = (expires >> TVR_BITS) & TVN_MASK;
129 vec = base->tv2.vec + i;
130 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
131 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
132 vec = base->tv3.vec + i;
133 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
134 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
135 vec = base->tv4.vec + i;
136 } else if ((signed long) idx < 0) {
137 /*
138 * Can happen if you add a timer with expires == jiffies,
139 * or you set a timer to go off in the past
140 */
141 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
142 } else {
143 int i;
144 /* If the timeout is larger than 0xffffffff on 64-bit
145 * architectures then we use the maximum timeout:
146 */
147 if (idx > 0xffffffffUL) {
148 idx = 0xffffffffUL;
149 expires = idx + base->timer_jiffies;
150 }
151 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
152 vec = base->tv5.vec + i;
153 }
154 /*
155 * Timers are FIFO:
156 */
157 list_add_tail(&timer->entry, vec);
158}
159
55c888d6
ON
160typedef struct timer_base_s timer_base_t;
161/*
162 * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases)
163 * at compile time, and we need timer->base to lock the timer.
164 */
165timer_base_t __init_timer_base
166 ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED };
167EXPORT_SYMBOL(__init_timer_base);
168
169/***
170 * init_timer - initialize a timer.
171 * @timer: the timer to be initialized
172 *
173 * init_timer() must be done to a timer prior calling *any* of the
174 * other timer functions.
175 */
176void fastcall init_timer(struct timer_list *timer)
177{
178 timer->entry.next = NULL;
179 timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base;
180 timer->magic = TIMER_MAGIC;
181}
182EXPORT_SYMBOL(init_timer);
183
184static inline void detach_timer(struct timer_list *timer,
185 int clear_pending)
186{
187 struct list_head *entry = &timer->entry;
188
189 __list_del(entry->prev, entry->next);
190 if (clear_pending)
191 entry->next = NULL;
192 entry->prev = LIST_POISON2;
193}
194
195/*
196 * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock
197 * means that all timers which are tied to this base via timer->base are
198 * locked, and the base itself is locked too.
199 *
200 * So __run_timers/migrate_timers can safely modify all timers which could
201 * be found on ->tvX lists.
202 *
203 * When the timer's base is locked, and the timer removed from list, it is
204 * possible to set timer->base = NULL and drop the lock: the timer remains
205 * locked.
206 */
207static timer_base_t *lock_timer_base(struct timer_list *timer,
208 unsigned long *flags)
209{
210 timer_base_t *base;
211
212 for (;;) {
213 base = timer->base;
214 if (likely(base != NULL)) {
215 spin_lock_irqsave(&base->lock, *flags);
216 if (likely(base == timer->base))
217 return base;
218 /* The timer has migrated to another CPU */
219 spin_unlock_irqrestore(&base->lock, *flags);
220 }
221 cpu_relax();
222 }
223}
224
1da177e4
LT
225int __mod_timer(struct timer_list *timer, unsigned long expires)
226{
55c888d6
ON
227 timer_base_t *base;
228 tvec_base_t *new_base;
1da177e4
LT
229 unsigned long flags;
230 int ret = 0;
231
232 BUG_ON(!timer->function);
1da177e4
LT
233 check_timer(timer);
234
55c888d6
ON
235 base = lock_timer_base(timer, &flags);
236
237 if (timer_pending(timer)) {
238 detach_timer(timer, 0);
239 ret = 1;
240 }
241
1da177e4 242 new_base = &__get_cpu_var(tvec_bases);
1da177e4 243
55c888d6 244 if (base != &new_base->t_base) {
1da177e4 245 /*
55c888d6
ON
246 * We are trying to schedule the timer on the local CPU.
247 * However we can't change timer's base while it is running,
248 * otherwise del_timer_sync() can't detect that the timer's
249 * handler yet has not finished. This also guarantees that
250 * the timer is serialized wrt itself.
1da177e4 251 */
55c888d6
ON
252 if (unlikely(base->running_timer == timer)) {
253 /* The timer remains on a former base */
254 new_base = container_of(base, tvec_base_t, t_base);
255 } else {
256 /* See the comment in lock_timer_base() */
257 timer->base = NULL;
258 spin_unlock(&base->lock);
259 spin_lock(&new_base->t_base.lock);
260 timer->base = &new_base->t_base;
1da177e4
LT
261 }
262 }
263
1da177e4
LT
264 timer->expires = expires;
265 internal_add_timer(new_base, timer);
55c888d6 266 spin_unlock_irqrestore(&new_base->t_base.lock, flags);
1da177e4
LT
267
268 return ret;
269}
270
271EXPORT_SYMBOL(__mod_timer);
272
273/***
274 * add_timer_on - start a timer on a particular CPU
275 * @timer: the timer to be added
276 * @cpu: the CPU to start it on
277 *
278 * This is not very scalable on SMP. Double adds are not possible.
279 */
280void add_timer_on(struct timer_list *timer, int cpu)
281{
282 tvec_base_t *base = &per_cpu(tvec_bases, cpu);
283 unsigned long flags;
55c888d6 284
1da177e4
LT
285 BUG_ON(timer_pending(timer) || !timer->function);
286
287 check_timer(timer);
288
55c888d6
ON
289 spin_lock_irqsave(&base->t_base.lock, flags);
290 timer->base = &base->t_base;
1da177e4 291 internal_add_timer(base, timer);
55c888d6 292 spin_unlock_irqrestore(&base->t_base.lock, flags);
1da177e4
LT
293}
294
295
296/***
297 * mod_timer - modify a timer's timeout
298 * @timer: the timer to be modified
299 *
300 * mod_timer is a more efficient way to update the expire field of an
301 * active timer (if the timer is inactive it will be activated)
302 *
303 * mod_timer(timer, expires) is equivalent to:
304 *
305 * del_timer(timer); timer->expires = expires; add_timer(timer);
306 *
307 * Note that if there are multiple unserialized concurrent users of the
308 * same timer, then mod_timer() is the only safe way to modify the timeout,
309 * since add_timer() cannot modify an already running timer.
310 *
311 * The function returns whether it has modified a pending timer or not.
312 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
313 * active timer returns 1.)
314 */
315int mod_timer(struct timer_list *timer, unsigned long expires)
316{
317 BUG_ON(!timer->function);
318
319 check_timer(timer);
320
321 /*
322 * This is a common optimization triggered by the
323 * networking code - if the timer is re-modified
324 * to be the same thing then just return:
325 */
326 if (timer->expires == expires && timer_pending(timer))
327 return 1;
328
329 return __mod_timer(timer, expires);
330}
331
332EXPORT_SYMBOL(mod_timer);
333
334/***
335 * del_timer - deactive a timer.
336 * @timer: the timer to be deactivated
337 *
338 * del_timer() deactivates a timer - this works on both active and inactive
339 * timers.
340 *
341 * The function returns whether it has deactivated a pending timer or not.
342 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
343 * active timer returns 1.)
344 */
345int del_timer(struct timer_list *timer)
346{
55c888d6 347 timer_base_t *base;
1da177e4 348 unsigned long flags;
55c888d6 349 int ret = 0;
1da177e4
LT
350
351 check_timer(timer);
352
55c888d6
ON
353 if (timer_pending(timer)) {
354 base = lock_timer_base(timer, &flags);
355 if (timer_pending(timer)) {
356 detach_timer(timer, 1);
357 ret = 1;
358 }
1da177e4 359 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 360 }
1da177e4 361
55c888d6 362 return ret;
1da177e4
LT
363}
364
365EXPORT_SYMBOL(del_timer);
366
367#ifdef CONFIG_SMP
368/***
369 * del_timer_sync - deactivate a timer and wait for the handler to finish.
370 * @timer: the timer to be deactivated
371 *
372 * This function only differs from del_timer() on SMP: besides deactivating
373 * the timer it also makes sure the handler has finished executing on other
374 * CPUs.
375 *
376 * Synchronization rules: callers must prevent restarting of the timer,
377 * otherwise this function is meaningless. It must not be called from
378 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
379 * completion of the timer's handler. The timer's handler must not call
380 * add_timer_on(). Upon exit the timer is not queued and the handler is
381 * not running on any CPU.
1da177e4
LT
382 *
383 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
384 */
385int del_timer_sync(struct timer_list *timer)
386{
55c888d6
ON
387 timer_base_t *base;
388 unsigned long flags;
389 int ret = -1;
1da177e4
LT
390
391 check_timer(timer);
392
55c888d6
ON
393 do {
394 base = lock_timer_base(timer, &flags);
1da177e4 395
55c888d6
ON
396 if (base->running_timer == timer)
397 goto unlock;
398
399 ret = 0;
400 if (timer_pending(timer)) {
401 detach_timer(timer, 1);
402 ret = 1;
1da177e4 403 }
55c888d6
ON
404unlock:
405 spin_unlock_irqrestore(&base->lock, flags);
406 } while (ret < 0);
1da177e4
LT
407
408 return ret;
409}
1da177e4 410
55c888d6 411EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
412#endif
413
414static int cascade(tvec_base_t *base, tvec_t *tv, int index)
415{
416 /* cascade all the timers from tv up one level */
417 struct list_head *head, *curr;
418
419 head = tv->vec + index;
420 curr = head->next;
421 /*
422 * We are removing _all_ timers from the list, so we don't have to
423 * detach them individually, just clear the list afterwards.
424 */
425 while (curr != head) {
426 struct timer_list *tmp;
427
428 tmp = list_entry(curr, struct timer_list, entry);
55c888d6 429 BUG_ON(tmp->base != &base->t_base);
1da177e4
LT
430 curr = curr->next;
431 internal_add_timer(base, tmp);
432 }
433 INIT_LIST_HEAD(head);
434
435 return index;
436}
437
438/***
439 * __run_timers - run all expired timers (if any) on this CPU.
440 * @base: the timer vector to be processed.
441 *
442 * This function cascades all vectors and executes all expired timer
443 * vectors.
444 */
445#define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
446
447static inline void __run_timers(tvec_base_t *base)
448{
449 struct timer_list *timer;
450
55c888d6 451 spin_lock_irq(&base->t_base.lock);
1da177e4
LT
452 while (time_after_eq(jiffies, base->timer_jiffies)) {
453 struct list_head work_list = LIST_HEAD_INIT(work_list);
454 struct list_head *head = &work_list;
455 int index = base->timer_jiffies & TVR_MASK;
456
457 /*
458 * Cascade timers:
459 */
460 if (!index &&
461 (!cascade(base, &base->tv2, INDEX(0))) &&
462 (!cascade(base, &base->tv3, INDEX(1))) &&
463 !cascade(base, &base->tv4, INDEX(2)))
464 cascade(base, &base->tv5, INDEX(3));
465 ++base->timer_jiffies;
466 list_splice_init(base->tv1.vec + index, &work_list);
55c888d6 467 while (!list_empty(head)) {
1da177e4
LT
468 void (*fn)(unsigned long);
469 unsigned long data;
470
471 timer = list_entry(head->next,struct timer_list,entry);
472 fn = timer->function;
473 data = timer->data;
474
1da177e4 475 set_running_timer(base, timer);
55c888d6
ON
476 detach_timer(timer, 1);
477 spin_unlock_irq(&base->t_base.lock);
1da177e4
LT
478 {
479 u32 preempt_count = preempt_count();
480 fn(data);
481 if (preempt_count != preempt_count()) {
482 printk("huh, entered %p with %08x, exited with %08x?\n", fn, preempt_count, preempt_count());
483 BUG();
484 }
485 }
55c888d6 486 spin_lock_irq(&base->t_base.lock);
1da177e4
LT
487 }
488 }
489 set_running_timer(base, NULL);
55c888d6 490 spin_unlock_irq(&base->t_base.lock);
1da177e4
LT
491}
492
493#ifdef CONFIG_NO_IDLE_HZ
494/*
495 * Find out when the next timer event is due to happen. This
496 * is used on S/390 to stop all activity when a cpus is idle.
497 * This functions needs to be called disabled.
498 */
499unsigned long next_timer_interrupt(void)
500{
501 tvec_base_t *base;
502 struct list_head *list;
503 struct timer_list *nte;
504 unsigned long expires;
505 tvec_t *varray[4];
506 int i, j;
507
508 base = &__get_cpu_var(tvec_bases);
55c888d6 509 spin_lock(&base->t_base.lock);
1da177e4
LT
510 expires = base->timer_jiffies + (LONG_MAX >> 1);
511 list = 0;
512
513 /* Look for timer events in tv1. */
514 j = base->timer_jiffies & TVR_MASK;
515 do {
516 list_for_each_entry(nte, base->tv1.vec + j, entry) {
517 expires = nte->expires;
518 if (j < (base->timer_jiffies & TVR_MASK))
519 list = base->tv2.vec + (INDEX(0));
520 goto found;
521 }
522 j = (j + 1) & TVR_MASK;
523 } while (j != (base->timer_jiffies & TVR_MASK));
524
525 /* Check tv2-tv5. */
526 varray[0] = &base->tv2;
527 varray[1] = &base->tv3;
528 varray[2] = &base->tv4;
529 varray[3] = &base->tv5;
530 for (i = 0; i < 4; i++) {
531 j = INDEX(i);
532 do {
533 if (list_empty(varray[i]->vec + j)) {
534 j = (j + 1) & TVN_MASK;
535 continue;
536 }
537 list_for_each_entry(nte, varray[i]->vec + j, entry)
538 if (time_before(nte->expires, expires))
539 expires = nte->expires;
540 if (j < (INDEX(i)) && i < 3)
541 list = varray[i + 1]->vec + (INDEX(i + 1));
542 goto found;
543 } while (j != (INDEX(i)));
544 }
545found:
546 if (list) {
547 /*
548 * The search wrapped. We need to look at the next list
549 * from next tv element that would cascade into tv element
550 * where we found the timer element.
551 */
552 list_for_each_entry(nte, list, entry) {
553 if (time_before(nte->expires, expires))
554 expires = nte->expires;
555 }
556 }
55c888d6 557 spin_unlock(&base->t_base.lock);
1da177e4
LT
558 return expires;
559}
560#endif
561
562/******************************************************************/
563
564/*
565 * Timekeeping variables
566 */
567unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
568unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
569
570/*
571 * The current time
572 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
573 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
574 * at zero at system boot time, so wall_to_monotonic will be negative,
575 * however, we will ALWAYS keep the tv_nsec part positive so we can use
576 * the usual normalization.
577 */
578struct timespec xtime __attribute__ ((aligned (16)));
579struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
580
581EXPORT_SYMBOL(xtime);
582
583/* Don't completely fail for HZ > 500. */
584int tickadj = 500/HZ ? : 1; /* microsecs */
585
586
587/*
588 * phase-lock loop variables
589 */
590/* TIME_ERROR prevents overwriting the CMOS clock */
591int time_state = TIME_OK; /* clock synchronization status */
592int time_status = STA_UNSYNC; /* clock status bits */
593long time_offset; /* time adjustment (us) */
594long time_constant = 2; /* pll time constant */
595long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
596long time_precision = 1; /* clock precision (us) */
597long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
598long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
599static long time_phase; /* phase offset (scaled us) */
600long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
601 /* frequency offset (scaled ppm)*/
602static long time_adj; /* tick adjust (scaled 1 / HZ) */
603long time_reftime; /* time at last adjustment (s) */
604long time_adjust;
605long time_next_adjust;
606
607/*
608 * this routine handles the overflow of the microsecond field
609 *
610 * The tricky bits of code to handle the accurate clock support
611 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
612 * They were originally developed for SUN and DEC kernels.
613 * All the kudos should go to Dave for this stuff.
614 *
615 */
616static void second_overflow(void)
617{
618 long ltemp;
619
620 /* Bump the maxerror field */
621 time_maxerror += time_tolerance >> SHIFT_USEC;
622 if ( time_maxerror > NTP_PHASE_LIMIT ) {
623 time_maxerror = NTP_PHASE_LIMIT;
624 time_status |= STA_UNSYNC;
625 }
626
627 /*
628 * Leap second processing. If in leap-insert state at
629 * the end of the day, the system clock is set back one
630 * second; if in leap-delete state, the system clock is
631 * set ahead one second. The microtime() routine or
632 * external clock driver will insure that reported time
633 * is always monotonic. The ugly divides should be
634 * replaced.
635 */
636 switch (time_state) {
637
638 case TIME_OK:
639 if (time_status & STA_INS)
640 time_state = TIME_INS;
641 else if (time_status & STA_DEL)
642 time_state = TIME_DEL;
643 break;
644
645 case TIME_INS:
646 if (xtime.tv_sec % 86400 == 0) {
647 xtime.tv_sec--;
648 wall_to_monotonic.tv_sec++;
649 /* The timer interpolator will make time change gradually instead
650 * of an immediate jump by one second.
651 */
652 time_interpolator_update(-NSEC_PER_SEC);
653 time_state = TIME_OOP;
654 clock_was_set();
655 printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n");
656 }
657 break;
658
659 case TIME_DEL:
660 if ((xtime.tv_sec + 1) % 86400 == 0) {
661 xtime.tv_sec++;
662 wall_to_monotonic.tv_sec--;
663 /* Use of time interpolator for a gradual change of time */
664 time_interpolator_update(NSEC_PER_SEC);
665 time_state = TIME_WAIT;
666 clock_was_set();
667 printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n");
668 }
669 break;
670
671 case TIME_OOP:
672 time_state = TIME_WAIT;
673 break;
674
675 case TIME_WAIT:
676 if (!(time_status & (STA_INS | STA_DEL)))
677 time_state = TIME_OK;
678 }
679
680 /*
681 * Compute the phase adjustment for the next second. In
682 * PLL mode, the offset is reduced by a fixed factor
683 * times the time constant. In FLL mode the offset is
684 * used directly. In either mode, the maximum phase
685 * adjustment for each second is clamped so as to spread
686 * the adjustment over not more than the number of
687 * seconds between updates.
688 */
689 if (time_offset < 0) {
690 ltemp = -time_offset;
691 if (!(time_status & STA_FLL))
692 ltemp >>= SHIFT_KG + time_constant;
693 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
694 ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
695 time_offset += ltemp;
696 time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
697 } else {
698 ltemp = time_offset;
699 if (!(time_status & STA_FLL))
700 ltemp >>= SHIFT_KG + time_constant;
701 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
702 ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
703 time_offset -= ltemp;
704 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
705 }
706
707 /*
708 * Compute the frequency estimate and additional phase
709 * adjustment due to frequency error for the next
710 * second. When the PPS signal is engaged, gnaw on the
711 * watchdog counter and update the frequency computed by
712 * the pll and the PPS signal.
713 */
714 pps_valid++;
715 if (pps_valid == PPS_VALID) { /* PPS signal lost */
716 pps_jitter = MAXTIME;
717 pps_stabil = MAXFREQ;
718 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
719 STA_PPSWANDER | STA_PPSERROR);
720 }
721 ltemp = time_freq + pps_freq;
722 if (ltemp < 0)
723 time_adj -= -ltemp >>
724 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
725 else
726 time_adj += ltemp >>
727 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
728
729#if HZ == 100
730 /* Compensate for (HZ==100) != (1 << SHIFT_HZ).
731 * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14)
732 */
733 if (time_adj < 0)
734 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
735 else
736 time_adj += (time_adj >> 2) + (time_adj >> 5);
737#endif
738#if HZ == 1000
739 /* Compensate for (HZ==1000) != (1 << SHIFT_HZ).
740 * Add 1.5625% and 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
741 */
742 if (time_adj < 0)
743 time_adj -= (-time_adj >> 6) + (-time_adj >> 7);
744 else
745 time_adj += (time_adj >> 6) + (time_adj >> 7);
746#endif
747}
748
749/* in the NTP reference this is called "hardclock()" */
750static void update_wall_time_one_tick(void)
751{
752 long time_adjust_step, delta_nsec;
753
754 if ( (time_adjust_step = time_adjust) != 0 ) {
755 /* We are doing an adjtime thing.
756 *
757 * Prepare time_adjust_step to be within bounds.
758 * Note that a positive time_adjust means we want the clock
759 * to run faster.
760 *
761 * Limit the amount of the step to be in the range
762 * -tickadj .. +tickadj
763 */
764 if (time_adjust > tickadj)
765 time_adjust_step = tickadj;
766 else if (time_adjust < -tickadj)
767 time_adjust_step = -tickadj;
768
769 /* Reduce by this step the amount of time left */
770 time_adjust -= time_adjust_step;
771 }
772 delta_nsec = tick_nsec + time_adjust_step * 1000;
773 /*
774 * Advance the phase, once it gets to one microsecond, then
775 * advance the tick more.
776 */
777 time_phase += time_adj;
778 if (time_phase <= -FINENSEC) {
779 long ltemp = -time_phase >> (SHIFT_SCALE - 10);
780 time_phase += ltemp << (SHIFT_SCALE - 10);
781 delta_nsec -= ltemp;
782 }
783 else if (time_phase >= FINENSEC) {
784 long ltemp = time_phase >> (SHIFT_SCALE - 10);
785 time_phase -= ltemp << (SHIFT_SCALE - 10);
786 delta_nsec += ltemp;
787 }
788 xtime.tv_nsec += delta_nsec;
789 time_interpolator_update(delta_nsec);
790
791 /* Changes by adjtime() do not take effect till next tick. */
792 if (time_next_adjust != 0) {
793 time_adjust = time_next_adjust;
794 time_next_adjust = 0;
795 }
796}
797
798/*
799 * Using a loop looks inefficient, but "ticks" is
800 * usually just one (we shouldn't be losing ticks,
801 * we're doing this this way mainly for interrupt
802 * latency reasons, not because we think we'll
803 * have lots of lost timer ticks
804 */
805static void update_wall_time(unsigned long ticks)
806{
807 do {
808 ticks--;
809 update_wall_time_one_tick();
810 if (xtime.tv_nsec >= 1000000000) {
811 xtime.tv_nsec -= 1000000000;
812 xtime.tv_sec++;
813 second_overflow();
814 }
815 } while (ticks);
816}
817
818/*
819 * Called from the timer interrupt handler to charge one tick to the current
820 * process. user_tick is 1 if the tick is user time, 0 for system.
821 */
822void update_process_times(int user_tick)
823{
824 struct task_struct *p = current;
825 int cpu = smp_processor_id();
826
827 /* Note: this timer irq context must be accounted for as well. */
828 if (user_tick)
829 account_user_time(p, jiffies_to_cputime(1));
830 else
831 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
832 run_local_timers();
833 if (rcu_pending(cpu))
834 rcu_check_callbacks(cpu, user_tick);
835 scheduler_tick();
836 run_posix_cpu_timers(p);
837}
838
839/*
840 * Nr of active tasks - counted in fixed-point numbers
841 */
842static unsigned long count_active_tasks(void)
843{
844 return (nr_running() + nr_uninterruptible()) * FIXED_1;
845}
846
847/*
848 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
849 * imply that avenrun[] is the standard name for this kind of thing.
850 * Nothing else seems to be standardized: the fractional size etc
851 * all seem to differ on different machines.
852 *
853 * Requires xtime_lock to access.
854 */
855unsigned long avenrun[3];
856
857EXPORT_SYMBOL(avenrun);
858
859/*
860 * calc_load - given tick count, update the avenrun load estimates.
861 * This is called while holding a write_lock on xtime_lock.
862 */
863static inline void calc_load(unsigned long ticks)
864{
865 unsigned long active_tasks; /* fixed-point */
866 static int count = LOAD_FREQ;
867
868 count -= ticks;
869 if (count < 0) {
870 count += LOAD_FREQ;
871 active_tasks = count_active_tasks();
872 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
873 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
874 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
875 }
876}
877
878/* jiffies at the most recent update of wall time */
879unsigned long wall_jiffies = INITIAL_JIFFIES;
880
881/*
882 * This read-write spinlock protects us from races in SMP while
883 * playing with xtime and avenrun.
884 */
885#ifndef ARCH_HAVE_XTIME_LOCK
886seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
887
888EXPORT_SYMBOL(xtime_lock);
889#endif
890
891/*
892 * This function runs timers and the timer-tq in bottom half context.
893 */
894static void run_timer_softirq(struct softirq_action *h)
895{
896 tvec_base_t *base = &__get_cpu_var(tvec_bases);
897
898 if (time_after_eq(jiffies, base->timer_jiffies))
899 __run_timers(base);
900}
901
902/*
903 * Called by the local, per-CPU timer interrupt on SMP.
904 */
905void run_local_timers(void)
906{
907 raise_softirq(TIMER_SOFTIRQ);
908}
909
910/*
911 * Called by the timer interrupt. xtime_lock must already be taken
912 * by the timer IRQ!
913 */
914static inline void update_times(void)
915{
916 unsigned long ticks;
917
918 ticks = jiffies - wall_jiffies;
919 if (ticks) {
920 wall_jiffies += ticks;
921 update_wall_time(ticks);
922 }
923 calc_load(ticks);
924}
925
926/*
927 * The 64-bit jiffies value is not atomic - you MUST NOT read it
928 * without sampling the sequence number in xtime_lock.
929 * jiffies is defined in the linker script...
930 */
931
932void do_timer(struct pt_regs *regs)
933{
934 jiffies_64++;
935 update_times();
936}
937
938#ifdef __ARCH_WANT_SYS_ALARM
939
940/*
941 * For backwards compatibility? This can be done in libc so Alpha
942 * and all newer ports shouldn't need it.
943 */
944asmlinkage unsigned long sys_alarm(unsigned int seconds)
945{
946 struct itimerval it_new, it_old;
947 unsigned int oldalarm;
948
949 it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
950 it_new.it_value.tv_sec = seconds;
951 it_new.it_value.tv_usec = 0;
952 do_setitimer(ITIMER_REAL, &it_new, &it_old);
953 oldalarm = it_old.it_value.tv_sec;
954 /* ehhh.. We can't return 0 if we have an alarm pending.. */
955 /* And we'd better return too much than too little anyway */
956 if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000)
957 oldalarm++;
958 return oldalarm;
959}
960
961#endif
962
963#ifndef __alpha__
964
965/*
966 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
967 * should be moved into arch/i386 instead?
968 */
969
970/**
971 * sys_getpid - return the thread group id of the current process
972 *
973 * Note, despite the name, this returns the tgid not the pid. The tgid and
974 * the pid are identical unless CLONE_THREAD was specified on clone() in
975 * which case the tgid is the same in all threads of the same group.
976 *
977 * This is SMP safe as current->tgid does not change.
978 */
979asmlinkage long sys_getpid(void)
980{
981 return current->tgid;
982}
983
984/*
985 * Accessing ->group_leader->real_parent is not SMP-safe, it could
986 * change from under us. However, rather than getting any lock
987 * we can use an optimistic algorithm: get the parent
988 * pid, and go back and check that the parent is still
989 * the same. If it has changed (which is extremely unlikely
990 * indeed), we just try again..
991 *
992 * NOTE! This depends on the fact that even if we _do_
993 * get an old value of "parent", we can happily dereference
994 * the pointer (it was and remains a dereferencable kernel pointer
995 * no matter what): we just can't necessarily trust the result
996 * until we know that the parent pointer is valid.
997 *
998 * NOTE2: ->group_leader never changes from under us.
999 */
1000asmlinkage long sys_getppid(void)
1001{
1002 int pid;
1003 struct task_struct *me = current;
1004 struct task_struct *parent;
1005
1006 parent = me->group_leader->real_parent;
1007 for (;;) {
1008 pid = parent->tgid;
1009#ifdef CONFIG_SMP
1010{
1011 struct task_struct *old = parent;
1012
1013 /*
1014 * Make sure we read the pid before re-reading the
1015 * parent pointer:
1016 */
d59dd462 1017 smp_rmb();
1da177e4
LT
1018 parent = me->group_leader->real_parent;
1019 if (old != parent)
1020 continue;
1021}
1022#endif
1023 break;
1024 }
1025 return pid;
1026}
1027
1028asmlinkage long sys_getuid(void)
1029{
1030 /* Only we change this so SMP safe */
1031 return current->uid;
1032}
1033
1034asmlinkage long sys_geteuid(void)
1035{
1036 /* Only we change this so SMP safe */
1037 return current->euid;
1038}
1039
1040asmlinkage long sys_getgid(void)
1041{
1042 /* Only we change this so SMP safe */
1043 return current->gid;
1044}
1045
1046asmlinkage long sys_getegid(void)
1047{
1048 /* Only we change this so SMP safe */
1049 return current->egid;
1050}
1051
1052#endif
1053
1054static void process_timeout(unsigned long __data)
1055{
1056 wake_up_process((task_t *)__data);
1057}
1058
1059/**
1060 * schedule_timeout - sleep until timeout
1061 * @timeout: timeout value in jiffies
1062 *
1063 * Make the current task sleep until @timeout jiffies have
1064 * elapsed. The routine will return immediately unless
1065 * the current task state has been set (see set_current_state()).
1066 *
1067 * You can set the task state as follows -
1068 *
1069 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1070 * pass before the routine returns. The routine will return 0
1071 *
1072 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1073 * delivered to the current task. In this case the remaining time
1074 * in jiffies will be returned, or 0 if the timer expired in time
1075 *
1076 * The current task state is guaranteed to be TASK_RUNNING when this
1077 * routine returns.
1078 *
1079 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1080 * the CPU away without a bound on the timeout. In this case the return
1081 * value will be %MAX_SCHEDULE_TIMEOUT.
1082 *
1083 * In all cases the return value is guaranteed to be non-negative.
1084 */
1085fastcall signed long __sched schedule_timeout(signed long timeout)
1086{
1087 struct timer_list timer;
1088 unsigned long expire;
1089
1090 switch (timeout)
1091 {
1092 case MAX_SCHEDULE_TIMEOUT:
1093 /*
1094 * These two special cases are useful to be comfortable
1095 * in the caller. Nothing more. We could take
1096 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1097 * but I' d like to return a valid offset (>=0) to allow
1098 * the caller to do everything it want with the retval.
1099 */
1100 schedule();
1101 goto out;
1102 default:
1103 /*
1104 * Another bit of PARANOID. Note that the retval will be
1105 * 0 since no piece of kernel is supposed to do a check
1106 * for a negative retval of schedule_timeout() (since it
1107 * should never happens anyway). You just have the printk()
1108 * that will tell you if something is gone wrong and where.
1109 */
1110 if (timeout < 0)
1111 {
1112 printk(KERN_ERR "schedule_timeout: wrong timeout "
1113 "value %lx from %p\n", timeout,
1114 __builtin_return_address(0));
1115 current->state = TASK_RUNNING;
1116 goto out;
1117 }
1118 }
1119
1120 expire = timeout + jiffies;
1121
1122 init_timer(&timer);
1123 timer.expires = expire;
1124 timer.data = (unsigned long) current;
1125 timer.function = process_timeout;
1126
1127 add_timer(&timer);
1128 schedule();
1129 del_singleshot_timer_sync(&timer);
1130
1131 timeout = expire - jiffies;
1132
1133 out:
1134 return timeout < 0 ? 0 : timeout;
1135}
1136
1137EXPORT_SYMBOL(schedule_timeout);
1138
1139/* Thread ID - the internal kernel "pid" */
1140asmlinkage long sys_gettid(void)
1141{
1142 return current->pid;
1143}
1144
1145static long __sched nanosleep_restart(struct restart_block *restart)
1146{
1147 unsigned long expire = restart->arg0, now = jiffies;
1148 struct timespec __user *rmtp = (struct timespec __user *) restart->arg1;
1149 long ret;
1150
1151 /* Did it expire while we handled signals? */
1152 if (!time_after(expire, now))
1153 return 0;
1154
1155 current->state = TASK_INTERRUPTIBLE;
1156 expire = schedule_timeout(expire - now);
1157
1158 ret = 0;
1159 if (expire) {
1160 struct timespec t;
1161 jiffies_to_timespec(expire, &t);
1162
1163 ret = -ERESTART_RESTARTBLOCK;
1164 if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
1165 ret = -EFAULT;
1166 /* The 'restart' block is already filled in */
1167 }
1168 return ret;
1169}
1170
1171asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1172{
1173 struct timespec t;
1174 unsigned long expire;
1175 long ret;
1176
1177 if (copy_from_user(&t, rqtp, sizeof(t)))
1178 return -EFAULT;
1179
1180 if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0))
1181 return -EINVAL;
1182
1183 expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
1184 current->state = TASK_INTERRUPTIBLE;
1185 expire = schedule_timeout(expire);
1186
1187 ret = 0;
1188 if (expire) {
1189 struct restart_block *restart;
1190 jiffies_to_timespec(expire, &t);
1191 if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
1192 return -EFAULT;
1193
1194 restart = &current_thread_info()->restart_block;
1195 restart->fn = nanosleep_restart;
1196 restart->arg0 = jiffies + expire;
1197 restart->arg1 = (unsigned long) rmtp;
1198 ret = -ERESTART_RESTARTBLOCK;
1199 }
1200 return ret;
1201}
1202
1203/*
1204 * sys_sysinfo - fill in sysinfo struct
1205 */
1206asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1207{
1208 struct sysinfo val;
1209 unsigned long mem_total, sav_total;
1210 unsigned int mem_unit, bitcount;
1211 unsigned long seq;
1212
1213 memset((char *)&val, 0, sizeof(struct sysinfo));
1214
1215 do {
1216 struct timespec tp;
1217 seq = read_seqbegin(&xtime_lock);
1218
1219 /*
1220 * This is annoying. The below is the same thing
1221 * posix_get_clock_monotonic() does, but it wants to
1222 * take the lock which we want to cover the loads stuff
1223 * too.
1224 */
1225
1226 getnstimeofday(&tp);
1227 tp.tv_sec += wall_to_monotonic.tv_sec;
1228 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1229 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1230 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1231 tp.tv_sec++;
1232 }
1233 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1234
1235 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1236 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1237 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1238
1239 val.procs = nr_threads;
1240 } while (read_seqretry(&xtime_lock, seq));
1241
1242 si_meminfo(&val);
1243 si_swapinfo(&val);
1244
1245 /*
1246 * If the sum of all the available memory (i.e. ram + swap)
1247 * is less than can be stored in a 32 bit unsigned long then
1248 * we can be binary compatible with 2.2.x kernels. If not,
1249 * well, in that case 2.2.x was broken anyways...
1250 *
1251 * -Erik Andersen <andersee@debian.org>
1252 */
1253
1254 mem_total = val.totalram + val.totalswap;
1255 if (mem_total < val.totalram || mem_total < val.totalswap)
1256 goto out;
1257 bitcount = 0;
1258 mem_unit = val.mem_unit;
1259 while (mem_unit > 1) {
1260 bitcount++;
1261 mem_unit >>= 1;
1262 sav_total = mem_total;
1263 mem_total <<= 1;
1264 if (mem_total < sav_total)
1265 goto out;
1266 }
1267
1268 /*
1269 * If mem_total did not overflow, multiply all memory values by
1270 * val.mem_unit and set it to 1. This leaves things compatible
1271 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1272 * kernels...
1273 */
1274
1275 val.mem_unit = 1;
1276 val.totalram <<= bitcount;
1277 val.freeram <<= bitcount;
1278 val.sharedram <<= bitcount;
1279 val.bufferram <<= bitcount;
1280 val.totalswap <<= bitcount;
1281 val.freeswap <<= bitcount;
1282 val.totalhigh <<= bitcount;
1283 val.freehigh <<= bitcount;
1284
1285 out:
1286 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1287 return -EFAULT;
1288
1289 return 0;
1290}
1291
1292static void __devinit init_timers_cpu(int cpu)
1293{
1294 int j;
1295 tvec_base_t *base;
55c888d6 1296
1da177e4 1297 base = &per_cpu(tvec_bases, cpu);
55c888d6 1298 spin_lock_init(&base->t_base.lock);
1da177e4
LT
1299 for (j = 0; j < TVN_SIZE; j++) {
1300 INIT_LIST_HEAD(base->tv5.vec + j);
1301 INIT_LIST_HEAD(base->tv4.vec + j);
1302 INIT_LIST_HEAD(base->tv3.vec + j);
1303 INIT_LIST_HEAD(base->tv2.vec + j);
1304 }
1305 for (j = 0; j < TVR_SIZE; j++)
1306 INIT_LIST_HEAD(base->tv1.vec + j);
1307
1308 base->timer_jiffies = jiffies;
1309}
1310
1311#ifdef CONFIG_HOTPLUG_CPU
55c888d6 1312static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1da177e4
LT
1313{
1314 struct timer_list *timer;
1315
1316 while (!list_empty(head)) {
1317 timer = list_entry(head->next, struct timer_list, entry);
55c888d6
ON
1318 detach_timer(timer, 0);
1319 timer->base = &new_base->t_base;
1da177e4 1320 internal_add_timer(new_base, timer);
1da177e4 1321 }
1da177e4
LT
1322}
1323
1324static void __devinit migrate_timers(int cpu)
1325{
1326 tvec_base_t *old_base;
1327 tvec_base_t *new_base;
1328 int i;
1329
1330 BUG_ON(cpu_online(cpu));
1331 old_base = &per_cpu(tvec_bases, cpu);
1332 new_base = &get_cpu_var(tvec_bases);
1333
1334 local_irq_disable();
55c888d6
ON
1335 spin_lock(&new_base->t_base.lock);
1336 spin_lock(&old_base->t_base.lock);
1da177e4 1337
55c888d6 1338 if (old_base->t_base.running_timer)
1da177e4
LT
1339 BUG();
1340 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1341 migrate_timer_list(new_base, old_base->tv1.vec + i);
1342 for (i = 0; i < TVN_SIZE; i++) {
1343 migrate_timer_list(new_base, old_base->tv2.vec + i);
1344 migrate_timer_list(new_base, old_base->tv3.vec + i);
1345 migrate_timer_list(new_base, old_base->tv4.vec + i);
1346 migrate_timer_list(new_base, old_base->tv5.vec + i);
1347 }
1348
1349 spin_unlock(&old_base->t_base.lock);
1350 spin_unlock(&new_base->t_base.lock);
1da177e4
LT
1351 local_irq_enable();
1352 put_cpu_var(tvec_bases);
1da177e4
LT
1353}
1354#endif /* CONFIG_HOTPLUG_CPU */
1355
1356static int __devinit timer_cpu_notify(struct notifier_block *self,
1357 unsigned long action, void *hcpu)
1358{
1359 long cpu = (long)hcpu;
1360 switch(action) {
1361 case CPU_UP_PREPARE:
1362 init_timers_cpu(cpu);
1363 break;
1364#ifdef CONFIG_HOTPLUG_CPU
1365 case CPU_DEAD:
1366 migrate_timers(cpu);
1367 break;
1368#endif
1369 default:
1370 break;
1371 }
1372 return NOTIFY_OK;
1373}
1374
1375static struct notifier_block __devinitdata timers_nb = {
1376 .notifier_call = timer_cpu_notify,
1377};
1378
1379
1380void __init init_timers(void)
1381{
1382 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1383 (void *)(long)smp_processor_id());
1384 register_cpu_notifier(&timers_nb);
1385 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1386}
1387
1388#ifdef CONFIG_TIME_INTERPOLATION
1389
1390struct time_interpolator *time_interpolator;
1391static struct time_interpolator *time_interpolator_list;
1392static DEFINE_SPINLOCK(time_interpolator_lock);
1393
1394static inline u64 time_interpolator_get_cycles(unsigned int src)
1395{
1396 unsigned long (*x)(void);
1397
1398 switch (src)
1399 {
1400 case TIME_SOURCE_FUNCTION:
1401 x = time_interpolator->addr;
1402 return x();
1403
1404 case TIME_SOURCE_MMIO64 :
1405 return readq((void __iomem *) time_interpolator->addr);
1406
1407 case TIME_SOURCE_MMIO32 :
1408 return readl((void __iomem *) time_interpolator->addr);
1409
1410 default: return get_cycles();
1411 }
1412}
1413
1414static inline u64 time_interpolator_get_counter(void)
1415{
1416 unsigned int src = time_interpolator->source;
1417
1418 if (time_interpolator->jitter)
1419 {
1420 u64 lcycle;
1421 u64 now;
1422
1423 do {
1424 lcycle = time_interpolator->last_cycle;
1425 now = time_interpolator_get_cycles(src);
1426 if (lcycle && time_after(lcycle, now))
1427 return lcycle;
1428 /* Keep track of the last timer value returned. The use of cmpxchg here
1429 * will cause contention in an SMP environment.
1430 */
1431 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1432 return now;
1433 }
1434 else
1435 return time_interpolator_get_cycles(src);
1436}
1437
1438void time_interpolator_reset(void)
1439{
1440 time_interpolator->offset = 0;
1441 time_interpolator->last_counter = time_interpolator_get_counter();
1442}
1443
1444#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1445
1446unsigned long time_interpolator_get_offset(void)
1447{
1448 /* If we do not have a time interpolator set up then just return zero */
1449 if (!time_interpolator)
1450 return 0;
1451
1452 return time_interpolator->offset +
1453 GET_TI_NSECS(time_interpolator_get_counter(), time_interpolator);
1454}
1455
1456#define INTERPOLATOR_ADJUST 65536
1457#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1458
1459static void time_interpolator_update(long delta_nsec)
1460{
1461 u64 counter;
1462 unsigned long offset;
1463
1464 /* If there is no time interpolator set up then do nothing */
1465 if (!time_interpolator)
1466 return;
1467
1468 /* The interpolator compensates for late ticks by accumulating
1469 * the late time in time_interpolator->offset. A tick earlier than
1470 * expected will lead to a reset of the offset and a corresponding
1471 * jump of the clock forward. Again this only works if the
1472 * interpolator clock is running slightly slower than the regular clock
1473 * and the tuning logic insures that.
1474 */
1475
1476 counter = time_interpolator_get_counter();
1477 offset = time_interpolator->offset + GET_TI_NSECS(counter, time_interpolator);
1478
1479 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1480 time_interpolator->offset = offset - delta_nsec;
1481 else {
1482 time_interpolator->skips++;
1483 time_interpolator->ns_skipped += delta_nsec - offset;
1484 time_interpolator->offset = 0;
1485 }
1486 time_interpolator->last_counter = counter;
1487
1488 /* Tuning logic for time interpolator invoked every minute or so.
1489 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1490 * Increase interpolator clock speed if we skip too much time.
1491 */
1492 if (jiffies % INTERPOLATOR_ADJUST == 0)
1493 {
1494 if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC)
1495 time_interpolator->nsec_per_cyc--;
1496 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1497 time_interpolator->nsec_per_cyc++;
1498 time_interpolator->skips = 0;
1499 time_interpolator->ns_skipped = 0;
1500 }
1501}
1502
1503static inline int
1504is_better_time_interpolator(struct time_interpolator *new)
1505{
1506 if (!time_interpolator)
1507 return 1;
1508 return new->frequency > 2*time_interpolator->frequency ||
1509 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1510}
1511
1512void
1513register_time_interpolator(struct time_interpolator *ti)
1514{
1515 unsigned long flags;
1516
1517 /* Sanity check */
1518 if (ti->frequency == 0 || ti->mask == 0)
1519 BUG();
1520
1521 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1522 spin_lock(&time_interpolator_lock);
1523 write_seqlock_irqsave(&xtime_lock, flags);
1524 if (is_better_time_interpolator(ti)) {
1525 time_interpolator = ti;
1526 time_interpolator_reset();
1527 }
1528 write_sequnlock_irqrestore(&xtime_lock, flags);
1529
1530 ti->next = time_interpolator_list;
1531 time_interpolator_list = ti;
1532 spin_unlock(&time_interpolator_lock);
1533}
1534
1535void
1536unregister_time_interpolator(struct time_interpolator *ti)
1537{
1538 struct time_interpolator *curr, **prev;
1539 unsigned long flags;
1540
1541 spin_lock(&time_interpolator_lock);
1542 prev = &time_interpolator_list;
1543 for (curr = *prev; curr; curr = curr->next) {
1544 if (curr == ti) {
1545 *prev = curr->next;
1546 break;
1547 }
1548 prev = &curr->next;
1549 }
1550
1551 write_seqlock_irqsave(&xtime_lock, flags);
1552 if (ti == time_interpolator) {
1553 /* we lost the best time-interpolator: */
1554 time_interpolator = NULL;
1555 /* find the next-best interpolator */
1556 for (curr = time_interpolator_list; curr; curr = curr->next)
1557 if (is_better_time_interpolator(curr))
1558 time_interpolator = curr;
1559 time_interpolator_reset();
1560 }
1561 write_sequnlock_irqrestore(&xtime_lock, flags);
1562 spin_unlock(&time_interpolator_lock);
1563}
1564#endif /* CONFIG_TIME_INTERPOLATION */
1565
1566/**
1567 * msleep - sleep safely even with waitqueue interruptions
1568 * @msecs: Time in milliseconds to sleep for
1569 */
1570void msleep(unsigned int msecs)
1571{
1572 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1573
1574 while (timeout) {
1575 set_current_state(TASK_UNINTERRUPTIBLE);
1576 timeout = schedule_timeout(timeout);
1577 }
1578}
1579
1580EXPORT_SYMBOL(msleep);
1581
1582/**
1583 * msleep_interruptible - sleep waiting for waitqueue interruptions
1584 * @msecs: Time in milliseconds to sleep for
1585 */
1586unsigned long msleep_interruptible(unsigned int msecs)
1587{
1588 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1589
1590 while (timeout && !signal_pending(current)) {
1591 set_current_state(TASK_INTERRUPTIBLE);
1592 timeout = schedule_timeout(timeout);
1593 }
1594 return jiffies_to_msecs(timeout);
1595}
1596
1597EXPORT_SYMBOL(msleep_interruptible);