]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/timer.c
timer: Clean up timer initializers
[mirror_ubuntu-bionic-kernel.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
99d5f3aa 80 unsigned long active_timers;
a6fa8e5a
PM
81 struct tvec_root tv1;
82 struct tvec tv2;
83 struct tvec tv3;
84 struct tvec tv4;
85 struct tvec tv5;
6e453a67 86} ____cacheline_aligned;
1da177e4 87
a6fa8e5a 88struct tvec_base boot_tvec_bases;
3691c519 89EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 90static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 91
6e453a67 92/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 93static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 94{
e52b1db3 95 return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
6e453a67
VP
96}
97
a6fa8e5a 98static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 99{
e52b1db3 100 return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
6e453a67
VP
101}
102
6e453a67 103static inline void
a6fa8e5a 104timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 105{
e52b1db3
TH
106 unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
107
108 timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
6e453a67
VP
109}
110
9c133c46
AS
111static unsigned long round_jiffies_common(unsigned long j, int cpu,
112 bool force_up)
4c36a5de
AV
113{
114 int rem;
115 unsigned long original = j;
116
117 /*
118 * We don't want all cpus firing their timers at once hitting the
119 * same lock or cachelines, so we skew each extra cpu with an extra
120 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
121 * already did this.
122 * The skew is done by adding 3*cpunr, then round, then subtract this
123 * extra offset again.
124 */
125 j += cpu * 3;
126
127 rem = j % HZ;
128
129 /*
130 * If the target jiffie is just after a whole second (which can happen
131 * due to delays of the timer irq, long irq off times etc etc) then
132 * we should round down to the whole second, not up. Use 1/4th second
133 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 134 * But never round down if @force_up is set.
4c36a5de 135 */
9c133c46 136 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
137 j = j - rem;
138 else /* round up */
139 j = j - rem + HZ;
140
141 /* now that we have rounded, subtract the extra skew again */
142 j -= cpu * 3;
143
144 if (j <= jiffies) /* rounding ate our timeout entirely; */
145 return original;
146 return j;
147}
9c133c46
AS
148
149/**
150 * __round_jiffies - function to round jiffies to a full second
151 * @j: the time in (absolute) jiffies that should be rounded
152 * @cpu: the processor number on which the timeout will happen
153 *
154 * __round_jiffies() rounds an absolute time in the future (in jiffies)
155 * up or down to (approximately) full seconds. This is useful for timers
156 * for which the exact time they fire does not matter too much, as long as
157 * they fire approximately every X seconds.
158 *
159 * By rounding these timers to whole seconds, all such timers will fire
160 * at the same time, rather than at various times spread out. The goal
161 * of this is to have the CPU wake up less, which saves power.
162 *
163 * The exact rounding is skewed for each processor to avoid all
164 * processors firing at the exact same time, which could lead
165 * to lock contention or spurious cache line bouncing.
166 *
167 * The return value is the rounded version of the @j parameter.
168 */
169unsigned long __round_jiffies(unsigned long j, int cpu)
170{
171 return round_jiffies_common(j, cpu, false);
172}
4c36a5de
AV
173EXPORT_SYMBOL_GPL(__round_jiffies);
174
175/**
176 * __round_jiffies_relative - function to round jiffies to a full second
177 * @j: the time in (relative) jiffies that should be rounded
178 * @cpu: the processor number on which the timeout will happen
179 *
72fd4a35 180 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
181 * up or down to (approximately) full seconds. This is useful for timers
182 * for which the exact time they fire does not matter too much, as long as
183 * they fire approximately every X seconds.
184 *
185 * By rounding these timers to whole seconds, all such timers will fire
186 * at the same time, rather than at various times spread out. The goal
187 * of this is to have the CPU wake up less, which saves power.
188 *
189 * The exact rounding is skewed for each processor to avoid all
190 * processors firing at the exact same time, which could lead
191 * to lock contention or spurious cache line bouncing.
192 *
72fd4a35 193 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
194 */
195unsigned long __round_jiffies_relative(unsigned long j, int cpu)
196{
9c133c46
AS
197 unsigned long j0 = jiffies;
198
199 /* Use j0 because jiffies might change while we run */
200 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
201}
202EXPORT_SYMBOL_GPL(__round_jiffies_relative);
203
204/**
205 * round_jiffies - function to round jiffies to a full second
206 * @j: the time in (absolute) jiffies that should be rounded
207 *
72fd4a35 208 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
209 * up or down to (approximately) full seconds. This is useful for timers
210 * for which the exact time they fire does not matter too much, as long as
211 * they fire approximately every X seconds.
212 *
213 * By rounding these timers to whole seconds, all such timers will fire
214 * at the same time, rather than at various times spread out. The goal
215 * of this is to have the CPU wake up less, which saves power.
216 *
72fd4a35 217 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
218 */
219unsigned long round_jiffies(unsigned long j)
220{
9c133c46 221 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
222}
223EXPORT_SYMBOL_GPL(round_jiffies);
224
225/**
226 * round_jiffies_relative - function to round jiffies to a full second
227 * @j: the time in (relative) jiffies that should be rounded
228 *
72fd4a35 229 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
230 * up or down to (approximately) full seconds. This is useful for timers
231 * for which the exact time they fire does not matter too much, as long as
232 * they fire approximately every X seconds.
233 *
234 * By rounding these timers to whole seconds, all such timers will fire
235 * at the same time, rather than at various times spread out. The goal
236 * of this is to have the CPU wake up less, which saves power.
237 *
72fd4a35 238 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
239 */
240unsigned long round_jiffies_relative(unsigned long j)
241{
242 return __round_jiffies_relative(j, raw_smp_processor_id());
243}
244EXPORT_SYMBOL_GPL(round_jiffies_relative);
245
9c133c46
AS
246/**
247 * __round_jiffies_up - function to round jiffies up to a full second
248 * @j: the time in (absolute) jiffies that should be rounded
249 * @cpu: the processor number on which the timeout will happen
250 *
251 * This is the same as __round_jiffies() except that it will never
252 * round down. This is useful for timeouts for which the exact time
253 * of firing does not matter too much, as long as they don't fire too
254 * early.
255 */
256unsigned long __round_jiffies_up(unsigned long j, int cpu)
257{
258 return round_jiffies_common(j, cpu, true);
259}
260EXPORT_SYMBOL_GPL(__round_jiffies_up);
261
262/**
263 * __round_jiffies_up_relative - function to round jiffies up to a full second
264 * @j: the time in (relative) jiffies that should be rounded
265 * @cpu: the processor number on which the timeout will happen
266 *
267 * This is the same as __round_jiffies_relative() except that it will never
268 * round down. This is useful for timeouts for which the exact time
269 * of firing does not matter too much, as long as they don't fire too
270 * early.
271 */
272unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
273{
274 unsigned long j0 = jiffies;
275
276 /* Use j0 because jiffies might change while we run */
277 return round_jiffies_common(j + j0, cpu, true) - j0;
278}
279EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
280
281/**
282 * round_jiffies_up - function to round jiffies up to a full second
283 * @j: the time in (absolute) jiffies that should be rounded
284 *
285 * This is the same as round_jiffies() except that it will never
286 * round down. This is useful for timeouts for which the exact time
287 * of firing does not matter too much, as long as they don't fire too
288 * early.
289 */
290unsigned long round_jiffies_up(unsigned long j)
291{
292 return round_jiffies_common(j, raw_smp_processor_id(), true);
293}
294EXPORT_SYMBOL_GPL(round_jiffies_up);
295
296/**
297 * round_jiffies_up_relative - function to round jiffies up to a full second
298 * @j: the time in (relative) jiffies that should be rounded
299 *
300 * This is the same as round_jiffies_relative() except that it will never
301 * round down. This is useful for timeouts for which the exact time
302 * of firing does not matter too much, as long as they don't fire too
303 * early.
304 */
305unsigned long round_jiffies_up_relative(unsigned long j)
306{
307 return __round_jiffies_up_relative(j, raw_smp_processor_id());
308}
309EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
310
3bbb9ec9
AV
311/**
312 * set_timer_slack - set the allowed slack for a timer
0caa6210 313 * @timer: the timer to be modified
3bbb9ec9
AV
314 * @slack_hz: the amount of time (in jiffies) allowed for rounding
315 *
316 * Set the amount of time, in jiffies, that a certain timer has
317 * in terms of slack. By setting this value, the timer subsystem
318 * will schedule the actual timer somewhere between
319 * the time mod_timer() asks for, and that time plus the slack.
320 *
321 * By setting the slack to -1, a percentage of the delay is used
322 * instead.
323 */
324void set_timer_slack(struct timer_list *timer, int slack_hz)
325{
326 timer->slack = slack_hz;
327}
328EXPORT_SYMBOL_GPL(set_timer_slack);
329
facbb4a7
TG
330static void
331__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
332{
333 unsigned long expires = timer->expires;
334 unsigned long idx = expires - base->timer_jiffies;
335 struct list_head *vec;
336
337 if (idx < TVR_SIZE) {
338 int i = expires & TVR_MASK;
339 vec = base->tv1.vec + i;
340 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
341 int i = (expires >> TVR_BITS) & TVN_MASK;
342 vec = base->tv2.vec + i;
343 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
344 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
345 vec = base->tv3.vec + i;
346 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
347 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
348 vec = base->tv4.vec + i;
349 } else if ((signed long) idx < 0) {
350 /*
351 * Can happen if you add a timer with expires == jiffies,
352 * or you set a timer to go off in the past
353 */
354 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
355 } else {
356 int i;
357 /* If the timeout is larger than 0xffffffff on 64-bit
358 * architectures then we use the maximum timeout:
359 */
360 if (idx > 0xffffffffUL) {
361 idx = 0xffffffffUL;
362 expires = idx + base->timer_jiffies;
363 }
364 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
365 vec = base->tv5.vec + i;
366 }
367 /*
368 * Timers are FIFO:
369 */
370 list_add_tail(&timer->entry, vec);
371}
372
facbb4a7
TG
373static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
374{
375 __internal_add_timer(base, timer);
376 /*
99d5f3aa 377 * Update base->active_timers and base->next_timer
facbb4a7 378 */
99d5f3aa
TG
379 if (!tbase_get_deferrable(timer->base)) {
380 if (time_before(timer->expires, base->next_timer))
381 base->next_timer = timer->expires;
382 base->active_timers++;
383 }
facbb4a7
TG
384}
385
82f67cd9
IM
386#ifdef CONFIG_TIMER_STATS
387void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
388{
389 if (timer->start_site)
390 return;
391
392 timer->start_site = addr;
393 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
394 timer->start_pid = current->pid;
395}
c5c061b8
VP
396
397static void timer_stats_account_timer(struct timer_list *timer)
398{
399 unsigned int flag = 0;
400
507e1231
HC
401 if (likely(!timer->start_site))
402 return;
c5c061b8
VP
403 if (unlikely(tbase_get_deferrable(timer->base)))
404 flag |= TIMER_STATS_FLAG_DEFERRABLE;
405
406 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
407 timer->function, timer->start_comm, flag);
408}
409
410#else
411static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
412#endif
413
c6f3a97f
TG
414#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
415
416static struct debug_obj_descr timer_debug_descr;
417
99777288
SG
418static void *timer_debug_hint(void *addr)
419{
420 return ((struct timer_list *) addr)->function;
421}
422
c6f3a97f
TG
423/*
424 * fixup_init is called when:
425 * - an active object is initialized
55c888d6 426 */
c6f3a97f
TG
427static int timer_fixup_init(void *addr, enum debug_obj_state state)
428{
429 struct timer_list *timer = addr;
430
431 switch (state) {
432 case ODEBUG_STATE_ACTIVE:
433 del_timer_sync(timer);
434 debug_object_init(timer, &timer_debug_descr);
435 return 1;
436 default:
437 return 0;
438 }
439}
440
fb16b8cf
SB
441/* Stub timer callback for improperly used timers. */
442static void stub_timer(unsigned long data)
443{
444 WARN_ON(1);
445}
446
c6f3a97f
TG
447/*
448 * fixup_activate is called when:
449 * - an active object is activated
450 * - an unknown object is activated (might be a statically initialized object)
451 */
452static int timer_fixup_activate(void *addr, enum debug_obj_state state)
453{
454 struct timer_list *timer = addr;
455
456 switch (state) {
457
458 case ODEBUG_STATE_NOTAVAILABLE:
459 /*
460 * This is not really a fixup. The timer was
461 * statically initialized. We just make sure that it
462 * is tracked in the object tracker.
463 */
464 if (timer->entry.next == NULL &&
465 timer->entry.prev == TIMER_ENTRY_STATIC) {
466 debug_object_init(timer, &timer_debug_descr);
467 debug_object_activate(timer, &timer_debug_descr);
468 return 0;
469 } else {
fb16b8cf
SB
470 setup_timer(timer, stub_timer, 0);
471 return 1;
c6f3a97f
TG
472 }
473 return 0;
474
475 case ODEBUG_STATE_ACTIVE:
476 WARN_ON(1);
477
478 default:
479 return 0;
480 }
481}
482
483/*
484 * fixup_free is called when:
485 * - an active object is freed
486 */
487static int timer_fixup_free(void *addr, enum debug_obj_state state)
488{
489 struct timer_list *timer = addr;
490
491 switch (state) {
492 case ODEBUG_STATE_ACTIVE:
493 del_timer_sync(timer);
494 debug_object_free(timer, &timer_debug_descr);
495 return 1;
496 default:
497 return 0;
498 }
499}
500
dc4218bd
CC
501/*
502 * fixup_assert_init is called when:
503 * - an untracked/uninit-ed object is found
504 */
505static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
506{
507 struct timer_list *timer = addr;
508
509 switch (state) {
510 case ODEBUG_STATE_NOTAVAILABLE:
511 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
512 /*
513 * This is not really a fixup. The timer was
514 * statically initialized. We just make sure that it
515 * is tracked in the object tracker.
516 */
517 debug_object_init(timer, &timer_debug_descr);
518 return 0;
519 } else {
520 setup_timer(timer, stub_timer, 0);
521 return 1;
522 }
523 default:
524 return 0;
525 }
526}
527
c6f3a97f 528static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
529 .name = "timer_list",
530 .debug_hint = timer_debug_hint,
531 .fixup_init = timer_fixup_init,
532 .fixup_activate = timer_fixup_activate,
533 .fixup_free = timer_fixup_free,
534 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
535};
536
537static inline void debug_timer_init(struct timer_list *timer)
538{
539 debug_object_init(timer, &timer_debug_descr);
540}
541
542static inline void debug_timer_activate(struct timer_list *timer)
543{
544 debug_object_activate(timer, &timer_debug_descr);
545}
546
547static inline void debug_timer_deactivate(struct timer_list *timer)
548{
549 debug_object_deactivate(timer, &timer_debug_descr);
550}
551
552static inline void debug_timer_free(struct timer_list *timer)
553{
554 debug_object_free(timer, &timer_debug_descr);
555}
556
dc4218bd
CC
557static inline void debug_timer_assert_init(struct timer_list *timer)
558{
559 debug_object_assert_init(timer, &timer_debug_descr);
560}
561
fc683995
TH
562static void do_init_timer(struct timer_list *timer, unsigned int flags,
563 const char *name, struct lock_class_key *key);
c6f3a97f 564
fc683995
TH
565void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
566 const char *name, struct lock_class_key *key)
c6f3a97f
TG
567{
568 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 569 do_init_timer(timer, flags, name, key);
c6f3a97f 570}
6f2b9b9a 571EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
572
573void destroy_timer_on_stack(struct timer_list *timer)
574{
575 debug_object_free(timer, &timer_debug_descr);
576}
577EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
578
579#else
580static inline void debug_timer_init(struct timer_list *timer) { }
581static inline void debug_timer_activate(struct timer_list *timer) { }
582static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 583static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
584#endif
585
2b022e3d
XG
586static inline void debug_init(struct timer_list *timer)
587{
588 debug_timer_init(timer);
589 trace_timer_init(timer);
590}
591
592static inline void
593debug_activate(struct timer_list *timer, unsigned long expires)
594{
595 debug_timer_activate(timer);
596 trace_timer_start(timer, expires);
597}
598
599static inline void debug_deactivate(struct timer_list *timer)
600{
601 debug_timer_deactivate(timer);
602 trace_timer_cancel(timer);
603}
604
dc4218bd
CC
605static inline void debug_assert_init(struct timer_list *timer)
606{
607 debug_timer_assert_init(timer);
608}
609
fc683995
TH
610static void do_init_timer(struct timer_list *timer, unsigned int flags,
611 const char *name, struct lock_class_key *key)
55c888d6 612{
fc683995
TH
613 struct tvec_base *base = __raw_get_cpu_var(tvec_bases);
614
55c888d6 615 timer->entry.next = NULL;
fc683995 616 timer->base = (void *)((unsigned long)base | flags);
3bbb9ec9 617 timer->slack = -1;
82f67cd9
IM
618#ifdef CONFIG_TIMER_STATS
619 timer->start_site = NULL;
620 timer->start_pid = -1;
621 memset(timer->start_comm, 0, TASK_COMM_LEN);
622#endif
6f2b9b9a 623 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 624}
c6f3a97f
TG
625
626/**
633fe795 627 * init_timer_key - initialize a timer
c6f3a97f 628 * @timer: the timer to be initialized
fc683995 629 * @flags: timer flags
633fe795
RD
630 * @name: name of the timer
631 * @key: lockdep class key of the fake lock used for tracking timer
632 * sync lock dependencies
c6f3a97f 633 *
633fe795 634 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
635 * other timer functions.
636 */
fc683995
TH
637void init_timer_key(struct timer_list *timer, unsigned int flags,
638 const char *name, struct lock_class_key *key)
c6f3a97f 639{
2b022e3d 640 debug_init(timer);
fc683995 641 do_init_timer(timer, flags, name, key);
c6f3a97f 642}
6f2b9b9a 643EXPORT_SYMBOL(init_timer_key);
55c888d6 644
ec44bc7a 645static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6
ON
646{
647 struct list_head *entry = &timer->entry;
648
2b022e3d 649 debug_deactivate(timer);
c6f3a97f 650
55c888d6
ON
651 __list_del(entry->prev, entry->next);
652 if (clear_pending)
653 entry->next = NULL;
654 entry->prev = LIST_POISON2;
655}
656
99d5f3aa
TG
657static inline void
658detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
659{
660 detach_timer(timer, true);
661 if (!tbase_get_deferrable(timer->base))
e52b1db3 662 base->active_timers--;
99d5f3aa
TG
663}
664
ec44bc7a
TG
665static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
666 bool clear_pending)
667{
668 if (!timer_pending(timer))
669 return 0;
670
671 detach_timer(timer, clear_pending);
99d5f3aa 672 if (!tbase_get_deferrable(timer->base)) {
e52b1db3 673 base->active_timers--;
99d5f3aa
TG
674 if (timer->expires == base->next_timer)
675 base->next_timer = base->timer_jiffies;
676 }
ec44bc7a
TG
677 return 1;
678}
679
55c888d6 680/*
3691c519 681 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
682 * means that all timers which are tied to this base via timer->base are
683 * locked, and the base itself is locked too.
684 *
685 * So __run_timers/migrate_timers can safely modify all timers which could
686 * be found on ->tvX lists.
687 *
688 * When the timer's base is locked, and the timer removed from list, it is
689 * possible to set timer->base = NULL and drop the lock: the timer remains
690 * locked.
691 */
a6fa8e5a 692static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 693 unsigned long *flags)
89e7e374 694 __acquires(timer->base->lock)
55c888d6 695{
a6fa8e5a 696 struct tvec_base *base;
55c888d6
ON
697
698 for (;;) {
a6fa8e5a 699 struct tvec_base *prelock_base = timer->base;
6e453a67 700 base = tbase_get_base(prelock_base);
55c888d6
ON
701 if (likely(base != NULL)) {
702 spin_lock_irqsave(&base->lock, *flags);
6e453a67 703 if (likely(prelock_base == timer->base))
55c888d6
ON
704 return base;
705 /* The timer has migrated to another CPU */
706 spin_unlock_irqrestore(&base->lock, *flags);
707 }
708 cpu_relax();
709 }
710}
711
74019224 712static inline int
597d0275
AB
713__mod_timer(struct timer_list *timer, unsigned long expires,
714 bool pending_only, int pinned)
1da177e4 715{
a6fa8e5a 716 struct tvec_base *base, *new_base;
1da177e4 717 unsigned long flags;
eea08f32 718 int ret = 0 , cpu;
1da177e4 719
82f67cd9 720 timer_stats_timer_set_start_info(timer);
1da177e4 721 BUG_ON(!timer->function);
1da177e4 722
55c888d6
ON
723 base = lock_timer_base(timer, &flags);
724
ec44bc7a
TG
725 ret = detach_if_pending(timer, base, false);
726 if (!ret && pending_only)
727 goto out_unlock;
55c888d6 728
2b022e3d 729 debug_activate(timer, expires);
c6f3a97f 730
eea08f32
AB
731 cpu = smp_processor_id();
732
733#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
83cd4fe2
VP
734 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
735 cpu = get_nohz_timer_target();
eea08f32
AB
736#endif
737 new_base = per_cpu(tvec_bases, cpu);
738
3691c519 739 if (base != new_base) {
1da177e4 740 /*
55c888d6
ON
741 * We are trying to schedule the timer on the local CPU.
742 * However we can't change timer's base while it is running,
743 * otherwise del_timer_sync() can't detect that the timer's
744 * handler yet has not finished. This also guarantees that
745 * the timer is serialized wrt itself.
1da177e4 746 */
a2c348fe 747 if (likely(base->running_timer != timer)) {
55c888d6 748 /* See the comment in lock_timer_base() */
6e453a67 749 timer_set_base(timer, NULL);
55c888d6 750 spin_unlock(&base->lock);
a2c348fe
ON
751 base = new_base;
752 spin_lock(&base->lock);
6e453a67 753 timer_set_base(timer, base);
1da177e4
LT
754 }
755 }
756
1da177e4 757 timer->expires = expires;
a2c348fe 758 internal_add_timer(base, timer);
74019224
IM
759
760out_unlock:
a2c348fe 761 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
762
763 return ret;
764}
765
2aae4a10 766/**
74019224
IM
767 * mod_timer_pending - modify a pending timer's timeout
768 * @timer: the pending timer to be modified
769 * @expires: new timeout in jiffies
1da177e4 770 *
74019224
IM
771 * mod_timer_pending() is the same for pending timers as mod_timer(),
772 * but will not re-activate and modify already deleted timers.
773 *
774 * It is useful for unserialized use of timers.
1da177e4 775 */
74019224 776int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 777{
597d0275 778 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 779}
74019224 780EXPORT_SYMBOL(mod_timer_pending);
1da177e4 781
3bbb9ec9
AV
782/*
783 * Decide where to put the timer while taking the slack into account
784 *
785 * Algorithm:
786 * 1) calculate the maximum (absolute) time
787 * 2) calculate the highest bit where the expires and new max are different
788 * 3) use this bit to make a mask
789 * 4) use the bitmask to round down the maximum time, so that all last
790 * bits are zeros
791 */
792static inline
793unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
794{
795 unsigned long expires_limit, mask;
796 int bit;
797
8e63d779 798 if (timer->slack >= 0) {
f00e047e 799 expires_limit = expires + timer->slack;
8e63d779 800 } else {
1c3cc116
SAS
801 long delta = expires - jiffies;
802
803 if (delta < 256)
804 return expires;
3bbb9ec9 805
1c3cc116 806 expires_limit = expires + delta / 256;
8e63d779 807 }
3bbb9ec9 808 mask = expires ^ expires_limit;
3bbb9ec9
AV
809 if (mask == 0)
810 return expires;
811
812 bit = find_last_bit(&mask, BITS_PER_LONG);
813
814 mask = (1 << bit) - 1;
815
816 expires_limit = expires_limit & ~(mask);
817
818 return expires_limit;
819}
820
2aae4a10 821/**
1da177e4
LT
822 * mod_timer - modify a timer's timeout
823 * @timer: the timer to be modified
2aae4a10 824 * @expires: new timeout in jiffies
1da177e4 825 *
72fd4a35 826 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
827 * active timer (if the timer is inactive it will be activated)
828 *
829 * mod_timer(timer, expires) is equivalent to:
830 *
831 * del_timer(timer); timer->expires = expires; add_timer(timer);
832 *
833 * Note that if there are multiple unserialized concurrent users of the
834 * same timer, then mod_timer() is the only safe way to modify the timeout,
835 * since add_timer() cannot modify an already running timer.
836 *
837 * The function returns whether it has modified a pending timer or not.
838 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
839 * active timer returns 1.)
840 */
841int mod_timer(struct timer_list *timer, unsigned long expires)
842{
1c3cc116
SAS
843 expires = apply_slack(timer, expires);
844
1da177e4
LT
845 /*
846 * This is a common optimization triggered by the
847 * networking code - if the timer is re-modified
848 * to be the same thing then just return:
849 */
4841158b 850 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
851 return 1;
852
597d0275 853 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 854}
1da177e4
LT
855EXPORT_SYMBOL(mod_timer);
856
597d0275
AB
857/**
858 * mod_timer_pinned - modify a timer's timeout
859 * @timer: the timer to be modified
860 * @expires: new timeout in jiffies
861 *
862 * mod_timer_pinned() is a way to update the expire field of an
863 * active timer (if the timer is inactive it will be activated)
048a0e8f
PM
864 * and to ensure that the timer is scheduled on the current CPU.
865 *
866 * Note that this does not prevent the timer from being migrated
867 * when the current CPU goes offline. If this is a problem for
868 * you, use CPU-hotplug notifiers to handle it correctly, for
869 * example, cancelling the timer when the corresponding CPU goes
870 * offline.
597d0275
AB
871 *
872 * mod_timer_pinned(timer, expires) is equivalent to:
873 *
874 * del_timer(timer); timer->expires = expires; add_timer(timer);
875 */
876int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
877{
878 if (timer->expires == expires && timer_pending(timer))
879 return 1;
880
881 return __mod_timer(timer, expires, false, TIMER_PINNED);
882}
883EXPORT_SYMBOL(mod_timer_pinned);
884
74019224
IM
885/**
886 * add_timer - start a timer
887 * @timer: the timer to be added
888 *
889 * The kernel will do a ->function(->data) callback from the
890 * timer interrupt at the ->expires point in the future. The
891 * current time is 'jiffies'.
892 *
893 * The timer's ->expires, ->function (and if the handler uses it, ->data)
894 * fields must be set prior calling this function.
895 *
896 * Timers with an ->expires field in the past will be executed in the next
897 * timer tick.
898 */
899void add_timer(struct timer_list *timer)
900{
901 BUG_ON(timer_pending(timer));
902 mod_timer(timer, timer->expires);
903}
904EXPORT_SYMBOL(add_timer);
905
906/**
907 * add_timer_on - start a timer on a particular CPU
908 * @timer: the timer to be added
909 * @cpu: the CPU to start it on
910 *
911 * This is not very scalable on SMP. Double adds are not possible.
912 */
913void add_timer_on(struct timer_list *timer, int cpu)
914{
915 struct tvec_base *base = per_cpu(tvec_bases, cpu);
916 unsigned long flags;
917
918 timer_stats_timer_set_start_info(timer);
919 BUG_ON(timer_pending(timer) || !timer->function);
920 spin_lock_irqsave(&base->lock, flags);
921 timer_set_base(timer, base);
2b022e3d 922 debug_activate(timer, timer->expires);
74019224
IM
923 internal_add_timer(base, timer);
924 /*
925 * Check whether the other CPU is idle and needs to be
926 * triggered to reevaluate the timer wheel when nohz is
927 * active. We are protected against the other CPU fiddling
928 * with the timer by holding the timer base lock. This also
929 * makes sure that a CPU on the way to idle can not evaluate
930 * the timer wheel.
931 */
932 wake_up_idle_cpu(cpu);
933 spin_unlock_irqrestore(&base->lock, flags);
934}
a9862e05 935EXPORT_SYMBOL_GPL(add_timer_on);
74019224 936
2aae4a10 937/**
1da177e4
LT
938 * del_timer - deactive a timer.
939 * @timer: the timer to be deactivated
940 *
941 * del_timer() deactivates a timer - this works on both active and inactive
942 * timers.
943 *
944 * The function returns whether it has deactivated a pending timer or not.
945 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
946 * active timer returns 1.)
947 */
948int del_timer(struct timer_list *timer)
949{
a6fa8e5a 950 struct tvec_base *base;
1da177e4 951 unsigned long flags;
55c888d6 952 int ret = 0;
1da177e4 953
dc4218bd
CC
954 debug_assert_init(timer);
955
82f67cd9 956 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
957 if (timer_pending(timer)) {
958 base = lock_timer_base(timer, &flags);
ec44bc7a 959 ret = detach_if_pending(timer, base, true);
1da177e4 960 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 961 }
1da177e4 962
55c888d6 963 return ret;
1da177e4 964}
1da177e4
LT
965EXPORT_SYMBOL(del_timer);
966
2aae4a10
REB
967/**
968 * try_to_del_timer_sync - Try to deactivate a timer
969 * @timer: timer do del
970 *
fd450b73
ON
971 * This function tries to deactivate a timer. Upon successful (ret >= 0)
972 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
973 */
974int try_to_del_timer_sync(struct timer_list *timer)
975{
a6fa8e5a 976 struct tvec_base *base;
fd450b73
ON
977 unsigned long flags;
978 int ret = -1;
979
dc4218bd
CC
980 debug_assert_init(timer);
981
fd450b73
ON
982 base = lock_timer_base(timer, &flags);
983
ec44bc7a
TG
984 if (base->running_timer != timer) {
985 timer_stats_timer_clear_start_info(timer);
986 ret = detach_if_pending(timer, base, true);
fd450b73 987 }
fd450b73
ON
988 spin_unlock_irqrestore(&base->lock, flags);
989
990 return ret;
991}
e19dff1f
DH
992EXPORT_SYMBOL(try_to_del_timer_sync);
993
6f1bc451 994#ifdef CONFIG_SMP
2aae4a10 995/**
1da177e4
LT
996 * del_timer_sync - deactivate a timer and wait for the handler to finish.
997 * @timer: the timer to be deactivated
998 *
999 * This function only differs from del_timer() on SMP: besides deactivating
1000 * the timer it also makes sure the handler has finished executing on other
1001 * CPUs.
1002 *
72fd4a35 1003 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1004 * otherwise this function is meaningless. It must not be called from
7ff20792 1005 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
1006 * completion of the timer's handler. The timer's handler must not call
1007 * add_timer_on(). Upon exit the timer is not queued and the handler is
1008 * not running on any CPU.
1da177e4 1009 *
48228f7b
SR
1010 * Note: You must not hold locks that are held in interrupt context
1011 * while calling this function. Even if the lock has nothing to do
1012 * with the timer in question. Here's why:
1013 *
1014 * CPU0 CPU1
1015 * ---- ----
1016 * <SOFTIRQ>
1017 * call_timer_fn();
1018 * base->running_timer = mytimer;
1019 * spin_lock_irq(somelock);
1020 * <IRQ>
1021 * spin_lock(somelock);
1022 * del_timer_sync(mytimer);
1023 * while (base->running_timer == mytimer);
1024 *
1025 * Now del_timer_sync() will never return and never release somelock.
1026 * The interrupt on the other CPU is waiting to grab somelock but
1027 * it has interrupted the softirq that CPU0 is waiting to finish.
1028 *
1da177e4 1029 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1030 */
1031int del_timer_sync(struct timer_list *timer)
1032{
6f2b9b9a 1033#ifdef CONFIG_LOCKDEP
f266a511
PZ
1034 unsigned long flags;
1035
48228f7b
SR
1036 /*
1037 * If lockdep gives a backtrace here, please reference
1038 * the synchronization rules above.
1039 */
7ff20792 1040 local_irq_save(flags);
6f2b9b9a
JB
1041 lock_map_acquire(&timer->lockdep_map);
1042 lock_map_release(&timer->lockdep_map);
7ff20792 1043 local_irq_restore(flags);
6f2b9b9a 1044#endif
466bd303
YZ
1045 /*
1046 * don't use it in hardirq context, because it
1047 * could lead to deadlock.
1048 */
1049 WARN_ON(in_irq());
fd450b73
ON
1050 for (;;) {
1051 int ret = try_to_del_timer_sync(timer);
1052 if (ret >= 0)
1053 return ret;
a0009652 1054 cpu_relax();
fd450b73 1055 }
1da177e4 1056}
55c888d6 1057EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1058#endif
1059
a6fa8e5a 1060static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1061{
1062 /* cascade all the timers from tv up one level */
3439dd86
P
1063 struct timer_list *timer, *tmp;
1064 struct list_head tv_list;
1065
1066 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1067
1da177e4 1068 /*
3439dd86
P
1069 * We are removing _all_ timers from the list, so we
1070 * don't have to detach them individually.
1da177e4 1071 */
3439dd86 1072 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1073 BUG_ON(tbase_get_base(timer->base) != base);
facbb4a7
TG
1074 /* No accounting, while moving them */
1075 __internal_add_timer(base, timer);
1da177e4 1076 }
1da177e4
LT
1077
1078 return index;
1079}
1080
576da126
TG
1081static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1082 unsigned long data)
1083{
1084 int preempt_count = preempt_count();
1085
1086#ifdef CONFIG_LOCKDEP
1087 /*
1088 * It is permissible to free the timer from inside the
1089 * function that is called from it, this we need to take into
1090 * account for lockdep too. To avoid bogus "held lock freed"
1091 * warnings as well as problems when looking into
1092 * timer->lockdep_map, make a copy and use that here.
1093 */
4d82a1de
PZ
1094 struct lockdep_map lockdep_map;
1095
1096 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1097#endif
1098 /*
1099 * Couple the lock chain with the lock chain at
1100 * del_timer_sync() by acquiring the lock_map around the fn()
1101 * call here and in del_timer_sync().
1102 */
1103 lock_map_acquire(&lockdep_map);
1104
1105 trace_timer_expire_entry(timer);
1106 fn(data);
1107 trace_timer_expire_exit(timer);
1108
1109 lock_map_release(&lockdep_map);
1110
1111 if (preempt_count != preempt_count()) {
802702e0
TG
1112 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1113 fn, preempt_count, preempt_count());
1114 /*
1115 * Restore the preempt count. That gives us a decent
1116 * chance to survive and extract information. If the
1117 * callback kept a lock held, bad luck, but not worse
1118 * than the BUG() we had.
1119 */
1120 preempt_count() = preempt_count;
576da126
TG
1121 }
1122}
1123
2aae4a10
REB
1124#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1125
1126/**
1da177e4
LT
1127 * __run_timers - run all expired timers (if any) on this CPU.
1128 * @base: the timer vector to be processed.
1129 *
1130 * This function cascades all vectors and executes all expired timer
1131 * vectors.
1132 */
a6fa8e5a 1133static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1134{
1135 struct timer_list *timer;
1136
3691c519 1137 spin_lock_irq(&base->lock);
1da177e4 1138 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1139 struct list_head work_list;
1da177e4 1140 struct list_head *head = &work_list;
6819457d 1141 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1142
1da177e4
LT
1143 /*
1144 * Cascade timers:
1145 */
1146 if (!index &&
1147 (!cascade(base, &base->tv2, INDEX(0))) &&
1148 (!cascade(base, &base->tv3, INDEX(1))) &&
1149 !cascade(base, &base->tv4, INDEX(2)))
1150 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1151 ++base->timer_jiffies;
1152 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1153 while (!list_empty(head)) {
1da177e4
LT
1154 void (*fn)(unsigned long);
1155 unsigned long data;
1156
b5e61818 1157 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1158 fn = timer->function;
1159 data = timer->data;
1da177e4 1160
82f67cd9
IM
1161 timer_stats_account_timer(timer);
1162
6f1bc451 1163 base->running_timer = timer;
99d5f3aa 1164 detach_expired_timer(timer, base);
6f2b9b9a 1165
3691c519 1166 spin_unlock_irq(&base->lock);
576da126 1167 call_timer_fn(timer, fn, data);
3691c519 1168 spin_lock_irq(&base->lock);
1da177e4
LT
1169 }
1170 }
6f1bc451 1171 base->running_timer = NULL;
3691c519 1172 spin_unlock_irq(&base->lock);
1da177e4
LT
1173}
1174
ee9c5785 1175#ifdef CONFIG_NO_HZ
1da177e4
LT
1176/*
1177 * Find out when the next timer event is due to happen. This
90cba64a
RD
1178 * is used on S/390 to stop all activity when a CPU is idle.
1179 * This function needs to be called with interrupts disabled.
1da177e4 1180 */
a6fa8e5a 1181static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1182{
1cfd6849 1183 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1184 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1185 int index, slot, array, found = 0;
1da177e4 1186 struct timer_list *nte;
a6fa8e5a 1187 struct tvec *varray[4];
1da177e4
LT
1188
1189 /* Look for timer events in tv1. */
1cfd6849 1190 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1191 do {
1cfd6849 1192 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1193 if (tbase_get_deferrable(nte->base))
1194 continue;
6e453a67 1195
1cfd6849 1196 found = 1;
1da177e4 1197 expires = nte->expires;
1cfd6849
TG
1198 /* Look at the cascade bucket(s)? */
1199 if (!index || slot < index)
1200 goto cascade;
1201 return expires;
1da177e4 1202 }
1cfd6849
TG
1203 slot = (slot + 1) & TVR_MASK;
1204 } while (slot != index);
1205
1206cascade:
1207 /* Calculate the next cascade event */
1208 if (index)
1209 timer_jiffies += TVR_SIZE - index;
1210 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1211
1212 /* Check tv2-tv5. */
1213 varray[0] = &base->tv2;
1214 varray[1] = &base->tv3;
1215 varray[2] = &base->tv4;
1216 varray[3] = &base->tv5;
1cfd6849
TG
1217
1218 for (array = 0; array < 4; array++) {
a6fa8e5a 1219 struct tvec *varp = varray[array];
1cfd6849
TG
1220
1221 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1222 do {
1cfd6849 1223 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1224 if (tbase_get_deferrable(nte->base))
1225 continue;
1226
1cfd6849 1227 found = 1;
1da177e4
LT
1228 if (time_before(nte->expires, expires))
1229 expires = nte->expires;
1cfd6849
TG
1230 }
1231 /*
1232 * Do we still search for the first timer or are
1233 * we looking up the cascade buckets ?
1234 */
1235 if (found) {
1236 /* Look at the cascade bucket(s)? */
1237 if (!index || slot < index)
1238 break;
1239 return expires;
1240 }
1241 slot = (slot + 1) & TVN_MASK;
1242 } while (slot != index);
1243
1244 if (index)
1245 timer_jiffies += TVN_SIZE - index;
1246 timer_jiffies >>= TVN_BITS;
1da177e4 1247 }
1cfd6849
TG
1248 return expires;
1249}
69239749 1250
1cfd6849
TG
1251/*
1252 * Check, if the next hrtimer event is before the next timer wheel
1253 * event:
1254 */
1255static unsigned long cmp_next_hrtimer_event(unsigned long now,
1256 unsigned long expires)
1257{
1258 ktime_t hr_delta = hrtimer_get_next_event();
1259 struct timespec tsdelta;
9501b6cf 1260 unsigned long delta;
1cfd6849
TG
1261
1262 if (hr_delta.tv64 == KTIME_MAX)
1263 return expires;
0662b713 1264
9501b6cf
TG
1265 /*
1266 * Expired timer available, let it expire in the next tick
1267 */
1268 if (hr_delta.tv64 <= 0)
1269 return now + 1;
69239749 1270
1cfd6849 1271 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1272 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1273
1274 /*
1275 * Limit the delta to the max value, which is checked in
1276 * tick_nohz_stop_sched_tick():
1277 */
1278 if (delta > NEXT_TIMER_MAX_DELTA)
1279 delta = NEXT_TIMER_MAX_DELTA;
1280
9501b6cf
TG
1281 /*
1282 * Take rounding errors in to account and make sure, that it
1283 * expires in the next tick. Otherwise we go into an endless
1284 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1285 * the timer softirq
1286 */
1287 if (delta < 1)
1288 delta = 1;
1289 now += delta;
1cfd6849
TG
1290 if (time_before(now, expires))
1291 return now;
1da177e4
LT
1292 return expires;
1293}
1cfd6849
TG
1294
1295/**
8dce39c2 1296 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1297 * @now: current time (in jiffies)
1cfd6849 1298 */
fd064b9b 1299unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1300{
7496351a 1301 struct tvec_base *base = __this_cpu_read(tvec_bases);
e40468a5 1302 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1cfd6849 1303
dbd87b5a
HC
1304 /*
1305 * Pretend that there is no timer pending if the cpu is offline.
1306 * Possible pending timers will be migrated later to an active cpu.
1307 */
1308 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1309 return expires;
1310
1cfd6849 1311 spin_lock(&base->lock);
e40468a5
TG
1312 if (base->active_timers) {
1313 if (time_before_eq(base->next_timer, base->timer_jiffies))
1314 base->next_timer = __next_timer_interrupt(base);
1315 expires = base->next_timer;
1316 }
1cfd6849
TG
1317 spin_unlock(&base->lock);
1318
1319 if (time_before_eq(expires, now))
1320 return now;
1321
1322 return cmp_next_hrtimer_event(now, expires);
1323}
1da177e4
LT
1324#endif
1325
1da177e4 1326/*
5b4db0c2 1327 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1328 * process. user_tick is 1 if the tick is user time, 0 for system.
1329 */
1330void update_process_times(int user_tick)
1331{
1332 struct task_struct *p = current;
1333 int cpu = smp_processor_id();
1334
1335 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1336 account_process_tick(p, user_tick);
1da177e4 1337 run_local_timers();
a157229c 1338 rcu_check_callbacks(cpu, user_tick);
b845b517 1339 printk_tick();
e360adbe
PZ
1340#ifdef CONFIG_IRQ_WORK
1341 if (in_irq())
1342 irq_work_run();
1343#endif
1da177e4 1344 scheduler_tick();
6819457d 1345 run_posix_cpu_timers(p);
1da177e4
LT
1346}
1347
1da177e4
LT
1348/*
1349 * This function runs timers and the timer-tq in bottom half context.
1350 */
1351static void run_timer_softirq(struct softirq_action *h)
1352{
7496351a 1353 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4 1354
d3d74453 1355 hrtimer_run_pending();
82f67cd9 1356
1da177e4
LT
1357 if (time_after_eq(jiffies, base->timer_jiffies))
1358 __run_timers(base);
1359}
1360
1361/*
1362 * Called by the local, per-CPU timer interrupt on SMP.
1363 */
1364void run_local_timers(void)
1365{
d3d74453 1366 hrtimer_run_queues();
1da177e4
LT
1367 raise_softirq(TIMER_SOFTIRQ);
1368}
1369
1da177e4
LT
1370#ifdef __ARCH_WANT_SYS_ALARM
1371
1372/*
1373 * For backwards compatibility? This can be done in libc so Alpha
1374 * and all newer ports shouldn't need it.
1375 */
58fd3aa2 1376SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1377{
c08b8a49 1378 return alarm_setitimer(seconds);
1da177e4
LT
1379}
1380
1381#endif
1382
1383#ifndef __alpha__
1384
1385/*
1386 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1387 * should be moved into arch/i386 instead?
1388 */
1389
1390/**
1391 * sys_getpid - return the thread group id of the current process
1392 *
1393 * Note, despite the name, this returns the tgid not the pid. The tgid and
1394 * the pid are identical unless CLONE_THREAD was specified on clone() in
1395 * which case the tgid is the same in all threads of the same group.
1396 *
1397 * This is SMP safe as current->tgid does not change.
1398 */
58fd3aa2 1399SYSCALL_DEFINE0(getpid)
1da177e4 1400{
b488893a 1401 return task_tgid_vnr(current);
1da177e4
LT
1402}
1403
1404/*
6997a6fa
KK
1405 * Accessing ->real_parent is not SMP-safe, it could
1406 * change from under us. However, we can use a stale
1407 * value of ->real_parent under rcu_read_lock(), see
1408 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1409 */
dbf040d9 1410SYSCALL_DEFINE0(getppid)
1da177e4
LT
1411{
1412 int pid;
1da177e4 1413
6997a6fa 1414 rcu_read_lock();
031af165 1415 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
6997a6fa 1416 rcu_read_unlock();
1da177e4 1417
1da177e4
LT
1418 return pid;
1419}
1420
dbf040d9 1421SYSCALL_DEFINE0(getuid)
1da177e4
LT
1422{
1423 /* Only we change this so SMP safe */
a29c33f4 1424 return from_kuid_munged(current_user_ns(), current_uid());
1da177e4
LT
1425}
1426
dbf040d9 1427SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1428{
1429 /* Only we change this so SMP safe */
a29c33f4 1430 return from_kuid_munged(current_user_ns(), current_euid());
1da177e4
LT
1431}
1432
dbf040d9 1433SYSCALL_DEFINE0(getgid)
1da177e4
LT
1434{
1435 /* Only we change this so SMP safe */
a29c33f4 1436 return from_kgid_munged(current_user_ns(), current_gid());
1da177e4
LT
1437}
1438
dbf040d9 1439SYSCALL_DEFINE0(getegid)
1da177e4
LT
1440{
1441 /* Only we change this so SMP safe */
a29c33f4 1442 return from_kgid_munged(current_user_ns(), current_egid());
1da177e4
LT
1443}
1444
1445#endif
1446
1447static void process_timeout(unsigned long __data)
1448{
36c8b586 1449 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1450}
1451
1452/**
1453 * schedule_timeout - sleep until timeout
1454 * @timeout: timeout value in jiffies
1455 *
1456 * Make the current task sleep until @timeout jiffies have
1457 * elapsed. The routine will return immediately unless
1458 * the current task state has been set (see set_current_state()).
1459 *
1460 * You can set the task state as follows -
1461 *
1462 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1463 * pass before the routine returns. The routine will return 0
1464 *
1465 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1466 * delivered to the current task. In this case the remaining time
1467 * in jiffies will be returned, or 0 if the timer expired in time
1468 *
1469 * The current task state is guaranteed to be TASK_RUNNING when this
1470 * routine returns.
1471 *
1472 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1473 * the CPU away without a bound on the timeout. In this case the return
1474 * value will be %MAX_SCHEDULE_TIMEOUT.
1475 *
1476 * In all cases the return value is guaranteed to be non-negative.
1477 */
7ad5b3a5 1478signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1479{
1480 struct timer_list timer;
1481 unsigned long expire;
1482
1483 switch (timeout)
1484 {
1485 case MAX_SCHEDULE_TIMEOUT:
1486 /*
1487 * These two special cases are useful to be comfortable
1488 * in the caller. Nothing more. We could take
1489 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1490 * but I' d like to return a valid offset (>=0) to allow
1491 * the caller to do everything it want with the retval.
1492 */
1493 schedule();
1494 goto out;
1495 default:
1496 /*
1497 * Another bit of PARANOID. Note that the retval will be
1498 * 0 since no piece of kernel is supposed to do a check
1499 * for a negative retval of schedule_timeout() (since it
1500 * should never happens anyway). You just have the printk()
1501 * that will tell you if something is gone wrong and where.
1502 */
5b149bcc 1503 if (timeout < 0) {
1da177e4 1504 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1505 "value %lx\n", timeout);
1506 dump_stack();
1da177e4
LT
1507 current->state = TASK_RUNNING;
1508 goto out;
1509 }
1510 }
1511
1512 expire = timeout + jiffies;
1513
c6f3a97f 1514 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1515 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1516 schedule();
1517 del_singleshot_timer_sync(&timer);
1518
c6f3a97f
TG
1519 /* Remove the timer from the object tracker */
1520 destroy_timer_on_stack(&timer);
1521
1da177e4
LT
1522 timeout = expire - jiffies;
1523
1524 out:
1525 return timeout < 0 ? 0 : timeout;
1526}
1da177e4
LT
1527EXPORT_SYMBOL(schedule_timeout);
1528
8a1c1757
AM
1529/*
1530 * We can use __set_current_state() here because schedule_timeout() calls
1531 * schedule() unconditionally.
1532 */
64ed93a2
NA
1533signed long __sched schedule_timeout_interruptible(signed long timeout)
1534{
a5a0d52c
AM
1535 __set_current_state(TASK_INTERRUPTIBLE);
1536 return schedule_timeout(timeout);
64ed93a2
NA
1537}
1538EXPORT_SYMBOL(schedule_timeout_interruptible);
1539
294d5cc2
MW
1540signed long __sched schedule_timeout_killable(signed long timeout)
1541{
1542 __set_current_state(TASK_KILLABLE);
1543 return schedule_timeout(timeout);
1544}
1545EXPORT_SYMBOL(schedule_timeout_killable);
1546
64ed93a2
NA
1547signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1548{
a5a0d52c
AM
1549 __set_current_state(TASK_UNINTERRUPTIBLE);
1550 return schedule_timeout(timeout);
64ed93a2
NA
1551}
1552EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1553
1da177e4 1554/* Thread ID - the internal kernel "pid" */
58fd3aa2 1555SYSCALL_DEFINE0(gettid)
1da177e4 1556{
b488893a 1557 return task_pid_vnr(current);
1da177e4
LT
1558}
1559
2aae4a10 1560/**
d4d23add 1561 * do_sysinfo - fill in sysinfo struct
2aae4a10 1562 * @info: pointer to buffer to fill
6819457d 1563 */
d4d23add 1564int do_sysinfo(struct sysinfo *info)
1da177e4 1565{
1da177e4
LT
1566 unsigned long mem_total, sav_total;
1567 unsigned int mem_unit, bitcount;
2d02494f 1568 struct timespec tp;
1da177e4 1569
d4d23add 1570 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1571
2d02494f
TG
1572 ktime_get_ts(&tp);
1573 monotonic_to_bootbased(&tp);
1574 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1575
2d02494f 1576 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1577
2d02494f 1578 info->procs = nr_threads;
1da177e4 1579
d4d23add
KM
1580 si_meminfo(info);
1581 si_swapinfo(info);
1da177e4
LT
1582
1583 /*
1584 * If the sum of all the available memory (i.e. ram + swap)
1585 * is less than can be stored in a 32 bit unsigned long then
1586 * we can be binary compatible with 2.2.x kernels. If not,
1587 * well, in that case 2.2.x was broken anyways...
1588 *
1589 * -Erik Andersen <andersee@debian.org>
1590 */
1591
d4d23add
KM
1592 mem_total = info->totalram + info->totalswap;
1593 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1594 goto out;
1595 bitcount = 0;
d4d23add 1596 mem_unit = info->mem_unit;
1da177e4
LT
1597 while (mem_unit > 1) {
1598 bitcount++;
1599 mem_unit >>= 1;
1600 sav_total = mem_total;
1601 mem_total <<= 1;
1602 if (mem_total < sav_total)
1603 goto out;
1604 }
1605
1606 /*
1607 * If mem_total did not overflow, multiply all memory values by
d4d23add 1608 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1609 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1610 * kernels...
1611 */
1612
d4d23add
KM
1613 info->mem_unit = 1;
1614 info->totalram <<= bitcount;
1615 info->freeram <<= bitcount;
1616 info->sharedram <<= bitcount;
1617 info->bufferram <<= bitcount;
1618 info->totalswap <<= bitcount;
1619 info->freeswap <<= bitcount;
1620 info->totalhigh <<= bitcount;
1621 info->freehigh <<= bitcount;
1622
1623out:
1624 return 0;
1625}
1626
1e7bfb21 1627SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1628{
1629 struct sysinfo val;
1630
1631 do_sysinfo(&val);
1da177e4 1632
1da177e4
LT
1633 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1634 return -EFAULT;
1635
1636 return 0;
1637}
1638
b4be6258 1639static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1640{
1641 int j;
a6fa8e5a 1642 struct tvec_base *base;
b4be6258 1643 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1644
ba6edfcd 1645 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1646 static char boot_done;
1647
a4a6198b 1648 if (boot_done) {
ba6edfcd
AM
1649 /*
1650 * The APs use this path later in boot
1651 */
94f6030c
CL
1652 base = kmalloc_node(sizeof(*base),
1653 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1654 cpu_to_node(cpu));
1655 if (!base)
1656 return -ENOMEM;
6e453a67
VP
1657
1658 /* Make sure that tvec_base is 2 byte aligned */
1659 if (tbase_get_deferrable(base)) {
1660 WARN_ON(1);
1661 kfree(base);
1662 return -ENOMEM;
1663 }
ba6edfcd 1664 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1665 } else {
ba6edfcd
AM
1666 /*
1667 * This is for the boot CPU - we use compile-time
1668 * static initialisation because per-cpu memory isn't
1669 * ready yet and because the memory allocators are not
1670 * initialised either.
1671 */
a4a6198b 1672 boot_done = 1;
ba6edfcd 1673 base = &boot_tvec_bases;
a4a6198b 1674 }
ba6edfcd
AM
1675 tvec_base_done[cpu] = 1;
1676 } else {
1677 base = per_cpu(tvec_bases, cpu);
a4a6198b 1678 }
ba6edfcd 1679
3691c519 1680 spin_lock_init(&base->lock);
d730e882 1681
1da177e4
LT
1682 for (j = 0; j < TVN_SIZE; j++) {
1683 INIT_LIST_HEAD(base->tv5.vec + j);
1684 INIT_LIST_HEAD(base->tv4.vec + j);
1685 INIT_LIST_HEAD(base->tv3.vec + j);
1686 INIT_LIST_HEAD(base->tv2.vec + j);
1687 }
1688 for (j = 0; j < TVR_SIZE; j++)
1689 INIT_LIST_HEAD(base->tv1.vec + j);
1690
1691 base->timer_jiffies = jiffies;
97fd9ed4 1692 base->next_timer = base->timer_jiffies;
99d5f3aa 1693 base->active_timers = 0;
a4a6198b 1694 return 0;
1da177e4
LT
1695}
1696
1697#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1698static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1699{
1700 struct timer_list *timer;
1701
1702 while (!list_empty(head)) {
b5e61818 1703 timer = list_first_entry(head, struct timer_list, entry);
99d5f3aa 1704 /* We ignore the accounting on the dying cpu */
ec44bc7a 1705 detach_timer(timer, false);
6e453a67 1706 timer_set_base(timer, new_base);
1da177e4 1707 internal_add_timer(new_base, timer);
1da177e4 1708 }
1da177e4
LT
1709}
1710
48ccf3da 1711static void __cpuinit migrate_timers(int cpu)
1da177e4 1712{
a6fa8e5a
PM
1713 struct tvec_base *old_base;
1714 struct tvec_base *new_base;
1da177e4
LT
1715 int i;
1716
1717 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1718 old_base = per_cpu(tvec_bases, cpu);
1719 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1720 /*
1721 * The caller is globally serialized and nobody else
1722 * takes two locks at once, deadlock is not possible.
1723 */
1724 spin_lock_irq(&new_base->lock);
0d180406 1725 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1726
1727 BUG_ON(old_base->running_timer);
1da177e4 1728
1da177e4 1729 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1730 migrate_timer_list(new_base, old_base->tv1.vec + i);
1731 for (i = 0; i < TVN_SIZE; i++) {
1732 migrate_timer_list(new_base, old_base->tv2.vec + i);
1733 migrate_timer_list(new_base, old_base->tv3.vec + i);
1734 migrate_timer_list(new_base, old_base->tv4.vec + i);
1735 migrate_timer_list(new_base, old_base->tv5.vec + i);
1736 }
1737
0d180406 1738 spin_unlock(&old_base->lock);
d82f0b0f 1739 spin_unlock_irq(&new_base->lock);
1da177e4 1740 put_cpu_var(tvec_bases);
1da177e4
LT
1741}
1742#endif /* CONFIG_HOTPLUG_CPU */
1743
8c78f307 1744static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1745 unsigned long action, void *hcpu)
1746{
1747 long cpu = (long)hcpu;
80b5184c
AM
1748 int err;
1749
1da177e4
LT
1750 switch(action) {
1751 case CPU_UP_PREPARE:
8bb78442 1752 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1753 err = init_timers_cpu(cpu);
1754 if (err < 0)
1755 return notifier_from_errno(err);
1da177e4
LT
1756 break;
1757#ifdef CONFIG_HOTPLUG_CPU
1758 case CPU_DEAD:
8bb78442 1759 case CPU_DEAD_FROZEN:
1da177e4
LT
1760 migrate_timers(cpu);
1761 break;
1762#endif
1763 default:
1764 break;
1765 }
1766 return NOTIFY_OK;
1767}
1768
8c78f307 1769static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1770 .notifier_call = timer_cpu_notify,
1771};
1772
1773
1774void __init init_timers(void)
1775{
e52b1db3
TH
1776 int err;
1777
1778 /* ensure there are enough low bits for flags in timer->base pointer */
1779 BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
07dccf33 1780
e52b1db3
TH
1781 err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1782 (void *)(long)smp_processor_id());
82f67cd9
IM
1783 init_timer_stats();
1784
9e506f7a 1785 BUG_ON(err != NOTIFY_OK);
1da177e4 1786 register_cpu_notifier(&timers_nb);
962cf36c 1787 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1788}
1789
1da177e4
LT
1790/**
1791 * msleep - sleep safely even with waitqueue interruptions
1792 * @msecs: Time in milliseconds to sleep for
1793 */
1794void msleep(unsigned int msecs)
1795{
1796 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1797
75bcc8c5
NA
1798 while (timeout)
1799 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1800}
1801
1802EXPORT_SYMBOL(msleep);
1803
1804/**
96ec3efd 1805 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1806 * @msecs: Time in milliseconds to sleep for
1807 */
1808unsigned long msleep_interruptible(unsigned int msecs)
1809{
1810 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1811
75bcc8c5
NA
1812 while (timeout && !signal_pending(current))
1813 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1814 return jiffies_to_msecs(timeout);
1815}
1816
1817EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17
PP
1818
1819static int __sched do_usleep_range(unsigned long min, unsigned long max)
1820{
1821 ktime_t kmin;
1822 unsigned long delta;
1823
1824 kmin = ktime_set(0, min * NSEC_PER_USEC);
1825 delta = (max - min) * NSEC_PER_USEC;
1826 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1827}
1828
1829/**
1830 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1831 * @min: Minimum time in usecs to sleep
1832 * @max: Maximum time in usecs to sleep
1833 */
1834void usleep_range(unsigned long min, unsigned long max)
1835{
1836 __set_current_state(TASK_UNINTERRUPTIBLE);
1837 do_usleep_range(min, max);
1838}
1839EXPORT_SYMBOL(usleep_range);